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76.1 Introduction

There are interesting algorithmic issues that arise when length constraints are taken into account in the
formulation of a variety of problems on string similarity, particularly in the problems related to local
alignment. These types of problems have their roots and most striking applications in computational
biology. In fact, because of the applications in biological sequence analysis, detection of local similarities in
two given strings has become an increasingly important computational problem. When there are additional
constraints that need to be satisfied as a part of the search criteria, it is natural to consider approximation
algorithms for the resulting computational problems for large parameters.

Given two strings X and Y , the classical dynamic programming solution to the local alignment problem
searches for two substrings I ⊆ X and J ⊆ Y with maximum similarity score under a given scoring scheme,
where ⊆ indicates the substring relation. This classical definition of similarity has certain anomalies mainly
because the lengths of the segments I and J are not taken into account. To cope with the possible anomalies
of mosaic and shadow effects, many variations of the local alignment problem have been suggested. Mosaic
effect is observed when an unrelated segment is sandwiched between two very similar segments. Shadow
effect is observed when a biologically important short alignment is not detected because it overlaps with
a longer yet biologically inadequate alignment with only a slightly higher score.

The variations suggested either define new objective functions, or include a length constraint on the
substrings I and J for optimal alignments sought. This constraint can be driven by practical considerations
for various objective functions (e.g., the maximization of length-normalized scores) and can be explicitly
given such as requiring |I | + |J | ≥ t or |J | ≤ T for given parameters t and T . In addition, in some
local alignment problems the constraint may also be implicit, as it happens in the case of cyclic sequence
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comparison. In Table 76.1 we give a list of local alignment problems, their objectives, and computational
results for them. The function s (I , J ) denotes the similarity score between I and J . The optimizations are
over all possible substrings I of X , and J of Y . In the table, we use “nor. score” as a shorthand for length-
normalized score. For any optimization problem P , we denote by P∗ its optimum value, and sometimes
drop the parameters from the notation when they are obvious from the context. An optimization problem
P is called feasible if it has a solution with the given parameters.

In most cases under consideration, there are simple dynamic programming formulations for the solution
of the exact version of a given alignment problem with a length constraint. However, the resulting algorithms
require cubic or higher time complexity, which is unacceptably high for practical purposes since the
sequence lengths can be on the order of millions. To cope with such high complexity, approximations are
considered both in definitions of similarity, and in the resulting computations.

There have been approximation algorithms proposed for various alignment problems with constraints,
involving applications of techniques from fractional programming, and dynamic programming. In this
chapter, we present a survey of the most interesting approximation algorithms for variations of local align-
ment problems. Our focus is on fractional programming algorithms, and algorithms returning results that
meet the length constraint only partially but guaranteed to be within a given tolerance. These algorithms
can be organized into three main categories:

1. Fractional programming algorithms. Application of fractional programming on adjusted normalized
local alignment (the ANLA problem in Table 76.1) is of interest. The local alignment is normally
defined as a graph problem. The fractional programming technique offers an iterative solution
such that at each iteration an ordinary local alignment problem with modified weights is solved.
This mimics the action of manually changing the weights until the results are found satisfactory.
Fundamental theorems of fractional programming guarantee an optimal solution at the conclusion
of these iterations. The termination properties of the iterative scheme are not obvious at all without
referring to the results established for fractional programming.

2. Approximation algorithms for partial constraint satisfaction. Another noteworthy feature of some
constrained local alignment approximation algorithms is their unusual performance measure. Or-
dinarily, performance of an approximation algorithm is measured by comparing the returned
results against optimum value with respect to the objective function. In some approximation re-
sults regarding the length-constrained local alignment problems, such as the problem of finding
a sufficiently long alignment with high score (the LAt problem in Table 76.1), the alignment re-
turned is assured to have at least the score obtainable with respect to the given constraint, but
the length constraint is satisfied to only within a prescribed tolerance from the required length
value.

3. Fractional programming approximation algorithms. There are fractional programming approxi-
mation algorithms for the normalized local alignment problem with length constraint (the NLAt
problem in Table 76.1). These algorithms iteratively invoke an approximation algorithm to solve a
length-constrained local alignment problem (LAt) such that the length constrained is guaranteed
to be satisfied within a given tolerance. This length guarantee carries over for the final result for
the normalized local alignment problem. That is, the fractional programming algorithm returns an
approximate result for which the guarantee on the satisfaction of the length constraint within some
tolerance is due to the approximation algorithm used at each iteration, and the criteria is preserved
over the iterations.

In this chapter, we start with the basic framework for local alignment in Section 76.2. We present
the details of the topics enumerated above in three sections. In Section 76.3 we describe the fractional
programming algorithms for the adjusted normalized local alignment problem (ANLA). In Section 76.4
we describe an approximation algorithm that uses decomposition of the alignment graph into slabs in
order to find a sufficiently long alignment with high score (LAt). This algorithm is used to obtain a
fractional programming approximation algorithm for the normalized local alignment problem (NLAt).
This is done in such a way that the length constraint is met within a given tolerance, as described in detail
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in Section 76.5. The main results and the algorithm descriptions given in the subsequent sections of this
chapter are a compilation and a reorganization of the results that appear in Refs. [1–4].

76.2 Framework for Pairwise Sequence Comparison

Given two strings X = x1x2 . . . xn and Y = y1 y2 . . . ym with n ≥ m, we use the alignment graph G X,Y

to analyze alignments between all substrings of X and Y . The alignment graph is a directed acyclic graph
having (n + 1)(m + 1) lattice points (u, v) as vertices for 0 ≤ u ≤ n and 0 ≤ v ≤ m. Figure 76.1
shows an alignment graph for xi · · · xk = ATTGT and y j · · · yl = AGGACAT. Matching diagonal arcs
are drawn as solid lines while mismatching diagonal arcs are shown by dashed lines. Dotted lines are used
for horizontal and vertical arcs. An example alignment path is shown in Figure 76.1. Labels of the arcs
on this path are the corresponding edit operations where ε denotes the null string. An alignment path for
substrings xi · · · xk and y j · · · yl is a directed path from the vertex (i − 1, j − 1) to (k, l) in G X,Y where
i ≤ k and j ≤ l . To each vertex there is an incoming arc from each neighbor if it exists. Horizontal and
vertical arcs correspond to insert and delete operations, respectively. We sometimes use indel to refer to
an insert or a delete operation. The diagonal arcs correspond to substitutions which are either matching
(if the corresponding symbols are the same) or mismatching (otherwise). If we trace the arcs of an align-
ment path for substrings I and J and perform the indicated edit operations in the given order on I , we
obtain J .

