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tWe 
onsider the problem of uniform generation of random integers in the range [1; n℄ givenonly a binary sour
e of randomness. Standard models of randomized algorithms (e.g. probabilisti
Turing ma
hines) assume the availability of a random binary sour
e that 
an generate independentrandom bits in unit time with uniform probability. This makes the task trivial if n is a power of2. However, exa
t uniform generation algorithms with bounded run time do not exist if n is nota power of 2.We analyze several almost-uniform generation algorithms and dis
uss the tradeo� between thedistan
e of the generated distribution from the uniform distribution, and the number of operationsrequired per random number generated. In parti
ular, we present a new algorithm whi
h is basedon a 
ir
ulant, symmetri
, rapidly mixing Markov 
hain. For a given positive integer N , thealgorithm produ
es an integer i in the range [1; n℄ with probability pi = pi(N) using O(N logn)bit operations su
h that j pi � 1=n j < 
 �N , for some 
onstant 
, where� = 2 14�  r2p2�q5�p5 ! � 0:4087:This rate of 
onvergen
e is superior to the estimates obtainable by 
ommonly used methodsof bounding the mixing rate of Markov 
hains su
h as 
ondu
tan
e, dire
t 
anoni
al paths, and
ouplings.Keywords. Random number generation, uniform distribution, Markov 
hain, rapid mixing, eigen-value, 
ir
ulant matrix.1 Introdu
tionWe 
onsider the generation of almost-uniform random integers in the range [1; n℄, taking into a

ountthe required time, spa
e, and number of random bits. The basi
 assumption is that independentrandom bits 
an be generated in unit time. If n is an exa
t power of 2, say n = 2m, then thegeneration of a uniformly distributed random integer in the range [1; n℄ is easily a

omplished intime O(m) = O(log n) by generating m 
onse
utive random bits. However, if n is not a power of2, no algorithm with bounded running time 
an generate numbers in [1; n℄ from the exa
t uniformdistribution (see below).The task of generating uniformly distributed random elements of a set whose size is not an exa
tpower of two arises frequently in the study of randomized algorithms and is usually treated as aprimitive operation. This is in part justi�ed by the fa
t that simple and eÆ
ient almost-uniformgeneration algorithms are known. However, it appears that the exa
t 
osts and trade-o�s betweena

ura
y and required resour
es of these algorithms have not been analyzed in detail. One of our aimsis to explore whi
h options exist and to 
ompare their 
osts. We present two new algorithms { one1



based on a rapidly mixing Markov 
hain and one based on a redu
tion from approximate 
ounting toalmost uniform generation { and 
ompare their resour
e requirements with those of the well-knownmodular algorithms.Sin
lair [18℄ 
onsiders the problem on an abstra
t level, and shows polynomial time equivalen
ebetween almost uniform generation on probabilisti
 Turing ma
hines and on a di�erent ma
hine modelwhi
h allows biased 
oin 
ips.One important 
lass of appli
ations whi
h requires uniform generators for sets of arbitrary sizeis the simulation of heat bath Markov 
hains (
f. [6℄ for a pre
ise de�nition). In pra
ti
e, the sizeof the sets 
an be extremely large [15℄. Heat bath Markov 
hains are one of the standard tools in
omputational physi
s, and are used frequently in high-pre
ision numeri
al simulations. It is easyto show that a bias in the distribution of the generator translates dire
tly into a similar bias in theoutput distribution of the Markov 
hain.We present a new algorithm whi
h is based on the simulation of a rapidly-mixing 
ir
ulant Markov
hain. Its analysis gives a dire
t bound on the se
ond-largest eigenvalue of the transition matrix ofthe Markov 
hain and is of interest in its own right. In parti
ular, we observe that the 
ommonly usedmethods of bounding the mixing rate of Markov 
hains (
ondu
tan
e [18℄, dire
t 
anoni
al paths [17℄,
ouplings [3℄), yield weaker bounds than the one obtained here. Dire
t bounds on the se
ond-largesteigenvalue of transition matri
es have been obtained previously, mostly based on algebrai
 propertiesof the underlying domain (e.g. [4℄). However, the stru
ture of our Markov 
hain, as well as thete
hnique used to bound its mixing rate seem di�erent from previous results.The probabilisti
 Turing ma
hine (PTM) is the most 
ommonly used ma
hine model in the studyof randomized algorithms [14, 18℄. It is a standard Turing ma
hine equipped with the ability togenerate (or a

