
Dictionary Look-Up Within Small Edit DistanceAbdullah N. Arslan and �Omer E�gecio�glu ?Department of Computer ScienceUniversity of California, Santa BarbaraSanta Barbara, CA 93106 USAfarslan,omerg@cs.ucsb.eduAbstract. LetW be a dictionary consisting of n binary strings of lengthm each, represented as a trie. The usual d-query asks if there exists astring in W within Hamming distance d of a given binary query stringq. We present an algorithm to determine if there is a member in Wwithin edit distance d of a given query string q of length m. The methodtakes time O(dmd+1) in the RAM model, independent of n, and requiresO(dm) additional space.1 IntroductionLet W be a dictionary consisting of n binary strings of length m each. A d-queryasks if there exists a string in W within Hamming distance d of a given binaryquery string q. Algorithms for answering d-queries e�ciently has been a topicof interest for some time, and have also been studied as the approximate queryand the approximate query retrieval problems in the literature. The problem wasoriginally posed by Minsky and Papert in 1969 [10] in which they asked if thereis a data structure that supports fast d-queries.The cases of small d and large d for this problem seem to require di�erenttechniques for their solutions. The case when d is small was studied by Yao andYao [14] . Dolev et al. [5, 6] and Greene et al. [7] have made some progress whend is relatively large. There are e�cient algorithms only when d = 1; proposedby Brodal and Venkadesh [3], Yao and Yao [14], and Brodal and Gasieniec [2].The small d case has applications in password security [9]. Searching biologicalsequence databases may also use the methods of answering d-queries.Previous studies for the d-query problem have focused on minimizing thenumber of memory accesses for a d-query, assuming other computations arefree, and used cell or bit probe models to express complexity. We assume a RAMmodel with constant memory access time and take into account all computationsin the complexity analysis. Dolev et al. [6] presented bounds for the space andtime complexity of the d-query problem under certain assumptions using variousnotions of proximity. In the model, W is stored in buckets, and preprocessing ofW is allowed.? Supported in part by NSF Grant No. EIA{9818320.



In this paper we consider answering d-queries e�ciently without limiting our-selves to the construction of a new data structure parametrized by d. The variantof the original d-query problem that we consider is when the string-to-string editdistance is used as the distance measure instead of the ordinary case of Hammingdistance. We assume that W is stored as a trie Tm, and propose two algorithmsfor the d-query problem in this case. Our algorithms use the hybrid tree/dynamicprogramming approach [4]. The �rst one (Algorithm LOOK-UPed, Figure 4) re-quires O(dmd+2) time in the worst case, and O(dmd+1) space (in addition to thespace requirements of the trie Tm). This complexity is of interest for small valuesof d under investigation. The second algorithm (Algorithm DFT-LOOK-UPed,Figure 7) has time complexity O(dmd+1), and additional space complexity ofonly O(dm).There is reason to believe that the average performance of both algorithmsis much better when W is sparse.2 Motivation: Hamming Distance Based MethodsHamming distance between two binary strings is the number of positions theydi�er. A d-query asks if there is a member in a dictionary W whose Hammingdistance is at most d from a given binary query string q.We assume a trie representation Tm for W , and assume for simplicity thatW consists of binary words of length m each. A trie is a tree whose arcs arelabeled by the symbols of alphabet �, in this case � = f0; 1g. The leaf nodes ofTm correspond to the words in W , and when concatenated, the labels of arcs ona path from the root to a given intermediate node gives a pre�x of at least oneword in W . Clearly, in the RAM model assumed, accessing a word in W takesO(m) time. Figure 1 part (a) shows an example trie T5 representing a dictionaryW = f00011; 01001; 11111g.
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(a) (b)Fig. 1. a) An example trie with binary words 00011, 01001, and 11111 . b) The numbersin italic are the node weights computed with respect to query string 00100 .