Blocks of insertions and deletions are also referred to as gaps. The alignment in Figure 76.1 includes
two gaps with sizes 1 and 3. We will use the terms alignment and alignment path interchangeably.

The objective of sequence alignment is to quantify the similarity between X and Y under a given scoring
scheme. In the simple scoring scheme, the arcs of G X,Y are assigned weights determined by nonnegative reals
δ (mismatch penalty) and µ (indel or gap penalty). We assume that s (xi , y j ) is the similarity score between
the symbols xi and y j which is normally 1 for a match (xi = y j ) and −δ for a mismatch (xi �= y j ).

Given two strings X and Y the local alignment (LA) problem seeks substrings I ⊆ X and J ⊆ Y with
the highest similarity score. The optimum value LA∗(X, Y ) for this problem is given by

LA∗(X, Y ) = max{s (I , J ) | I ⊆ X, J ⊆ Y } (76.1)
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FIGURE 76.1 Alignment graph G X,Y where xi · · · xk = ATTGT and y j · · · yl = AGGACAT.
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where s (I , J ) is the best alignment score between I and J . Alignments have positive scores, or otherwise,
they do not exist, that is, s (I , J ) = 0 iff there is no alignment between I and J .

The following is the classical dynamic programming formulation [5] to compute the maximum local
alignment score Si, j achieved by an optimal local alignment ending at each vertex (i, j ):

Si, j = max{0, Si−1, j − µ, Si−1, j−1 + s (xi , y j ), Si, j−1 − µ} (76.2)

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, with the boundary conditions Si, j = 0 whenever i = 0 or j = 0. Then

LA∗(X, Y ) = max
i, j

Si, j (76.3)

LA∗ can be computed using the Smith–Waterman algorithm [6] in time O(nm). The space complexity
is O(m) because only O(m) entries of the dynamic programming matrix need to be stored at any given
time.

The simple scoring scheme can be extended such that the scores can vary depending on the individual
symbols within the same edit operation type. This leads to arbitrary scoring matrices. In this case there is
a dynamic programming formulation similar to Eq. (76.2).

Affine gap penalties is another common scoring scheme in which the total penalty for a gap of size k,
that is, a block of k insertions (or deletions), is α + (k − 1)µ where α is the gap open penalty, and µ is
called the gap extension penalty. The dynamic programming formulation for this case can be described as
follows (see Ref. [5]): Let Ei, j = Fi, j = Si, j = 0 when i or j is 0, and define

Ei, j = max{Si, j−1 − α, Ei, j−1 − µ}
Fi, j = max{Si−1, j − α, Fi−1, j − µ}

Si, j = max{0, Si−1, j−1 + s (xi , y j ), Ei, j , Fi, j } (76.4)

By virtue of this formulation, consideration of affine gap penalties does not increase the asymptotic
complexity of the local alignment problem.

We can also express the alignment problems as optimization problems that involve linear functions.
In the following sections we will describe fractional programming algorithms based on these expressions.
We define an alignment vector as the vector of edit operation frequencies such that the scores and the
lengths of alignments can be expressed as linear functions over alignment vectors. For example, under the
basic scoring scheme, we say that (x , y, z) is an alignment vector if there is an alignment path between
substrings I ⊆ X and J ⊆ Y with x matches, y mismatches, and z indels. In Figure 76.1, (3, 1, 4) is an
alignment vector corresponding to the path shown in the figure. Let AV, under a given scoring scheme,
denote the set of alignment vectors. Then s (I , J ) can be expressed as a linear function SCORE over AV
for the scoring schemes we study: the basic scoring scheme, arbitrary scoring matrices, and affine gap
penalties. For example when simple scoring is used

SCORE(a) = x − δy − µz for a = (x , y, z) ∈ AV

where x ,y,z of alignment vector a represent the number of matches, mismatches, and indels, respectively.
We can easily verify that also for affine gap penalties and arbitrary scoring matrices, SCORE can be expressed
as a linear function.

The local alignment problem LA can be rewritten as follows:

LA : maximize SCORE(a) s.t. a ∈ AV

76.3 Fractional Programming ANLA Algorithms

Using length-normalized scores in local alignment is suggested by Arslan et al. [2] to cope with the mosaic
and shadow effects. The objective of the NLAt problem [2] is

NLAt∗(X, Y ) = max{s (I , J )/(|I | + |J |) | I ⊆ X, J ⊆ Y, |I | + |J | ≥ t} (76.5)

© 2007 by Taylor & Francis Group, LLC



C5505 C5505˙C076 March 20, 2007 19:39

Dynamic and Fractional Programming-Based Approximation Algorithms 76-5

To solve the NLAt problem we can extend the dynamic programming formulation for the scoring
schemes that we address in this chapter by adding another dimension. At each entry of the dynamic
programming matrix we can store optimum scores for all possible alignment lengths up to m + n. This
increases the time and space complexities to �(n2m) and �(nm), respectively. These are unacceptably
high because in practice the values of both n and m may be on the order of millions.

The length of an alignment can appropriately be defined as the sum of the lengths of the substrings
involved in the alignment. For an alignment vector a ∈ AV, the length of the corresponding alignment
can be expressed as a linear function LENGTH. For example, when the simple scoring scheme is used

LENGTH(a) = 2x + 2y + z for a = (x , y, z) ∈ AV

where x ,y,z represent the number of matches, mismatches, and indels, respectively. We can easily see that
for affine gap penalties and arbitrary scoring matrices LENGTH can be expressed as a linear function. We
assume that only the matches have nonnegative scores; therefore on any alignment the score cannot exceed
the length.

