
Algorithms for Almost-uniform Generationwith an Unbiased Binary Soure�Omer E�geio�gluDepartment of Computer SieneUniversity of CaliforniaSanta Barbara, CA 93106 USA Marus PeinadoInstitute for AlgorithmsGMD National Researh Center53754 Sankt Augustin, GermanyAbstratWe onsider the problem of uniform generation of random integers in the range [1; n℄ givenonly a binary soure of randomness. Standard models of randomized algorithms (e.g. probabilistiTuring mahines) assume the availability of a random binary soure that an generate independentrandom bits in unit time with uniform probability. This makes the task trivial if n is a power of2. However, exat uniform generation algorithms with bounded run time do not exist if n is nota power of 2.We analyze several almost-uniform generation algorithms and disuss the tradeo� between thedistane of the generated distribution from the uniform distribution, and the number of operationsrequired per random number generated. In partiular, we present a new algorithm whih is basedon a irulant, symmetri, rapidly mixing Markov hain. For a given positive integer N , thealgorithm produes an integer i in the range [1; n℄ with probability pi = pi(N) using O(N logn)bit operations suh that j pi � 1=n j <  �N , for some onstant , where� = 2 14�  r2p2�q5�p5 ! � 0:4087:This rate of onvergene is superior to the estimates obtainable by ommonly used methodsof bounding the mixing rate of Markov hains suh as ondutane, diret anonial paths, andouplings.Keywords. Random number generation, uniform distribution, Markov hain, rapid mixing, eigen-value, irulant matrix.1 IntrodutionWe onsider the generation of almost-uniform random integers in the range [1; n℄, taking into aountthe required time, spae, and number of random bits. The basi assumption is that independentrandom bits an be generated in unit time. If n is an exat power of 2, say n = 2m, then thegeneration of a uniformly distributed random integer in the range [1; n℄ is easily aomplished intime O(m) = O(log n) by generating m onseutive random bits. However, if n is not a power of2, no algorithm with bounded running time an generate numbers in [1; n℄ from the exat uniformdistribution (see below).The task of generating uniformly distributed random elements of a set whose size is not an exatpower of two arises frequently in the study of randomized algorithms and is usually treated as aprimitive operation. This is in part justi�ed by the fat that simple and eÆient almost-uniformgeneration algorithms are known. However, it appears that the exat osts and trade-o�s betweenauray and required resoures of these algorithms have not been analyzed in detail. One of our aimsis to explore whih options exist and to ompare their osts. We present two new algorithms { one1



based on a rapidly mixing Markov hain and one based on a redution from approximate ounting toalmost uniform generation { and ompare their resoure requirements with those of the well-knownmodular algorithms.Sinlair [18℄ onsiders the problem on an abstrat level, and shows polynomial time equivalenebetween almost uniform generation on probabilisti Turing mahines and on a di�erent mahine modelwhih allows biased oin ips.One important lass of appliations whih requires uniform generators for sets of arbitrary sizeis the simulation of heat bath Markov hains (f. [6℄ for a preise de�nition). In pratie, the sizeof the sets an be extremely large [15℄. Heat bath Markov hains are one of the standard tools inomputational physis, and are used frequently in high-preision numerial simulations. It is easyto show that a bias in the distribution of the generator translates diretly into a similar bias in theoutput distribution of the Markov hain.We present a new algorithm whih is based on the simulation of a rapidly-mixing irulant Markovhain. Its analysis gives a diret bound on the seond-largest eigenvalue of the transition matrix ofthe Markov hain and is of interest in its own