A naive method for answering a d-query is to generate the whole set ofPdk=0 �mk � strings di�ering from q in at most d positions, and with every stringgenerated, perform a dictionary look-up in Tm for an exact member in W . Thisnaive generate and test algorithm takesO(md+2) time and O(m) additional spaceto store a generated string at a time. Another naive method is to add all stringswithin Hamming distance d from any member inW to obtain a bigger dictionaryW 0 . Then any d-query can be answered in O(m) time using the correspondingtrie T 0m for an exact member. This latter method signi�cantly increases the sizeof W by a number roughly O(nmd) m-bit members. Cost of constructing andmaintaining T 0m may be extremely high.For Hamming distance, we can improve the �rst naive algorithm above asfollows. Let s(v) denote the pre�x corresponding to trie node v. Given a querystring q, suppose that we assign weight wh to each trie node v in Tm aswh(v) = h(s(v); q1���js(v)j); (1)where h denotes Hamming distance. As an example, in Figure 1 (b) the weightsof the nodes have been computed with respect to query string q = 00100. Theidea is that we can prune the trie in our search for q at the nodes in Tm withwh(v) > d.Lemma 1. Let N be the number of nodes in Tm with weight � d as de�ned in(1). Then N = O(md+1) .Proof. It is easy to see that N is maximized over all tries Tm when Tm is acomplete trie over �, i.e. Tm contains all binary strings of length m. Figure 2shows node weights of a complete trie with respect to q up to level 4 startingwith the root at level 0. The root has weight 0. For any other vertex v at levell, if the arc from its parent to v has label ql (the lth symbol of query string q)then v and its parent have the same weight; otherwise, weight of v is 1 morethan that of its parent . Let L(l; w) denote the number of vertices with weight wat level l of the complete trie Tm. At any level l, the largest weight is l . Usingthese observations we see that L(l+1; w) = L(l; w)+L(l; w� 1) with l � w andL(l; 0) = 1 . Therefore L(l; w) is the binomial coe�cient � lw� . Furthermore sincethe smallest level at which weight w appears in Tm is l = w, the total numberof vertices with weight w in Tm is �ww�+ �w+1w �+ � � �+ �mw� = �m+1w+1� . HenceN = dXw=0�m+ 1w + 1� = O(md+1)Based on the above lemma, Figure 3 outlines Algorithm LOOK-UPh fordictionary look-up within Hamming distance d. The algorithm explores all nodesv in Tm with weight wh(v) � d, i.e. s(v) is a pre�x of a word in W whoseHamming distance from q is potentially within d. Sk stores the set of node-weight pairs (v; wh(v)) for all nodes v at levels � k with weight wh(v) � d. Thealgorithm iteratively computes Sk from Sk�1 by collecting all pairs (v[a]; w(v)+h(a; qk)) in Sk where (v; w(v)) 2 Sk�1, w(v)+h(a; qk) � d, and a 2 � = f0; 1g .
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Fig. 2. In a complete binary trie of height 4, weights with respect to a given binaryquery string are shown in italic.Clearly, if there is a member in W within Hamming distance d then it will becaptured in Sm in which case the algorithm returns YES; otherwise it returnsNO.Sk contains O(md+1) node-weight pairs by Lemma 1. Therefore the timecomplexity in the assumed model is O(md+2). It also requires additional spaceto store O(md+1) trie nodes. The time complexity is no better in the worst casethan that of the naive algorithm which generates and tries all possible stringswithin Hamming distance d from q. However for a sparse dictionaryW AlgorithmLOOK-UPh is bound to be much faster on the average.Algorithm LOOK-UPh(d)S0 = f(v0; 0)gfor k = 1 to m doSk = f(v[a]; w(v)+h(a; qk)) j (v; w(v)) 2 Sk�1, w(v)+h(a; qk) � d, and a 2 �gReturn YES if the minimum weight in Sm is � d, NO otherwiseFig. 3. Algorithm LOOK-UPh for dictionary look-up within Hamming distance d.3 Edit Distance Based d-queriesAlgorithm LOOK-UPh essentially computes the Hamming distance between qand a selected part of dictionary W . Next we investigate the possibility of usinga similar idea for d-queries de�ned with respect to the edit distance.For the purposes of this paper, we use a simple type of edit distance. Giventwo strings p = p1 � � � pm and q = q1 � � � qm, the edit distance ed(p; q) is theminimum number of edit operations which transforms p into q. The edit oper-ations are of three types: insert, delete, and substitute. Substituting a symbol