The objective of NLAt may be achieved by a reformulation. In adjusted normalized local alignment
(ANLA) problem, we can modify the maximization ratio function in such a way that we drop the length
constraint, yet achieve a similar objective: to obtain sufficiently long alignments with a high degree of
similarity. The adjusted length-normalized score of an alignment is computed by adding some parameter
L ≥ 0 to the denominator in the calculation of the quotient of ordinary scores by the length. Thus the
ANLA problem [2] is a variant of the normalized local alignment problem in which the length constraint
is dropped, and the optimization function is modified by adding a parameter L to the denominator.

ANLA∗(X, Y ) = max{s (I , J )/(|I | + |J | + L ) | I ⊆ X, J ⊆ Y } (76.6)

The adjusted normalized local alignment problem ANLA can be rewritten as follows:

ANLA : maximize SCORE(a)
LENGTH(a)+L

s.t. a ∈ AV

For ANLA faster algorithms are possible using fractional programming technique. The provable time
complexity of the ANLA problem for rational weights is O(nm log n), as we discuss later. Test results of a
fractional programming-based approach suggest that the time complexity is O(nm), although this result
is empirical. Compared to �(n2m) time complexity of a naive dynamic programming algorithm for the
NLAt problem, the ANLA problem can be solved much faster.

Fractional programming ANLA algorithms [2] use the parametric method. They iteratively solve a
so-called parametric problem LAλ which is the following optimization problem: for a given λ

LA∗
λ(X, Y ) = max{s (I , J ) − λ(|I | + |J | + L ) | I ⊆ X, J ⊆ Y } (76.7)

LAλ(X, Y ) can also be written as

LA(λ) : maximize SCORE(a) − λ LENGTH(a) − λL s.t. a ∈ AV

Proposition 76.1 (Arslan et al. [2])

For λ < 1
2 , the optimum value LA∗(λ) of the parametric LA problem can be formulated in terms of the

optimum value LA∗ of an LA problem.

Proof
Under the simple scoring scheme the optimum value of the parametric problem, when λ < 1

2 , is

LA∗
δ,µ(λ) = (1 − 2λ)LA∗

δ′,µ′ − λL , where δ′ = δ + 2λ

1 − 2λ
, µ′ = µ + λ

1 − 2λ
(76.8)

We can easily verify that a similar relation exists in the case of arbitrary scoring matrices, and affine gap
penalties. Thus, computing LA∗(λ) involves solving the local alignment problem LA, and performing some
simple arithmetic afterward.
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Algorithm Dinkelbach

Pick an arbitrary alignment, and let λ∗ be the adjusted length-normalized score of this alignment
Repeat

λ ← λ∗

Solve LA(λ) and let λ∗ be the adjusted length-normalized score of an optimal alignment
Until λ∗ = λ
Return(λ∗)

FIGURE 76.2 Dinkelbach algorithm for ANLA [2].

We assume, without loss of generality, that for any alignment the score does not exceed the number of
matches. Therefore for any alignment, its normalized score λ ≤ 1

2 . We consider λ = 1
2 as a special case

since it can only happen when the alignment is composed of matches only, and L = 0.
The thesis of the parametric method of fractional programming is that the optimum solution to the

original problem that involves a ratio of two functions can be obtained via optimal solutions of the
parametric problem. In this case, an optimal solution to a ratio optimization problem ANLA can be
achieved via a series of optimal solutions of the parametric problem LA(λ) with different parameters λ.
In fact λ = ANLA∗ iff LA∗(λ) = 0. That is, an alignment vector v ∈ AV has the optimum adjusted
normalized score λ iff v is an optimal alignment vector for the parametric problem LA(λ) with optimum
value zero. (See Ref. [2] for more details, also see Refs. [7,8] for many interesting properties of fractional
programming). The Dinkelbach algorithm for the ANLA problem is shown in Figure 76.2. Solutions of
the parametric problems through the iterations yield improved (higher) values to λ except for the last
iteration in which λ remains the same, and becomes the optimum value. In fractional programming
algorithms convergence to an optimal result is guaranteed: In infinite sets the convergence to optimum
is super-linear. In finite sets the termination is guaranteed. In the case of ANLA Dinkelbach algorithm,
when the algorithm terminates, the final alignment is optimal with respect to both the ordinary scores
used at that iteration, and the adjusted length-normalized scoring with the original scores. This mimics
manually changing the scores until the result is satisfactory.

As reported by Arslan et al. [2], experiments suggest that the number of iterations in the algorithm is
a small constant: 3–5 on average. However, a theoretical bound is yet to be established. If we assume that
the sequences involved in alignments are fixed (e.g., consider the normalized global alignment), and the
simple scoring scheme is used then the number of iterations is bounded by the size of the convex hull
of lattice points whose diameter is bounded by the length of the strings. In this case, each parametric
problem is optimized at one of the extreme points of the convex hull, and each extreme point is visited
at most once during the iterations. It is known that the size of a convex hull of diameter N is O(N2/3)
(see, e.g., Ref. [1]). Even this rough estimate shows that the algorithm in the worst case is better than the
straightforward dynamic programming extension for ANLA.