right. In partiular, we observe that the ommonly usedmethods of bounding the mixing rate of Markov hains (ondutane [18℄, diret anonial paths [17℄,ouplings [3℄), yield weaker bounds than the one obtained here. Diret bounds on the seond-largesteigenvalue of transition matries have been obtained previously, mostly based on algebrai propertiesof the underlying domain (e.g. [4℄). However, the struture of our Markov hain, as well as thetehnique used to bound its mixing rate seem di�erent from previous results.The probabilisti Turing mahine (PTM) is the most ommonly used mahine model in the studyof randomized algorithms [14, 18℄. It is a standard Turing mahine equipped with the ability togenerate (or aess) random bits in unit time. A PTM is deterministi, exept for speial oin-tossingstates in whih there are exatly two possible transitions, determined by the ip of an unbiased oin.Proposition 1 Given n 2 IN whih is not a power of 2, let An be a randomized algorithm whihoutputs numbers in [1; n℄ and whose running time is bounded by tn 2 IN. Let rn � tn be an upperbound on the number of random bits used by An. Let pi be the probability that An outputs i 2 [1; n℄.There exists i 2 [1; n℄ suh that jpi � 1=nj � 2�(rn+1):We omit the proof due to spae onstraints. Intuitively, An has to plae 2rn balls (elementary events)into n bins. If n is not a power of 2, some bins have to reeive at least one ball more than others.The situation is slightly di�erent for Las Vegas type algorithms whose run time is not bounded. Inthe simplest ase, the algorithm an use rn random bits, assign an equal number of elementary eventsto eah number in [1; n℄, and deide to use more random bits or, simply, not terminate with theremaining probability. We will onentrate on algorithms whose running time is bounded, and referto Las Vegas type algorithms only where appropriate.Sine produing the exat uniform distribution on [1; n℄ is not possible, we try to generate integersin [1; n℄ with an almost-uniform distribution. We use the well-known relative pointwise distane r.p.d.(e.g. [18℄) to measure the loseness of the output distribution and the uniform distribution: The r.p.d.between two probability distributions p; q on a �nite set X (qi > 0 for all i 2 X) is de�ned as�(p; q) = maxi2X jpi � qijqiIn the following, q will always be the uniform distribution, and we write �(p) instead of �(p; q) todenote the r.p.d. of p from the uniform distribution. Thus �(p) = maxi2X jnpi � 1j:The rest of this paper is organized as follows: In Setion 2, we desribe the Markov hain algorithm.Our main result on the bound of the mixing rate of the Markov hain is stated in this setion. Setion 3analyzes the resoure requirements of three alternative algorithms. An outline of the proof of ourmain theorem is given in Setion 4. Remarks and onlusions are given in Setion 5.2



2 A Rapidly Mixing Cirulant Markov ChainIn this setion, we desribe an algorithm based on the simulation of a rapidly mixing Markov hain.In O(N log n) time, this algorithm produes a random integer i in the range [1; n℄ with distributionp suh that �(p) � n �N ; where � = 2 14�  r2p2�q5�p5 ! � 0:4087 : (1)The bound � � 0:4087 deserves attention in two respets. Firstly, known algorithms redue the r.p.d.only by a fator of 0:5 in eah step. Similarly, standard methods for bounding the mixing rate of aMarkov hain yield bounds whih are worse than 0:5. These issues will be addressed below.We de�ne an n � n transition matrix P = ( pij ) suh that the orresponding Markov hain Mon state spae f1; 2; : : : ; ng has the following properties: 1) M is ergodi with stationary distribution� = ( 1n ; 1n ; : : : ; 1n); 2) M is rapidly mixing, i.e. the N -step transition matrix PN onverges quiklyto the limiting probabilities; 3) M an be simulated eÆiently. That is, the time to simulate onetransition step is O(log n). The preproessing time, and spae requirements for M are also O(log n) .Given suh P , the