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Abstract

This paper addresses the problem of efficient maintenance
of a materialized skyline view in response to skyline re-
movals. While there has been significant progress on skyline
query computation, an equally important but largely unan-
swered issue is on the incremental maintenance for skyline
deletions. Previous work suggested the use of the so called
exclusive dominance region (EDR) to achieve optimal I/O
performance for deletion maintenance. However, the shape
of an EDR becomes extremely complex in higher dimensions,
and algorithms for its computation have not been developed.
We derive a systematic way to decompose a d-dimensional
EDR into a collection of hyper-rectangles. We show that the
number of such hyper-rectangles is O(md), where m is the
current skyline result size. We then propose a novel algo-
rithm DeltaSkywhich determines whether an intermediate
R-tree MBR intersects with the EDR without explicitly calcu-
lating the EDR itself. This reduces the worse case complexity
of the EDR intersection check from O(md) to O(md). Thus
DeltaSky helps the branch and bound skyline algorithm
achieve I/O optimality for deletion maintenance by finding
only the newly appeared skyline points after the deletion.
We discuss implementation issues and show that DeltaSky
can be efficiently implemented using one extra B-Tree. More-
over, we propose two optimization techniques which further
reduce the average cost in practice. Extensive experiments
demonstrate that DeltaSky achieves orders of magnitude
performance gain over alternative solutions.

1 Introduction
Recently there has been significant amount of interest

in supporting skyline queries in database systems. Skyline
queries provide a viable database solution for applications
where users do not have a clear query formulation but want to
optimize multiple attributes of interest. It distinguishes itself
as an effective alternative to the exact match query paradigm.

∗This work is supported in part by IBM Ph.D. Fellowship, NSF grants
IIS 02-23022 and CF 04-23336.

For instance, a user who wants to find all the “interesting”
deals in a used car database may be interested in both low
price and low mileage. Skyline query returns all the objects
that are not dominated by any other objects in the database.
An object A dominates B, if A is no worse than B on all at-
tributes, and strictly better on at least one attribute. The an-
swers to the skyline query are exactly those points that can
be the best according to some monotonic ranking functions.

As the skyline query is gaining popularity, we believe that
it will appear more frequently in common database work-
loads. In general, a skyline query is expensive to evaluate es-
pecially for large and complex datasets. Materializing a pre-
computed query result set as views can help reduce the query
processing time significantly and has been used in different
contexts for many years [15]. We believe that this technique
remains promising for skyline queries as well.

The question that naturally arises then is how to design ef-
ficient algorithms to maintain the skyline results in the pres-
ence of database updates. Recomputing the entire skyline
query from scratch each time a skyline update occurs is ob-
viously not an efficient solution. In particular, the entire re-
computation itself may be too expensive when the dataset is
large and complex; the underlying dataset may be physically
hosted at a remote site so that shipping the entire new result
set for each single skyline update can be slow; the workload
may be update-intensive where the result set may undergo
slight changes over time.

Although the research community has made remarkable
progress in accelerating the skyline computation in different
contexts, efficiently maintaining a materialized skyline result
set is a relatively unexplored territory. In this paper, we focus
on skyline result maintenance due to deletion. The reason is
two-fold. First, maintaining insertions is much easier and can
be handled by existing techniques described in [22]. More
importantly, we believe that skyline points are more likely to
be removed from the database due to the fact that they corre-
spond to exactly those “interesting” objects which may po-
tentially attract a large group of users, and hence may easily
be “consumed”. In the case of a skyline deletion, the base ta-
ble needs to be accessed since some points that are not in the



current skyline view may be “promoted” to the view when
the original skyline points that dominate them get deleted.
Borrowing the terminology from the traditional view mainte-
nance literature, a skyline view is self-maintainable for inser-
tion but not for deletion. In fact, a skyline query can be seen
as the generalized form of the MAX query over a partially-
ordered database (dominance relationship) and MAX query
has been known to be not self-maintainable with respect to
deletion [5] [13].

In previous view maintenance literature, auxiliary data
has often been used to make views runtime self maintain-
able [25]. The papers [20] and [30] suggest the use of work
areas to achieve runtime self maintenance for MIN, MAX
and top-k queries. However, unlike those queries that op-
erate on a totally-ordered dataset, a skyline query operates
on a partially-ordered database. Therefore, to make a sky-
line view run-time self maintainable, the size of the work ar-
eas can become much larger because all the “top-tier” points
in the partial order graph have to be materialized and main-
tained as well. This paper does not explore further along this
direction. Instead, we target at a more fundamental issue of
optimizing the “refill” query performance, i.e. to quickly find
only the new skyline points after a skyline deletion occurs.
The problem of making a skyline view runtime self main-
tainable is complementary to this paper and is our on-going
work.

In [22], Papadias et al. suggest that optimal deletion
maintenance can be achieved by issuing constrained skyline
queries over the so called “Exclusive Dominance Region”
(EDR), which is the part of the data space only dominated by
the deleted skyline point. However, while a 2-d EDR is al-
ways one single rectangle, it becomes quite complex in high
dimensional cases, and computing the d-dimensional EDR
for a given deleted skyline point has remained an unsolved
problem. Our first contribution in this paper is to derive a
systematic way of representing a d-dimensional EDR as the
union of a collection of regular hyper-rectangles. This algo-
rithm runs in time O(md) to compute the EDR, where m
represents the cardinality of the current skyline result set.
While incorporating the EDR representation into the BBS al-
gorithm [21] can guarantee optimal I/O performance, we find
it too expensive in practice because: 1) it is too expensive to
compute EDR when the skyline number m is large; 2) in gen-
eral the number of generated hyper-rectangles is big so that
the intersection check with EDR also becomes slow. Our
second contribution is a novel O(md) algorithm DeltaSky
for the EDR intersection check which works without explic-
itly calculating the representation of EDR but nevertheless
achieves the same I/O optimality.