ess) random bits in unit time. A PTM is deterministi
, ex
ept for spe
ial 
oin-tossingstates in whi
h there are exa
tly two possible transitions, determined by the 
ip of an unbiased 
oin.Proposition 1 Given n 2 IN whi
h is not a power of 2, let An be a randomized algorithm whi
houtputs numbers in [1; n℄ and whose running time is bounded by tn 2 IN. Let rn � tn be an upperbound on the number of random bits used by An. Let pi be the probability that An outputs i 2 [1; n℄.There exists i 2 [1; n℄ su
h that jpi � 1=nj � 2�(rn+1):We omit the proof due to spa
e 
onstraints. Intuitively, An has to pla
e 2rn balls (elementary events)into n bins. If n is not a power of 2, some bins have to re
eive at least one ball more than others.The situation is slightly di�erent for Las Vegas type algorithms whose run time is not bounded. Inthe simplest 
ase, the algorithm 
an use rn random bits, assign an equal number of elementary eventsto ea
h number in [1; n℄, and de
ide to use more random bits or, simply, not terminate with theremaining probability. We will 
on
entrate on algorithms whose running time is bounded, and referto Las Vegas type algorithms only where appropriate.Sin
e produ
ing the exa
t uniform distribution on [1; n℄ is not possible, we try to generate integersin [1; n℄ with an almost-uniform distribution. We use the well-known relative pointwise distan
e r.p.d.(e.g. [18℄) to measure the 
loseness of the output distribution and the uniform distribution: The r.p.d.between two probability distributions p; q on a �nite set X (qi > 0 for all i 2 X) is de�ned as�(p; q) = maxi2X jpi � qijqiIn the following, q will always be the uniform distribution, and we write �(p) instead of �(p; q) todenote the r.p.d. of p from the uniform distribution. Thus �(p) = maxi2X jnpi � 1j:The rest of this paper is organized as follows: In Se
tion 2, we des
ribe the Markov 
hain algorithm.Our main result on the bound of the mixing rate of the Markov 
hain is stated in this se
tion. Se
tion 3analyzes the resour
e requirements of three alternative algorithms. An outline of the proof of ourmain theorem is given in Se
tion 4. Remarks and 
on
lusions are given in Se
tion 5.2



2 A Rapidly Mixing Cir
ulant Markov ChainIn this se
tion, we des
ribe an algorithm based on the simulation of a rapidly mixing Markov 
hain.In O(N log n) time, this algorithm produ
es a random integer i in the range [1; n℄ with distributionp su
h that �(p) � n �N ; where � = 2 14�  r2p2�q5�p5 ! � 0:4087 : (1)The bound � � 0:4087 deserves attention in two respe
ts. Firstly, known algorithms redu
e the r.p.d.only by a fa
tor of 0:5 in ea
h step. Similarly, standard methods for bounding the mixing rate of aMarkov 
hain yield bounds whi
h are worse than 0:5. These issues will be addressed below.We de�ne an n � n transition matrix P = ( pij ) su
h that the 
orresponding Markov 
hain Mon state spa
e f1; 2; : : : ; ng has the following properties: 1) M is ergodi
 with stationary distribution� = ( 1n ; 1n ; : : : ; 1n); 2) M is rapidly mixing, i.e. the N -step transition matrix PN 
onverges qui
klyto the limiting probabilities; 3) M 
an be simulated eÆ
iently. That is, the time to simulate onetransition step is O(log n). The prepro
essing time, and spa
e requirements for M are also O(log n) .Given su
h P , the algorithm (referred to as Algorithm I) simulates N steps of M . The �rst 
onditionguarantees that M 
onverges to the uniform distribution, and the se
ond 
ondition ensures that asmall number N of simulation steps is suÆ
ient. The third 
ondition ensures that ea
h simulationstep 
an be exe
uted eÆ
iently.An n� n 
ir
ulant matrix C = C(a1; a2; : : : ; an) is a matrix of the form266664 a1 a2 � � � anan a1 � � � an�1... ... ...a2 a3 � � � a1 377775where ea
h row is a single right 
ir
ular shift of the row above it [8℄.Assume that n is not a power of 2, and let m = blog n
. Then n2 < 2m < n, and n 
an bewritten in the form n = 2m + p with 0 < p < 2m. Consider symmetri
, 
ir
ulant n� n 0-1 matri
esC = C(0; a2; a3; : : : ; an) where exa
tly 2m of the entries a2; a3; : : : ; an are equal to 1. Sin
e we arefor
ing C to be symmetri
, this imposes the 
ondition ak = an+2�k for k = 2; 3; : : : ; n. For example,for n = 7, we have m = 2 and p = 3. In this 
ase there are three su
h matri
es: C(0; 1; 1; 0; 0; 1; 1),C(0; 1; 0; 1; 1; 0; 1), and C(0; 0; 1; 1; 1; 1; 0). Ea
h su
h matrix C de�nes an irredu
ible, aperiodi
 (i.e.ergodi
) Markov 
hain M on n states f1; 2; : : : ; ng whose transition matrix is P = 12m C. Thesymmetry of C guarantees that the stationary distribution of the 
orresponding Markov 
hain Mis the uniform distribution on f1; 2; : : : ; ng. Note that the eigenvalues of P and C are related bya 
onstant fa
tor 2m. Let ��1 denote the se
ond largest eigenvalue of C. It is well-known that themixing rate of M 
an be bounded by �1 = 2�m��1. The following inequality for the r.p.d. followsfrom [18, 7, 13℄: �(p(N)) � n�N1 ; (2)where p(N) is the distribution on the states of M after N simulation steps. We 
onsider the problemof pi
king the nonzero ak's so that ��1 is minimized:Theorem 1 Suppose n = 2m + p with 0 < p < 2m. There exists a symmetri
, 
ir
ulant n � n 0-1matrix C�s = C(0; a2; a3; : : : ; an) with 2m nonzero entries in its �rst row su
h that2�m��1 � 2 14�  r2p2�q5�p5 ! � 0:4087 :Furthermore, the �rst row of C�s 
ontains at most two symmetri
ally pla
ed blo
ks of 1's starting at
olumn �s = d p10e+ 1. 3