algorithm (referred to as Algorithm I) simulates N steps of M . The �rst onditionguarantees that M onverges to the uniform distribution, and the seond ondition ensures that asmall number N of simulation steps is suÆient. The third ondition ensures that eah simulationstep an be exeuted eÆiently.An n� n irulant matrix C = C(a1; a2; : : : ; an) is a matrix of the form266664 a1 a2 � � � anan a1 � � � an�1... ... ...a2 a3 � � � a1 377775where eah row is a single right irular shift of the row above it [8℄.Assume that n is not a power of 2, and let m = blog n. Then n2 < 2m < n, and n an bewritten in the form n = 2m + p with 0 < p < 2m. Consider symmetri, irulant n� n 0-1 matriesC = C(0; a2; a3; : : : ; an) where exatly 2m of the entries a2; a3; : : : ; an are equal to 1. Sine we areforing C to be symmetri, this imposes the ondition ak = an+2�k for k = 2; 3; : : : ; n. For example,for n = 7, we have m = 2 and p = 3. In this ase there are three suh matries: C(0; 1; 1; 0; 0; 1; 1),C(0; 1; 0; 1; 1; 0; 1), and C(0; 0; 1; 1; 1; 1; 0). Eah suh matrix C de�nes an irreduible, aperiodi (i.e.ergodi) Markov hain M on n states f1; 2; : : : ; ng whose transition matrix is P = 12m C. Thesymmetry of C guarantees that the stationary distribution of the orresponding Markov hain Mis the uniform distribution on f1; 2; : : : ; ng. Note that the eigenvalues of P and C are related bya onstant fator 2m. Let ��1 denote the seond largest eigenvalue of C. It is well-known that themixing rate of M an be bounded by �1 = 2�m��1. The following inequality for the r.p.d. followsfrom [18, 7, 13℄: �(p(N)) � n�N1 ; (2)where p(N) is the distribution on the states of M after N simulation steps. We onsider the problemof piking the nonzero ak's so that ��1 is minimized:Theorem 1 Suppose n = 2m + p with 0 < p < 2m. There exists a symmetri, irulant n � n 0-1matrix C�s = C(0; a2; a3; : : : ; an) with 2m nonzero entries in its �rst row suh that2�m��1 � 2 14�  r2p2�q5�p5 ! � 0:4087 :Furthermore, the �rst row of C�s ontains at most two symmetrially plaed bloks of 1's starting atolumn �s = d p10e+ 1. 3



An outline of the proof is given in Setion 4. We take M = M �s to be the Markov hain onf1; 2; : : : ; ng whose transition matrix is P = P �s = 12m C�s. The struture of C�s is suh that p1j = 12mif and only ifj 2 f�s+ k j k = 0; 1; : : : ; 2m�1 � 1g [ fn+ 2� (�s+ k) j k = 0; 1; : : : ; 2m�1 � 1g : (3)Sine P is irulant, pij = 12m if and only if j is in a translate modulo n of the set of indies in (3).Thus to move from a state i of M to state j, we only need to generate a random binary numberr in the range [0; 2m � 1℄. We then use the high order bit to selet the translate of one of the twosets of onseutive indies in (3). After this, the new state j is simply the (r + 1)-st smallest indexin the subset hosen. More formally, we desribe the steps of this algorithm as Algorithm I. LetRANDOM[0; 2m � 1℄ denote a proedure whih returns a random integer r in the range [0; 2m � 1℄or, equivalently, m onseutive random bits provided by our mahine model (PTM).Algorithm I :Input: n;NOutput: i 2 [1; n℄beginm := blog n; �s := dn�2m10 e+ 1;ur state := 1;for j := 1 to N dobegini := RANDOM[0; 2m � 1℄ ;if i 2 [0; 2m�1) then ur state := 1 + [ (ur state� 1 + �s+ i) mod n ℄else ur state := 1 + � (ur state� 1 + (n+ 2� (�s+ i� 2m�1)) mod n � ;endi := ur state;return(i);endThe number of operations required to take one step on the Markov hain M is O(m) = O(log n).Thus, the total running time of Algorithm I is O(N log n). By (2) and Theorem 1, after starting froman arbitrary initial state and simulating N steps of M , the probability of being in some partiularstate j does not di�er from 1=n by more than a onstant multiple (w.r.t. N) of �N , where � is asgiven in (1).2.1 Other methods of bounding the mixing rateWe note that the bound of �1 � 0:4087 is obtained by a rather detailed analysis (f. Setion 4),taking speial properties of irulant matries into aount. The