We discuss the implementation issues for DeltaSky and
show that it has certain nice locality properties allowing fur-
ther optimization. Our third contribution is two optimization
techniques to exploit such inherent locality, thereby signifi-
cantly reducing its computation cost in practice. We conduct
extensive experiments which show that DeltaSky achieves

several orders of magnitude performance gain over alterna-
tive solutions.

The rest of the paper is organized as follows. Section
2 presents a review of related work. We discuss prelimi-
nary notions in Section 3. In Section 4, we derive the de-
composition of the exclusive domain regions. We present
DeltaSky algorithm and its optimization variants in Sec-
tion 5. We show the experimental results in Section 6 and
Section 7 concludes the paper.

2 Related Work
In the context of database systems, previous work can be

divided into two groups based on the requirement for data
preprocessing: non-index-based ( e.g. Block-Nested Loops,
Divide and Conquer [6], Sort Filter Skyline [10] and LESS
[11]) and index-based methods (e.g. Bitmap, Index [26],
NN [17], and BBS [21]). As the name indicates, non-index-
based methods do not require any offline preprocessing of the
data set, and thus are quite “generic” in the sense that they
can easily be pipelined with other relational operators ( e.g.
join). On the other hand, index-based methods are usually
more efficient, among which BBS is considered the state-of-
the-art and we shall review BBS algorithm in detail later.

Skyline operator is applied beyond its original context.
For example, Chan et al.extend skyline to databases with
partially-ordered categorical attribute domains [7]. [31] and
[23] study the notion of skyline views and subspace skyline
computation methods. Tao et al. further propose SUBSKY
which answers skyline queries in arbitrary subsets of the at-
tributes [27]. [16] investigate the support of skyline queries
in MANETs. [3] studied the efficient computation of sky-
line queries over distributed Web sources. [9] provides sev-
eral skyline cost estimators to support its plan enumeration
and optimization. [18] and [19] consider continuous skyline
queries over data streams. [8] proposes approximate algo-
rithms to solve the “too many” answer problem in high di-
mensional skylines.

Papadias et al. first introduce the notion of exclusive dom-
inance regions (EDR) for optimal skyline deletion mainte-
nance [22]. This idea is not fully developed in [22] and
it is still unknown how to compute an EDR beyond the 2-
dimensional cases. Consequently, it is not even clear whether
fully computing a d-dimensional EDR is a viable solution in
the first place. As we discover in this paper: these problems
are technically non-trivial and EDR computation is not nec-
essary to achieve I/O optimality for deletion maintenance.
Xia et al.[29] present efficient update algorithms for com-
pressed skyline Cubes.

Materialized view maintenance is a well-understood prob-
lem in data warehousing and there exists a large body of
work on this topic. Interested readers are referred to [14]
for a survey. Closely relating to the maintenance of skyline
results, previous work includes the maintenance of aggrega-
tion views for SQL MAX, MIN queries [12] [2] [20] and the
top-k query [30]. No previous result is available on the view



maintenance problem for MAX query on partially-ordered
datasets in general and skyline queries in particular.

3 Preliminaries
3.1 Skyline Queries

For a given d-dimensional data set DB, a global skyline
query computes a subset S consisting of objects that are not
“dominated” by any other object inside DB. We say ob-
ject Oi(O1

i , O2
i , ..., Od

i ) dominates Oj(O1
j , O2

j , ..., Od
j ) if Oi

is no worse than Oj on any dimension and is better on at least
one dimension. Without loss of generality, we assume that
users prefer the minimum value on all dimensions. Fig. 1(a)
illustrates this on a 2-d used car data set with x-axis being the
mileage and y-axis representing the price. The global skyline
consists of 3 records a,b,c.

The generalized form of the global skyline query is the
so called constrained skyline query [21] where users are in-
terested in finding the skyline points among a subset of DB
satisfying multiple hard constraints. For example, a user may
only be interested in the “interesting” records within the price
range from 7K to 11K dollars and with mileage between 40K
and 90K miles (the constrained region depicted by the box
aehf ). Fig. 1(a) shows that there are exactly two skyline
points d1, d2 in this constrained region.

3.2 Branch and Bound Skyline(BBS) Algorithm

Algorithm 1 BBS
1: R: R-Tree index on the database
2: Q: constrained query region
3: BBS(R, Q)
4: Procedure
5: initialize the skyline result set S to empty;
6: insert all entries in the root node of R into heap H;
7: while H is not empty do
8: pop top entry e
9: if e is not dominated by any point in S then

10: if e is an intermediate node then
11: for every child entry ei in e do
12: if ei intersects with Q then
13: if ei is not dominated by any point in S then
14: insert ei into H
15: end if
16: end if
17: end for
18: else
19: insert ei into S
20: end if
21: end if
22: end while
23: End Procedure

Since our proposed algorithm DeltaSky operates within
the framework of BBS [21], we review the BBS algorithm in
this section. Algorithm 1 describes the general form of the
BBS algorithm which progressively outputs all skyline points
in a constrained query region Q (It behaves the same as the
original BBS algorithm if Q is set to be the entire data space).

BBS assumes the presence of an R-tree index over the tar-
get dataset. It maintains an in-memory priority queue when
traversing down the R-Tree. A R-Tree node is expanded only
when: 1) it intersects with the query region (line 12); 2)
it is not dominated by current skyline results (line 13).
Since its priority queue is ordered according to each node’s
MinDist, BBS has the nice property that each computed data

point is guaranteed to be in the final skyline and it only
accesses the R-tree nodes that may contain skyline points,
achieving optimal I/O performance.

Note that our proposed algorithm leverages the frame-
work of BBS to find the skyline points within the exclusive
domain region EDR (the definition of EDR to be given in
Section 3) of a deleted skyline point.

3.3 Problem Description
Materializing pre-computed view to reduce the response

time of complex queries is a common practice in data ware-
housing. We believe that skyline queries can benefit from
materialization so that the system responds to the user with-
out rerunning the query from scratch once again. Skyline
views can be easily added by further extending the SQL
CREATE VIEW statement [24].

