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Abstract. We prove that the set of first k vertices of a Hamming graph in reverse-lexicographic
order constitutes an extremal set minimizing the dimension-normalized edge-boundary over all k-
vertex subsets of the graph. This generalizes a result of Lindsey and can be used to prove a tight
lower bound for the isoperimetric number and the bisection width of arrays.
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1. Introduction. We consider questions of the following general form: Given a
graph G and a natural number k, what is the optimum value of a certain quantity in
a set of k vertices of G? The desired quantity could be the number of edges between
a set of k vertices and its complement (i.e., the size of the boundary) or the number
of edges induced by a set of k vertices, etc. The sets achieving the optimum value are
called extremal sets.

Specifically, we study extremal sets in Hamming graphs minimizing the size of
the edge-boundary of a set of vertices of given size, where boundary edges along each
dimension are normalized by a weight determined by that dimension, as shall soon
be explained.

First, we introduce some notation and terminology. Given a graph G and a subset
X of its vertices, let ∂X denote the edge-boundary, or simply boundary, of X. This is
the set of edges connecting vertices in X with vertices not in X (i.e., the complement
of X). A d-dimensional Hamming graph Hd is a graph with k1 × k2 × · · · × kd
vertices, k1 ≤ k2 ≤ · · · ≤ kd, each having a unique label l = 〈l1, l2, . . . , ld〉, where
0 ≤ li ≤ ki − 1. There is an edge between two vertices iff their labels differ in
exactly one digit. A d-dimensional array Ad resembles Hd with the exception that
two vertices are adjacent iff their labels differ in exactly one digit and the difference is
exactly one. Examples of a two-dimensional Hamming graph and a two-dimensional
array are shown in Figure 1.

The Cartesian product G×H of two graphs G and H is the graph with vertex set
V (G)×V (H), in which vertices (u, v) and (u′, v′) are adjacent iff u is adjacent to u′ in
G and v = v′, or v is adjacent to v′ in H and u = u′. The constituent graphs G and H
are called factors. A Hamming graph can be characterized as the Cartesian product
of a number of complete graphs of different sizes, i.e., Hd = Kk1 ×Kk2 × · · · ×Kkd

,
where Kr is a complete graph on r vertices. Similarly, Ad can be characterized
as the Cartesian product of a number of path graphs of varying length, i.e., Ad =
Pk1 × Pk2 × · · · × Pkd

, where Pr is a path graph (chain) with r vertices.
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1303

21

1202

20

01

10

22

11

00

23 1303

12

21

02

20

01

10

22

11

00

23

Fig. 1. The two-dimensional Hamming graph K3 ×K4 and array P3 × P4.

Lindsey [19] proved that the set of first k vertices of a Hamming graph in lex-
icographic order constitutes an extremal set minimizing the boundary ∂X over all
k-element subsets X. The lexicographic order is defined as follows: In the Hamming
graph Hd = Kk1

×Kk2
× · · · ×Kkd

with k1 ≤ k2 ≤ · · · ≤ kd, vertex x = 〈x1, . . . , xd〉
precedes vertex y = 〈y1, . . . , yd〉 in lexicographic order iff there exists an index i such
that x1 = y1, x2 = y2, . . . , xi−1 = yi−1 and xi < yi holds. Intuitively, in lexico-
graphic order, we traverse the Hamming graph in the direction of the next largest
factor starting with the vertex labeled 〈0, 0, . . . , 0〉. For instance, the vertices of the
Hamming graph in Figure 1 in lexicographic order are labeled

00, 01, 02, 03, 10, 11, 12, 13, 20, 21, 22, 23.

Our aim in this paper is to determine and describe extremal sets of Hamming
graphs minimizing the dimension-normalized boundary. This is defined next.

Definition 1.1. Given a Hamming graph Hd = Kk1 ×Kk2 × · · · ×Kkd
and a

subset X of its vertices, the dimension-normalized boundary B(X) of X is defined as

B(X) =
|∂1X|
c1

+
|∂2X|
c2

+ · · ·+ |∂dX|
cd

,(1.1)

where for 1 ≤ i ≤ d, ∂iX is the set of boundary edges along dimension i and

ci =

{
k2
i if ki is even,
k2
i − 1 if ki is odd.

(1.2)

We prove that the set of first k vertices in reverse-lexicographic order constitutes
an extremal set minimizing the dimension-normalized boundary over all k-element
subsets in a Hamming graph. The definition of the reverse-lexicographic order is
similar to that of the lexicographic order: In the Hamming graph Hd = Kk1

×
Kk2

× · · · × Kkd
with k1 ≤ k2 ≤ · · · ≤ kd, vertex x = 〈x1, . . . , xd〉 precedes vertex

y = 〈y1, . . . , yd〉 in reverse-lexicographic order iff there exists an index i such that
xd = yd, xd−1 = yd−1, . . . , xi+1 = yi+1 and xi < yi holds. In other words, we move in
the direction of the next smallest factor starting at the vertex labeled 〈0, 0, . . . , 0〉. To
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illustrate, the vertices of the Hamming graph in the above example listed in reverse-
lexicographic order are

00, 10, 20, 01, 11, 21, 02, 12, 22, 03, 13, 23.

We should point out that there are other sets of vertices which are structurally
equivalent to the sets specified in our definitions of lexicographic or reverse-lexico-
graphic orders. These are obtained by symmetries in the underlying graph. For
instance, in Figure 1, another ordering structurally equivalent to the lexicographic
ordering would be 23, 22, 21, 20, 13, etc. Similarly, the sets defined by the initial
segments of the ordering 23, 13, 03, 22, 12, etc., give rise to sets structurally identical
to those in reverse-lexicographic order.

We state our claim formally in the following theorem.
Theorem 1.2. Given a d-dimensional Hamming graph Hd, let X be any k-vertex

subset of V (Hd) and X be the set of first k vertices of Hd in reverse-lexicographic
order. Then B(X) ≤ B(X).

