Dictionary Look-Up Within Small Edit Distance
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Abstract. Let W be a dictionary consisting of n binary strings of length
m each, represented as a trie. The usual d-query asks if there exists a
string in W within Hamming distance d of a given binary query string
q- We present an algorithm to determine if there is a member in W
within edit distance d of a given query string q of length m. The method
takes time O(dm?*!) in the RAM model, independent of n, and requires
O(dm) additional space.

1 Introduction

Let W be a dictionary consisting of n binary strings of length m each. A d-query
asks if there exists a string in W within Hamming distance d of a given binary
query string ¢q. Algorithms for answering d-queries efficiently has been a topic
of interest for some time, and have also been studied as the approximate query
and the approzrimate query retrieval problems in the literature. The problem was
originally posed by Minsky and Papert in 1969 [10] in which they asked if there
is a data structure that supports fast d-queries.

The cases of small d and large d for this problem seem to require different
techniques for their solutions. The case when d is small was studied by Yao and
Yao [14] . Dolev et al. [5, 6] and Greene et al. [7] have made some progress when
d is relatively large. There are efficient algorithms only when d = 1; proposed
by Brodal and Venkadesh [3], Yao and Yao [14], and Brodal and Gasieniec [2].
The small d case has applications in password security [9]. Searching biological
sequence databases may also use the methods of answering d-queries.

Previous studies for the d-query problem have focused on minimizing the
number of memory accesses for a d-query, assuming other computations are
free, and used cell or bit probe models to express complexity. We assume a RAM
model with constant memory access time and take into account all computations
in the complexity analysis. Dolev et al. [6] presented bounds for the space and
time complexity of the d-query problem under certain assumptions using various
notions of proximity. In the model, W is stored in buckets, and preprocessing of
W is allowed.
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In this paper we consider answering d-queries efficiently without limiting our-
selves to the construction of a new data structure parametrized by d. The variant
of the original d-query problem that we consider is when the string-to-string edit
distance is used as the distance measure instead of the ordinary case of Hamming
distance. We assume that W is stored as a trie T,,, and propose two algorithms
for the d-query problem in this case. Our algorithms use the hybrid tree/dynamic
programming approach [4]. The first one (Algorithm LOOK-UP,,;, Figure 4) re-
quires O(dm?*2) time in the worst case, and O(dm?*!) space (in addition to the
space requirements of the trie 7,,). This complexity is of interest for small values
of d under investigation. The second algorithm (Algorithm DFT-LOOK-UP,;,
Figure 7) has time complexity O(dm?*!), and additional space complexity of
only O(dm).

There is reason to believe that the average performance of both algorithms
is much better when W is sparse.

2 DMotivation: Hamming Distance Based Methods

Hamming distance between two binary strings is the number of positions they
differ. A d-query asks if there is a member in a dictionary W whose Hamming
distance is at most d from a given binary query string q.

We assume a trie representation 7, for W, and assume for simplicity that
W consists of binary words of length m each. A trie is a tree whose arcs are
labeled by the symbols of alphabet X, in this case X' = {0,1}. The leaf nodes of
Tm correspond to the words in VW, and when concatenated, the labels of arcs on
a path from the root to a given intermediate node gives a prefix of at least one
word in W. Clearly, in the RAM model assumed, accessing a word in W takes
O(m) time. Figure 1 part (a) shows an example trie 75 representing a dictionary
W = {00011,01001,11111}.
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Fig. 1. a) An example trie with binary words 00011, 01001, and 11111 . b) The numbers
in italic are the node weights computed with respect to query string 00100 .



A naive method for answering a d-query is to generate the whole set of
ZZ:O (%) strings differing from ¢ in at most d positions, and with every string
generated, perform a dictionary look-up in 7, for an exact member in W. This
naive generate and test algorithm takes O(m%+?) time and O(m) additional space
to store a generated string at a time. Another naive method is to add all strings
within Hamming distance d from any member in W to obtain a bigger dictionary
W' . Then any d-query can be answered in O(m) time using the corresponding
trie 7, for an exact member. This latter method significantly increases the size
of W by a number roughly O(nm?) m-bit members. Cost of constructing and
maintaining 7,/ may be extremely high.

For Hamming distance, we can improve the first naive algorithm above as
follows. Let s(v) denote the prefix corresponding to trie node v. Given a query
string ¢, suppose that we assign weight wy to each trie node v in T, as

wh(v) = h(s(v)7q1---\s(v)\)= (1)

where h denotes Hamming distance. As an example, in Figure 1 (b) the weights
of the nodes have been computed with respect to query string ¢ = 00100. The
idea is that we can prune the trie in our search for ¢ at the nodes in 7, with
wp(v) > d.

Lemma 1. Let N be the number of nodes in T,, with weight < d as defined in
(1). Then N = O(m?+1) .