The main challenge now is to develop efficient mecha-
nisms to maintain the view up-to-date as the source data is
modified. Assume that we have a skyline view S on database
DB and the operations on DB consist of insertions and
deletions. As discussed in [22], insertions can be main-
tained based on the information from S itself. On the other
hand, deletion maintenance is much more complicated. In
Fig. 1(a), both d1 and d2 become the skyline after point a
is deleted. To achieve optimal I/O performance in deletion
maintenance, we want to only access the R-Tree nodes which
may contain these new skyline points due to the deletion.
The central issue to this optimality lies in the exclusive dom-
inance region of the deleted skyline point, which we defined
next.

For a given skyline point Si ∈ S, we define its domi-
nance region DR(Si) as the whole data space that is dom-
inated by Si and its exclusive dominance region EDR(Si)
is the data space that is only dominated by Si. For exam-
ple, in Fig. 1(a), the exclusive dominance region of skyline
point a is depicted by rectangle ahfe. Intuitively, EDR(Si)
defines the smallest data space that may contain the new sky-
line points after deletion of Si. And the constrained skyline
results within EDR(Si) are exactly those points that must
be added to the new skyline set after Si is deleted, because
those points are exclusively dominated by Si. We establish
the following lemma based on this intuition.

Lemma 1. (Minimality of EDR) Let S denote the original
skyline, S′(Si) denote the new skyline view after the deletion
of skyline point Si (Si ∈ S). Let 4S denotes the skyline
points in the constrained region EDR(Si), then S′(Si) −
S = ∆S. There does not exist a subregion EDR′(Si) ⊂
EDR(Si), s.t., the constrained skyline points in EDR′(Si)
equals to S′(Si)− S, for all possible datasets. �

For example, in Fig. 1(a), d1 and d2 are the skyline points
in constrained region EDR(a) and they are “promoted” to
the skyline view once a is removed. Consequently, we can
run BBS with EDR as its constrained region to find the ex-
act 4S with optimal I/O performance. The key issue now
is computing the EDR of a given skyline point Si. While
2-d EDR is always a single rectangle, its shape becomes
extremely complex in higher dimensional cases. Fig.1(b)
shows a “toy” 3-d EDR example. There are four skyline
points a, b, c, d, and assume a is to be deleted. After we
“chop” away from DR(a) all the overlapping pieces with
other dominance regions, we have a non-regular shape which
constitutes the EDR(a). As we can see, EDR(a) is com-
posed of a number of non-regular rectangles. Note that in
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Figure 1. Exclusive Dominance Region Examples

practice, the number of skyline points is usually much bigger
and the dimensionality greater, therefore the corresponding
EDRs becomes much more complicated.

3.4 Simple Solutions
We start with the discussion of two simple approaches.

The most straightforward method for skyline deletion main-
tenance is to recompute from scratch by BBS. Clearly, this
approach is overly simplistic because a considerable por-
tion of the data space is not affected by the deleted point at
all. This BBS-based recomputation can be easily optimized
for the purpose of deletion maintenance. For each MBR
ei extracted from the heap, the optimized version does two
checks. First, it checks if this MBR intersects with the
dominance region of the deleted skyline point Si. Second,
it checks whether ei has already been dominated by exist-
ing skyline points other than Si. It only accesses the corre-
sponding disk page when both checks satisfied. Since this
BBS extension adapts to the location of the deleted point,
we call this method ABBS(Adaptive Branch-and-Bound-
Search). The first intersection check of ABBS takes con-
stant time. For the second check, an extra R-tree can be used
to index the points in the current skyline set, then a range
query is formed by the lower right corner point of ei and the
origin point. If there is any skyline point that falls inside
this range, ABBS prunes this node since it has already been
dominated by some current skyline point.

While ABBS effectively avoids visiting a large num-
ber of R-tree nodes that are otherwise accessed by re-
computation, it still involves unnecessary I/Os because some
MBR that satisfies both checks may not intersect with the
EDR(Si). We give a simple 3d example in Fig. 1(c) with
only two skyline points a and b. Assume that point a is the
point to be deleted, the MBR cd will be visited by ABBS but
does not intersect with the EDR(a). Such “false positives”
tend to happen more frequently in higher dimensional large
data set. As a result, ABBS considerably (and consistently)
underperforms the optimal solution both in terms of I/O and
response time.

4 Understanding d-dimensional EDRs

In this section, we address the problem of representing a
high dimensional EDR with a collection of hyper-rectangles.
We first describe the basic idea and then provide formal
derivations of the EDR representation by transforming its
corresponding Boolean function. Finally, we describe and
analyze decomposition algorithms.

4.1 Boolean Functions
A basic Boolean function fv is defined as: fv : [0, 1] →

{0, 1}; fv(x) = 1, if x ≥ v; 0, if x < v;. We use fv to denote
the function whose values are the Boolean negation of the
values of fv .

Starting with the basic Boolean function, we can con-
struct more complex ones to represent more useful concepts.
For instance, let us consider a d-dimensional query box Rab

where a = (a1, a2, · · · , ad) and b = (b1, b2, · · · , bd) are
the lower-left and upper-right corner points, respectively. We
can write the following function to test whether a given point
o = (o1, o2, · · · , od) is in Rab.

FRab(o) = fa1(o1)fa2(o2) · · · fad(od)

fb1(o
1)fb2(o

2) · · · fbd(od) =

dY
i=1

“
fai(o

i)fbi(o
i)
”

(4.1)

This function ensures that a point o is in Rab by testing that
in any dimension di, value oi belongs to the interval [ai,bi).
The following lemma gives a useful property of the basic
Boolean function.