Interestingly, when all factors ofHd have equal size, the lexicographic and reverse-
lexicographic orders both result in structurally symmetric subsets and hence are equiv-
alent with respect to extremal sets minimizing the boundary (dimension-normalized
or otherwise). Therefore Theorem 1.2 is trivially true when k1 = k2 = · · · = kd by
Lindsey’s result, since the denominators ci in (1.1) will all be equal and minimizing
B(X) will be equivalent to minimizing |∂1X| + |∂2X| + · · · + |∂dX| = |∂X|, i.e., the
size of the boundary of X.

In the next section, we describe the notion of the isoperimetric number, which
is a quantity closely related to extremal sets. The isoperimetric number problem for
special classes of graphs provides the basis of our motivation for this work.

1.1. Motivation. An important quantity in the theory of graphs is the isoperi-
metric number i(G) of a graph G, defined as

i(G) = min
1≤|X|≤ |V (G)|

2

|∂X|
|X| ,(1.3)

where X ⊆ V (G). That is, the set of vertices of G is partitioned into two nonempty
sets and the ratio of the number of edges between the two parts and the number of
vertices in the smaller one is minimized. A subset X achieving the equality in (1.3)
is called an isoperimetric set.

The notion of the isoperimetric number of a graph G serves as a measure of
connectivity of G as it quantifies the minimal interaction between a set of vertices
X and its complement V (G) \X in terms of the number of edges between them. In
many instances, the isoperimetric number of a graph can be used to obtain a tight
lower bound for its bisection width as well [18]. We refer the reader to Mohar [22] or
Chung [12] for a discussion of basic results and various interesting properties of i(G).

At present, the isoperimetric number of an array Ad = Pk1 × Pk2 × · · · × Pkd
is

known only when either k1 = k2 = · · · = kd (see Azizoğlu and Eğecioğlu [4]) or the
size of the largest factor is even (see Azizoğlu and Eğecioğlu [5]). The latter is also
implicit in [10] (see also [17]). See also [3] and [13]. The techniques used to obtain
these results seem to fail in the general case. However, using the notion of extremal
sets minimizing dimension-normalized boundary together with a result of Nakano [23],
one can show that

i(Ad) = min
i

1


ki

2 �
.
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The technique used involves embedding a Hamming graph into Ad and associating
these extremal sets with isoperimetric sets of the array. We refer the reader to [6] for
details.

1.2. A summary of previous results. There has been a significant amount
of research in the area of isoperimetric bounds on various popular classes of graphs
such as Hamming graphs, arrays, and tori. We shall only mention those results in
this area which pertain to our discussion and refer the reader to Bezrukov [8] for a
comprehensive survey and Bollobás [9] for a general discussion of this and related
topics.

As mentioned before, an extremal set of a graph for a given k is, in a broad sense,
a configuration of k vertices with

• minimum number of boundary edges or
• maximum number of spanned edges

among all such k-vertex subsets of the given graph. The problem of finding extremal
sets of the first (or second) type is called the minimum-boundary-edge problem (or the
maximum-induced-edge problem). It can be shown that the minimum-boundary-edge
and the maximum-induced-edge problems are equivalent for regular graphs [11]. We
remark that one can easily obtain the isoperimetric number of a given graph if the
extremal sets of the first type are known (and the boundary is actually computable).
Evidently, an extremal set X with 
|V (G)|/2� vertices in a given graph G determines
a bisection for G.

The maximum-induced-edge problem (hence the minimum-boundary-edge prob-
lem, because of its regularity) for the hypercube (d-dimensional binary Hamming
graph) was solved by Harper [14] and extended by Lindsey [19] to the d-dimensional
k-ary Hamming graph. In both instances, there is a nested structure of solutions, and
the first k vertices in lexicographic order constitute an extremal set. The maximum-
induced-edge problem for the d-dimensional k-ary array Ad

k was solved by Bollobás
and Leader [11]. Since Ad

k is not regular, this result does not automatically give a solu-
tion to the minimum-boundary-edge problem. It was later extended to general arrays
by Ahlswede and Bezrukov [1] who also gave a solution for Pk1

×Pk2
for the minimum-

boundary-edge problem. The first nontrivial bounds on the minimum-boundary-edge
problem for the d-dimensional k-ary arrays are in Bollobás and Leader [11]. Unfortu-
nately, however, the bounds obtained are not tight enough to yield an exact formula
for i(Ad

k).
Similar problems have been studied in the literature for the vertex-boundary

of a given configuration of vertices. For instance, for the d-dimensional k-ary torus,
Bollobás and Leader [10] solved the vertex-boundary problem for even k. Riordan [24]
later extended their result by giving an ordering of vertices on the d-dimensional even
torus, which minimizes the number of vertices at shortest distance t from the vertices
in the ordering. Wang and Wang [25] solved this problem for P∞ × · · ·×P∞, i.e., the
d-dimensional infinite array, where the minimum is taken over all nonempty finite
subsets of vertices. In their result, each P∞ may be infinite in both directions or in
one direction only. They also gave a simple ordering of the vertices in which the first
k vertices constitute an extremal set minimizing the vertex-boundary. In a recent
paper, Harper [15] solved the vertex-boundary problem on Hamming graphs.

1.3. Outline. The outline of the remainder of this paper is as follows. In sec-
tion 2 we consider the case of two-dimensional Hamming graphs. First we define the
terminology we use and state a number of basic facts on restricted integer partitions,
majorization, and Schur-convexity. Then we identify potential extremal sets in H2 as
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integer partitions inside a rectangle. The problem of showing that the set of first k ver-
tices of H2 in reverse-lexicographic order constitutes an extremal set minimizing the
dimension-normalized edge-boundary over all k-vertex subsets becomes the problem
of maximization of a certain function on partitions, which is a linear combination of
two Schur-convex functions. However, the function itself is not Schur-convex, and the
identification of the partition on which the maximum is achieved is actually done us-
ing an inductive argument. The main result of this section is Lemma 2.5. In section 3
we extend the proof to the higher-dimensional case. This is done by an induction on
the number of dimensions, using the two-dimensional result as the base case. Finally,
concluding remarks are given in section 4.