by itself is called a match. A match operation is the only operation that doesnot contribute to the number of steps of the transformation. In terms of costs,all edit operations have cost 1 except for the match whose cost is 0. The usualframework for the analysis of edit distance is the edit graph. Edit Graph Gp;qis a directed acyclic graph having (m + 1)2 lattice points (u; v) as vertices for0 � u; v � m. Horizontal and vertical arcs correspond to insert and delete oper-ations respectively. The diagonal arcs correspond to substitutions. Each arc hasa cost corresponding to the edit operation it represents. If we trace the arcs of apath from node (0; 0) to an intermediate node (i; j), and perform the indicatededit operations in the given order on p1 � � � pi then we obtain q1 � � � qj . Edit dis-tance between pre�xes p1 � � � pi and q1 � � � qj is the cost of the minimum-cost pathfrom (0; 0) to (i; j), and can be computed from the distances achieved at nodes(i�1; j), (i�1; j�1), and (i; j�1). Hence it has a simple dynamic programmingformulation [13]:Di;j = minf Di�1;j + 1; Di�1;j�1 + h(pi; qj); Di;j�1 + 1g (2)for 1 � i; j � m, with Di;j = 0 whenever i = 0 or j = 0.3.1 Algorithm LOOK-UPedWith respect to a given binary query string q, we assign weight wed to any trienode v in Tm as wed(v) = minfed(s(v); r) j r is a pre�x of qg (3)where ed denotes the edit distance.Lemma 2. Let N be the number of nodes in Tm with weight � d as de�ned in(3). Then N = O(md+1) .Proof. Proof is similar to the proof of Lemma 1 for the Hamming distance case.Analysis ofN over a complete binary trie gives the maximum N . We omit the de-tails. We remark however that in general wed(v) 6= wh(v), and for non-completebinary tries the distribution of weights over the nodes can di�er signi�cantly forHamming and edit distances.Algorithm LOOK-UPed shown in Figure 4 extends the dynamic program-ming formulation (2) of the edit distance computation by considering all pre-�xes of all members inW . Si;j stores all the node-weight pairs (v; wed(v)) wheres(v) = p1 � � � pi for some p 2 W , and wed(v) = ed(p1 � � � pi; q1 � � � qj) .The computations in LOOK-UPed involve sets, as opposed to just scoresof the ordinary edit distance computations. Edit operation and the trie nodesinvolved determine an action on the sets. Consider the operations resulting inat node (i; j) of the edit graph as shown in Figure 5. Let the operation be thedeletion of symbol pi 2 �. For (v; t) 2 Si�1;j if there is an arc from v to v[a] withlabel a 2 � then the delete operation causes weight t+1 in v[a]. This potentialweight assignment is re
ected in set S0i�1;j , and realized in set Si;j only if no



Algorithm LOOK-UPed(d)Si;�1 = ; for all i, 1 � i � dS�1;j = ; for all j, 1 � j � dS0;0 = f(v0; 0)gfor i = 0 to m dofor j = maxf0; i� dd=2eg to minfm; i+ bd=2cg dofif (i = 0 and j = 0) then continue with the next iterationelsefS0i�1;j = f(v[a]; t+ 1) j t+ 1 � d; (v; t) 2 Si�1;j and a 2 � gS0i;j�1 = f(v; t+ 1) j t+ 1 � d; (v; t) 2 Si�1;j gS0i�1;j�1 = f(v[a]; t+ h(a; qj) j t+ h(a; qj) � d; (v; t) 2 Si�1;j�1, a 2 � gSi;j = f(v; t) j t is the minimum weightpaired with leaf v in S0i�1;j [ S0i;j�1 [ S0i�1;j�1gggReturn YES if the minimum weight in Sm;m is � d; otherwise NOFig. 