In practice the scores are rational, and in the case of rational scores there is a provably better result
[2] which is achieved by Algorithm RationalANLA given in Figure 76.3. The algorithm uses Megiddo’s
technique [9] to perform a binary search for optimum adjusted normalized score over an interval of

Algorithm RationalANLA

Let σ  be the smallest gap between two adjusted length normalized scores

Initialize [e, f ] ← [0, 1
2
σ−1]

While (e + 1 < f) do

k ← �(e + f)/2�
If LA∗(kσ) > 0  then e ← k else f ← k

End {while}
Return(eσ)

FIGURE 76.3 ANLA algorithm RationalANLA for rational scores [2].
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integers. The search is based on the sign of the optimum value of the parametric problem. In this case,
if LA∗(λ) = 0, then λ = ANLA∗, and an optimal alignment vector of LA(λ) is also an optimal solution
of ANLA. In contrast, if LA∗(λ) > 0, then a larger λ, and if LA∗(λ) < 0, then a smaller λ should be
tested (i.e., Problem LA(λ) should be solved with a different value of λ). When the scores are rational
numbers the effective search space includes O(n2) integers because the gap between any two distinct
length-normalized score is �(1/n2). The algorithm solves O(log n) parametric problems. Therefore the
resulting time complexity is O(nm log n), and the space complexity is O(m).

76.4 Approximation Algorithms for Partial
Constraint Satisfaction

In Table 76.1 we list several local alignment problems with length constraint. For these problems there are
approximation algorithms that guarantee the satisfaction of the constraints partially, that is, they return
alignments whose lengths are within a given tolerance of the required length.

These algorithms decompose the alignment graph into slabs. The length-restricted local alignment
LRLA problem [3] is suggested to find alignments with optimal score over the alignments that involve
substrings of up to a given length. The length limit is only on the substrings of one of the strings. The
approximation algorithms for this problem imagine that the alignment graph is partitioned into vertical
slabs. The results for this problem are summarized in Table 76.1. The cyclic sequence alignment CLA [3]
is a special case of the LRLA problem. In the CLA problem the length constraint is implicit as shown in
the table. The LRLA algorithms and results are applicable to the CLA problem, too.

We omit the details of LRLA approximation algorithms. Instead we describe another algorithm which
is also based on the decomposition of the alignment graph into slabs. This algorithm is for the length-
constrained local alignment problem LAt [4] (see also Table 76.1).

TABLE 76.1 Variations of Local Alignment Problems [4]

Alignment Returned
problem Objective Algorithm Time Space alignment satisfies

LA maximize s (I , J ) Smith–Waterman O(nm) O(m) Score = LA∗

ANLA maximize s (I , J )
|I |+|J |+L for Dinkelbach O(nm) O(m) Score = ANLA∗

parameter L ≥ 0 (experimental)
RationalANLA O(nm log n) O(m) Score = ANLA∗

LRLA maximize s (I , J ) such HALF O(nm) O(m) Score ≥ 1
2 LRLA∗

that |J | ≤ T APX-LRLA O(nmT/�) O(mT/�) Score ≥ LRLA∗−
2�

CLA LRLA with parameters The same LRLA algorithms, complexity, and results
X , Y Y , and T = |Y |

LAt maximize s (I , J ) such APX-LAt O(rnm) O(rm) Score ≥ LAt∗,
that |I | + |J | ≥ t length ≥ (1 − 1

r )t
Qt find (I , J ) such that APX-LAt O(rnm) O(rm) Nor. score > λ,

s (I , J )
|I |+|J | > λ, and length ≥ (1 − 1

r )t

|I | + |J | ≥ t,
for parameter λ > 0

NLAt maximize s (I , J )
|I |+|J | such Dinkelbach O(rnm) O(rm) Nor. score ≥

that |I | + |J | ≥ t (experimental) NLAt∗, length ≥
(1 − 1

r )t
RationalNLAt O(rnm log n) O(rm) Nor. score ≥

NLAt∗, length ≥
(1 − 1

r )t
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For a given t, we define the local alignment with length threshold score between X and Y as

LAt∗(X, Y ) = max{s (I , J ) | I ⊆ X, J ⊆ Y, and |I | + |J | ≥ t} (76.9)

Equivalently

LAt : maximize SCORE(a) s.t. a ∈ AVt

where AVt ⊆ AV is the set of alignment vectors corresponding to alignments with length ≥ t.
Although the problem itself is not very interesting, an algorithm for the problem can be used to find

a long alignment with length-normalized score > λ for a given positive λ, which is a practical query
problem Qt included in Table 76.1. We also show that the algorithm for the local alignment with length
threshold leads to improved approximation algorithms for the normalized local alignment problem (see
Section 76.5).

To solve LAt we can extend the dynamic programming formulation in Eq. (76.2) by adding another
dimension. At each entry of the dynamic programming matrix we store optimum scores for all possible
lengths up to m + n, increasing the time and space complexities to �(n2m) and �(nm), respectively.

We describe an approximation algorithm APX-LAt [4] which computes a local alignment whose score
is at least LAt∗, and whose length is at least (1 − 1

r )t provided that the LAt problem is feasible, that is the

algorithm finds two substrings Î ⊆ X , and Ĵ ⊆ Y such that s ( Î , Ĵ ) ≥ LAt∗ and | Î |+| Ĵ | ≥ (1 − 1
r )t. The

algorithm runs in time O(rnm) using O(rm) space. For simplicity, we assume the simple scoring scheme.
Instead of a single score, we maintain at each node (i, j ) of G X,Y , a list of alignments with the property
that for positive s where s is the optimum score achievable over the set of alignments with length ≥ t and
ending at (i, j ), at least one element of the list achieves score s and length t − � where � is a positive
integral parameter. We show that the dynamic programming formulation can be extended to preserve this
property through the nodes. In particular, an alignment with score ≥ LAt∗ and length ≥ t − � will be
observed in one of the nodes (i, j ) during the computations. We imagine the vertices of G X,Y as grouped
into �(n + m)/�	 diagonal slabs at distance � from each other as shown in Figure 76.4.