Lemma 2. Given n numbers v1, v2, · · · vn, among which
vmax is the maximum and vmin is the minimum, then
fv1fv2 · · · fvn ≡ fvmax and fv1fv2 · · · fvn ≡ fvmin . �

4.2 Representing EDRs with Hyper-rectangles
Assume the current skyline set S consists of m points,

i.e. S = {S1, S2, · · ·Sm}. Each skyline point Sh is a d-
dimensional point and is written as Sh = (S1

h, S2
h, · · ·Sd

h).
We use the following Boolean function FEDR(Si) to repre-
sent the exclusive dominance region EDR(Si) of a deleted
skyline point Si.

FEDR(Si)(o) = fs1
i
(o1)fs2

i
(o2) · · · fsd

i
(od)

(1− fs1
1
(o1)fs2

1
(o2) · · · fsd

1
(od))

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
(1− fs1

m
(o1)fs2

m
(o2) · · · fsd

m
(od))

=

dY
l=1

fsl
i
(ol)

mY
h=1,h6=i

 
1−

dY
j=1

f
s

j
h
(oj)

!
(4.2)

The first term
d∏

l=1

fsl
i
(ol) enforces that object o belongs

to Si’s dominance region and the remaining terms require



that o does not belong to the dominance regions of any sky-
line points other than Si (exclusive terms). In each exclusive
term, we notice that 1 (always true) can be written as the con-
junction of all possible conditions, therefore we rewrite the
exclusive terms as follows:“

1− fs1
k
(o1)fs2

k
(o2) · · · fsd

k
(od)

”
=

=
X

∃j,M
j
k
=f

s
j
k

(oj)

dY
j=1

M j
k , M j

k = f
s

j
k
(oj) or f

s
j
k
(oj)

(4.3)

For clarity of the derivation, in Equation 4.3 we introduce
M j

k to uniformly refer to fsj
k
(oj) and fsj

k
(oj). And we say

that M j
k is “positive” in places where it takes value fsj

k
(oj)

or “negative” where it takes value fsj
k
(oj). So combining

Equation 4.2 and 4.3, we get:

FEDR(Si)(o) =

dY
l=1

fsl
i
(ol)

mY
h=1,h6=i

0BB@ X
∃j,M

j
h
=f

s
j
h

(oj)

dY
j=1

M j
h

1CCA (4.4)

Recall that our goal is to represent a high dimensional
EDR as the union of a number of hyper-rectangles. There-
fore, our target representation of FEDR(Si)(o) must be of the
following form:

∑∏ (
fv1(x)fv2(x)

)
(recall Equation 4.1).

To this end, we further transform Equation 4.4:

FEDR(Si)(o) =X
∀h,∃j,M

j
h
=f

s
j
h

(oj)

 
dY

l=1

fsl
i
(ol)

!0@ dY
j=1

0@ mY
h=1,h6=i

M j
h

1A1A

=
X

M
j
i =f

s
j
i

(oj) and ∀h6=i,∃j,M
j
h
=f

s
j
h

(oj)

 
dY

j=1

mY
h=1

M j
h

!
(4.5)

For each term in Equation 4.5, on any given dimension
dj(1 ≤ j ≤ d), we have m Boolean functions: M j

h(1 ≤ h ≤
m), where M j

h corresponds to the skyline point Sh’s projec-

tion Sj
h on dimension dj . For each given term

d∏
j=1

m∏
h=1

M j
h

in Equation 4.5, let Sj
+ denotes a set containing all the Sh’s

whose corresponding M j
h’s are “positive” and Sj

− denotes
the set containing all the Sh’s whose M j

h’s are negative.
Let Sj

+max be the maximum projection value from Sj
+ and

Sj
−min be the minimum projection value from Sj

−. Accord-

ing to Lemma 2, we have
m∏

h=1

M j
h = fsj

+ max
(oj)fsj

−min
(oj)

and therefore we finally get:

FEDR(Si)(o) = (4.6)X
dS

j=1
S

j
−=S−{Si}

 
dY

j=1

“
f

s
j
+ max

(oj)f
s

j
−min

(oj)
”!

The above equation defines a set of disjoint hyper-
rectangles whose union is equivalent to the d-dimensional
EDR(Si). At this point, there are two points worth noting.
First, for each skyline point Sh(h 6= i), there should be at
least one negative M j

h(1 ≤ j ≤ d). This is equivalent to
saying that the union of all negative terms should contain all

Sh’s except for Si. This is captured by
d⋃

j=1

Sj
− = S − {Si}

in Equation 4.6. Second, the number of rectangles in Equa-
tion 4.6 is exponential, or O(2md). It is easy to see that in
Equation 4.3, each “exclusive term” has been transformed
into the summation of 2d−1 terms. Because there are m−1
such exclusive terms in Equation 4.2, the total number of
hyper-rectangles appearing in Equation 4.6 is easily calcu-
lated as (2d − 1)m−1.

4.3 Reducing from O(2md) to O(md)

The bound O(2md) is overly generous because not every
term in Equation 4.6 corresponds to a valid hyper-rectangle.
In particular, we observe that every valid rectangle must sat-
isfy certain properties as we show below.

Lemma 3. Any valid rectangle in Equation 4.6, Sj
i ≤

Sj
+max < Sj

−min, (1 ≤ j ≤ d).

Proof: Please refer to [24] for all proofs hereafter.
Lemma 3 implies that the interval

[
Sj

+max, Sj
min

]
of a

valid rectangle should be “tight” in the sense that there can-
not be any projection value within this interval because any
skyline projection should belong to either Sj

+ or Sj
−.