2. The two-dimensional case. Let H2 = Km×Kn be a given two-dimensional
Hamming graph. Without loss of generality, we may assume that m = k1 ≤ k2 = n.
Consider a subset X of vertices in H2. Let X ′ be the subset of vertices of H2 obtained
by pushing (compressing) all the vertices in X as far downward and then to the left
in H2 as possible. It is easy to see (and proved in [19], [16]) that B(X ′) ≤ B(X)
since the number of boundary edges in either dimension will not increase as a result
of this procedure. A subset X ′ in the compressed form corresponds to a partition of
the integer |X| contained in the m× n rectangle.

We give below the definitions and properties of partitions that we will use in our
proof of Theorem 1.2. The reader is referred to [2] for further details.

Partitions. A partition λ of an integer N is a sequence (λ1, λ2, . . . , λ�) of positive
integers (called parts) satisfying λ1 ≥ λ2 ≥ · · · ≥ λ� and λ1 + λ2 + · · ·+ λ� = N . We
put |λ| = N . The Ferrers diagram of λ is a two-dimensional array of unit cells (or
nodes) in which row i from the bottom has λi cells and the rows are left justified. It
is clear that, in our case, λ = X ′ forms a partition of |X| whose Ferrers diagram is
contained in the m×n rectangle, i.e., λi ≤ m for 1 ≤ i ≤ � (i.e., each part at most m)
and � ≤ n (i.e., number of parts at most n). We use P(m,n) to denote the set of these
partitions. Thus we may assume that an extremal set is a partition λ ∈ P(m,n), and
we use the symbol P(m,n) to refer to H2 = Km ×Kn when we are not interested in
the graph structure of H2 but just the placement of the subset λ. We may augment
partitions by adding parts of zero length and write

∑
i≥1 λi for |λ|. We also identify

partitions with their diagrams when there is no confusion.

Given a partition λ = (λ1, λ2, . . . , λn), we may define a new partition λ′ =
(λ′1, λ

′
2, . . . , λ

′
m) by choosing λ′i as the number of parts of λ that are ≥ i. The parti-

tion λ′ is called the conjugate of λ. Geometrically, λ′ is obtained from λ by reflection
in the main diagonal (equivalently by counting the cells in successive columns of λ).
For example, the conjugate of (5, 4, 3, 3, 1, 1) is (6, 4, 4, 2, 1). Clearly |λ| = |λ′|, and if
λ ∈ P(m,n), then λ′ ∈ P(n,m).

Durfee square. Let d = d(λ) denote the number of λi such that λi ≥ i. Then
d measures the largest square of cells contained in the partition λ, i.e., the number
of cells on the main diagonal of λ, the cells with coordinates of the form (i, i). This
square is called the Durfee square, and d is called the side of the Durfee square. For
the partition λ = (5, 4, 3, 3, 1, 1), the side of the Durfee square is d = 3.

Frobenius notation. Suppose d is the side of the Durfee square of λ. Let
αi = λi− i be the number of cells in the ith row of λ to the right of (i, i) for 1 ≤ i ≤ d,
and let βi = λ′i − i be the number of cells in the ith column of λ above (i, i) for
1 ≤ i ≤ d. Then we have α1 > α2 > · · · > αd ≥ 0 and β1 > β2 > · · · > βd ≥ 0. The
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Frobenius notation for λ is

λ = (α1, . . . , αd|β1, . . . , βd) = (α|β).

For example, if λ = (5, 4, 3, 3, 1, 1), then α = (4, 2, 0) and β = (5, 2, 1) as shown in
Figure 2.

β

α

α

β

3α

32

1

2

β1

Fig. 2. The main diagonal (cells in dark) of the 3 × 3 Durfee square and α = (4, 2, 0), β =
(5, 2, 1) of the Frobenius notation for the partition λ = (5, 4, 3, 3, 1, 1).

Reverse-lexicographic ordering on partitions. Given partitions λ and µ, µ
precedes λ in reverse-lexicographic ordering, denoted by µ ≥ λ, if either λ = µ or else
the first nonvanishing difference λi − µi is positive. Reverse-lexicographic ordering is
a total order. For example, partitions of N = 5 are ordered by reverse-lexicographic
ordering as

(5) ≥ (4, 1) ≥ (3, 2) ≥ (3, 1, 1) ≥ (2, 2, 1) ≥ (2, 1, 1, 1) ≥ (1, 1, 1, 1, 1),

the first (or the “smallest” one) being (5). The reason for this reversed notation is
for consistency with the dominance order on partitions that we later define.

Majorization, Schur-convexity, and transfer. Given two partitions λ =
(λ1, λ2, . . . , λN ) and µ = (µ1, µ2, . . . , µN ) of N , λ is majorized by µ, written λ ≺ µ, if

λ1 + λ2 + · · ·+ λk ≤ µ1 + µ2 + · · ·+ µk, k = 1, 2, . . . , N.

Majorization is also referred to as the dominance or natural order [20, Chap. 1]. As
soon as N ≥ 6, majorization is not a total ordering. For example, the partitions
(3, 1, 1, 1) and (2, 2, 2) of 6 are not comparable. However, reverse-lexicographic order-
ing on partitions is a linear extension of ≺. Thus

λ ≺ µ ⇒ λ ≤ µ.

Furthermore λ ≺ µ ⇔ µ′ ≺ λ′ (see [20, (1.11)]). A real-valued function g defined on
partitions of an integer N is said to be Schur-convex (see [21, Chap. 3]) if

λ ≺ µ ⇒ g(λ) ≤ g(µ).
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We make use of the following special case of a result of Schur, 1923, and Hardy,
Littlewood, and Polya, 1929 (see [21, Chap. 3, Prop. C.1]).