Since we define the length of an alignment as the sum of the lengths of the substrings involved in the
alignment, on a given alignment the contribution of each diagonal arc to the alignment length is 2 (each
match, or mismatch involves two symbols, one from each sequence), while that of each horizontal or
vertical arc is 1 (each indel involves one symbol from one of the sequences). Equivalently we say that
the length of a diagonal arc is 2, and the length of each horizontal, or vertical arc is 1. The length of an
alignment a is the total length of the arcs on a . Each slab consists of ��/2	+ 1 diagonals. Two consecutive
slabs share a diagonal which we call a boundary. The left and the right boundaries of slab b are, respectively,
the boundaries shared by the left and right neighboring slabs of b. As a subgraph, a slab contains all the

�(i+ j)/∆�∆

� j/∆�−1  ∆� j/∆�∆

�(n+m)/∆�∆
<

0

∆

2∆

∆ 2∆

∆

2∆

slab 1

(n,m)

slab�t/∆�

d = i+ j

slab 0

(i, j)
∆

∆

∆

∆

∆
∆

� j/∆�−�t/∆�  ∆

FIGURE 76.4 Slabs with respect to diagonal d and alignments ending at node (i, j ) starting at different slabs.
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edges in G X,Y incident to the vertices in the slab except for the horizontal and vertical edges incident to
the vertices on the left boundary (which belong to the preceding slab), and the diagonal edges incident to
the vertices on the first diagonal following the left boundary.

Now to a given diagonal d in G X,Y , we associate a number of slabs as follows. Let slab 0 with respect to
diagonal d be the slab that contains the diagonal d itself. The slabs to the left of slab 0 are then ordered,
consecutively, as slab 1, slab 2, . . . with respect to d . In other words, slab k with respect to diagonal d is the
subgraph of G X,Y composed of vertices placed inclusively between diagonals �d/�	 and d if k = 0, and
between diagonal (�d/�	 − k)� and (�d/�	 − k + 1)�, otherwise. Figure 76.4 includes sample slabs
with respect to diagonal d , and alignments ending at some node (i, j ) on this diagonal.

Let Si, j,k represent the optimum score achievable at (i, j ) by any alignment starting at slab k with
respect to diagonal i + j for 0 ≤ k < 
t/��. For k = 
t/��, Si, j,k is slightly different: It is the maximum
of all achievable scores by an alignment starting in or before slab k. Also let Li, j,k be the length of an
optimal alignment starting at slab k, and achieving score Si, j,k . A single slab can contribute at most � to
the length of any alignment. We store at each node (i, j ), 
t/�� + 1 score–length pairs (Si, j,k , Li, j,k) for
0 ≤ k ≤ 
t/�� corresponding to 
t/�� + 1 optimal alignments that end at (i, j ). Figure 76.5 shows the
steps of the algorithm AP X-LAt. The processing is done row-by-row starting with the top row (i = 0) of
G X,Y .

Step 1 of the algorithm performs the initialization of the lists of the nodes in the top row (i = 0). Step 2
implements computation of scores as dictated by the dynamic programming formulation in Eq. (76.2).
Let maxp of a list of score–length pairs be a pair with the maximum score in the list. We obtain an
optimal alignment with score Si, j,k by extending an optimal alignment from one of the nodes (i − 1, j ),
(i −1, j −1), or (i, j −1). We note that extending an alignment at (i, j ) from node (i −1, j −1) increases

Algorithm APX-LAt(δ, µ)

1. Initialization:  set LAt = 0; and (S0,j,k, L0,j,k) = (0, 0) for all j, k,  0 ≤ j ≤ m, and 0 ≤ k ≤ �t/∆�
2. Main computations:

for i = 1 to n do {
set (Si,0,k, Li,0,k) = (0, 0) for all k, 0 ≤ k ≤ �t/∆�
for j = 1 to m do {

if (i + j mod ∆ = 1) then {
set (Si,j,0, Li,j,0) = (0, 0)

for k = 1 to �t/∆� − 1 do

2.a.1 set (Si,j,k, Li,j,k) = maxp{ (0, 0),  (Si−1,j,k−1, Li−1,j,k−1) + (−µ, 1),

(Si−1,j−1,k−1, Li−1,j−1,k−1) ⊕ (s(xi, yj), 2),

(Si,j−1,k−1, Li,j−1,k−1) + (−µ, 1) }
for k = �t/∆�

2.a.2 set (Si,j,k, Li,j,k) = maxp{ (0, 0),  (Si−1,j,k−1, Li−1,j,k−1) + (−µ, 1),

(Si−1,j−1,k−1, Li−1,j−1,k−1) ⊕ (s(xi, yj), 2),

(Si,j−1,k−1, Li,j−1,k−1) + (−µ, 1), (Si−1,j,k, Li−1,j,k) + (−µ, 1),

(Si−1,j−1,k, Li−1,j−1,k) ⊕ (s(xi, yj), 2), (Si,j−1,k, Li,j−1,k) + (−µ, 1) }
} else {

for k = 0 to �t/∆� do
2.b set (Si,j,k, Li,j,k) = maxp{ (0, 0),  (Si−1,j,k, Li−1,j,k) + (−µ, 1),

(Si−1,j−1,k, Li−1,j−1,k) ⊕ (s(xi, yj), 2), (Si,j−1,k, Li,j−1,k) + (−µ, 1) }
}

for k = �t/∆� − 1 if Li,j,k ≥ t − ∆ then set LAt = max{LAt, Si,j,k}
for k = �t/∆� set LAt = max{LAt, Si,j,k}

} }
3. Return LAt

FIGURE 76.5 Algorithm APX-LAt [4].
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for (i, j)
slab 1

for (i, j)
slab 0

for others

&
slab k−1

for others

&
slab 0

� j/∆�−k  ∆ � j/∆� ∆ 

�(i+ j)/∆� ∆

�(n+ j)/∆� ∆

slab k
for (i, j)

(i−1,  j )

(i,  j)(i, j−1)

(i−1, j−1)

FIGURE 76.6 Relative numbering of the slabs with respect to (i, j ), (i − 1, j ), (i − 1, j − 1), and (i, j − 1) when
node (i, j ) is on the first diagonal following boundary �(i + j )/�	.

the length by 2 and the score by s (xi , y j ), whereas from nodes (i − 1, j ) or (i, j − 1) adds 1 to the length
and −µ to the score of the resulting alignment. There are two cases:

