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Abstract. We present an algorithm for efficient parallelization of par-
ticle methods when the domain is the surface of a sphere. Such appli-
cations typically arise when dealing with directional data. We propose
a domain decomposition scheme based on geometric partitioning that
provides domains suitable for practical implementation. This algorithm
has the advantage of being fast enough to be applied dynamically, and at
the same time provides good partitions, comparable in quality to those
produced by spectral graph partitioning schemes.

1 Introduction

Particle methods are widely used in several applications [1, 5, 4, 3]. These typi-
cally involve a set of particles represented as points in some space, and a function
that describes the interaction between pairs of particles. For each particle, one
independently sums the interaction between it and all other particles, and a new
state for each particle is then computed. This new state typically is a new po-
sition and velocity, and the calculations are repeated several times to observe
the evolution of the system. This leads to an irregular computational problem in
which the set of particles which interacts with any given particle changes with
time in an unpredictable manner. Furthermore, in applications involving direc-
tional data such as certain complex fluid flow problems, the natural domain of
representation is the unit sphere [17, 14].

In a parallel implementation, particles are assigned to processors by first
breaking the domain into subdomains, and then mapping these subdomains to
different processors. Each processor proceeds to compute the interactions of all
the particles in the system with the particles in its subdomain. The interactions
with particles that lie outside its subdomain require a processor to obtain the
states of those particles from other processors. We call the particles in the sub-
domain of a processor the points owned by the processor. The points owned by a
given processor that are needed by other processors are shared points. In many
applications such as molecular dynamics and Smoothed Particle Hydrodynamics
based methods, the interacting forces between the particles are short range and
the effect of particles that are farther away than a certain cut-off distance can be
ignored [4, 3]. In order to further mitigate high communication costs, one usually
tries to overlap computation with communication. Hence, processors first send
their shared data to the processors that need them, and following this perform



their local computations. Subsequently, they receive the shared data they them-
selves need and perform their remaining computations, and update the states of
the points in their subdomain. Some updating of the domains can also be done
at this stage. Usually a full domain decomposition is not performed at the end of
each iteration since the cost of the decomposition can be prohibitive. The basic
scheme of such calculations is outlined in Figure 1.

1. Domain Decomposition.
2. Map domains to processors.
3. Start loop
(a) Determine shared points.
(b) Send shared points to processors that need them.
(c) Compute using interior data.
(d) Receive shared data needed from other processors.
) Compute using received data and update state.
(f) Update domain data.
End loop

Fig. 1. Outline of a general parallel particle method calculation.

Efficient parallelization requires the selection of subdomains for each proces-
sor in such a way that only few particles outside interact with particles within
the subdomain. It is also necessary to efficiently determine the set of shared
particles at each processor. An important aspect of the computations is to be
able to perform effective dynamic range searching so that interactions with only
those particles that are within the cut-off distance of the short range interactions
are computed.

The outline of this paper is as follows. Sect. 2 describes graph-theoretical and
geometric domain decomposition strategies as they apply to particle methods on
the sphere. The algorithm we present in Sect. 3 is essentially a geometric parti-
tioning based on Orthogonal Recursive Bisection [2]. However, we take advantage
of the geometry of the sphere to produce partitions with quality comparable to
sophisticated methods such as spectral partitioning. Experimental results and
comparisons with other popular schemes available in Chaco, version 2.0 [9] and
Metis, version 2.0.3 [11] are presented in Sect. 4. These experiments show that
our algorithm is an order of magnitude faster than even the relatively fast in-
ertial method for large problem sizes, and demonstrate the high quality of the
partitions obtained. Conclusions are given in Sect. 5.

2 Domain Decomposition

Domain decomposition has been widely studied [9, 10, 11, 12, 13] and several
types of methods for its solution have been proposed: graph-theoretical and ge-
ometric, for example. Graph-theoretical schemes ignore coordinate information



and treat domain decomposition as a general graph partitioning problem. Geo-
metric algorithms, in contrast, use coordinate information of the points to divide
the domain into contiguous regions.

