
Domain Decomposition for Particle Methods onthe Sphere�Omer E�gecio�glu and Ashok SrinivasanDepartment of Computer Science, University of California,Santa Barbara, CA 93106Abstract. We present an algorithm for e�cient parallelization of par-ticle methods when the domain is the surface of a sphere. Such appli-cations typically arise when dealing with directional data. We proposea domain decomposition scheme based on geometric partitioning thatprovides domains suitable for practical implementation. This algorithmhas the advantage of being fast enough to be applied dynamically, and atthe same time provides good partitions, comparable in quality to thoseproduced by spectral graph partitioning schemes.1 IntroductionParticle methods are widely used in several applications [1, 5, 4, 3]. These typi-cally involve a set of particles represented as points in some space, and a functionthat describes the interaction between pairs of particles. For each particle, oneindependently sums the interaction between it and all other particles, and a newstate for each particle is then computed. This new state typically is a new po-sition and velocity, and the calculations are repeated several times to observethe evolution of the system. This leads to an irregular computational problem inwhich the set of particles which interacts with any given particle changes withtime in an unpredictable manner. Furthermore, in applications involving direc-tional data such as certain complex
uid
ow problems, the natural domain ofrepresentation is the unit sphere [17, 14].In a parallel implementation, particles are assigned to processors by �rstbreaking the domain into subdomains, and then mapping these subdomains todi�erent processors. Each processor proceeds to compute the interactions of allthe particles in the system with the particles in its subdomain. The interactionswith particles that lie outside its subdomain require a processor to obtain thestates of those particles from other processors. We call the particles in the sub-domain of a processor the points owned by the processor. The points owned by agiven processor that are needed by other processors are shared points. In manyapplications such as molecular dynamics and Smoothed Particle Hydrodynamicsbased methods, the interacting forces between the particles are short range andthe e�ect of particles that are farther away than a certain cut-o� distance can beignored [4, 3]. In order to further mitigate high communication costs, one usuallytries to overlap computation with communication. Hence, processors �rst sendtheir shared data to the processors that need them, and following this perform

their local computations. Subsequently, they receive the shared data they them-selves need and perform their remaining computations, and update the states ofthe points in their subdomain. Some updating of the domains can also be doneat this stage. Usually a full domain decomposition is not performed at the end ofeach iteration since the cost of the decomposition can be prohibitive. The basicscheme of such calculations is outlined in Figure 1.1. Domain Decomposition.2. Map domains to processors.3. Start loop(a) Determine shared points.(b) Send shared points to processors that need them.(c) Compute using interior data.(d) Receive shared data needed from other processors.(e) Compute using received data and update state.(f) Update domain data.End loopFig. 1. Outline of a general parallel particle method calculation.E�cient parallelization requires the selection of subdomains for each proces-sor in such a way that only few particles outside interact with particles withinthe subdomain. It is also necessary to e�ciently determine the set of sharedparticles at each processor. An important aspect of the computations is to beable to perform e�ective dynamic range searching so that interactions with onlythose particles that are within the cut-o� distance of the short range interactionsare computed.The outline of this paper is as follows. Sect. 2 describes graph-theoretical andgeometric domain decomposition strategies as they apply to particle methods onthe sphere. The algorithm we present in Sect. 3 is essentially a geometric parti-tioning based on Orthogonal Recursive Bisection [2]. However, we take advantageof the geometry of the sphere to produce partitions with quality comparable tosophisticated methods such as spectral partitioning. Experimental results andcomparisons with other popular schemes available in Chaco, version 2.0 [9] andMetis, version 2.0.3 [11] are presented in Sect. 4. These experiments show thatour algorithm is an order of magnitude faster than even the relatively fast in-ertial method for large problem sizes, and demonstrate the high quality of thepartitions obtained. Conclusions are given in Sect. 5.2 Domain DecompositionDomain decomposition has been widely studied [9, 10, 11, 12, 13] and severaltypes of methods for its solution have been proposed: graph-theoretical and ge-ometric, for example. Graph-theoretical schemes ignore coordinate information