An outline of the proof is given in Se
tion 4. We take M = M �s to be the Markov 
hain onf1; 2; : : : ; ng whose transition matrix is P = P �s = 12m C�s. The stru
ture of C�s is su
h that p1j = 12mif and only ifj 2 f�s+ k j k = 0; 1; : : : ; 2m�1 � 1g [ fn+ 2� (�s+ k) j k = 0; 1; : : : ; 2m�1 � 1g : (3)Sin
e P is 
ir
ulant, pij = 12m if and only if j is in a translate modulo n of the set of indi
es in (3).Thus to move from a state i of M to state j, we only need to generate a random binary numberr in the range [0; 2m � 1℄. We then use the high order bit to sele
t the translate of one of the twosets of 
onse
utive indi
es in (3). After this, the new state j is simply the (r + 1)-st smallest indexin the subset 
hosen. More formally, we des
ribe the steps of this algorithm as Algorithm I. LetRANDOM[0; 2m � 1℄ denote a pro
edure whi
h returns a random integer r in the range [0; 2m � 1℄or, equivalently, m 
onse
utive random bits provided by our ma
hine model (PTM).Algorithm I :Input: n;NOutput: i 2 [1; n℄beginm := blog n
; �s := dn�2m10 e+ 1;
ur state := 1;for j := 1 to N dobegini := RANDOM[0; 2m � 1℄ ;if i 2 [0; 2m�1) then 
ur state := 1 + [ (
ur state� 1 + �s+ i) mod n ℄else 
ur state := 1 + � (
ur state� 1 + (n+ 2� (�s+ i� 2m�1)) mod n � ;endi := 
ur state;return(i);endThe number of operations required to take one step on the Markov 
hain M is O(m) = O(log n).Thus, the total running time of Algorithm I is O(N log n). By (2) and Theorem 1, after starting froman arbitrary initial state and simulating N steps of M , the probability of being in some parti
ularstate j does not di�er from 1=n by more than a 
onstant multiple (w.r.t. N) of �N , where � is asgiven in (1).2.1 Other methods of bounding the mixing rateWe note that the bound of �1 � 0:4087 is obtained by a rather detailed analysis (
f. Se
tion 4),taking spe
ial properties of 
ir
ulant matri
es into a