Proof. Tt is easy to see that N is maximized over all tries T, when T, is a
complete trie over X, i.e. T, contains all binary strings of length m. Figure 2
shows node weights of a complete trie with respect to ¢ up to level 4 starting
with the root at level 0. The root has weight 0. For any other vertex v at level
I, if the arc from its parent to v has label g; (the Ith symbol of query string q)
then v and its parent have the same weight; otherwise, weight of v is 1 more
than that of its parent . Let L(I,w) denote the number of vertices with weight w
at level I of the complete trie 7,,. At any level [, the largest weight is [ . Using
these observations we see that L(I+1,w) = L(l,w) + L(l,w — 1) with I > w and
L(1,0) = 1. Therefore L(l,w) is the binomial coefficient (ZU) . Furthermore since
the smallest level at which weight w appears in T, is [ = w, the total number

of vertices with weight w in T, is (1) + (wi;l) +-+ () = (Z]Lji) . Hence

Based on the above lemma, Figure 3 outlines Algorithm LOOK-UP;, for
dictionary look-up within Hamming distance d. The algorithm explores all nodes
v in T, with weight wp(v) < d, i.e. s(v) is a prefix of a word in W whose
Hamming distance from ¢ is potentially within d. Sy stores the set of node-
weight pairs (v, wp (v)) for all nodes v at levels < k with weight wp(v) < d. The
algorithm iteratively computes Sy, from S;_; by collecting all pairs (v[a], w(v) +
h(a,qr)) in Si where (v,w(v)) € Sg_1, w(v)+h(a,qr) <d,and a € ¥ ={0,1} .
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a

Fig. 2. In a complete binary trie of height 4, weights with respect to a given binary
query string are shown in italic.

Clearly, if there is a member in YW within Hamming distance d then it will be
captured in S, in which case the algorithm returns YES; otherwise it returns
NO.

Sy contains O(m4*!) node-weight pairs by Lemma 1. Therefore the time
complexity in the assumed model is O(m®*?2). It also requires additional space
to store O(m?*") trie nodes. The time complexity is no better in the worst case
than that of the naive algorithm which generates and tries all possible strings
within Hamming distance d from gq. However for a sparse dictionary W Algorithm
LOOK-UPj, is bound to be much faster on the average.

AMgorithm LOOK-UP(d)
So = {(v0,0)}
for k=1 to m do
Sk = {(v[a],w(v) + h(a,qr)) | (v,w(v)) € Sk—1, w(v)+h(a,qx) <d, and a € ¥}
Return YES if the minimum weight in S,, is < d, NO otherwise

Fig. 3. Algorithm LOOK-UP}, for dictionary look-up within Hamming distance d.

3 Edit Distance Based d-queries

Algorithm LOOK-UPj, essentially computes the Hamming distance between ¢
and a selected part of dictionary WW. Next we investigate the possibility of using
a similar idea for d-queries defined with respect to the edit distance.

For the purposes of this paper, we use a simple type of edit distance. Given
two strings p = p1---pm and ¢ = ¢1 - Gm, the edit distance ed(p,q) is the
minimum number of edit operations which transforms p into ¢q. The edit oper-
ations are of three types: insert, delete, and substitute. Substituting a symbol



by itself is called a match. A match operation is the only operation that does
not contribute to the number of steps of the transformation. In terms of costs,
all edit operations have cost 1 except for the match whose cost is 0. The usual
framework for the analysis of edit distance is the edit graph. Edit Graph G, 4
is a directed acyclic graph having (m + 1)? lattice points (u,v) as vertices for
0 < w,v < m. Horizontal and vertical arcs correspond to insert and delete oper-
ations respectively. The diagonal arcs correspond to substitutions. Each arc has
a cost corresponding to the edit operation it represents. If we trace the arcs of a
path from node (0,0) to an intermediate node (i,j), and perform the indicated
edit operations in the given order on p; ---p; then we obtain ¢, - --¢; . Edit dis-
tance between prefixes p; - - - p; and ¢ - - - g; is the cost of the minimum-cost path
from (0,0) to (4,7), and can be computed from the distances achieved at nodes
(i—1,7),(i—1,j—1),and (i,j — 1). Hence it has a simple dynamic programming
formulation [13]:

Dij=min{ D;_1;+1, Di_1 1+ h(pi;q;), Dij-1+1} (2)

for 1 <14,j <m, with D; ; = 0 whenever ¢ =0 or j = 0.

3.1 Algorithm LOOK-UP,,

With respect to a given binary query string g, we assign weight w,; to any trie
node v in 7, as

w,q(v) = min{ed(s(v),r) | r is a prefix of ¢} (3)
where ed denotes the edit distance.

Lemma 2. Let N be the number of nodes in T,, with weight < d as defined in
(3). Then N = O(m?+1) .