The quality of the partitions produced can be judged by the load imbal-
ance introduced and the communication cost incurred. We try to keep the load
balanced, i.e., ensure that the amount of computation performed by each pro-
cessor is about equal. Subject to this restriction, we further wish to keep the
communication cost low. There are several measures for estimating the com-
munication cost. Before describing the criterion used in our algorithm, we shall
briefly describe the communication pattern implied by Figure 1. In order to
overlap computation and communication, each processor determines the shared
data it needs to send to other processors. It is appropriate to send the required
data to each processor as a single message. This reduces the startup time and
is especially advantageous in systems that support long messages. If n; is the
number of processors that need the data of point i, excluding the processor to
which 4 has been assigned, then we define the communication cost as Y n;. This
measure ignores the startup time and can be justified if the messages are suffi-
ciently long. It differs from the hop metric in that the number of links traversed
are ignored, providing an architecture independent measure. With cut-through
routing being widely prevalent, this criteria seems justified. However, it should
be noted that too many messages in the system could cause network conges-
tion and the number of links traversed could affect the true communication cost
[9]. Our communication measure also differs from the commonly used edge-cut
metric in graph partitioning which tries to minimize the number of edges cut.
If more than one point in a particular processor needs data related to one point
from another processor, the remote processor need send the data only once. The
processor that receives the data can store this and reuse it when needed. In
contrast to the edge-cut metric, our communication cost takes this factor into
account as well.

Graph-theoretical algorithms such as spectral methods produce high quality
partitions especially when combined with a local refinement strategy [13], but
require too much time. When combined with multilevel methods, these give
good partitions much faster [10], however, they are still not fast enough to be
used frequently. Since the distribution of the points could change significantly
in the types of applications we are considering, the quality of the partitions may
degrade quickly.

Geometric algorithms make use of the coordinates of the points to find par-
titions fast. In this case the quality of the partitions obtained is usually not
very good. Orthogonal Recursive Bisection (ORB) for example, bisects the do-
main along a coordinate. This is recursively applied using different coordinates.
This scheme is fast, though the quality, as judged by the communication cost
incurred, could be poor. Another method that uses coordinate information is the
Inertial Method. This method produces partitions which are usually of a higher
quality than those produced by ORB, at the expense of a slight increase in the
computational effort required to produce the partitions. Alternate approaches



to parallelization of particle methods can be found in [15]. Our scheme resem-
bles ORB, but takes advantage of certain metric properties of the surface of the
sphere to give good partitions.

Before describing our algorithm, we note that one can consider stereograph-
ically projecting the points on the sphere onto the plane and then using an
existing partitioning algorithm for the plane. However, points close to the pro-
jecting pole are widely separated in the projection. This distortion on locality
makes geometric algorithms unsuitable.

3 The Algorithm

We propose an essentially geometric scheme for decomposing the surface of the
sphere into regions bounded by a pair of latitudes and and a pair of longitudes.
The input to the domain decomposition algorithm consists of: (i) the number P
of processors available, (ii) the cut-off distance h for the short-range interactions,
and (iii) a set of N points defined by their coordinates (latitude and longitude)
on the unit sphere. We assume that each point is dynamically assigned a positive
weight which is proportional to the computational effort required for computing
the new state of the point. Each point represents a particle in the system.

The computational effort for a given point is roughly proportional to the
number of points within a distance h of the given point. There are different
options available to obtain a reasonable estimate of what the weight should be.
A large class of problems involves compressible fluid flow calculations in which
the density of the fluid has to be determined [4]. For sufficiently small h, the
number of points within a distance h of any point is approximately proportional
to the density at the point. Thus, one may take the weight to be proportional
to the density. If such data is not available, one may use non-parametric density
estimation techniques to estimate the density [6]. In our implementation of the
domain decomposition algorithm on the sphere we have used positive integral
weights, though using floating point weights does not present any additional
difficulty.

As its output, the domain decomposition algorithm associates an integer in
the interval [0, P — 1] with each point, which indicates which partition (subdo-
main) a point belongs to. In addition, the algorithm can also produce a mapping
of partitions to processors, thus determining the processor to which each point
is assigned. Our algorithm produces a mapping for a tree topology, with the
processors located at the leaves of the tree. This is not unduly restrictive since
efficient schemes for embedding trees into other topologies exist [8].

We use a recursive bisection procedure. At each stage,

1. we first consider a cut on the subregion along the latitude that gives a bal-
anced load, and also a longitudinal cut that gives a balanced load;

2. we then calculate and compare the communication cost of each cut, and
choose the one that with the lower cost.