and treat domain decomposition as a general graph partitioning problem. Geo-metric algorithms, in contrast, use coordinate information of the points to dividethe domain into contiguous regions.The quality of the partitions produced can be judged by the load imbal-ance introduced and the communication cost incurred. We try to keep the loadbalanced, i.e., ensure that the amount of computation performed by each pro-cessor is about equal. Subject to this restriction, we further wish to keep thecommunication cost low. There are several measures for estimating the com-munication cost. Before describing the criterion used in our algorithm, we shallbrie
y describe the communication pattern implied by Figure 1. In order tooverlap computation and communication, each processor determines the shareddata it needs to send to other processors. It is appropriate to send the requireddata to each processor as a single message. This reduces the startup time andis especially advantageous in systems that support long messages. If ni is thenumber of processors that need the data of point i, excluding the processor towhich i has been assigned, then we de�ne the communication cost asPni. Thismeasure ignores the startup time and can be justi�ed if the messages are su�-ciently long. It di�ers from the hop metric in that the number of links traversedare ignored, providing an architecture independent measure. With cut-throughrouting being widely prevalent, this criteria seems justi�ed. However, it shouldbe noted that too many messages in the system could cause network conges-tion and the number of links traversed could a�ect the true communication cost[9]. Our communication measure also di�ers from the commonly used edge-cutmetric in graph partitioning which tries to minimize the number of edges cut.If more than one point in a particular processor needs data related to one pointfrom another processor, the remote processor need send the data only once. Theprocessor that receives the data can store this and reuse it when needed. Incontrast to the edge-cut metric, our communication cost takes this factor intoaccount as well.Graph-theoretical algorithms such as spectral methods produce high qualitypartitions especially when combined with a local re�nement strategy [13], butrequire too much time. When combined with multilevel methods, these givegood partitions much faster [10], however, they are still not fast enough to beused frequently. Since the distribution of the points could change signi�cantlyin the types of applications we are considering, the quality of the partitions maydegrade quickly.Geometric algorithms make use of the coordinates of the points to �nd par-titions fast. In this case the quality of the partitions obtained is usually notvery good. Orthogonal Recursive Bisection (ORB) for example, bisects the do-main along a coordinate. This is recursively applied using di�erent coordinates.This scheme is fast, though the quality, as judged by the communication costincurred, could be poor. Another method that uses coordinate information is theInertial Method. This method produces partitions which are usually of a higherquality than those produced by ORB, at the expense of a slight increase in thecomputational e�ort required to produce the partitions. Alternate approaches

to parallelization of particle methods can be found in [15]. Our scheme resem-bles ORB, but takes advantage of certain metric properties of the surface of thesphere to give good partitions.Before describing our algorithm, we note that one can consider stereograph-ically projecting the points on the sphere onto the plane and then using anexisting partitioning algorithm for the plane. However, points close to the pro-jecting pole are widely separated in the projection. This distortion on localitymakes geometric algorithms unsuitable.3 The AlgorithmWe propose an essentially geometric scheme for decomposing the surface of thesphere into regions bounded by a pair of latitudes and and a pair of longitudes.The input to the domain decomposition algorithm consists of: (i) the number Pof processors available, (ii) the cut-o� distance h for the short-range interactions,and (iii) a set of N points de�ned by their coordinates (latitude and longitude)on the unit sphere. We assume that each point is dynamically assigned a positiveweight which is proportional to the computational e�ort required for computingthe new state of the point. Each point represents a particle in the system.The computational e�ort for a given point is roughly proportional to thenumber of points within a distance h of the given point. There are di�erentoptions available to obtain a reasonable estimate of what the weight should be.A large class of problems involves compressible
uid
ow calculations in whichthe density of the
uid has to be determined [4]. For su�ciently small h, thenumber of points within a distance h of any point is approximately proportionalto the density at the point. Thus, one may take the weight to be proportionalto the density. If such data is not available, one may use non-parametric densityestimation techniques to estimate the density [6]. In our implementation of thedomain decomposition algorithm on the sphere we have used positive integralweights, though using
oating point weights does not present any additionaldi�culty.As its output, the domain decomposition algorithm associates an integer inthe interval [0; P � 1] with each point, which indicates which partition (subdo-main) a point belongs to. In addition, the algorithm can also produce a mappingof partitions to processors, thus determining the processor to which each pointis assigned. Our algorithm produces a mapping for a tree topology, with theprocessors located at the leaves of the tree. This is not unduly restrictive sincee�cient schemes for embedding trees into other topologies exist [8].We use a recursive bisection procedure. At each stage,1. we �rst consider a cut on the subregion along the latitude that gives a bal-anced load, and also a longitudinal cut that gives a balanced load;2. we then calculate and compare the communication cost of each cut, andchoose the one that with the lower cost.Thus initially, one of the �rst two types of cuts shown in Figure 2 is made. Being