well-known general methods forestimating mixing rates, while being useful general purpose tools, appear to be too oarse-grained toyield a similar bound. We outline this in the following paragraphs. Details are omitted due to spaerestritions.The ondutane � [18℄ whih measures the expansion of the transition graph is often used tobound the seond largest eigenvalue of the transition matrix via the inequality �1 � 1��2=2. Sine,by de�nition, � � 1, this method annot yield a better bound than 0:5 > 0:4087. A loser analysisfor the partiular ase onsidered here shows that the ondutane is signi�antly smaller than 1, andonsequently the bound obtained in this fashion is atually muh larger than 0:5.The method of [17, 9℄ whih bounds the seond largest eigenvalue diretly by a diret anonialpaths argument (as opposed to going via the ondutane) usually leads to tighter bounds than4



ondutane-based methods. We an show by means of a ounting argument that this approah doesnot yield a better bound than �1 � 0:7.The oupling method tries to bound the mixing rate by a diret probabilisti argument and withoutbounding the eigenvalues. The use of the oupling method is based on [3℄, whih bounds the mixingrate by e�1=(2eT ), where T is alled the oupling time. Basi but tedious steps show that T > 2,resulting in a mixing rate of at least 0:912 � 0:4087.3 Alternative AlgorithmsIn this setion we analyze three alternate algorithms for the generation problem. Algorithm II and IVare straightforward modular algorithms. Algorithm III is a new algorithm and based on the redutionfrom almost-uniform generation to approximate ounting [12℄.Algorithm II: This algorithm is desribed in [10℄: Generate a random sequene of m = dlog nebits. If the sequene is the binary representation of an integer i1 in the range [0; n� 1℄, then returni := i1+1. If not, generate another m-bit random number i2 using the same proess. If after N suhtrials, none of the integers i1; i2; : : : ; iN turns out to be in [1; n℄, then return i := iN � 2m�1. A moreformal desription of this algorithm is given as Algorithm II.Algorithm II :Input: n;NOutput: i 2 [1; n℄m := dlog ne;for j := 1 to N doi := RANDOM[0; 2m � 1℄ +1 ;if i 2 [1; n℄ then return(i) and exit;return(i� 2m�1) ;Proposition 2 Let pII(N) denote the output distribution of Alg. II. Then �(pII(N)) � 2�N .Proof Omitted due to spae limitations. 2Algorithm II an be run in Las Vegas mode by dropping the upper limit of N loop iterations. Inthis ase, the expeted running time E(n) isE(n) = 1Xk=1 km n2m ( r2m )k�1 � m(1� r2m )2 � m(1� 12)2 � 8 log n ;where r = 2m � n. Thus the expeted running time of Algorithm II is no worse than 8 log n, inde-pendently of the parameter N . Using Cherno� bounds, it is easy to show that the running time isunlikely to exeed its expetation signi�antly.Algorithm III: There is a lose relation between almost-uniform generation problems and theorresponding approximate ounting problems (omputing the number of elements in the set) [12℄. Inour ase, the solution to the ounting problem is simply n, and the solutions of relevant subproblemsare easily derived. This makes it possible to design a generation algorithm based on the well-knownredution from almost-uniform generation to approximate ounting of [12℄.Given a bitstring s, let solns(s) = jfx 2 [0; n � 1℄ : 9v : sv = xgj be the number of elements of[0; n � 1℄ whose binary representation begins with s. These solutions of ounting subproblems are5