ount. The well-known general methods forestimating mixing rates, while being useful general purpose tools, appear to be too 
oarse-grained toyield a similar bound. We outline this in the following paragraphs. Details are omitted due to spa
erestri
tions.The 
ondu
tan
e � [18℄ whi
h measures the expansion of the transition graph is often used tobound the se
ond largest eigenvalue of the transition matrix via the inequality �1 � 1��2=2. Sin
e,by de�nition, � � 1, this method 
annot yield a better bound than 0:5 > 0:4087. A 
loser analysisfor the parti
ular 
ase 
onsidered here shows that the 
ondu
tan
e is signi�
antly smaller than 1, and
onsequently the bound obtained in this fashion is a
tually mu
h larger than 0:5.The method of [17, 9℄ whi
h bounds the se
ond largest eigenvalue dire
tly by a dire
t 
anoni
alpaths argument (as opposed to going via the 
ondu
tan
e) usually leads to tighter bounds than4




ondu
tan
e-based methods. We 
an show by means of a 
ounting argument that this approa
h doesnot yield a better bound than �1 � 0:7.The 
oupling method tries to bound the mixing rate by a dire
t probabilisti
 argument and withoutbounding the eigenvalues. The use of the 
oupling method is based on [3℄, whi
h bounds the mixingrate by e�1=(2eT ), where T is 
alled the 
oupling time. Basi
 but tedious steps show that T > 2,resulting in a mixing rate of at least 0:912 � 0:4087.3 Alternative AlgorithmsIn this se
tion we analyze three alternate algorithms for the generation problem. Algorithm II and IVare straightforward modular algorithms. Algorithm III is a new algorithm and based on the redu
tionfrom almost-uniform generation to approximate 
ounting [12℄.Algorithm II: This algorithm is des
ribed in [10℄: Generate a random sequen
e of m = dlog nebits. If the sequen
e is the binary representation of an integer i1 in the range [0; n� 1℄, then returni := i1+1. If not, generate another m-bit random number i2 using the same pro
ess. If after N su
htrials, none of the integers i1; i2; : : : ; iN turns out to be in [1; n℄, then return i := iN � 2m�1. A moreformal des
ription of this algorithm is given as Algorithm II.Algorithm II :Input: n;NOutput: i 2 [1; n℄m := dlog ne;for j := 1 to N doi := RANDOM[0; 2m � 1℄ +1 ;if i 2 [1; n℄ then return(i) and exit;return(i� 2m�1) ;Proposition 2 Let pII(N) denote the output distribution of Alg. II. Then �(pII(N)) � 2�N .Proof Omitted due to spa
e limitations. 2Algorithm II 
an be run in Las Vegas mode by dropping the upper limit of N loop iterations. Inthis 
ase, the expe
ted running time E(n) isE(n) = 1Xk=1 km n2m ( r2m )k�1 � m(1� r2m )2 � m(1� 12)2 � 8 log n ;where r = 2m � n. Thus the expe
ted running time of Algorithm II is no worse than 8 log n, inde-pendently of the parameter N . Using Cherno� bounds, it is easy to show that the running time isunlikely to ex
eed its expe
tation signi�
antly.Algorithm III: There is a 
lose relation between almost-uniform generation problems and the
orresponding approximate 
ounting problems (
omputing the number of elements in the set) [12℄. Inour 
ase, the solution to the 
ounting problem is simply n, and the solutions of relevant subproblemsare easily derived. This makes it possible to design a generation algorithm based on the well-knownredu
tion from almost-uniform generation to approximate 
ounting of [12℄.Given a bitstring s, let solns(s) = jfx 2 [0; n � 1℄ : 9v : sv = xgj be the number of elements of[0; n � 1℄ whose binary representation begins with s. These solutions of 
ounting subproblems are5