Case 1. If the current node (i, j ) is not on the first diagonal after a boundary then nodes (i − 1, j ),
(i − 1, j − 1), and (i, j − 1) share the same slabs with node (i, j ). In this case (Si, j,k , Li, j,k) is calculated
by using (Si−1, j,k , Li−1, j,k), (Si−1, j−1,k , Li−1, j−1,k), and (Si, j−1,k , Li, j−1,k) as shown in Step 2.b, where
(Si−1, j−1,k , Li−1, j−1,k) ⊕ (s (xi , y j ), 2) = (Si−1, j−1,k + s (xi , y j ), Li−1, j−1,k + 2) if Si−1, j−1,k > 0 or
k = 0; and (0, 0) otherwise. This is because, by definition, a local alignment must have a positive score to
exist, and it is either a single match, or it is an extension of an alignment whose score is positive. Therefore
we do not let an alignment with zero score be extended. A new alignment starts with a single match in the
current slap.

Case 2. If the current node is on the first diagonal following a boundary (i.e., i + j mod � = 1) then
the slabs for the nodes involved in the computations for node (i, j ) differ as shown in Figure 76.6. In this
case slab k for node (i, j ) is slab k − 1 for nodes (i − 1, j ), (i − 1, j − 1), and (i, j − 1). Moreover any
alignment ending at (i, j ) starting at slab 0 for (i, j ) can only include one of the edges ((i − 1, j ), (i, j ))
or ((i − 1, j − 1), (i, j )) both of which have negative weight −µ. Therefore, (Si, j,0, Li, j,0) is set to (0, 0).
Steps 2.a.1 and 2.a.2 show the calculation of (Si, j,k , Li, j,k) respectively for 0 < k < 
t/�� and for
k = 
t/��.

The running maximum score L̂At is updated whenever a newly computed score for an alignment with
length ≥ t − � is larger than the current maximum which can only happen with alignments starting in
or before slab 
t/�� − 1. The final value L̂At is returned in Step 3. The alignment position achieving this
score may also be desired. This can be done by maintaining for each optimal alignment a start and end
position information besides its score and length. In this case in addition to the running maximum score,
the start and end positions of a maximal alignment should be stored and updated.

We first show that Si, j,k calculated by the algorithm is the optimum score achievable and Li, j,k is the
length of an alignment achieving this score over the set of all alignments ending at node (i, j ) and starting
with respect to diagonal i + j : (1) at slab k for 0 ≤ k < 
t/�� and (2) in or before slab k for k = 
t/��.
This claim can be proved by induction. If we assume that the claim is true for nodes (i −1, j ), (i −1, j −1),
and (i, j − 1), and for their slabs, then we can easily see by following Step 2 of the algorithm that the claim
holds for node (i, j ) and its slabs.

Let optimum score LAt∗ for the alignments of length ≥t be achieved at node (i, j ). Consider the calcu-
lations of the algorithm at (i, j ) at which an optimal alignment ends. There are two possible orientations
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> t
> t − ∆

> t − ∆

slab �t /∆�
slab 0slab�t /∆�−1

(i ′,  j ′)

(i″,  j″)

(i,  j)

in or before

� j/∆�−�t /∆�+1  ∆ � j/∆�∆

FIGURE 76.7 Two possible orientations of an optimal alignment of length ≥ t ending at (i, j ): It starts either at
some (i ′, j ′) at slab 
t/�� − 1, or (i ′′, j ′′) in or before slab 
t/��.

of an optimal alignment as shown in Figure 76.7: (1) It starts at some node (i ′, j ′) of slab k = 
t/�� − 1.
By a previous claim an alignment starting at slab k with score Si, j,k ≥ LAt∗ is captured in Step 2. The
length of this alignment Li, j,k is at least t − � since the length of the optimal alignment is ≥t, and both
start at the same slab and end at (i, j ). (2) It starts at some node (i ′′, j ′′) in or before slab k = 
t/��.
Again by the previous claim an alignment starting in or before slab k with score Si, j,k ≥ LAt∗ is captured
in Step 2. The length of this alignment Li, j,k is at least t − � since slab k is at distance ≥t − � from (i, j ).
Therefore the final value L̂At returned in Step 3 is ≥LAt∗ and it is achieved by an alignment whose length
is ≥t − �. We summarize these results in the following theorem:

Theorem 76.1 (Arslan and Eğecioğlu [4])

For a feasible LAt problem, Algorithm APX-LAt returns an alignment ( Î , Ĵ ) such that s ( Î , Ĵ ) ≥ LAt∗ and
| Î | + | Ĵ | ≥ (1 − 1

r )t for any r, 1 < r ≤ t/2. The algorithm’s complexity is O(rnm) time and O(rm) space.

Proof
Algorithm APX-LAt is similar to the Smith–Waterman algorithm except that at each node instead of a
single score, 
t/�� + 1 entries for score–length pairs are stored and manipulated. Therefore the resulting
complexity exceeds that of the Smith–Waterman algorithm by a factor of 
t/�� + 1. That is, the time
complexity of APX-LAt is O(nmt/�). The algorithm requires O(mt/�) space since the computations
proceed row by row, and we need the entries in the previous and the current row to calculate the entries
in the current row. When the LAt problem is feasible, it is guaranteed that Algorithm APX-LAt returns
an alignment ( Î , Ĵ ) such that s ( Î , Ĵ ) ≥ LAt∗ > 0 and | Î | + | Ĵ | ≥ t − � for any positive �. Therefore
setting � = �t/r 	 for a choice of r , 1 < r ≤ t/2, and using Algorithm APX-LAt we can achieve the
approximation and complexity results expressed in the theorem. We also note that for � = 2 the algorithm
becomes a dynamic programming algorithm extending the dimension by storing all possible alignment
lengths.

A variant of APX-LAt for arbitrary scoring matrices can be obtained by simple modifications: At each
entry of the dynamic programming matrix, instead of a single score a number of scores (and lengths)
are maintained and manipulated as dictated by the underlying dynamic programming formulation (e.g.,
Eq. [76.4]).