Fig. 2. Initial latitudinal and longitudinal cuts; generic latitudinal and longitudinalcuts.on the surface of the sphere adds an additional complication if the region we arecurrently considering has not been cut by a longitude before. Such regions lookeither like rings or polar caps, as shown in Figure 3 (a). In this case there is nounique pair of longitudes that balances the load. In fact if there are n pointsin such a region, then there are O(n2) possible pairs of longitudes, and O(n)possible pairs among these along which we can perform a cut while keepingthe load balanced. A naive strategy would determine for each �xed choice ofthe starting longitude of the region, the corresponding longitude to end theregion which gives a balanced load. This can be done by using a sorted array oflongitudes in O(logn) time per initial choice. Since there are O(n) possible initialchoices, the overall time appears to be O(n logn) for the determination of the cut.However, we show that this type of a longitudinal cut can actually be determinedusing only O(n) operations. Our algorithm requires a preprocessing overhead ofO(N logN). However O(N logN) preprocessing is required for sorting the Npoints in the system according to a number of parameters anyway, so this doesnot add to the overall complexity. In this way, the rest of the computation takesonly linear time at each level of the recursion.The algorithm is outlined in greater detail below. Being on the surface of thesphere leads to some complicated boundary conditions to maintain. In order toensure the clarity of the presentation, these are not elaborated on here.3.1 Latitudinal cutWe �rst describe latitudinal cuts since they are the simpler of the two. Fora latitudinal cut, we wish to divide the sphere into two parts along a certainlatitude. If we sweep a latitude from the South to the North Pole, then theload balance of the two parts it divides changes discontinuously, and does soexactly at those latitudes at which the data points are located. Hence, we needto consider only these latitudes. In the preprocessing step, we keep a list of thepoints sorted in ascending order of latitude. We traverse this array, and performa pre�x computation to calculate the cumulative weights of all those pointsthat have been encountered so far, including the current location. In order to�nd the latitude at which to cut, we perform a binary search on the array ofcumulative weights to �nd the location that gives the best load balance, i.e., hascumulative weight closest to half the total weight of the partition. It is possiblefor two adjacent locations to have equally good load balance. In this case wechoose one of the cuts arbitrarily. We observe that if several points have the

same latitude, they may fall in di�erent partitions. In order to compute the costof the chosen partition, we need to know the number of points that lie within adistance h of the closest latitudes of either region. We use the property that theshortest distance between a point and a latitude is the absolute value of theirdi�erences in latitude. We locate the farthest points within the cut-o� distanceof the latitudes de�ning the boundaries of the two regions. This is performed bybinary search on the sorted array of latitudes. The number of points that will becommunicated is one more than the di�erence in the positions of these points inthe sorted list.3.2 Longitudinal cutThere are two cases to consider for a longitudinal cut. If any ancestor (in therecursion tree) of the region being cut has been subjected to a longitudinalcut before, then this case leads to a simpler algorithm since cutting along asingle longitude will necessarily divide the region into two parts. We choosethis longitude in a manner analogous to that of the latitude, using a pre-sortedarray of longitudes. Computing the cost requires a little more attention sincethe shortest distance between a point and a longitude is in general not thedi�erence of their longitudes. If we sweep a longitude around the sphere andconsider the neighborhood within distance h of this longitude, then points mayenter and leave this neighborhood at di�erent values of the longitude. We cancalculate the longitudes at which any point enters and leaves this neighborhood.If a point is within distance h of all longitudes (near the poles), then we considerit as entering at �1 and leaving at 1. We have a preprocessing step in whichwe create two sorted arrays based on the longitudes at which a point entersand leaves the neighborhood respectively. In order to compute the number ofpoints within distance h of a given longitude, we �nd the last point that has justjoined the neighborhood and the next point that leaves the neighborhood. Thesepoints are found by binary search on the two sorted arrays constructed above.The di�erence between the number of points that have joined the neighborhoodand the number that have already left gives the number of points still in theneighborhood.In the second type of longitudinal cut, no ancestor of the region has beensubjected to a longitudinal cut before. Now we need to decide on two longitudesat which to perform the cut, since one longitude alone will not divide the regioninto two pieces (see Figure 3 (a)). We start with the �rst longitude, say A1,in the sorted list of longitudes, and �nd the corresponding longitude A2 thatbalances the load if we start the region de�ned by the cut at A1. We computethe cost as in the case of a cut which requires a single longitude; however, wenow need to add the number of points on both boundaries. We next look at thelongitude B1 that comes second in the sorted list of longitudes. We �nd the otherend B2 of the possible cut not by performing a binary search on the list, but byincrementing the location of A2 until we achieve load balance. This constructionis as shown in Figure 3 (b). A similar procedure is carried out in computing the