Theorem 1. Let Sj = {Sj
1, S

j
2, · · · , Sj

m} be the projec-
tions of all skyline points on dimension dj . Let S̃j =
{S̃j

1, S̃
j
2, · · · , S̃j

m} be a non-descending permutation of Sj ,
i.e. S̃j

1 ≤ S̃j
2 ≤ · · · ≤ S̃j

m. Let S̃j

ĩ
= Sj

i , where
Si is the point to be deleted. For any rectangle Rab =

d∏
j=1

(
faj (oj)fbj (oj)

)
in Equation 4.6, Rab represents a

valid rectangle, i.f.f : 1) ∀j, Sj
i ≤ aj < bj;

2) ∀j, ∃k(̃i ≤ k ≤ m − 1), s.t.
[
aj , bj

]
=[

S̃j
k, S̃j

k+1

]
; or

[
aj , bj

]
=

[
S̃j

m,+∞
]
;

Furthermore, Rab ⊂ EDR(Si) i.f.f.
3) it must satisfy the original requirement in Equation 4.6:

d⋃
j=1

Sj
− = S − {Si}, where Sj

− refers to the sublist of S̃j

greater than aj . �

We explain Theorem 1 with Fig. 2. Fig. 2 shows d sorted
lists S̃1, S̃2, · · · , S̃d. The jth list S̃j contains the projection
values of all the skyline points on dimension dj in ascending
order. Assume that Si is the skyline point to be deleted. Its
projection values together define a cut (the dark dotted line in
Fig 2). Condition (1) requires that any valid interval

[
aj , bj

]
on dimension dj must be non-empty, i.e. aj should be strictly
less than bj , and always be “under” the Sj

i , i.e. aj ≥ Sj
i . For

example, in S̃1,
[
a1, b1

]
is below S1

i . On the other hand, in



Figure 2. Illustration of Theorem 1

S̃j ,
[
a′j , b′j

]
is not a valid interval, because it lies “above”

the Sj
i . In addition, Condition (2) requires that any valid

interval from Equation 4.6
[
aj , bj

]
should be consecutive in

S̃j . For example, in S̃j , interval
[
a′′j , bj

]
is not valid, since

aj falls in between.
However, not all the cross products of these valid inter-

vals belong to EDR(Si). Condition (3) further requires
that the union of all the sublist below aj should contain all
skyline points except Si. In Fig. 2, all intervals of hyper-
rectangle Rab forms a “cut” (denoted by the red solid line),

dS
j=1

Sj
−corresponds to the union of all the sublists “below” the

cut. Intuitvely, condition (3) enforces that any skyline point
other than Si should appear below this “cut” at least once.

According to Condition (2), there are at most m valid in-
tervals on each dimension dj because aj and bj must be ad-
jacent values in a non-descending permutation of the projec-
tion values. Since there are d dimensions in total, the number
of valid hyper-rectangles in Equation 4.6 is bounded by md.

4.4 Algorithms for Query Box Enumeration
In [24], we discuss the implementation of different EDR

algorithms and possible optimizations. We also implemented
all the EDR computation algorithms discussed above. As
we will show next, this enumeration process can be avoided
and the same intersection check can be performed without
explicitly computing an EDR. Therefore, we do not pursue
the direction of tightening the EDR computation bounds any
longer. Nevertheless, our main result in Theorem 1 provides
a solid foundation for all later algorithms.

5 DeltaSky: Deletion Maintenance without
EDR computation

5.1 Disadvantages of the “Generate-and-
Compute" Approach

The deletion maintenance method developed so far can
be summarized by two steps. In the first step, we calcu-
late EDR(Si) by representing it with a collection of query
boxes (Generate step). In step two, we input these boxes as
the constrained region Q to BBS and BBS runs in the same
way as before except that the intersection check returns true
if an R-Tree region intersects with any of these generated
boxes (Compute step). Due to the minimality property of
EDR(Si) (Lemma 1) and the I/O optimality of BBS [21],

this “Generate-and-Compute” approach guarantees I/O op-
timality for deletion maintenance and outputs only the new
skyline points. However, it suffers from at least two types of
overhead. First, as we have shown in Section 4.3, the Gener-
ate part takes O(md), where the number of skyline points m
is usually large in any real world databases. Second, each in-
tersection check between an intermediate R-Tree entry with
EDR(Si) also becomes O(md) in the worst case (the R-Tree
region only overlaps with the last box!) Although one can
accelerate this intersection check by using some temporary
in-memory structures to index the boxes after the Generate
step, the EDR computation overhead is hard to improve.

In this section, we answer a fundamental question: can we
avoid the Generate step altogether and perform the intersec-
tion check without computing the entire EDR? Fortunately,
the answer to this question is positive! The idea is to trans-
form the problem of intersection check between EDR(Si)
and intermediate R-Tree MBR into an equivalent problem:
given an R-Tree MBR Rxy , does there exist any query box
Rab (Rab ⊂ EDR(Si)) according to Theorem 1, s.t. Rab
intersects with Rxy? We show that this problem can be an-
swered in O(md). In addition, it has certain nice locality
properties that provide opportunities for further optimization
to achieve almost constant cost in practice. Our final algo-
rithm DeltaSky achieves both optimal I/O performance
and superior response time at the same time.

5.2 Algorithm Description

For two d-dimensional regions to intersect with each
other, their projections on every dimension must overlap.
Let Rxy denotes the minimum bounding rectangle (MBR)
of a given R-tree entry ei. Point x = (x1, x2, · · · , xd) and
y = (y1, y2, · · · , yd) denote the lower left and the upper
right points of Rxy , respectively. Let S̃1, S̃2, · · · , S̃d be d

sorted lists, where S̃j contains the projections of all m cur-
rent skyline points on dimension dj . Assume that we want
to delete skyline point Si = (S1

i , S1
i , · · · , Sd

i ). In each di-
mension dj , there can be 5 possible cases as shown in Fig. 3
assuming that xj 6= Sj

i 6= yj (equality cases can be handled
similarly). In case 1, xj < yj < Sj

i , no valid interval can
overlap with [xj , yj], since Theorem 1 requires that any valid
interval must lie “below” Sj

i . In case 2,3, and 4, the high end
point of a valid interval must fall below xj in order to over-
lap with [xj , yj]. In case 5, the only interval that can overlap
with [xj , yj] is [S̃j

m,+∞].
Now we introduce the notion of Minimum Cut and Maxi-

mum Coverage in the following two definitions.