Thus initially, one of the first two types of cuts shown in Figure 2 is made. Being
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Fig. 2. Initial latitudinal and longitudinal cuts; generic latitudinal and longitudinal
cuts.

on the surface of the sphere adds an additional complication if the region we are
currently considering has not been cut by a longitude before. Such regions look
either like rings or polar caps, as shown in Figure 3 (a). In this case there is no
unique pair of longitudes that balances the load. In fact if there are n points
in such a region, then there are O(n?) possible pairs of longitudes, and O(n)
possible pairs among these along which we can perform a cut while keeping
the load balanced. A naive strategy would determine for each fixed choice of
the starting longitude of the region, the corresponding longitude to end the
region which gives a balanced load. This can be done by using a sorted array of
longitudes in O(log n) time per initial choice. Since there are O(n) possible initial
choices, the overall time appears to be O(n log n) for the determination of the cut.
However, we show that this type of a longitudinal cut can actually be determined
using only O(n) operations. Our algorithm requires a preprocessing overhead of
O(N log N). However O(N log N) preprocessing is required for sorting the N
points in the system according to a number of parameters anyway, so this does
not add to the overall complexity. In this way, the rest of the computation takes
only linear time at each level of the recursion.

The algorithm is outlined in greater detail below. Being on the surface of the
sphere leads to some complicated boundary conditions to maintain. In order to
ensure the clarity of the presentation, these are not elaborated on here.

3.1 Latitudinal cut

We first describe latitudinal cuts since they are the simpler of the two. For
a latitudinal cut, we wish to divide the sphere into two parts along a certain
latitude. If we sweep a latitude from the South to the North Pole, then the
load balance of the two parts it divides changes discontinuously, and does so
exactly at those latitudes at which the data points are located. Hence, we need
to consider only these latitudes. In the preprocessing step, we keep a list of the
points sorted in ascending order of latitude. We traverse this array, and perform
a prefix computation to calculate the cumulative weights of all those points
that have been encountered so far, including the current location. In order to
find the latitude at which to cut, we perform a binary search on the array of
cumulative weights to find the location that gives the best load balance, i.e., has
cumulative weight closest to half the total weight of the partition. It is possible
for two adjacent locations to have equally good load balance. In this case we
choose one of the cuts arbitrarily. We observe that if several points have the



same latitude, they may fall in different partitions. In order to compute the cost
of the chosen partition, we need to know the number of points that lie within a
distance h of the closest latitudes of either region. We use the property that the
shortest distance between a point and a latitude is the absolute value of their
differences in latitude. We locate the farthest points within the cut-off distance
of the latitudes defining the boundaries of the two regions. This is performed by
binary search on the sorted array of latitudes. The number of points that will be
communicated is one more than the difference in the positions of these points in
the sorted list.

3.2 Longitudinal cut

There are two cases to counsider for a longitudinal cut. If any ancestor (in the
recursion tree) of the region being cut has been subjected to a longitudinal
cut before, then this case leads to a simpler algorithm since cutting along a
single longitude will necessarily divide the region into two parts. We choose
this longitude in a manner analogous to that of the latitude, using a pre-sorted
array of longitudes. Computing the cost requires a little more attention since
the shortest distance between a point and a longitude is in general not the
difference of their longitudes. If we sweep a longitude around the sphere and
consider the neighborhood within distance h of this longitude, then points may
enter and leave this neighborhood at different values of the longitude. We can
calculate the longitudes at which any point enters and leaves this neighborhood.
If a point is within distance h of all longitudes (near the poles), then we consider
it as entering at —oc and leaving at oc. We have a preprocessing step in which
we create two sorted arrays based on the longitudes at which a point enters
and leaves the neighborhood respectively. In order to compute the number of
points within distance h of a given longitude, we find the last point that has just
joined the neighborhood and the next point that leaves the neighborhood. These
points are found by binary search on the two sorted arrays constructed above.
The difference between the number of points that have joined the neighborhood
and the number that have already left gives the number of points still in the
neighborhood.

In the second type of longitudinal cut, no ancestor of the region has been
subjected to a longitudinal cut before. Now we need to decide on two longitudes
at which to perform the cut, since one longitude alone will not divide the region
into two pieces (see Figure 3 (a)). We start with the first longitude, say Aj,
in the sorted list of longitudes, and find the corresponding longitude A, that
balances the load if we start the region defined by the cut at A;. We compute
the cost as in the case of a cut which requires a single longitude; however, we
now need to add the number of points on both boundaries. We next look at the
longitude By that comes second in the sorted list of longitudes. We find the other
end B of the possible cut not by performing a binary search on the list, but by
incrementing the location of A, until we achieve load balance. This construction
is as shown in Figure 3 (b). A similar procedure is carried out in computing the
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Fig. 3. (a) Longitudinal cuts that require a pair of longitudes; (b) Pairs of longitudes
that balance the load. The center is the North Pole.

communication cost as well. We proceed in this manner around the sphere and
choose the cut that has the lowest communication cost.