A

B

A B

1

1

2 2

(b)(a)Fig. 3. (a) Longitudinal cuts that require a pair of longitudes; (b) Pairs of longitudesthat balance the load. The center is the North Pole.communication cost as well. We proceed in this manner around the sphere andchoose the cut that has the lowest communication cost.An example of a sequence of various latitudinal and longitudinal cuts madeusing this decomposition scheme is given in Figure 4.

.
III

III

V
IV

Fig. 4. An example: The �rst cut is latitudinal, producing domain I and its comple-ment. Sample subsequent cuts on some of the subdomains are: longitudinal cut on I,latitudinal cuts on II and III, longitudinal cut on IV, and latitudinal cut on V.3.3 PartitioningAfter we decide on a particular cut, we need to partition the set of points.An important step here is to obtain the sorted arrays for each partition withoutneeding to perform an extra O(n logn) sorting step. We can get the sorted arraysin linear time by scanning each already sorted array in order and placing a pointat the end of the array of whichever partition it belongs too. In addition, if weperformed the longitudinal cut involving two longitudes, we need to change thevalues of the longitudes of certain points in one of the partitions by subtracting2� from their coordinates, so that if we sweep a longitude from one end of thepartition to the other, we will remain within the partition. Getting the sortedarrays in this case also requires two passes over the sorted arrays, rather thanone as in the other cases.

3.4 ComplexityThe complexity of the initial preprocessing step is O(N logN) required for sort-ing the N points. If there are n points in a partition that is to be further parti-tioned, then locating the latitude, or the longitude in a longitudinal cut involvingonly one longitude, can be done in O(logn) time. This takes O(n) time for thelongitudinal cut that requires two longitudes, since the \arms"A1; A2 and B1; B2of Figure 3 (b) sweep through the points once, without any backtracking. Gen-erating the new partition requires O(n) time for any of these types of cuts, sincewe need to make one or two passes to extract the sorted arrays for the subdo-mains themselves. Thus each level of the recursion requires O(N) time, leadingto N logP complexity for the recursion if P parts are needed (assuming P is apower of 2). In addition, we have O(N logN) preprocessing time, which gives atotal complexity of O(N logN +N logP) = O(N logN).4 Experimental ResultsWe performed experiments to test the performance of our algorithm, and alsoto compare it with existing algorithms. As a measure of the load imbalance,we considered the quantity: tP=T where P is the number of processors desired,T is the sum of the weights of all the points, and t is the sum of the weightsof all the points in the processor with the largest such sum. If the load wereperfectly balanced, then this quantity would be 1. In all of the experiments,we found that all the methods tested gave well balanced partitions, especiallywith a large number of particles. Thus we do not report further on this aspectof the experiments, and judge the quality of the partitioning based only on thecommunication cost incurred. In the rest of this section, the term quality refersto the communication cost incurred. The ratio of the communication costs thatappear in our plots to P �N is the average communication cost incurred betweenpairs of processors, as a fraction of the total number of points. We obtained ourdata points on the sphere by generating samples from two probability densitydistributions. We used the rejection-acceptance technique to generate the points.We assigned weights to each point proportional to the density of the distributionat the point. The weights were rounded to integers with a minimum value of 1.We chose a value of h such that it gave a reasonably good estimate when usingkernels for non-parametric estimation of the probability density. This was doneon the basis of practical applications in which our scheme is particularly useful[14].We compared our algorithm with general graph partitioning algorithms, sincethese have been found to give good quality partitions [10]. We also comparedour scheme with the inertial method, since this is a geometric method which ismuch faster than the general graph partitioning methods. For problems of largesize, even the multilevel graph partitioning algorithms were at least two orders ofmagnitude slower than our algorithm. Therefore we have presented timing resultscomparing our algorithm only with the inertial method. The inertial method