4. Algorithm LOOK-UPed for dictionary look-up within edit distance d.weight smaller than t + 1 is achieved by other edit operations resulting in v[a].Now consider the insertion of qj . For each (v; t) 2 Si;j�1, the pair (v; t + 1) isinserted into S0i;j�1 . Similarly for each (v; t) 2 Si�1;j�1, (v[a]; t + h(a; qj)) isinserted into S0i�1;j�1 . Subsequently, all node-weight pairs in sets S0i�1;j , S0i;j�1,and S0i�1;j�1 are collected into set Si;j by including for each node at most onepair, namely the one with the minimum weight.The computations on the edit graph can be restricted to a narrow diagonalband of the edit graph as shown in Figure 5, since any edit path with totalweight at most d completely lies in this band.We can easily show by induction that for all i; j with 0 � i � m, andmaxf0; i � dd=2eg � j � minfi; i + bd=2cg, (v; t) 2 Si;j i� there exists a trienode v such that js(v)j = i and ed(s(v); q1 � � � qj) = t . This implies that Sm;mincludes a node-weight pair with weight � d for a leaf node i� there exists amember in W within edit distance d. Therefore the algorithm is correct.Figure 6 shows an example edit path with partial results which identify mem-ber 01001 as within edit distance 2 of q = 00100.By Lemma 2, computing each Si;j from Si�1;j , Si;j�1, Si�1;j�1 takesO(md+1)time since the size of each of these sets is bounded by O(md+1) . Thereforethe time complexity of Algorithm LOOK-UPed is O(dmd+2), and it requiresO(dmd+1) additional space since it is enough to store the sets of the previousand current rows as the processing is done row by row.
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Algorithm DFT-LOOK-UPed(d)Dv0;0;j = 0 for all j, 0 � j � bd=2cfor each arc from v to v[a] on any a 2 � doif DFT-COMPUTE-Ded(v0; a; v0[a]) � d then return YESreturn NOFig. 7. Algorithm DFT-LOOK-UPed for dictionary look-up within edit distance d.Given a parent node v, children node u, and symbol a 2 � of the arc con-necting these two, Procedure DFT-COMPUTE-Ded(v; a; u) �rst computes thevalues in the row of node u using the values in the row of parent node v inthe edit graph (Figure 9). If all computed entries in this row are > d, then theprocedure returns the minimum of these numbers. Otherwise it traverses thesubtrie rooted at u in depth-�rst manner, computes and returns the minimumedit distance achievable in the leaf nodes of this subtrie.Procedure DFT-COMPUTE-Ded(v; a; u)i = level(v)for j = maxf0; i� dd=2eg to minfm; i+ bd=2cg doDu;i;j = minf Dv;i�1;j + 1; Dv;i�1;j�1 + h(a; qj); Dv;i;j�1 + 1gweight = minfDu;i;j j maxf0; i� dd=2eg � j � minfm; i+ bd=2cgif u is a leaf node or weight > d then return weightreturn minfDFT-COMPUTE-Ded(u; a; u[a]) | there is an arcincident from u to u[a] on a 2 �gFig. 8. Procedure DFT-COMPUTE-Ded for computing the minimum edit distanceachieved in subtrie rooted at v.To show correctness, we claim that Dv;i;j stores ed(s(v); q1 � � � qj) where i =level(v). This can be shown by induction. Assume that before v is visited forthe parent of v, and corresponding entries, the claim is true then following thecomputations for v we can easily see that the claim will be true for v after theprocessing is done for the entries of v. Another induction on the subtries ofv reveals that the procedure call on v will return the minimum edit distanceachieved in the leaves of the subtrie rooted at v. Therefore the algorithm returnsYES i� there is a member in W within edit distance d of q.Depth-�rst traversal visits O(md+1) trie nodes by Lemma 2. With everynode visited O(d) operations are performed. Therefore the time complexity ofthe algorithm is O(dmd+1). Dept-�rst traversal requires that a branch of O(m)trie nodes be stored. For each node O(d) entries are maintained. Hence the spacecomplexity of the algorithm is O(dm).We can adapt DFT-LOOK-UPed (and DFT-COMPUTE-Ded) to Hammingdistance computations as well. In this case, we only need to consider the diag-onal entries of the edit graph, and each entry is computed using only the value
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