An example of a sequence of various latitudinal and longitudinal cuts made
using this decomposition scheme is given in Figure 4.

Fig. 4. An example: The first cut is latitudinal, producing domain I and its comple-

ment. Sample subsequent cuts on some of the subdomains are: longitudinal cut on I,
latitudinal cuts on II and III, longitudinal cut on IV, and latitudinal cut on V.

3.3 Partitioning

After we decide on a particular cut, we need to partition the set of points.
An important step here is to obtain the sorted arrays for each partition without
needing to perform an extra O(nlogn) sorting step. We can get the sorted arrays
in linear time by scanning each already sorted array in order and placing a point
at the end of the array of whichever partition it belongs too. In addition, if we
performed the longitudinal cut involving two longitudes, we need to change the
values of the longitudes of certain points in one of the partitions by subtracting
27 from their coordinates, so that if we sweep a longitude from one end of the
partition to the other, we will remain within the partition. Getting the sorted
arrays in this case also requires two passes over the sorted arrays, rather than
one as in the other cases.



3.4 Complexity

The complexity of the initial preprocessing step is O(N log N) required for sort-
ing the N points. If there are n points in a partition that is to be further parti-
tioned, then locating the latitude, or the longitude in a longitudinal cut involving
only one longitude, can be done in O(logn) time. This takes O(n) time for the
longitudinal cut that requires two longitudes, since the “arms” A;, Ay and By, By
of Figure 3 (b) sweep through the points once, without any backtracking. Gen-
erating the new partition requires O(n) time for any of these types of cuts, since
we need to make one or two passes to extract the sorted arrays for the subdo-
mains themselves. Thus each level of the recursion requires O(N) time, leading
to Nlog P complexity for the recursion if P parts are needed (assuming P is a
power of 2). In addition, we have O(N log N) preprocessing time, which gives a
total complexity of O(N log N + N log P) = O(N log N).

4 Experimental Results

We performed experiments to test the performance of our algorithm, and also
to compare it with existing algorithms. As a measure of the load imbalance,
we considered the quantity: ¢P/T where P is the number of processors desired,
T is the sum of the weights of all the points, and ¢ is the sum of the weights
of all the points in the processor with the largest such sum. If the load were
perfectly balanced, then this quantity would be 1. In all of the experiments,
we found that all the methods tested gave well balanced partitions, especially
with a large number of particles. Thus we do not report further on this aspect
of the experiments, and judge the quality of the partitioning based only on the
communication cost incurred. In the rest of this section, the term quality refers
to the communication cost incurred. The ratio of the communication costs that
appear in our plots to P- N is the average communication cost incurred between
pairs of processors, as a fraction of the total number of points. We obtained our
data points on the sphere by generating samples from two probability density
distributions. We used the rejection-acceptance technique to generate the points.
We assigned weights to each point proportional to the density of the distribution
at the point. The weights were rounded to integers with a minimum value of 1.
We chose a value of h such that it gave a reasonably good estimate when using
kernels for non-parametric estimation of the probability density. This was done
on the basis of practical applications in which our scheme is particularly useful
[14].

We compared our algorithm with general graph partitioning algorithms, since
these have been found to give good quality partitions [10]. We also compared
our scheme with the inertial method, since this is a geometric method which is
much faster than the general graph partitioning methods. For problems of large
size, even the multilevel graph partitioning algorithms were at least two orders of
magnitude slower than our algorithm. Therefore we have presented timing results
comparing our algorithm only with the inertial method. The inertial method



used was that implemented by Chaco, version 2.0. The spectral bisection method
used the multilevel spectral eigensolver implemented in Chaco, version 2.0. The
multilevel spectral bisection scheme implemented in Metis, version 2.0.3 gave
partitions of similar quality, and requiring a similar run time, as that of Chaco.
However, the latter was marginally faster and gave partitions of slightly better
quality in a few tests, and so was used in our experiments. It should be noted
that though the number of vertices in our graphs is not very high compared with
many of the graphs used for tests in current literature, the relative denseness of
our graphs results in a large number of edges. Many of our larger graphs have
millions of edges.