used was that implemented by Chaco, version 2.0. The spectral bisection methodused the multilevel spectral eigensolver implemented in Chaco, version 2.0. Themultilevel spectral bisection scheme implemented in Metis, version 2.0.3 gavepartitions of similar quality, and requiring a similar run time, as that of Chaco.However, the latter was marginally faster and gave partitions of slightly betterquality in a few tests, and so was used in our experiments. It should be notedthat though the number of vertices in our graphs is not very high compared withmany of the graphs used for tests in current literature, the relative denseness ofour graphs results in a large number of edges. Many of our larger graphs havemillions of edges.Experiment 1: We �rst performed experiments to observe how the speed of ourmethod scales with the number of points. The experiments were performed onSun SPARCstation 5, and the timing results are reported in seconds. We presentresults showing the total time required, and also the time required by just thepartitioning phase, ignoring the initial preprocessing time. We compare it inFigure 5 with the inertial method implemented in Chaco, version 2.0, withoutthe Kernighan-Lin re�nement. The time reported is that taken just for the par-titioning. We did not use the Kernighan-Lin re�nement for the inertial methodbecause this increased the time taken signi�cantly. Since speed is the major ad-vantage of a geometric algorithm, we decided not to use this re�nement. It canbe seen that as the number of points increases, the inertial method is about anorder of magnitude slower than our scheme. We also note that our scheme scaleswell as the number of points increases. It should also be noted that with a largenumber of points, the majority of the time is spent in the initial sorting, whichcan be easily parallelized.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

Number of points

T
im

e

Fig. 5. Comparison of the speed of our algorithm and inertial partitioning into P = 32parts, without Kernighan-Lin re�nement. The solid line shows the time taken by ouralgorithm. The dotted line shows the time taken in just the partitioning phase. Thedashed line shows the results for the inertial method. Time is in seconds.

Experiment 2: We next investigated the quality of the partitions obtained.In all the experiments reported below, the data was partitioned into P = 32parts. We consider points generated on the unit sphere with the distribution: (�; �) = exp (U sin2 �)=A, where U is a parameter, A normalizes to a proba-bility density, and � and � are the latitude and the longitude respectively. Thisparticular function arises in the solution of a certain problem in complex
uids[14], and the distribution depends only on the latitude. Here, ��=2 � � � �=2,and 0 � � < 2�. In our experiments, we have used the special case of U = 4:6,A = 25:6. The value of h was taken to be 0:2.We can see from Figure 6 that our method, inertial partitioning, and themultilevel spectral method give partitions of comparable quality for this distri-bution, though the spectral method gives slightly better partitions.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.4

0.8

1.2

1.6

1.8
x 10

4

Number of points

C
om

m
un

ic
at

io
n

C
os

t

Fig. 6. Comparison of the quality of the partitions, as judged by the communicationcost incurred for the distribution. The solid line presents the results for our algorithm.The dashed line shows the same for the inertial method. The dashed-dotted line showsthe results for the multilevel spectral method with Kernighan-Lin re�nement.Experiment 3: Our �nal comparison is with the distribution given by: cos(�) ��(�; 6; 2) where the � distribution is similar to the beta distribution, with therange scaled to [0; 2�]. The value of h was taken to be 0:3. This is non-uniform inboth the latitude and in the longitude. It should be noted that most of the pointsare concentrated near the equator of the sphere due to the cos(�) term. Hence,we can expect that the latitude cuts in our algorithm will not be particularlye�ective and most of the cuts will need to be longitudinal. Thus, this tests ouralgorithm under situations in which it is likely to be less e�ective. However, theresults presented in Figure 7 show that our algorithm performs almost as well asthe other algorithms in this case, though it is slightly worse than the multilevelspectral method.