easily omputed. The algorithm generates a random element of [0; n � 1℄ one bit at a time, startingwith the most signi�ant bit. At the start of the k-th round, the k � 1 most signi�ant bits havebeen determined. The invariant is that the probability of produing any given pre�x is proportionalto the number of elements of [0; n � 1℄ whose most signi�ant bits oinide with this pre�x. It iseasy to show by indution that this relation will hold, if the next bit is set to 1 with probabilitysolns(pre�x Æ 1)=solns(pre�x), where Æ denotes onatenation. If, at any given point, the pre�x issuh that solns(pre�x) = 2i (for some i > 0), the proess an be stopped. Algorithm III summarizesthese steps.Algorithm III :Input: n > 1Output: 2 [1; n℄pre�x := �; k := dlog ne; (* bitlength of (n� 1) *)repeatif solns(pre�x Æ 1) = 0 then pre�x := pre�x Æ 0elsewith probability divide[solns(pre�x Æ 1); solns(pre�x)℄, set pre�x := pre�x Æ 1;otherwise set pre�x := pre�x Æ 0k := k � 1;until k = 0 or solns(pre�x) is a power of 2;pre�x := pre�x Æ0k�log solns(pre�x);if solns(pre�x) > 1 then pre�x := pre�xÆRANDOM[0; solns(pre�x)� 1℄return( pre�x+1 );As stated, Algorithm III is an exat uniform generator. However, its running time is unboundedbeause the binary representation of p1 := solns(pre�xÆ1)solns(pre�x) may not be �nite. One obtains an approximateversion of the algorithm by trunating this fration to some �nite number m of bits. Steps similarto those of [18℄ show that �(pIII) � 2�N if m � 2dlog ne+N . Thus, ahieving an auray of 2�Nrequires a total of at most 2dlog ne2 +Ndlog ne random bits. Note that there are only log n relevantvalues of p1. Those values an be obtained and stored in a preomputation step. Thus, the algorithmneeds O(log2 n+N log n) time and spae in the worst ase.The algorithm an be run in Las Vegas mode if the probabilisti deision (`with probability . . . ')is implemented appropriately. Beause of spae restritions, we defer the details of this part of thealgorithm to the �nal version of the paper. For both standard and Las Vegas versions we haveProposition 3 The expeted running time of Alg. III is O(log n).Again, one an use Cherno� bounds to show that the atual running time is onentrated around itsexpetation.Algorithm IV: This algorithm appears to be widely used in pratie: �x m � logn, generatea random integer M in the range [0; 2m � 1℄ by generating m onseutive random bits, and outputM mod n.Proposition 4 Let pIV (m) denote the output distribution of Alg. IV. Then �(pIV (m)) � n2�m.Next we alulate the number of bit operations required by Algorithm IV. Let b = blog n + 1.Thus M and n are m-bit and b-bit long integers with m � b. We an onsider algorithms of varyingomplexity for the alulation of the remainder R = (Mmod n) depending on the sizes of the numbersinvolved. Straightforward division ofM by n followed by a multipliation and subtration to alulate6



Algorithm IV :Input: n;mOutput: i 2 [1; n℄beginM := RANDOM[0; 2m � 1℄ ;return((M mod n) + 1) ;endR requires O(mb) bit operations. Using the asymptotially faster Sh�onhage-Strassen algorithm forlarge integers, the integral quotient of a 2b-bit number by a b-bit number, as well as the produt oftwo b-bit numbers an be obtained in O(b log b log log b) bit operations [16, 1℄. To use this algorithmfor remainder alulation we prepend the binary representation of M with zeros if neessary andassume that b� 1 divides m. Write M = m=(b�1)�1Xi=0 Mi2(b�1)iwhere eah Mi is b� 1 bits. The remainders ri = 2(b�1)imod n for i = 1; 2; : : : ;m=(b � 1)� 1 an beomputed by m=(b� 1) multipliations and divisions requiring O(b log b log log b) bit operations eah,if the Sh�onhage-Strassen algorithm is used. After this phase, eah quantity Mirimod n an be om-puted with an additional O(b log b log log b) bit operations. Finally the resultingm=(b�1) remaindersfound are summed up modulo n in another O( mb�1b) = O(m) bit operations. The total number of op-erations required for the omputation of R beomes O(m log b log log b) = O(m log logn log log log n).4 Proof of the main TheoremIn this setion we outline the proof of Theorem 1.Proof The eigenvalues of a irulant matrix C = C(0; a2; a3; : : : ; an) are given by�r = nXk=2 ak!(k�1)r ; r = 0; 1; : : : ; n� 1 ;where ! is a primitive n�th root of unity (See, for example [8, 5℄). Here we do not assume that thesubsripts order the eigenvalues of C in dereasing/inreasing absolute value. For 2 � s � dp2e + 1,onsider the matrix Cs obtained by setting the blok of entries as; as+1; : : : ; as+2m�1�1, togetherwith their mirror images in the �rst row equal to 1. Let 2m�sr denote the eigenvalues of Cs, r =1; 2; : : : ; n� 1. Thus �sr are the eigenvalues of the orresponding Markov hain transition matrix P s.By the symmetry of the ak's, we have2m�sr = s+2m�1�1Xk=s (!(k�1)r + �!(k�1)r) = 2 2m�1�1Xk=0 os 2�(s� 1 + k)rn ;where �! is the omplex onjugate of !. In partiular �sn�r = �sr, r = 1; 2; : : : ; n2 : Using the trigono-metri identity [11℄ h�1Xk=0 os(a+ kb) = sin hb2 ose b2 os(a+ h� 12 b) ;7