Proof. Proof is similar to the proof of Lemma 1 for the Hamming distance case.
Analysis of N over a complete binary trie gives the maximum N. We omit the de-
tails. We remark however that in general w,;j(v) # wp(v), and for non-complete
binary tries the distribution of weights over the nodes can differ significantly for
Hamming and edit distances.

Algorithm LOOK-UP,; shown in Figure 4 extends the dynamic program-
ming formulation (2) of the edit distance computation by considering all pre-
fixes of all members in W. S; ; stores all the node-weight pairs (v, w,4(v)) where
s(v) = p1---p; for some p € W, and w,4(v) = ed(p1---pi,q1 -~ qj) -

The computations in LOOK-UP,; involve sets, as opposed to just scores
of the ordinary edit distance computations. Edit operation and the trie nodes
involved determine an action on the sets. Consider the operations resulting in
at node (i,7) of the edit graph as shown in Figure 5. Let the operation be the
deletion of symbol p; € X. For (v,t) € S;_1; if there is an arc from v to v[a] with
label @ € X then the delete operation causes weight ¢ + 1 in v[a]. This potential
weight assignment is reflected in set S;_, ;, and realized in set S; ; only if no



Algorithm LOOK-UP,;(d)
Si—1 =0 for all 5, 1<i<d
S_1,;,=0 for all j, 1<j<d
So.0 = {(vo,0)}
for 1 =0 to m do
for j = max{0,7 — [d/2]} to min{m,i+ [d/2]} do
{
if (¢ =0 and j =0) then continue with the next iteration
else
{
S’i71,]' = {(U[a],t+ 1) | t+1<d, (v,t)€ Si—1,; and a € ¥ }
S’i,]‘fl = {(U,t + 1) ‘ t+1< d, (U,t) € Sifl,]‘ }
S’iflajfl = {(U[a]’t+ h(aan) | t+ h(a7qj) <d, (U7t) € Siflajfl »a€eX }
Sij ={(v,t) | t is the minimum weight
paired with leaf v in S';_;;US ;-1 US"i—1,;-1}
}

}

Return YES if the minimum weight in Sy, » is < d; otherwise NO

Fig. 4. Algorithm LOOK-UP,; for dictionary look-up within edit distance d.

weight smaller than ¢ + 1 is achieved by other edit operations resulting in v[a].
Now consider the insertion of ¢;. For each (v,t) € S;;_1, the pair (v, ¢ + 1) is
inserted into S; ;_; . Similarly for each (v,t) € Si—1;-1, (v]a],t + h(a,q;)) is
inserted into S;_; ;_; . Subsequently, all node-weight pairs in sets S;_; ;, S} ;_;,
and Si_; ;_; are collected into set S; ; by including for each node at most one
pair, namely the one with the minimum weight.

The computations on the edit graph can be restricted to a narrow diagonal
band of the edit graph as shown in Figure 5, since any edit path with total
weight at most d completely lies in this band.

We can easily show by induction that for all i,7 with 0 < i < m, and
max{0,i — [d/2]} < j < min{i,i + [d/2]}, (v,t) € S;; iff there exists a trie
node v such that |s(v)| = i and ed(s(v),q1---g;) =t . This implies that Sy, m
includes a node-weight pair with weight < d for a leaf node iff there exists a
member in W within edit distance d. Therefore the algorithm is correct.

Figure 6 shows an example edit path with partial results which identify mem-
ber 01001 as within edit distance 2 of ¢ = 00100.

By Lemma 2, computing each S; ; from S; 1 j, Sij_1, Si—1,j—1 takes O(mdT")
time since the size of each of these sets is bounded by O(m?*!) . Therefore
the time complexity of Algorithm LOOK-UP,; is O(dm®*2), and it requires
O(dm4*1!) additional space since it is enough to store the sets of the previous
and current rows as the processing is done row by row.
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Fig. 5. Part of the edit graph explored during the computations.
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Fig. 6. Partial results on an edit path for a member within edit distance 2 of q.

3.2 Algorithm DFT-LOOK-UP,;

Next we propose Algorithm DFT-LOOK-UP,; with which we improve the time
complexity of the d-query problem with respect to edit distance to O(dm?*?),
and space complexity to O(dm). The steps of the algorithm are shown in Figure
7. The algorithm is based on depth-first traversal (DFT) of trie 7, during
which the entries of the dynamic programming matrix are computed row by
row. For trie node v, i = level(v) (Figure 9), and max{0,i — [d/2]} < j <
min{m,i + |d/2|} we define D, ; ; as

Dy = ed(s(v),q1---qj)

Algorithm DFT-LOOK-UP,; performs the initialization of scores for the first
row, and invokes Procedure DFT-COMPUTE-D,; for each arc from root vg to
vpla] with label a. If any of these invocations returns a value < d then the
algorithm returns YES; otherwise returns NO.