Proposition 2.1. Suppose φ is a real-valued convex function on R and N is a
positive integer. Then the function

g(λ) =
∑
i≥1

φ(λi)

is Schur-convex on partitions of N .
Given a partition µ = (µ1, µ2, . . . , µN ) with µi > µj , the transformation that

takes µ to ρ = (ρ1, ρ2, . . . , ρN ) defined by

ρi = µi − 1,

ρj = µj + 1,

ρk = µk, k �= i, j,

is called a transfer from i to j. By a result of Muirhead, if λ ≺ µ, then λ can be
derived from µ by successive application of a finite number of transfers [21, Chap. 5,
D.1], [20, (1.16)].

Now consider a partition λ ∈ P(m,n), where k1 = m ≤ n = k2, which corresponds
to a compressed set in H2 = Km ×Kn. Let ∂mλ and ∂nλ be sets of horizontal and
vertical boundary edges of λ, respectively. Then we have

|∂mλ| =
∑
λi>0

λi(m− λi) and |∂nλ| =
∑
λ′
j
>0

λ′j(n− λ′j).

After substituting these into (1.1) and eliminating constant terms, we see that finding
a subset λ ∈ Km × Kn minimizing B(λ) is equivalent to maximizing the following
function f :

f(λ) = c1

λ′
1∑

i=1

λ2
i + c2

λ1∑
j=1

λ′2j(2.1)

= γn
∑
i≥1

λ2
i + γm

∑
j≥1

λ′2j

on P(m,n) (m ≤ n), where

γn =

{
n2 if n is even,
n2 − 1 if n is odd

(2.2)

in accordance with the definition of the weights ci in (1.2). We prove the following
equivalent formulation of Theorem 1.2 for H2 = Km ×Kn:

Theorem 2.2. When restricted to partitions of a fixed N ≤ mn, the function
f defined in (2.1) is maximized on P(m,n), m ≤ n, by the reverse-lexicographically
smallest partition of N in P(m,n).

The proof of the main result of this paper, and consequently the proof of the
formula for the isoperimetric number of arrays itself (see [6]) which uses this result,
would be simplified by an independent proof of this fact. However, the function f is
not Schur-convex. In other words, transfer operators [21, Chap. 5, D.1] or equivalently
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raising/lowering operators (see [20, (1.15)–(1.16)]) which move from a given λ to
a smaller one in the linear order while keeping the value of f nondecreasing are
insufficient to prove this fact. As an example take m = 4, n = 8, λ = (4, 1, 1, 1, 1, 1, 1),
µ = (4, 2, 1, 1, 1, 1). Then λ ≺ µ by a single transfer as shown in Figure 3, but
2240 = f(λ) > f(µ) = 2208. It can be shown that transfer arguments can be used to
prove Theorem 2.2 in the special case when n ≥ m2.

λ µ

Fig. 3. µ is obtained from λ by single transfer (lowering the indicated cell). Here m = 4, n = 8,
λ ≺ µ but f(λ) = 2240, whereas f(µ) = 2208.

We reformulate f(λ) in (2.1) in a form which is more convenient for our charac-

terization. Given a partition λ ∈ P(m,n), let λ̃ be the partition in P(m − 1, n − 1)
which is obtained by removing the bottommost row and the leftmost column from
the m× n rectangle. Now consider the term γn

∑
λ2
i of f(λ) in (2.1). By taking the

first term λ2
1 out of the summation and putting λi = (λi − 1) + 1, we have

γn
∑
i≥1

λ2
i = γn

[
λ2

1 +

λ′
1∑

i=2

((λi − 1) + 1)2
]

= γn

[
λ2

1 +
∑
i≥1

λ̃2
i + 2

∑
i≥2

λi −
λ′

1∑
i=2

1

]

= γn

[
λ2

1 +
∑
i≥1

λ̃2
i + 2(|λ| − λ1)− (λ′1 − 1)

]
.

Putting the second term γm
∑

j≥1 λ
′2
j of f(λ) as above, we now have

f(λ) = γn

[
λ2

1 +
∑
i≥1

λ̃2
i + 2(|λ| − λ1)− (λ′1 − 1)

]

+ γm

[
λ′21 +

∑
j≥1

λ̃′2j + 2(|λ| − λ′1)− (λ1 − 1)

]
.

Since f(λ̃) = γn
∑

i≥1 λ̃
2
i + γm

∑
j≥1 λ̃

′2
j , this is equivalent to

f(λ) = f(λ̃) + γn

[
λ2

1 + 2(|λ| − λ1)− (λ′1 − 1)

]
(2.3)

+ γm

[
λ′21 + 2(|λ| − λ′1)− (λ1 − 1)

]
.
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Suppose now λ = (α|β) = (α1, . . . , αd|β1, . . . , βd). Then the partition λ̃ obtained
from λ by deleting the leftmost column and the bottommost row of them×n rectangle
is a partition (α̃|β̃) which has a Durfee square of size d − 1, where λ̃ = (α̃|β̃) =
(α2, . . . , αd|β2, . . . , βd). Using this and λ1 = 1 + α1, λ

′
1 = 1 + β1, equality (2.3) can

be reformulated as

f(α|β) = f(α̃|β̃) + γnα
2
1 − γmα1 + γmβ

2
1 − γnβ1 + (γn + γm)(2|λ| − 1).(2.4)

Since the last term (γn + γm)(2|λ| − 1) is constant for all configurations with size |λ|,
iterating this expression we have the following proposition.