easily 
omputed. The algorithm generates a random element of [0; n � 1℄ one bit at a time, startingwith the most signi�
ant bit. At the start of the k-th round, the k � 1 most signi�
ant bits havebeen determined. The invariant is that the probability of produ
ing any given pre�x is proportionalto the number of elements of [0; n � 1℄ whose most signi�
ant bits 
oin
ide with this pre�x. It iseasy to show by indu
tion that this relation will hold, if the next bit is set to 1 with probabilitysolns(pre�x Æ 1)=solns(pre�x), where Æ denotes 
on
atenation. If, at any given point, the pre�x issu
h that solns(pre�x) = 2i (for some i > 0), the pro
ess 
an be stopped. Algorithm III summarizesthese steps.Algorithm III :Input: n > 1Output: 2 [1; n℄pre�x := �; k := dlog ne; (* bitlength of (n� 1) *)repeatif solns(pre�x Æ 1) = 0 then pre�x := pre�x Æ 0elsewith probability divide[solns(pre�x Æ 1); solns(pre�x)℄, set pre�x := pre�x Æ 1;otherwise set pre�x := pre�x Æ 0k := k � 1;until k = 0 or solns(pre�x) is a power of 2;pre�x := pre�x Æ0k�log solns(pre�x);if solns(pre�x) > 1 then pre�x := pre�xÆRANDOM[0; solns(pre�x)� 1℄return( pre�x+1 );As stated, Algorithm III is an exa
t uniform generator. However, its running time is unboundedbe
ause the binary representation of p1 := solns(pre�xÆ1)solns(pre�x) may not be �nite. One obtains an approximateversion of the algorithm by trun
ating this fra
tion to some �nite number m of bits. Steps similarto those of [18℄ show that �(pIII) � 2�N if m � 2dlog ne+N . Thus, a
hieving an a

ura
y of 2�Nrequires a total of at most 2dlog ne2 +Ndlog ne random bits. Note that there are only log n relevantvalues of p1. Those values 
an be obtained and stored in a pre
omputation step. Thus, the algorithmneeds O(log2 n+N log n) time and spa
e in the worst 
ase.The algorithm 
an be run in Las Vegas mode if the probabilisti
 de
ision (`with probability . . . ')is implemented appropriately. Be
ause of spa
e restri
tions, we defer the details of this part of thealgorithm to the �nal version of the paper. For both standard and Las Vegas versions we haveProposition 3 The expe
ted running time of Alg. III is O(log n).Again, one 
an use Cherno� bounds to show that the a
tual running time is 
on
entrated around itsexpe
tation.Algorithm IV: This algorithm appears to be widely used in pra
ti
e: �x m � logn, generatea random integer M in the range [0; 2m � 1℄ by generating m 
onse
utive random bits, and outputM mod n.Proposition 4 Let pIV (m) denote the output distribution of Alg. IV. Then �(pIV (m)) � n2�m.Next we 
al
ulate the number of bit operations required by Algorithm IV. Let b = blog n
 + 1.Thus M and n are m-bit and b-bit long integers with m � b. We 
an 
onsider algorithms of varying
omplexity for the 
al
ulation of the remainder R = (Mmod n) depending on the sizes of the numbersinvolved. Straightforward division ofM by n followed by a multipli
ation and subtra
tion to 
al
ulate6



Algorithm IV :Input: n;mOutput: i 2 [1; n℄beginM := RANDOM[0; 2m � 1℄ ;return((M mod n) + 1) ;endR requires O(mb) bit operations. Using the asymptoti
ally faster S
h�onhage-Strassen algorithm forlarge integers, the integral quotient of a 2b-bit number by a b-bit number, as well as the produ
t oftwo b-bit numbers 
an be obtained in O(b log b log log b) bit operations [16, 1℄. To use this algorithmfor remainder 
al
ulation we prepend the binary representation of M with zeros if ne
essary andassume that b� 1 divides m. Write M = m=(b�1)�1Xi=0 Mi2(b�1)iwhere ea
h Mi is b� 1 bits. The remainders ri = 2(b�1)imod n for i = 1; 2; : : : ;m=(b � 1)� 1 
an be
omputed by m=(b� 1) multipli
ations and divisions requiring O(b log b log log b) bit operations ea
h,if the S
h�onhage-Strassen algorithm is used. After this phase, ea
h quantity Mirimod n 
an be 
om-puted with an additional O(b log b log log b) bit operations. Finally the resultingm=(b�1) remaindersfound are summed up modulo n in another O( mb�1b) = O(m) bit operations. The total number of op-erations required for the 
omputation of R be
omes O(m log b log log b) = O(m log logn log log log n).4 Proof of the main TheoremIn this se
tion we outline the proof of Theorem 1.Proof The eigenvalues of a 
ir
ulant matrix C = C(0; a2; a3; : : : ; an) are given by�r = nXk=2 ak!(k�1)r ; r = 0; 1; : : : ; n� 1 ;where ! is a primitive n�th root of unity (See, for example [8, 5℄). Here we do not assume that thesubs
ripts order the eigenvalues of C in de
reasing/in
reasing absolute value. For 2 � s � dp2e + 1,
onsider the matrix Cs obtained by setting the blo
k of entries as; as+1; : : : ; as+2m�1�1, togetherwith their mirror images in the �rst row equal to 1. Let 2m�sr denote the eigenvalues of Cs, r =1; 2; : : : ; n� 1. Thus �sr are the eigenvalues of the 
orresponding Markov 
hain transition matrix P s.By the symmetry of the ak's, we have2m�sr = s+2m�1�1Xk=s (!(k�1)r + �!(k�1)r) = 2 2m�1�1Xk=0 
os 2�(s� 1 + k)rn ;where �! is the 
omplex 
onjugate of !. In parti
ular �sn�r = �sr, r = 1; 2; : : : ; n2 : Using the trigono-metri
 identity [11℄ h�1Xk=0 
os(a+ kb) = sin hb2 
ose
 b2 
os(a+ h� 12 b) ;7