An application of the LAt problem is on problem Qt which is defined as the problem of finding two
subsequences with normalized score higher than λ, and total length at least t. More formally

Qt : find (I , J ) such that I ⊆ X, J ⊆ Y,
s (I , J )

|I | + |J | > λ and |I | + |J | ≥ t (76.10)
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The following simple query explains the motivation for this problem: “Do two sequences share a
(sufficiently long) fragment with more than 70% of similarity?”

The problem is feasible for given thresholds t, and λ > 0, if the answer to this query is not empty,
that is, there exists a pair of subsequences I and J with total length |I | + |J | ≥ t, and normalized score
s (I , J )/(|I | + |J |) > λ. Note that Qt is feasible iff NLAt∗ > λ. We describe an algorithm which returns
for a feasible problem two subsequences Î ⊆ X and Ĵ ⊆ Y with normalized score higher than λ, and total
length | Î | + | Ĵ | ≥ (1 − 1

r )t. The approximation ratio is controlled by parameter r . The computations
take O(rnm) time and O(rm) space.

For a given λ, we define the parametric local alignment with length threshold problem LAt(λ) as follows:

LAt(λ) : maximize SCORE(a) − λ LENGTH(a) s.t. a ∈ AVt

Proposition 76.2 (Arslan and Eğecioğlu [4])

For λ < 1
2 , the optimum value LAt∗(λ) of the parametric LAt problem can be formulated in terms of the

optimum value LAt∗ of an LAt problem.

Proof
The proof is very similar to that of Proposition 76.1. Under the simple scoring scheme the optimum value
of the parametric problem, when λ < 1

2 , is

LAt∗δ,µ(λ) = (1 − 2λ)LAt∗δ′,µ′ , where δ′ = δ + 2λ

1 − 2λ
, µ′ = µ + λ

1 − 2λ
(76.11)

We can easily see that a similar relation exists in the case of arbitrary scoring matrices, and affine gap
penalties. Computing LAt∗(λ) involves solving the local alignment with length threshold problem LAt and
performing some simple arithmetic afterward.

Under the scoring schemes we study we assume without loss of generality that for any alignment, its
normalized score is ≤ 1

2 . We consider λ = 1
2 as a special case which can only happen when the alignment

is composed of matches only.

Proposition 76.3 (Arslan and Eğecioğlu [4])

When solving LAt(λ), the underlying algorithm for LAt returns an alignment ( Î , Ĵ ) with normalized score
higher than λ, and | Î | + | Ĵ | ≥ (1 − 1

r )t if problem Qt is feasible.

Proof
Assume that problem Qt is feasible. Then LAt∗(λ) > 0, which implies that the algorithm which solves the
corresponding LAt problem (of Proposition 76.2) returns an alignment ( Î , Ĵ ) such that its score is positive
(i.e., s ( Î , Ĵ ) − λ(| Î | + | Ĵ |) > 0) and | Î | + | Ĵ | ≥ (1 − 1

r )t by the approximation results of Algorithm
AP X-LAt.

Thus solving Qt requires a single application of Algorithm AP X-LAt.

76.5 Normalized Local Alignment

Need for a length constraint is clear when length-normalized scores are used because shorter alignments
may have high normalized scores but they may not be biologically significant. The definition of the NLAt
problem contains a length constraint as described in Section 76.3.

Let AVt ⊆ AV be the set of alignment vectors corresponding to alignments with length ≥ t. The
normalized local alignment problem NLAt can be rewritten as follows:

NLAt : maximize SCORE(a)
LENGTH(a)

s.t. a ∈ AVt
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Algorithm APX-RationalNLAt

If there is an exact match of size (1− )t then return(  ) and exit

Let σ be the smallest gap between two length-normalized scores

1
r

1
2

1
2

[e, f ] ← [0,    σ−1]

λ∗ ← 0

While (e + 1 < f) do

k ← �(e + f)/2�
APX-LAt∗(kσ) > 0 then {

e ← k

λ∗ ← the normalized score of an optimal alignment obtained

} else f ← k

End {while}
Return(λ∗)

FIGURE 76.8 Algorithm APX-RationalNLAt for rational scores [4].

We present next approximation algorithms for the NLAt problem that apply fractional programming
in which we use Algorithm APX-LAt as a subroutine. The approximation is in the sense that the length
constraint is partially satisfied. These algorithms are the Dinkelbach algorithm for NLAt, and Algorithm
RationalNLAt. Both algorithms obtain an alignment whose score is no smaller than the optimum score
NLAt∗ of the original NLAt problem, and whose length is at least (1 − 1

r )t for a given r provided that the
original NLAt problem is feasible (Theorem 76.2). The Dinkelbach algorithm for NLAt (Figure 76.9) and
RationalNLAt (Figure 76.8) are similar to the corresponding ANLA algorithms except that they iteratively
solve LAt problems presented in Section 76.4 instead of LA problems. The approximation algorithm
APX-LAt can be applied to solving the parametric problems that arise in computing NLAt∗.

In both resulting algorithms the space complexity is O(r m). The observed time complexity of the
Dinkebach algorithm for NLAt is O(rnm) (in tests [4], it performs always smaller than 10, and on average 3–
5 invocations to Algorithm APX-LAt). Algorithm RationalNLAt has proven time complexity O(rnm log n)
since in this algorithm O(log n) invocations of APX-LAt is sufficient to solve the NLAt problem.

We reiterate the definitions of the local alignment with length threshold LAt, normalized local alignment
NLAt , and the parametric local alignment LAt(λ) problems as the following optimization problems defined
in terms of SCORE and LENGTH functions that are linear over AVt under the scoring schemes we study:

LAt : maximize SCORE(a) s.t. a ∈ AVt

NLAt : maximize SCORE(a)
LENGTH(a)

s.t. a ∈ AVt

LAt(λ) : maximize SCORE(a) − λ LENGTH(a) s.t. a ∈ AVt

If we apply the fractional programming to the normalized local alignment computation then we can
obtain an optimal solution to NLAt via a series of optimal solutions of the parametric problem with
different parameters LAt(λ) such that λ = NLAt∗ iff LAt∗(λ) = 0.