Proposition 2.3. Over partitions λ = (α|β) in P(m,n) of a fixed integer |λ|
with Durfee square of size d, maximizing f(λ) is equivalent to maximizing

γn

[
α2

1 + · · ·+ α2
d − (β1 + · · ·+ βd)

]
+ γm

[
β2

1 + · · ·+ β2
d − (α1 + · · ·+ αd)

]
.(2.5)

Durfee-equivalence. Suppose λ ∈ P(m,n) has a Durfee square D of size d. Let
ν = ν(λ) denote the partition that lies north (on top) of D and η = η(λ) the partition
that lies east (to the right) of D. Then ν1 ≤ d and ν′1 ≤ n − d, and η′1 ≤ d and
η1 ≤ m− d. Two partitions λ, µ ∈ P(m,n) are Durfee-equivalent iff

1. d(λ) = d(µ),
2. |ν(λ)| = |ν(µ)| and |η(λ)| = |η(µ)|.

We single out a special representative λ∗ in the equivalence class of partitions
Durfee-equivalent to λ. λ∗ is the partition in which η is the largest in the dominance
order in the d × (m − d) rectangle to the right of the Durfee square and ν′ is the
largest in the dominance order in the (n − d) × d rectangle to the top of the Durfee
square. In other words, in λ∗, η∗ is obtained by distributing |η| cells into as many
rows as possible of length m − d, followed by a (possibly null) partial row of size r.
Similarly in λ∗, ν∗ is obtained by distributing |ν| cells by first laying as many columns
as possible of length n− d, followed by a (possibly null) partial column of size s. An
example of this is shown in Figure 4.

η

ν

η

*

*

ν
λ λ*

Fig. 4. Partition λ = (5, 4, 4, 3, 2, 1) is Durfee-equivalent to the special representative λ∗ =
(6, 4, 3, 2, 1, 1, 1, 1) in P(6, 8).

Proposition 2.4. Suppose λ ∈ P(m,n) and λ∗ is the special representative of λ
in the equivalence class of partitions Durfee-equivalent to λ. Then f(λ∗) ≥ f(λ).

Proof. We use Proposition 2.3. Since in Durfee-equivalence |ν| and |η| do not
change, α1 + · · · + αd and β1 + · · · + βd are constant. Thus maximizing f over the
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Durfee-equivalence class of λ is equivalent to maximizing

γn
(
α2

1 + · · ·+ α2
d

)
+ γm

(
β2

1 + · · ·+ β2
d

)
,

which is decoupled. Since the function φ(x) = x2 is convex on R, applying the
majorization result of Proposition 2.1 to each term separately, we obtain the propo-
sition.

Remark. Proposition 2.4 allows us to restrict potential maximizers of the function
f(λ) on λ ∈ P(m,n) to partitions of the form shown in Figure 5. Here |λ| = d2 +
w(m− d) + t(n− d) + r + s.

d

d
r

s

t

w

n−d

m−d

Fig. 5. The form of special representatives of Durfee-equivalence classes of partitions in P(m,n).

2.1. Extremal sets for the two-dimensional Hamming graph. Now we
are ready to prove the two-dimensional case, which is stated using the terminology of
Hamming graphs in the following lemma.

Lemma 2.5. Given a two-dimensional Hamming graph H2 = Km × Kn with
m ≤ n, let λ be any k-vertex subset of V (H2) and λ be the set of first k vertices of
H2 in reverse-lexicographic order. Then f(λ) ≥ f(λ). That is,

γn
∑
i≥1

λ
2

i + γm
∑
j≥1

λ
′2
j ≥ γn

∑
i≥1

λ2
i + γm

∑
j≥1

λ′2j .(2.6)

Proof. We give the proof only for n and m both even. The other cases are similar.
By Proposition 2.4, we can assume that λ = λ∗ is the special representative in the
Durfee-equivalence class of λ and is characterized by the parameters r, s, w, t,m, d, n
as shown in Figure 5 with |λ| = d2 + w(m− d) + t(n− d) + r + s. Using the original
definition (2.1) of f , we compute

γn
∑

λ2
i = n2

[
wm2 + (d+ r)2 + (d− w − 1)d2 + s(t+ 1)2 + (n− d− s)t2

]
,

γm
∑
j≥1

λ′2j = m2

[
tn2 + (d+ s)2 + (d− t− 1)d2 + r(w + 1)2 + (m− d− r)w2

]
.
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For simplicity, assume that m divides |λ|. Then λ consists of |λ|/m rows of length m
each. Thus

γn
∑

λ
2

i = n2m
[
d2 + w(m− d) + t(n− d) + r + s

]
,

γm
∑
j≥1

λ
′2
j = m

[
d2 + w(m− d) + t(n− d) + r + s

]2
.

Let g(r, s, w, t,m, d, n) = f(λ)− f(λ). Then

g(r, s, w, t,m, d, n)(2.7)

= n2m
[
d2 + w(m− d) + t(n− d) + r + s

]
+m

[
d2 + w(m− d) + t(n− d) + r + s

]2
− n2

[
wm2 + (d+ r)2 + (d− w − 1)d2 + s(t+ 1)2 + (n− d− s)t2]

−m2
[
tn2 + (d+ s)2 + (d− t− 1)d2 + r(w + 1)2 + (m− d− r)w2

]
.

g is a polynomial of total degree 5 in the integer variables r, s, w, t,m, d, n, which is
quadratic as a polynomial in r, s, w, t, and m, cubic in n, and quartic in d. Let R be
region defined by the inequalities

0 ≤ r ≤ m− d,
0 ≤ s ≤ n− d,
0 ≤ w ≤ d− 1,(2.8)