Algorithm DFT-LOOK-UP,;(d)

Dyy0,; =0 for all j, 0<j<|d/2]
for each arc from v to v[a] on any a € ¥ do

if DFT-COMPUTE-D4(vo,a,vo[a]) < d then return YES
return NO

Fig. 7. Algorithm DFT-LOOK-UP,; for dictionary look-up within edit distance d.

Given a parent node v, children node u, and symbol a € X of the arc con-
necting these two, Procedure DFT-COMPUTE-D ,4(v,a,u) first computes the
values in the row of node u using the values in the row of parent node v in
the edit graph (Figure 9). If all computed entries in this row are > d, then the
procedure returns the minimum of these numbers. Otherwise it traverses the
subtrie rooted at u in depth-first manner, computes and returns the minimum
edit distance achievable in the leaf nodes of this subtrie.

Procedure DFT-COMPUTE-D  ;(v,a,u)

i = level(v)
for j =max{0,i — [d/2]} to min{m,i+ |d/2]|} do

Dyij=min{ Dy;-1; +1, Dyi-1;-1+h(a,q;), Dvsij-—1+1}
weight = min{D,;; | max{0,:— [d/2]} < j < min{m,i+ |d/2]}
if w is a leaf node or weight > d then return weight
return min{ DFT-COMPUTE-D ,4(u,a,ula]) | there is an arc

incident from u to wfa] on a € X}

Fig. 8. Procedure DFT-COMPUTE-D,,; for computing the minimum edit distance
achieved in subtrie rooted at v.

To show correctness, we claim that D, ; ; stores ed(s(v),q1 - - - ¢;) where i =
level(v). This can be shown by induction. Assume that before v is visited for
the parent of v, and corresponding entries, the claim is true then following the
computations for v we can easily see that the claim will be true for v after the
processing is done for the entries of v. Another induction on the subtries of
v reveals that the procedure call on v will return the minimum edit distance
achieved in the leaves of the subtrie rooted at v. Therefore the algorithm returns
YES iff there is a member in VW within edit distance d of ¢.

Depth-first traversal visits O(m?*!) trie nodes by Lemma 2. With every
node visited O(d) operations are performed. Therefore the time complexity of
the algorithm is O(dm®*!). Dept-first traversal requires that a branch of O(m)
trie nodes be stored. For each node O(d) entries are maintained. Hence the space
complexity of the algorithm is O(dm).

We can adapt DFT-LOOK-UP,; (and DFT-COMPUTE-D ;) to Hamming
distance computations as well. In this case, we only need to consider the diag-
onal entries of the edit graph, and each entry is computed using only the value
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Fig. 9. Depth-first traversal on the trie, and the region of the dynamic programming
matrix in which the computations are performed.

of the parent which is stored in the diagonal of the previous level. The result-
ing algorithm DFT-LOOK-UP}, for Hamming distance based d-queries has time
complexity O(m?*!) and space O(m).

4 Remarks

For clarity of presentation, we have assumed a dictionary of words of equal
length. With some additional care our method can be generalized to the cases in
which different word lengths, and larger alphabets are allowed for the dictionary.

Restricting the dynamic programming computation to a diagonal band of
edit graph was used by Ukkonen [12]. We have essentially incorporated this idea
in our method. For the purpose of developing new methods for d-queries, the
idea of using sets to keep track of partial results may also be used in conjunction
with suitable edit distance algorithms such as by Myers [11], and Kim et. al [8].
The algorithm in [8] is interesting in particular because it extends the definition
of edit distance by allowing swaps.

As we remarked in section 2, the naive generate and test d-query algorithm
for Hamming distance requires O(m?*!) time and O(m) space. If there exists an
efficient algorithm to generate all binary strings within edit distance d of g then
we can devise a similar generate and test d-query algorithm for the edit distance
case. Similarly, the naive method for the Hamming distance in section 2 obtained
by enlarging ¥V can be adapted to the case of edit distance by efficient generation
of words that are within edit distance d of the words in W if we agree to pay a
very high cost for constructing, and maintaining the extended dictionary.



5 Conclusion

We have presented two algorithms LOOK-UP and DFT-LOOK-UP for answer-
ing d-queries in a dictionary of n binary words of length m. The algorithms
incorporate the proximity search as part of the distance computation. This ap-
proach does not yield improved worst-case time complexity result in the case
of Hamming distance compared to a naive generate and test approach. When
edit distance is used we achieve worst-case O(dm?*!) time and O(dm) space
complexities independent of n.

The average case analysis of the two algorithms presented for edit distance
over larger alphabets and dictionaries consisting of arbitrary length words are
additional topics of investigation.
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