Experiment 1: We first performed experiments to observe how the speed of our
method scales with the number of points. The experiments were performed on
Sun SPARCstation 5, and the timing results are reported in seconds. We present
results showing the total time required, and also the time required by just the
partitioning phase, ignoring the initial preprocessing time. We compare it in
Figure 5 with the inertial method implemented in Chaco, version 2.0, without
the Kernighan-Lin refinement. The time reported is that taken just for the par-
titioning. We did not use the Kernighan-Lin refinement for the inertial method
because this increased the time taken significantly. Since speed is the major ad-
vantage of a geometric algorithm, we decided not to use this refinement. It can
be seen that as the number of points increases, the inertial method is about an
order of magnitude slower than our scheme. We also note that our scheme scales
well as the number of points increases. It should also be noted that with a large
number of points, the majority of the time is spent in the initial sorting, which
can be easily parallelized.
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Fig. 5. Comparison of the speed of our algorithm and inertial partitioning into P = 32
parts, without Kernighan-Lin refinement. The solid line shows the time taken by our
algorithm. The dotted line shows the time taken in just the partitioning phase. The
dashed line shows the results for the inertial method. Time is in seconds.



Experiment 2: We next investigated the quality of the partitions obtained.
In all the experiments reported below, the data was partitioned into P = 32
parts. We consider points generated on the unit sphere with the distribution:
Y($,6) = exp (U sin® ¢) /A, where U is a parameter, A normalizes v to a proba-
bility density, and ¢ and 8 are the latitude and the longitude respectively. This
particular function arises in the solution of a certain problem in complex fluids
[14], and the distribution depends only on the latitude. Here, —7/2 < ¢ < 7/2,
and 0 < 0 < 27. In our experiments, we have used the special case of U = 4.6,
A = 25.6. The value of h was taken to be 0.2.

We can see from Figure 6 that our method, inertial partitioning, and the
multilevel spectral method give partitions of comparable quality for this distri-
bution, though the spectral method gives slightly better partitions.
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Fig. 6. Comparison of the quality of the partitions, as judged by the communication
cost incurred for the v distribution. The solid line presents the results for our algorithm.
The dashed line shows the same for the inertial method. The dashed-dotted line shows
the results for the multilevel spectral method with Kernighan-Lin refinement.

Experiment 3: Our final comparison is with the distribution given by: cos(¢) -
B3(8,6,2) where the (3 distribution is similar to the beta distribution, with the
range scaled to [0, 27]. The value of h was taken to be 0.3. This is non-uniform in
both the latitude and in the longitude. It should be noted that most of the points
are concentrated near the equator of the sphere due to the cos(¢) term. Hence,
we can expect that the latitude cuts in our algorithm will not be particularly
effective and most of the cuts will need to be longitudinal. Thus, this tests our
algorithm under situations in which it is likely to be less effective. However, the
results presented in Figure 7 show that our algorithm performs almost as well as
the other algorithms in this case, though it is slightly worse than the multilevel
spectral method.



The experiments conducted show that all the methods considered here give
partitions with good load balance. It also appears that the communication cost
incurred are comparable. However, the scheme we have presented is much faster.
This is probably due to the fact that our method has been specifically designed
for points on the surface of the sphere, whereas the other methods are much
more general.
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Fig. 7. Comparison of the quality of the partitions, as judged by the communication
cost incurred, for the distribution proportional to cos(¢) - 5(6,6,2). The solid line
presents the results for our algorithm. The dashed line shows the same for the inertial
method. The dashed-dotted line shows the results for the multilevel spectral method
with Kernighan-Lin refinement.

5 Conclusions

We have presented a geometric domain decomposition algorithm that partitions
data on the surface of the sphere and gives partitions suitable for particle method
applications. Experiments have shown that the quality of the partitions obtained
are comparable to more sophisticated schemes. The method has the advantage
of being extremely fast, even compared with the inertial method. This good per-
formance is to be expected since the graph edges in our problem are a function of
geometric locality, and therefore suitable for geometric algorithms. Furthermore,
high storage costs associated with graph algorithms for dense graphs (which is
typical for our applications) are avoided.

The method produces partitions such that other operations on the data can
be implemented by fast algorithms [7]. The domains produced by the algorithm
can be parameterized well using four coordinates. This property is useful for
other operations, which are described in [7]. The source code of the implemen-
tation can be obtained from the authors.
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