0 ≤ t ≤ d− 1,

d ≤ m ≤ n
that we read off from Figure 5. Now we show that g(r, s, w, t,m, d, n) ≥ 0 on R where
g is as in (2.7) and R is the region defined in (2.8). Rewrite the inequalities in R in
the form

r0 ≤ r ≤ r1,
s0 ≤ s ≤ s1,
w0 ≤ w ≤ w1,

t0 ≤ t ≤ t1,
m0 ≤ m ≤ m1

with r0 = 0, r1 = m−d, and s0 = 0, s1 = n−d, etc., up to m0 = d, m1 = n. The idea
of the proof is simple in theory: As a quadratic in r, we calculate that the leading
coefficient ism−n2 ≤ 0. If, in addition, we can show that g(r0, s, w, t,m, d, n) ≥ 0 and
g(r1, s, w, t,m, d, n) ≥ 0 on R, then we would be done. But this requires that we solve
two subproblems: We need to show g(r0, s, w, t,m, d, n) ≥ 0 and g(r1, s, w, t,m, d, n) ≥
0. Both of these are quadratic in s. If we can show that the leading coefficient in
each is ≤ 0 on R and if each one evaluated in s = s0 and s = s1 is ≥ 0 on R, then we
would be done. Iterating this argument, to prove the claim about the nonnegativity
of g on R, it suffices to verify the following two assertions:

1. g(ri1 , s, w, t,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in s,
g(ri1 , si2 , w, t,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in w,
g(ri1 , si2 , wi3 , t,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in t,
g(ri1 , si2 , wi3 , ti4 ,m, d, n) has leading coefficient ≤ 0 on R as a polynomial in
m for all 0-1 vectors (i1, i2, i3, i4),

2. g(ri1 , si2 , wi3 , ti4 ,mi5 , d, n) is ≥ 0 on R for each 0-1 vector (i1, i2, i3, i4, i5).
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Table 1
Leading coefficients of the quadratic terms in g. For example, the entry in row 011 indi-

cates that the quadratic g(r0, s1, w1, t,m, d, n) = g(0, n − d, d − 1, t,m, n, d) in t has the expression
−(n− d)(n2 −mn+ dm) ≤ 0 as the coefficient of t2.

i1i2i3i4 Coefficient of the leading term

ε −(n2 −m)
0 −m(m− 1)
1 −m(m− 1)
00 −dm(m− d)
01 −dm(m− d)
10 −dm(m− d)
11 −dm(m− d)
000 −(n− d)(n2 −mn+ dm)
001 −(n− d)(n2 −mn+ dm)
010 −(n− d)(n2 −mn+ dm)
011 −(n− d)(n2 −mn+ dm)
100 −(n− d)(n2 −mn+ dm)
101 −(n− d)(n2 −mn+ dm)
110 −(n− d)(n2 −mn+ dm)
111 −(n− d)(n2 −mn+ dm)
0000 −d3

0001 −d2 − (d− 1)n2

0010 −d
0011 −(d− 1)(n− d+ 1)2 − 1
0100 −d2(d− 1)− n2

0101 −dn2

0110 −(d− 1)− (n− d+ 1)2

0111 −d(n− d+ 1)2

1000 −d(d− 1)2

1001 −(d− 1)(n2 − 2n+ d)
1010 0
1011 −(d− 1)(n− d)2

1100 −d((d− 1)(d− 2) + 1)− n(n− 2)
1101 −d(n− 1)2

1110 −(n− d)2

1111 −d(n− d)2

This is a job best suited to a symbolic algebra package. The expressions proving this
proposition are given in Tables 1 and 2. They were calculated by a short Mathematica
program.

3. The higher-dimensional case. In this section, we prove Theorem 1.2 for
an arbitrary number of dimensions d. The main idea of the proof is based on that
of [16]; hence our notation is similar to the notation therein.

Proof. The proof is by induction on d with d = 2, already proved in Lemma 2.5,
being the base case. We assume k1 ≤ k2 ≤ · · · ≤ kd for Hd = Kk1 ×Kk2 × · · · ×Kkd

and vertices are labeled by d-tuples 〈l1, l2, . . . , ld〉, where 0 ≤ li ≤ ki − 1.
The idea is to transform a given arbitrary configuration into one in reverse-

lexicographic order so as not to increase the normalized boundary. To aid the read-
ability of the proof, Figure 6 provides a three-dimensional Hamming graph H3 =
K4 ×K5 ×K10, which illustrates the transformation process.

Given an arbitrary configuration X in Hd, we permute the kd (d−1)-dimensional
Hamming subgraphs along dimension d such that successive subgraphs have fewer
elements of X. Now we apply the induction hypothesis to each of these subgraphs.
Phase (i) in Figure 6 illustrates a configuration obtained after this step. Note that
applying this procedure cannot increase B(X) since |∂dX| cannot increase and by the
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Table 2
The values of the specializations of the quadratic terms in g. For example, the entry in row

01101 indicates that g(r0, s1, w1, t0,m1, d, n) = g(0, n− d, d− 1, 0, n, n, d) = 2n2(d− 1)(n− d) ≥ 0.

i1i1i3i4i5 g(ri1 , si2 , wi3 , ti4 ,mi5 , d, n)

00000 0
00001 d2n(n− d)2

00010 (d− 1)(n− d)(n2 − dn+ d2)
00011 dn(n− 1)(n− d)
00100 0
00101 dn(n− 1)(n− d)
00110 (d− 1)(n− d)(n2 − dn+ d2)
00111 (d− 1)2n(n− d)2 + 2n2(d− 1)(n− d)
01000 (d− 1)(n− d)(n2 − dn+ d2)
01001 d(d− 1)n(n− d)(n− d+ 1)
01010 0
01011 0
01100 (d− 1)(n− d)(n2 − dn+ d2)
01101 2n2(d− 1)(n− d)
01110 0
01111 d(d− 1)n(n− d)(n− d+ 1)
10000 0
10001 d(d− 1)n(n− d)(n− d+ 1)
10010 (d− 1)(n− d)(n2 − dn+ d2)
10011 2(d− 1)n2(n− d)
10100 0
10101 0
10110 (d− 1)(n− d)(n2 − dn+ d2)
10111 d(d− 1)n(n− d)(n− d+ 1)
11000 (d− 1)(n− d)(n2 − dn+ d2)
11001 (d− 2)2n(n− d)2 + 2n2(d− 1)(n− d)
11010 0
11011 dn(n− 1)(n− d)
11100 (d− 1)(n− d)(n2 − dn+ d2)
11101 dn(n− 1)(n− d)
11110 0
11111 d2n(n− d)2

induction hypothesis

|∂1Xi|
c1

+ · · ·+ |∂d−1Xi|
cd−1

is smallest for each subgraph i, where Xi is the set of elements of X that are in sub-
graph i. Not surprisingly, this means that candidate extremal sets in higher dimen-
sions are among higher-dimensional partitions (see [2, Chap. 11]), which are contained
in the d-dimensional parallelepiped k1 × k2 × · · · × kd. Now we repeat the same steps
for subgraphs along dimension d − 1 as well. This step is illustrated by phase (ii) in
Figure 6.