Definition 1. (Minimum Cut) For each dimension dj ,
we define MCj , as the least projection value in S̃j that is
greater than both Sj

i and xj . The Minimum Cut MC =
{MC1,MC2, ...,MCd}. �

Definition 2. (Maximum Coverage) For each dimension
dj , we define MCVj , as the set of skyline points Sk whose
projection value, Sj

k, is greater or equal to MCj , i.e.
MCVj = {Sk|Sj

k ≥ MCj}. The Maximum Coverage

MCV =
d⋃

j=1

MCVj . �



Figure 3. Five Cases, Minimum Cut and Maxi-
mum Coverage

We illustrate the above definitions in Fig. 3. The red lines
in case 2,3 and 4 represent the positions of MCj in various
cases and the grey area below MCj , stands for the corre-
sponding MCVj . Note that for the extreme case like case 5,
MCj , is defined as +∞, since xj is greater than the greatest
value in S̃j and hence the corresponding MCVj is empty.

Now we establish some useful properties of the minimum
cut and the maximum coverage.
Lemma 4. (Minimality of MC) For a given R-Tree entry
ei whose MBR is denoted as Rxy and a valid hyper-rectangle
Rab generated according to Theorem 1, Rab intersects Rxy ,
then ∀j (1 ≤ j ≤ d), bj ≥ MCj .�

In particular, in the extreme case like case 5, [aj , bj ] =
[S̃j

m,+∞], where S̃j
m is the mth (greatest) projection value

in list S̃j
m.

Lemma 5. (Maximality of MCV ) For a given R-Tree en-
try ei whose MBR is denoted as Rxy , and a valid hyper-
rectangle Rab generated according to Theorem 1, Rab inter-
sects Rxy , then the union of all S̃j

−(1 ≤ j ≤ d), is a subset
of MCV , where S̃j

−, denotes the sublist of S̃j“below” aj .�

Theorem 2. Given an R-Tree entry ei whose MBR is denoted
as Rxy , the exclusive dominance region EDR(Si) of point
Si intersects with Rxy , i.f.f. ∀j, 1 ≤ j ≤ d, yj > Sj

i and the

corresponding MCV ≡
d⋃

j=1

MCVj = S − {Si}�.

According to Theorem 2, we can decide if an intermediate
R-Tree MBR intersects with EDR(Si) by only computing
the corresponding MCV and check if it contains all the dis-
tinct skyline point IDs expect Si. The DeltaSky algorithm
(Shown in Algorithm 2) implements this idea. DeltaSky
takes as input the corner points of Rxy and the skyline point
to delete Si. If DeltaSky finds Rxy impossible to overlap
with EDR(Si) on any dimension (case 1), it directly returns
false without looking into the remaining dimensions any
more (line 7-11). It skips the computation of MCVj
on the remaining dimensions if the MCV set already con-
tains m-1 distinct items(line 14-15). By doing so, it
avoids unnecessary scans of the remaining sublists. It scans
the sublist “below” the Minimum Cut MCj on S̃j and adds
the corresponding skyline IDs into MCV (line 18-19).
After visiting all the d lists, it has computed the Maximum

Cut MCV for the current R-tree MBR Rxy and can deter-
mine if Rxy intersects with EDR(Si) or not according to
Theorem 2 (line 22-24).

DeltaSkyworks within the framework of BBS as the in-
tersection check procedure. During the deletion maintenance
process, for each subentry ei resulting from the expansion of
an intermediate R-tree entry, BBS calls DeltaSky to check
whether ei’s MBR intersects with EDR(Si). It is impor-
tant to note that once this intersection check returns true, the
following dominance check only needs to consider the newly
appeared skyline points in ∆S, since any MBR intersecting
with EDR(Si) cannot be dominated by any existing skyline
points in S − Si.

Algorithm 2 DeltaSky
1: Si: the skyline point to delete
2: Sj

i : Si’s projection value on dimension dj

3: Rxy : an intermediate R-tree MBR
4: S̃j : a sorted list of all the skyline projection values on dimension dj

5: DeltaSky(Rxy , Si)
6: Procedure
7: for every dimension dj , 1 ≤ j ≤ d do
8: if yj < Sj

i then
9: return false;

10: end if
11: end for
12: initialize the Maximum Coverage set MCV to �;
13: for every dimension dj , 1 ≤ j ≤ d do
14: if MCV.size()== m-1 then
15: continue;
16: end if
17: MCj = least projection value in S̃j greater than max(Sj

i , yj);
18: for every skyline point Sk whose projection value Sj

k ≥ MCj do
19: MCV = MCV

S
{Sk};

20: end for
21: end for
22: if MCV.size()==m-1 then
23: return true;
24: end if
25: return false;
26: End Procedure

In our implementation, we store each list S̃j in a clus-
tered B-Tree index with projection value as the search key
and skyline tuple ID as the value. To compute the MCVj
from each list, we first locate the position of MCj among
the B-Tree leaf nodes via a B-Tree lookup and then perform
a B-Tree scan down the list at the leaf level to get the sky-
line point IDs “below” MCj . A hashtable is used to record
the distinct skyline point IDs in MCV . The computation of
the maximum coverage MCV involves the union of d lists,
which amounts to d B-tree scans. Moreover, we can also use
one single B-Tree to store all the d lists and separate them by
adding DimensionID to the search key.

In most applications, the skyline view size is reasonable,
thus normally these B-Trees can reside in main-memory to
improve performance. However, we do not adopt an in-
memory implementation for S̃j , because 1) there can be lots
of skyline views defined over the same database on differ-
ent attribute sets, each of which needs to be maintained; 2)
for high-dimensional skylines, the size of a single view can
be big (order of Megabytes); 3) in any real-world database
server, there can be concurrent queries running to compete
for memory resources. Therefore it is unsafe to assume that
all lists in DeltaSky can be held in memory.