with a = 2�(s�1)rn , b = 2�rn , and h = 2m�1, we �nd that2m�sr = 2 sin �rn 2m�1sin �rn 
os �rn (2m�1 + 2s� 3) ; r = 1; 2; : : : ; n2 :Let x = �rn . By using the double angle formula sin 2x = 2 sinx 
os x repeatedly, we obtainsin(2m�1x) = 2m�1 sinx 
os x 
os(2x) � � � 
os(2m�2x) :Therefore, �sr = 
os x 
os(2x) � � � 
os(2m�2x) 
os (2m�1 + 2s� 3)x ; r = 1; 2; : : : ; n2 : (4)We split the proof of the Theorem into two 
ases, depending on whether or not r � 4:Case I (r � 4) : For k = 1; 2; : : : ;m� 2, let Ik denote the interval [ n2k+1 ; n2k ℄. Sin
e 2m < n < 2m+1,the union of these intervals 
overs [4; n2 ℄. Therefore if r � 4, then r 2 Ik for some k.We show that the fa
tor 
os 2(k�1)x 
os 2kx that appears in the produ
t expression (4) for �sr issmall for x 2 [ �2k+1 ; �2k ℄. For a �xed k � m � 2, let t = 2(k�1)x, and f(t) = 
os t 
os 2t. Then themaximum value of f on [�4 ; �2 ℄ is rea
hed for 
os t = 1p6 . Thus on [�4 ; �2 ℄,jf(t)j � j2 ( 1p6)3 � ( 1p6) j = 23p6 :It follows that j�srj � 23p6 for r 2 [4; n2 ℄ � [ n2m�1 ; n2 ℄, independently of the value of s.Case II (r < 4) : Now we 
onsider the 
ases r = 1; 2; 3. LetP (r;m) = m�2Yk=0 
os 2kr�n :Then by (4) �sr = P (r;m) 
os r�n (2m�1 + 2s� 3) ; r = 1; 2; 3 :Sin
e 2m < n < 2m+1, we have �8 < 2m�2�n < �4 . Now 
osine is de
reasing on [0; �2 ℄. Thus
os 2m�2�n < 
os �8 ; 
os 2m�3�n < 
os �16 ; � � � ; 
os �n < 
os �2m+1 :Using the last m� 2 of these inequalities, it follows thatP (1;m) < 
os 2m�2�n m+1Yk=4 
os �2k :By Vi�ete's formula for � 1Yk=2 
os �2k = 2� ;and therefore limm!1 mYk=4 
os �2k = 2� 
os �4 
os �8 = 4�q1 + 1p2 : (5)8