Consider the (d − 2)-dimensional Hamming subgraphs of Hd when dimensions
d and d − 1 are fixed. We call each such subgraph “complete” iff its vertices are
completely contained in X, “incomplete” iff there exists some (but not all) contained
in X, and “empty” iff none is in X. We shall show that if there are more than one
incomplete subgraph, then these can be combined without increasing B(X). The
result of this step is shown by phase (iii) in Figure 6. To this end we give some
definitions and develop proper notation.

First, suppose P ∗
p,q and P ∗

r,s are sets of vertices of two such incomplete (d − 2)-
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(i) (ii) (iii) (iv)

Fig. 6. Conversion into the reverse-lexicographic order in three dimensions.

dimensional Hamming subgraphs, where p, r and q, s are coordinates of dimension d
and d− 1, respectively, with 0 ≤ p, r ≤ kd − 1 and 0 ≤ q, s ≤ kd−1 − 1. Without loss
of generality, assume

p

cd
+

q

cd−1
≥ r

cd
+

s

cd−1
.(3.1)

Next, let Pp,q = P ∗
p,q ∩X, Pr,s = P ∗

r,s ∩X, and Y = X \ (Pp,q ∪Pr,s). In our example,
there are exactly two such subgraphs with p = 0, q = 3 and r = 2, s = 2, i.e., P0,3

and P2,2, which satisfies the assumption given by the inequality above.
Now given two disjoint subsets S and T of V (Hd), let

B(S, T ) =
|∂1(S, T )|

c1
+

|∂2(S, T )|
c2

+ · · ·+ |∂d(S, T )|
cd

,(3.2)

where ci is as defined before and ∂i(S, T ) is the set of edges in dimension i having one
end in S and the other in T . Note that, in this notation, B(X) = B(X,V (Hd) \X).

Note that the following holds:

B(X) = B(Y ) +B(Pp,q) +B(Pr,s)(3.3)

− 2(B(Y, Pp,q) +B(Y, Pr,s))− 2B(Pp,q, Pr,s).

We claim that if as many elements in Pr,s as possible are moved to P ∗
p,q preserving

the reverse-lexicographic order, then B(X) does not increase. To this end, consider
the terms in (3.3). First, we remark that, by virtue of the reverse-lexicographic order,
we must have p �= r and q �= s, and therefore B(Pp,q, Pr,s) = 0 in (3.3). Furthermore,
because of inequality (3.1), B(Y, Pp,q)+B(Y, Pr,s) cannot decrease by this move, and
B(Y ) is constant. Finally, we claim that B(Pp,q) +B(Pr,s) does not increase.

To prove this, note that any vertex v ∈ (Pp,q ∪ Pr,s) is adjacent to kd − 1 and
kd−1 − 1 vertices in dimensions d and d− 1, respectively. Thus, moving vertices from
Pr,s to P ∗

p,q does not change the boundary along dimensions d and d− 1. Therefore,
it suffices to prove

B′(Pp,q) +B′(Pr,s) ≥ B′(P ′
p,q) +B′(P ′

r,s),(3.4)

where

B′(X) =
|∂1X|
c1

+ · · ·+ |∂d−2X|
cd−2
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and P ′
p,q and P ′

r,s are the new subsets corresponding to Pp,q and Pr,s respectively,
after elements are moved from Pr,s to P ∗

p,q.
To prove inequality (3.4), first suppose that all of Pr,s fits in the complement of

Pp,q with respect to P ∗
p,q. Thus we can place elements of Pr,s into P ∗

p,q \ Pp,q in a
set structurally identical to the one given by reverse-lexicographic order, i.e., starting
with vertex 〈k1 − 1, k2 − 1, . . . , kd−2 − 1, q, p〉 of Hd and expanding in the direction of
the smallest factor of the Hamming graph. That is,

〈k1−1, k2−1, . . . , kd−3−1, kd−2−1, q, p〉 → 〈k1−1, k2−1, . . . , kd−3−1, kd−2−2, q, p〉

→ · · · → 〈k1 − 1, k2 − 1, . . . , kd−3 − 2, kd−2 − 1, q, p〉

→ 〈k1 − 1, k2 − 1, . . . , kd−3 − 2, kd−2 − 2, q, p〉 → · · ·
and so on. This is shown in Figure 7.

(i)(i) (ii)(ii)

Fig. 7. Combining two incomplete subgraphs where the elements can fit into one. (i) Subgraphs
before, and (ii) after.