5.3 Optimizations

5.3.1 Exploiting the Locality Property of DeltaSky

Recall that MCV contains all the skyline point IDs that falls
“below” the Minimum Cut MC, where MC is determined
by the deleted point Si and the lower left point x of ei’s
MBR. We hypothesize that there exists certain locality prop-
erty in both the Minimum Cut value and the Minimum Cov-
erage set across adjacent DeltaSky calls. The reason is that
Si always stays the same during the maintenance process.
Furthermore, BBS visits intermediate R-tree entries accord-
ing to some order (in the ascending order of their MinHist
values). Hence it is unwise to recompute the Maximum Cov-
erage for each intersection check as the same part of each list
S̃j may be repeatedly scanned.
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Figure 4. Locality Property of DeltaSky

We conduct a case study to verify this hypothesis. In our
case study, both anti-correlated and independent datasets of
cardinality 100K are used, and our workload consists of 100
deletions of randomly picked skyline points. DeltaSky is
invoked around 25000 times in both workloads. For each
call, we record the position of its Minimum Cut on a fixed
dimension and compute the offset between every consecu-
tive call. Fig 4 plots the cumulative density function of the
offset size distribution. The y-axis represents the percent-
age of DeltaSky calls, and x-axis depicts the correspond-
ing offset size in terms of the percentage of the list size. As
we can see, the offset size between consecutive DeltaSky
invocations is typically very small. Specifically, on both
datasets, almost half of the DeltaSky invocations have the
same Minimum Cut position as its previous invocation (off-
set equals to zero) and 90 percent has offset less than 10 per-
cent of the list size!

This locality property motivates us to share the
MCV computation across invocations. Specifically, each
DeltaSky call “inherits” the Maximum Coverage set
MCVold from its preceding invocation. It computes the
MCVnew for the current R-tree entry based on MCVold by
only scanning the offsets. We will show in our experiments
that this achieves considerable performance gain especially
when the skyline result size is big and a complete scan down
each list is expensive.

5.3.2 Pushing Dominance Checks

Another optimization is to push the dominance check ahead
of the intersection check. In the original BBS algorithm, the
intersection check takes constant cost and the cost of the
dominance check is at least in the order of log |S| (if an
extra R-tree is used to index the Skyline Set). However, in
our case, an intersection check has worst case complexity of

O(|S|d) and a dominance check costs at most O(|∆S| ∗ d),
where |∆S| is the number of newly appeared skyline points
after deletion. As we will show that ∆S is less than 1 on
average, therefore, it is unwise to invoke DeltaSky for an
“unpromising” R-tree MBR which is later dominated and
discarded. This technique filters out considerable number of
intermediate R-tree regions and thus saves unnecessary inter-
section checks.

5.4 Algorithm Analysis

Based on the minimality of EDR (Lemma 1) and the I/O
optimality of BBS [21], we establish the optimality of our
approach in the following theorem.

Theorem 3. The number of nodes accessed by BBS with
DeltaSky as intersection check is optimal for deletion main-
tenance. �

According to the analysis from the original BBS pa-
per [21], both the number of node accesses and heap size of
BBS are proportional to the size of the skyline result. These
analytical results also apply to the deletion maintenance in
our case. The performance advantage of DeltaSky over
BBS re-computation can thus be approximated by |∆S|/|S|,
where ∆S only consists of the new skyline points after the
deletion and S is the original skyline set.

Intuitively, the expected number of skyline points in a
EDR should be less than 1. The reason is that the total
number of the “second tier” skyline points are expected to
be slightly less than the current skyline size, among which
most are dominated by more than one skyline point. There-
fore, the number of second-tier skyline which are exclusively
dominated by one single skyline point should be less than 1
on average. In a longer version [24], we empirically measure
the size of ∆S in our experiments and find it typically very
small (less than 1 on average) compared to |S|. As such, the
benefit of using DeltaSky is expected to be significant for
deletion maintenance.

Besides being I/O optimal, the optimized version of
DeltaSky scans only the offsets of consecutive Minimum
Cuts, which typically involves constant cost on average. For
example, for the deletion workloads in Fig. 4(a) and 4(b),
on average DeltaSky only scans less than 4 percent of the
lists, i.e. with the average cost of 0.04md. Moreover, we
would like to reiterate here that the dominance check when
using DeltaSky is performed against the skyline points in
∆S instead of S as in the original BBS algorithm.

6 Experiment Results
6.1 Experiment Setup

We have implemented all the methods described in the
paper. We use the B-Tree index provided in Berkeley DB
storage manager and the R*-tree index [4] from Spatial In-
dex Library [1]. The page size of both indices equals to
4K bytes and R-Tree node capacity is set to 100. We tested
the correctness of all the implementations by comparing the
results against an O(n2) naive implementation (each point
compared against every other points to find the skyline).

We borrowed the data generator from the authors of the
original skyline paper [6] which has been used extensively
in previous literature. Following the common methodology,
both independent and anti-correlated datasets are used for



the evaluation with dimensionality from 2 to 7 and cardinal-
ity from 100K to 5M, covering the scale of most real world
scenarios1. We conduct head-to-head comparison between
DeltaSky, BBS re-computation and the adaptive version
of BBS (ABBS discussed in Section 3.4) under various set-
tings. For each experiment setting, we evaluate DeltaSky
and ABBS 100 times by deleting 100 randomly selected
points in the skyline view and report the average of the re-
sults of both algorithms. Please note that different skyline
points chosen for deletion leads to distinct performance im-
pact on both DeltaSky and ABBS. Basically, the EDR
size varies considerably across different skyline points. In
addition to the average performance, we also report some
detailed comparison result for certain settings [24]. By de-
fault, the results are from a Linux box with an Intel Pentium
IV 2GMHz processor and 1 GB of RAM.