The experiments conducted show that all the methods considered here givepartitions with good load balance. It also appears that the communication costincurred are comparable. However, the scheme we have presented is much faster.This is probably due to the fact that our method has been speci�cally designedfor points on the surface of the sphere, whereas the other methods are muchmore general.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5
x 10

4

Number of points

C
om

m
un

ic
at

io
n

C
os

t

Fig. 7. Comparison of the quality of the partitions, as judged by the communicationcost incurred, for the distribution proportional to cos(�) � �(�; 6; 2). The solid linepresents the results for our algorithm. The dashed line shows the same for the inertialmethod. The dashed-dotted line shows the results for the multilevel spectral methodwith Kernighan-Lin re�nement.5 ConclusionsWe have presented a geometric domain decomposition algorithm that partitionsdata on the surface of the sphere and gives partitions suitable for particle methodapplications. Experiments have shown that the quality of the partitions obtainedare comparable to more sophisticated schemes. The method has the advantageof being extremely fast, even compared with the inertial method. This good per-formance is to be expected since the graph edges in our problem are a function ofgeometric locality, and therefore suitable for geometric algorithms. Furthermore,high storage costs associated with graph algorithms for dense graphs (which istypical for our applications) are avoided.The method produces partitions such that other operations on the data canbe implemented by fast algorithms [7]. The domains produced by the algorithmcan be parameterized well using four coordinates. This property is useful forother operations, which are described in [7]. The source code of the implemen-tation can be obtained from the authors.

References1. Barnes, J., Hut, P.: A hierarchical O(N logN) force-calculation algorithm. Nature3 (1986) 446-4492. Berger, M.J., Bokhari, S.H.: A partitioning strategy for nonuniform problems onmultiprocessors. IEEE Transactions on Computers C-36 (1987) 570{803. Young, W.S., Brooks III, C.L.: Implementation of a Data Parallel, Logical Do-main Decomposition Method for Interparticle Interaction in Molecular Dynamicsof Structured Molecular Fluids. Journal of Computational Chemistry 15 (1994)44-534. Monaghan, J.J.: Particle Methods for Hydrodynamics. Computer Physics Reports3 (1985) 71-1245. Harlow, F.H.: The Particle-in-Cell Computing Method for Fluid Dynamics. Meth.Comput. Phys. 3 (1964) 319-3436. E�gecio�glu �O., Srinivasan, A.: E�cient Nonparametric Estimation of ProbabilityDensity Functions. Technical Report TRCS95-21, University of California at SantaBarbara, 19957. E�gecio�glu �O., Srinivasan, A.: Parallelization of Particle Methods on the Sphere,Technical Report TRCS96-10, University of California at Santa Barbara, 19968. Leighton, F.T.: Introduction to parallel algorithms and architectures : arrays, trees,hypercubes. M. Kaufmann Publishers, San Mateo, California, 19929. Hendrickson, B., Leland, R.: The Chaco User's Guide, Version 2.0. SAND95-2344,Sandia National Laboratories10. Hendrickson, B., Leland, R.: A Multilevel Algorithm for Partitioning Graphs.SAND93-1301, Sandia National Laboratories11. Karypis, G., Kumar, V.: METIS, Unstructured Graph Partitioning and SparseMatrix Ordering System, Version 2.0. Dept. of Computer Science, University ofMinnesota, 199512. Williams, R.D.: Performance of Dynamic Load Balancing Algorithms for Unstruc-tured Mesh Calculations. Concurrency 3 (1991) 457-48113. Kernighan, B.W., Lin S.: An E�cient Heuristic Procedure for Partitioning Graphs.Bell System Technical Journal, 197014. Chaubal, C., Leal, L.G.: The E�ect of Flow Type on the Rheology of Liquid Crys-talline Polymers. Society of Rheology, 67th Annual Meeting, Sacramento, CA Oct8-12, 199515. Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J.Comp. Phys. 117 (1995) 1{1916. Barnard, S.T., Simon, H.: A parallel implementation of multilevel recursive spectralbisection for application to adaptive unstructured meshes. In: Proceedings of theSeventh SIAM Conference on Parallel Processing for Scienti�c Computing, SanFrancisco, CA, USA, 15-17 Feb. 1995. Edited by: Bailey, D.H.; Bjorstad, P.E.;Gilbert, J.R.; Mascagni, M.V.; and others. Philadelphia, PA: SIAM, 1995, 627{3217. Szeri, A., Leal, L.G.: A new computational method for the solution of
ow prob-lems of microstructured
uids. Part 2. Inhomogeneous shear
ow of a suspension.Journal of Fluid Mechanics 262 (1994) 171{204This article was processed using the LATEX macro package with LLNCS style