In this case, we have B′(P ′
r,s) = 0 since P ′

r,s = φ and B′(P ′
p,q) can be written

as B′(P ′
p,q) = B′(Pp,q) + B′(Pr,s) − 2B′(Pp,q, Pr,s). Substituting these values into

inequality (3.4), it suffices to prove that

B′(Pp,q) +B′(Pr,s) ≥ B′(Pp,q) +B′(Pr,s)− 2B′(Pp,q, Pr,s),

which obviously holds since B′(Pp,q, Pr,s) ≥ 0. We remark that P ′
p,q is not in reverse-

lexicographic order at this point since it consists of two subsets, each of which is
structurally in reverse-lexicographic order. Nevertheless, by an easy application of
the induction hypothesis, we can convert it to the reverse-lexicographic order without
increasing B′(P ′

p,q).
Now assume that not all elements of Pr,s fit into P ∗

p,q. First take |P ∗
p,q \ Pp,q|

vertices in reverse-lexicographic order in P ∗
r,s. These vertices are in Pr,s. Call this set

of vertices Y2 and set Y1 = Pr,s \ Y2. After moving all vertices in Y2 to P ∗
p,q, we put

Y1 in reverse-lexicographic order Y 1 within P ∗
r,s. This is shown in Figure 8.

Then, inequality (3.4) reduces to proving

B′(Pp,q) +B′(Pr,s) ≥ B′(Y1)
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(i)(i) (ii)(ii)

Y
2

Y1

Y
2

Y
1

Fig. 8. Combining two incomplete subgraphs where the elements cannot fit into one. (i) Sub-
graphs before, and (ii) after.

as B′(Y1) ≥ B′(Y1) holds by the induction hypothesis. Now note that B′(Pr,s) =
B′(Y1) + B′(Y2) − 2B′(Y1, Y2) and B′(Y2) = B′(Pp,q) since Y2 and Pp,q are comple-
mentary in P ∗

p,q. Thus the above inequality is equivalent to

B′(Y2) ≥ B′(Y1, Y2),

which obviously holds. Thus B(Pp,q) + B(Pr,s) does not increase as claimed. By
applying this process to all (d− 2)-dimensional incomplete subgraphs, we can assume
that X has only one incomplete (d− 2)-dimensional Hamming subgraph.

Finally we treat the (d − 2)-dimensional Hamming subgraphs as single vertices
and use the two-dimensional case to minimize B(X) by putting them in reverse-
lexicographic order with the only incomplete one highest in the order, as shown by
phase (iv) in Figure 6. This completes the proof of Theorem 1.2.

4. Conclusions. We proved that the set of first k vertices of the Hamming
graph Hd = Kk1

×Kk2
×· · ·×Kkd

(k1 ≤ k2 ≤ · · · ≤ kd) in reverse-lexicographic order
constitutes an extremal set minimizing the dimension-normalized edge-boundary over
all k-vertex subsets of the graph. The boundary edges ∂iX along the ith dimension
of X ⊂ V (Hd) are normalized by a weight

ci =

{
k2
i if ki is even,
k2
i − 1 if ki is odd,

which naturally arises in the isoperimetric number problem for d-dimensional arrays.
The weighted boundary to be minimized is then

B(X) =
|∂1X|
c1

+
|∂2X|
c2

+ · · ·+ |∂dX|
cd

over X ⊂ V (Hd). Interestingly, when all factors of Hd have equal size, the lexico-
graphic and reverse-lexicographic orders both result in structurally symmetric sub-
sets and hence are equivalent with respect to extremal sets minimizing the boundary
(dimension-normalized or otherwise). Thus our result is identical to Lindsey’s for
k1 = k2 = · · · = kd.
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We formulated the problem for the two-dimensional case as the maximization of
the function f defined on partitions λ ∈ P(m,n) (m ≤ n) by

f(λ) = γn

n∑
i=1

λ2
i + γm

m∑
j=1

λ′2j

and proved that f is maximized for N ≤ nm, by the reverse-lexicographically smallest
partition of N in P(m,n), where

γn =

{
n2 if n is even,
n2 − 1 if n is odd.

This result for d = 2 forms the base step of the higher-dimensional case.
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[6] M. C. Azizoğlu and Ö. Eğecioğlu, The bisection width and the isoperimetric number of

arrays, Discrete Appl. Math., in press.
[7] S. L. Bezrukov, Variational Principle in Discrete Extremal Problems, Technical report TR–RI

94–152, University of Paderborn, Paderborn, Germany, 1994.
[8] S. L. Bezrukov, Edge isoperimetric problems on graphs, in Graph Theory and Combinatorial

Biology, Bolyai Soc. Math. Stud. 7, L. Lovasz, A. Gyarfas, G. O. H. Katona, A. Recski,
and L. Szekely, eds., János Bolyai Math. Soc., Budapest, 1999, pp. 157–197.

[9] B. Bollobás, Combinatorics, Cambridge University Press, Cambridge, UK, 1986.
[10] B. Bollobás and I. Leader, An isoperimetric inequality on the discrete torus, SIAM J.

Discrete Math., 3 (1990), pp. 32–37.
[11] B. Bollobás and I. Leader, Edge-isoperimetric inequalities in the grid, Combinatorica, 11

(1991), pp. 299–314.
[12] F. R. K. Chung, Spectral Graph Theory, CBMS Reg. Conf. Ser. Math. 92, AMS, Providence,

RI, 1997.
[13] F. R. K. Chung and P. Tetali, Isoperimetric inequalities for Cartesian products of graphs,

Combin. Probab. Comput., 7 (1998), pp. 141–148.
[14] L. H. Harper, Optimal assignment of numbers to vertices, J. Soc. Indust. Appl. Math., 12

(1964), pp. 131–135.
[15] L. H. Harper, On an isoperimetric problem for Hamming graphs, Discrete Appl. Math., 95

(1999), pp. 285–309.
[16] D. J. Kleitman, M. M. Krieger, and B. L. Rothschild, Configurations maximizing the

number of pairs of Hamming–adjacent lattice points, Stud. Appl. Math., 50 (1971), pp.
115–119.

[17] I. Leader, private communication, 2000.
[18] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays · Trees ·

Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[19] J. H. Lindsey, II, Assignment of numbers to vertices, Amer. Math. Monthly, 71 (1964),

pp. 508–516.
[20] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press,

Oxford, 1995.



236 M. CEMIL AZIZOĞLU AND ÖMER EĞECIOĞLU
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