Sin
e m = blog n
, it follows that for large n,P (1;m) � 4�q1 + 1p2 
os 2m�2�n :Using Euler's generalization of Vi�ete's formula in a similar fashion, we obtain the following in-equalities for large nP (2;m) � 2p2� 
os 2m�1�n ; jP (3;m)j � 4q2 +p23� j 
os 3 � 2m�2�n j :Now let 
 = p2m , Æ = 2s�32m�1 . Then 0 < 
 < 1, 0 < Æ < 
 andj�s1j � 4�q1 + 1p2 j 
os �4 ( 11 + 
 ) 
os �2 ( 1 + Æ1 + 
 )jj�s2j � 2p2� j 
os 2�4 ( 11 + 
 ) 
os 2�2 ( 1 + Æ1 + 
 )j (6)j�s3j � 4q2 +p23� j 
os 3�4 ( 11 + 
 ) 
os 3�2 ( 1 + Æ1 + 
 )jThe three 
oeÆ
ients in the inequalities (6) are about 0:9745, 0:9003, and 0:7842, respe
tively. Inorder to bound the 
osine fa
tors in (6), we 
hoose Æ = 25
. This means that we must pi
k �s = d p10e+1.Sin
e s is in the range [2; dp2e + 1℄, su
h a value �s exists. If we make a 
hange of variable by settingt = 11+
 , we have 12 < t < 1, and (6) turns intoj��s1j � 0:9745 f1(t) ; j��s2j � 0:9003 f2(t) ; j��s3j � 0:7842 f3(t) ;wherejf1(t) = j 
os �4 t 
os �10(3t+ 2)j; f2(t) = j 
os �2 t 
os �5 (3t+ 2)j; f3(t) = j 
os 3�4 t 
os 3�10 (3t+ 2)j :It is not diÆ
ult to show that f1 and f3 both a
hieve their maximum value on 12 � t � 1 at the pointt = 12 . Thus on [12 ; 1℄, f1(t) � 
os �8 
os 7�20 � 0:4194 and f3(t) � 
os 3�8 
os �20 � 0:3779. The analysisof the behavior of f2 is more 
ompli
ated, but it 
an be shown that f2(t) � 0:4400 on 12 � t � 1 with�s = d p10e+ 1. This gives j��s1j < 0:4087, j��s2j < 0:3961, j��s3j < 0:2963.We 
ombine this with the previous 
ase and �nd that for r 2 [1; n2 ℄,j��srj � 4�q1 + 1p2 
os �8 
os 7�20 : (7)Sin
e 
os 2�5 = p5�14 , by repeated use of the half angle formula for 
osine, we obtain
os 7�20 = r2p2�q5�p52 54 : (8)Combining (8), (7), and (5), we have for r > 0,j ��sr j � 2� 
os �4 
os 7�20 = 2 14�  r2p2�q5�p5 ! ;and the Theorem follows. 29



5 Comparisons and Con
lusionsFor the algorithms presented here to generate random integers in the range [1; n℄, the maximumrelative error between the generated distribution and true uniform distribution goes to zero geomet-ri
ally in all 
ases: with rate 0:5 for Algorithms II, III, IV (using standard division), and with rateapproximately 0:4087 for Algorithm I.The following table 
ompares the algorithms from a di�erent perspe
tive. It lists the resour
esrequired by ea
h to produ
e one random number with error bound 2�k (r.p.d. from uniformity),based on the bounds derived in the previous se
tions.Algorithm worst 
ase average 
asetime random bits time random bitsI O((k + logn) logn) 0:775(k+ logn) logn 
f. worst 
ase 
f. worst 
aseII O(k logn) k logn O(logn) O(logn)III O((k + logn) logn) (k + 2 logn) logn O(logn) O(logn)IV(simple) O((k + logn) logn) k + logn 
f. worst 
ase 
f. worst 
aseIV[16℄ O((k + logn) log logn log log logn) k + logn 
f. worst 
ase 
f. worst 
aseThe algorithms have similar worst 
ase running times, with Algorithm II being the fastest. The faster
onvergen
e rate of the Markov 
hain is hidden in the big-O notation. However, it redu
es the randombits required by a fa
tor of 0:775. Algorithm IV requires the smallest number of random bits and
omes to within two bits of the lower bound of Prop. 1. Algorithms II and III 
an stop prematurely.Their average-
ase running times do not depend on k and are well below their worst-
ase times. Thiswas re
e
ted in a series of experiments we performed in whi
h Algorithms II and III were signi�
antlyfaster than Algorithms I and IV.In the 
ontext of the 
onstru
tion of the Markov 
hain used in Algorithm I, one 
an address theproblem of pi
king the best possible n � n 0-1 
ir
ulant matrix (in terms of the magnitude of themodulus of the se
ond largest eigenvalue) for an arbitrary distribution of 1's in the �rst row. Theorem1 only gives an upper bound for the modulus of the se
ond largest eigenvalue and only in 
ase thematrix is symmetri
 and the row sums are 2blog n
. The advantage of the parti
ular distribution ofthe 1's 
onsidered in Theorem 1 as blo
ks in the �rst row of the matrix is small storage and ease oftransition sele
tion for the asso
iated Markov 
hain. Su
h a distribution, however, is not ne
essarilyoptimal for the solution of the more general problem in whi
h 
onstraints of spa
e and 
onstru
tibilityare not 
riti
al issues.Referen
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