6.2 Experiment 1: The Impact of Dimensionality
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Figure 5. Effects of Dimensionality on Main-
tenance Time (Cardinality=1M)
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Figure 6. Effects of Dimensionality on I/O
(Cardinality=1M)

In this experiment, we study the impact of dimensional-
ity on the performance of deletion maintenance. We fix the
cardinality of the datasets at 1M and report the results by
varying the dimensionality from 2 to 7. Fig. 5 illustrates
the maintenance time as a function of the dimensionality for
both independent (Fig. 5(a)) and anti-correlated (Fig. 5(b))
datasets. Fig. 6 illustrates the corresponding I/O costs in term
of the number of R-Tree node accesses. For each point on the
graph, we measure both DeltaSky and ABBS with 100

1The same set of experiments have also been run over the correlated data
set. Correlated data set is the least challenging case for skyline computa-
tion since a point that is good at one dimension tends to be “dominating”
on other dimensions as well which is not a good reflection for most practi-
cal scenarios of optimizing “conflicting” goals. In fact, all methods return
quickly even in high dimensions and DeltaSky consistently outperforms al-
ternatives. Like [21], we do not plot them here.

different skyline deletions and report the average. As we can
see, DeltaSky is the clear winner in any settings. For in-
stance, Fig. 5(b) shows that on a 6d anti-correlated dataset,
deletion maintenance of most skyline points can be com-
pleted within 10 seconds by DeltaSky (with an average of
30 seconds), in contrast the BBS-recomputation take more
than hours and ABBS takes more than 3 minute on av-
erage! The performance of all methods degrades with the
growth of the dimensionality, which is consistent with ear-
lier studies [26][21]. The increase of DeltaSky’s processing
time in Fig. 5 is due to: 1) more projection lists to scan for
the Maximum Coverage computation, 2) the increase of the
skyline result size in high dimensions leads to larger pro-
jection lists, 3) R-Tree’s inability to isolate relevant data in
high dimensions. On the other hand, Fig. 6 shows that the
I/O performance of DeltaSky is very stable. The reason
is that DeltaSky guarantees the I/O optimality for any di-
mensions and the number of new skyline points (|∆S|) is
usually small even for high dimensional cases. Besides these
average values, we also report in [24] detailed comparision
under some setting to show clearly that DeltaSky consis-
tently beats ABBS on every single deletion in both settings.

6.3 Experiment 2: The Impact of Cardinality
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Figure 7. Effects of Cardinality on Mainte-
nance Time(Dimensionality=5)
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Figure 8. Effects of Cardinality on I/O (Di-
mensionality=5)

Fig. 7 and Fig. 8 report the impact of cardinality on the
performance of all three methods. We fix the dimensionality
at 5 and vary the datasets’ size from 1 million to 5 million
records. The impact of cardinality is shown to be small on
both methods, which is demonstrated by the “flat” lines in
Fig. 7 and Fig. 8. This also agrees with the results from prior
studies. As we can see, DeltaSky consistently outperforms
alternative approaches by orders of magnitude. In particular,
for a 5d anti-correlated dataset containing 5 million records,



on average DeltaSky finds new skyline points in less than
1 minute and most deletion maintenance cases are actually
completed within seconds. In comparison, ABBS on av-
erage spends more than 5 minutes on each deletion mainte-
nance. The advantage of DeltaSky becomes even greater
on independent datasets (50 times faster than ABBS on 5M
dataset). Again, the detailed comparison in [24] further con-
firms that DeltaSky is the winner on every deletion in-
stance.

6.4 Experiment 3: Effectiveness of Optimization
Techniques
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Figure 9. Effectiveness of Optimization
Techniques (Cardinality=100K)

This set of experiments is conducted on a Linux box with
800MHZ Pentium III processor and 1G memory. We eval-
uates the effectiveness of the optimization techniques pro-
posed in Section 5.3. We use both anti-correlated and in-
dependent datasets with cardinality 100K and vary the di-
mension number from 2 to 6. Fig 9 compares the average
maintenance time of the fully optimized DeltaSky algo-
rithm against its un-optimized versions. Clearly, both opti-
mization techniques are effective. Specifically, exploitation
of the locality property is shown to be crucial to DeltaSky.
By sharing the maximum coverage computation across dif-
ferent invocations, DeltaSky achieves order of magnitude
performance gain on both independent and anti-correlated
datasets. This result is consistent with our previous case
study in which on average less than 4 percent of the list is
scanned per intersection check. On the other hand, the ad-
vantage of pushing dominance check becomes clearer with
the increase of the dimensionality in both Fig 9(a) and 9(b).
The reason is that in high dimensions, as the number of in-
termediate R-tree nodes increases, dominance checks prune
away more “unpromising” nodes and thus more likely to
avoid unnecessary intersection checks.

7 Conclusion

In this paper, we have addressed the important problem
of efficiently maintaining a materialized skyline result set in
response to skyline deletions. Our solution DeltaSky guar-
antees I/O optimality and can be easily implemented. Cen-
tral to this problem is the notion of the exclusive dominance
region(EDR). We devised a principled way to represent a d-
dimensional EDR with a collection of hyper-rectangles based
on the derivation of its boolean function. We show that
the time complexity of d-dimensional EDR computation is
O(md) where m refers to the number of skyline points in the
dataset. We then introduce a novel algorithm DeltaSky

which performs the EDR intersection check without explicit
EDR calculation, and reduces the time complexity to O(md).
We discuss the implementation issues and devise optimiza-
tion techniques that effectively reduce the runtime complex-
ity to almost constant in practice. By integrating DeltaSky
into the existing BBS framework, we achieve both optimal
I/O and superior response time for skyline deletion mainte-
nance. Experimental results show that our method outper-
forms the BBS-based alternative methods by orders of mag-
nitude in terms of both R-tree node access and the mainte-
nance time. As on-going work, we are investigating the us-
age of auxiliary data for skyline view maintenance and the
efficient maintenance of skyline cubes for batch updates.
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