Theorem 76.2 (Arslan and Eğecioğlu [4])

If NLAt∗ > 0 then an alignment with normalized score at least NLAt∗, and total length at least (1 − 1
r )t can

be computed for any r, 1 < r ≤ t/2 in time O(rnm log n) and space O(r m).

Proof
Algorithm Rational NLAt given in Figure 76.8 accomplishes this. The algorithm is based on a binary search
for optimum-normalized score over an interval of integers. This takes O(log n) parametric problems to
solve. The algorithm is similar to the RationalANLA algorithm in Figure 76.3, and the results are derived
similarly. It first determines if there is an exact match of size (1 − 1

r )t, which can easily be done by using
the Smith–Waterman algorithm. If the answer is yes then the algorithm returns the maximum possible
normalized score and exits. The skeleton of the rest of the algorithm is the same as Algorithm RationalNLAt
in Figure 76.3, based on Megiddo’s search technique [9]. The difference is that the parametric alignment
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Algorithm Dinkelbach

If APX-LAt∗(0) > 0 then set λ∗ to the length-normalized score of an optimal alignment else exit
Repeat

λ ← λ∗

If APX-LAt∗(λ) > 0 then set λ∗ to the length-normalized score of an optimal alignment
Until λ∗ ≤ λ

Return(λ∗)

FIGURE 76.9 Dinkelbach algorithm for NLAt [4].

problems now have a length constraint. The algorithm computes the smallest possible gap σ between any
two distinct possible normalized scores, which is �(1/(n + m)2) [2]. It maintains an interval [e , f ], on
which a binary search is done to find the largest λ for which LAt∗(λ) is positive where e and f are integer
variables. Initially e is set to 0, and f is set to 1

2σ−1 since NLAt∗ is in [0, 1
2 ]. A parametric LAt problem with

parameter kσ is iteratively solved, where k is the median of integers in [e , f ]. At each iteration the interval
is updated according to the sign of the value of the parametric problem. The effective search space is the
integers in [e , f ] and each iteration reduces this space by half. The iterations end whenever there remains
no integer between e and f . By Theorem 76.1 and Proposition 76.3 in Section 76.4 for every kσ < NLAt∗,
Algorithm APX-LAt returns an alignment with a positive score, and length at least (1 − 1

r )t as a solution
to the parametric problem. After the search ends, λ∗ ≥ NLAt∗, and λ∗ is achieved by an alignment whose
length is at least (1 − 1

r )t for NLAt feasible. Note that if NLAt∗ = 0 then the algorithm returns 0.
The asymptotic space requirement is the same as that of Algorithm AP X-LAt, and the loop iterates

O(log n) times. Therefore the complexity results are as described in the theorem.

If NLAt∗ > 0 then we can also achieve the same approximation guarantee by using the Dinkelbach
algorithm given by Arslan et al. [2] as the template. The details of the resulting algorithm appear in
Figure 76.9. At each iteration, except for the last, Algorithm AP X-LAt returns an alignment with a
positive score, and length at least (1 − 1

r )t as a solution to the parametric problem by Theorem 76.1
and Proposition 76.3 in Section 76.4 since λ < NLAt∗. Solutions of the parametric problems through
the iterations yield improved (higher) values to λ except for the last iteration. The resulting algorithm
performs no more than 3–5 iterations on average, and never more than 9 in the worst case in tests [4].
When the algorithm terminates, the optimal alignment whose length-normalized score is λ∗ has the total
length at least (1 − 1

r )t and λ∗ ≥ NLAt∗.

76.6 Discussion

We would like to point out the relation between the normalized local alignment and a problem known as
parametric sequence alignment [10] (which is different from the parametric local alignment problem we
discuss in this chapter) in the literature. The fractional programming-based ANLA and NLAt algorithms
iteratively, and systematically change the four parameters (i.e., match score, mismatch, gap open, and gap
extension penalties) until the resulting alignment is satisfactory (i.e., optimal both with respect to ordinary
scores at the last iteration and with respect to length-normalized scores with the original scores). It has
been known that sequence alignment is sensitive to the choice of these parameters as they change the
optimality of the alignments. Parametric sequence alignment studies the relation between the parameter
settings and optimal alignments. The goal is to partition the parameter space into convex polygons such
that the same alignment is optimal at every point in the same polygon. Clearly a point in one of the
polygons computed yields an optimal length-normalized alignment. The following results are summarized
by Gusfield [11]: A polygonal decomposition requires O(nm) time per polygon when scores are uniform
(i.e., not dependent on individual symbols). When only two parameters are chosen to be variable then the
polygonal decomposition can contain at most O(nm) polygons. When all the four parameters are variables
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then there is no known reasonable upper bound on the number of polygons. When the alignment is global,
and no character-specific scoring matrices are used the number of polygons is bounded from above by
O(n2/3) [12].

We also remark that to find long regions with high degree of similarity we may also formulate an objective
with which we aim to minimize a length-normalized weighted edit distance for substrings, and include a
length threshold as a lower bound for the desired length. For solving this problem Karp’s O(|V ||E |)-time
minimum mean-weight cycle algorithm [13] seems a natural candidate. This solution requires adding
extra edges to cause cycles of minimum certain length determined by the given length threshold. For an
alignment graph for a pair of strings of length n each, the number of vertices |V | and number of edges
|E | (excluding the additional edges) are both O(n2). This is not more efficient than the naive dynamic
programming solution.

We conclude by stating a few open problems for further study:

How many iterations do the Dinkelbach ANLA or NLAt algorithms perform in the worst case?

Are there (provably) faster exact or better approximation algorithms for the NLA, LRLA, LAt,
or Qt problems?
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