with a = 2�(s�1)rn , b = 2�rn , and h = 2m�1, we �nd that2m�sr = 2 sin �rn 2m�1sin �rn os �rn (2m�1 + 2s� 3) ; r = 1; 2; : : : ; n2 :Let x = �rn . By using the double angle formula sin 2x = 2 sinx os x repeatedly, we obtainsin(2m�1x) = 2m�1 sinx os x os(2x) � � � os(2m�2x) :Therefore, �sr = os x os(2x) � � � os(2m�2x) os (2m�1 + 2s� 3)x ; r = 1; 2; : : : ; n2 : (4)We split the proof of the Theorem into two ases, depending on whether or not r � 4:Case I (r � 4) : For k = 1; 2; : : : ;m� 2, let Ik denote the interval [ n2k+1 ; n2k ℄. Sine 2m < n < 2m+1,the union of these intervals overs [4; n2 ℄. Therefore if r � 4, then r 2 Ik for some k.We show that the fator os 2(k�1)x os 2kx that appears in the produt expression (4) for �sr issmall for x 2 [ �2k+1 ; �2k ℄. For a �xed k � m � 2, let t = 2(k�1)x, and f(t) = os t os 2t. Then themaximum value of f on [�4 ; �2 ℄ is reahed for os t = 1p6 . Thus on [�4 ; �2 ℄,jf(t)j � j2 ( 1p6)3 � ( 1p6) j = 23p6 :It follows that j�srj � 23p6 for r 2 [4; n2 ℄ � [ n2m�1 ; n2 ℄, independently of the value of s.Case II (r < 4) : Now we onsider the ases r = 1; 2; 3. LetP (r;m) = m�2Yk=0 os 2kr�n :Then by (4) �sr = P (r;m) os r�n (2m�1 + 2s� 3) ; r = 1; 2; 3 :Sine 2m < n < 2m+1, we have �8 < 2m�2�n < �4 . Now osine is dereasing on [0; �2 ℄. Thusos 2m�2�n < os �8 ; os 2m�3�n < os �16 ; � � � ; os �n < os �2m+1 :Using the last m� 2 of these inequalities, it follows thatP (1;m) < os 2m�2�n m+1Yk=4 os �2k :By Vi�ete's formula for � 1Yk=2 os �2k = 2� ;and therefore limm!1 mYk=4 os �2k = 2� os �4 os �8 = 4�q1 + 1p2 : (5)8



Sine m = blog n, it follows that for large n,P (1;m) � 4�q1 + 1p2 os 2m�2�n :Using Euler's generalization of Vi�ete's formula in a similar fashion, we obtain the following in-equalities for large nP (2;m) � 2p2� os 2m�1�n ; jP (3;m)j � 4q2 +p23� j os 3 � 2m�2�n j :Now let  = p2m , Æ = 2s�32m�1 . Then 0 <  < 1, 0 < Æ <  andj�s1j � 4�q1 + 1p2 j os �4 ( 11 +  ) os �2 ( 1 + Æ1 +  )jj�s2j � 2p2� j os 2�4 ( 11 +  ) os 2�2 ( 1 + Æ1 +  )j (6)j�s3j � 4q2 +p23� j os 3�4 ( 11 +  ) os 3�2 ( 1 + Æ1 +  )jThe three oeÆients in the inequalities (6) are about 0:9745, 0:9003, and 0:7842, respetively. Inorder to bound the osine fators in (6), we hoose Æ = 25. This means that we must pik �s = d p10e+1.Sine s is in the range [2; dp2e + 1℄, suh a value �s exists. If we make a hange of variable by settingt = 11+ , we have 12 < t < 1, and (6) turns intoj��s1j � 0:9745 f1(t) ; j��s2j � 0:9003 f2(t) ; j��s3j � 0:7842 f3(t) ;wherejf1(t) = j os �4 t os �10(3t+ 2)j; f2(t) = j os �2 t os �5 (3t+ 2)j; f3(t) = j os 3�4 t os 3�10 (3t+ 2)j :It is not diÆult to show that f1 and f3 both ahieve their maximum value on 12 � t � 1 at the pointt = 12 . Thus on [12 ; 1℄, f1(t) � os �8 os 7�20 � 0:4194 and f3(t) � os 3�8 os �20 � 0:3779. The analysisof the behavior of f2 is more ompliated, but it an be shown that f2(t) � 0:4400 on 12 � t � 1 with�s = d p10e+ 1. This gives j��s1j < 0:4087, j��s2j < 0:3961, j��s3j < 0:2963.We ombine this with the previous ase and �nd that for r 2 [1; n2 ℄,j��srj � 4�q1 + 1p2 os �8 os 7�20 : (7)Sine os 2�5 = p5�14 , by repeated use of the half angle formula for osine, we obtainos 7�20 = r2p2�q5�p52 54 : (8)Combining (8), (7), and (5), we have for r > 0,j ��sr j � 2� os �4 os 7�20 = 2 14�  r2p2�q5�p5 ! ;and the Theorem follows. 29
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