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Abstract

We prove that the isoperimetric number of P, x Gy, the Carte-
sian product of the path P, and a connected graph with k vertices,
is equal to the isoperimetric number of Py itself. At the same time
we construct an infinite family of graphs that shows that this is not
true for P, X G where GG has more than k vertices, even if G is a tree.
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1 Introduction

Given a graph G and a subset X of its vertices, let 0X denote the edge-
boundary of X: i.e. the set of edges which connect vertices in X with
vertices not in X. The isoperimetric number of G is defined as

i(G) = min @
1< x|< i@l | X

As examples, i(Ky) = [%] for the complete graph Ky, i(Cy) = 2/[%] for
the k-cycle Cy, and i(P;) = 1/| £ for the path (chain) Py, on k vertices. We
refer the reader to Mohar [9], for a discussion of basic results and various
interesting properties of i(G). Works by Bezrukov [2], Bollobds and Leader
[3, 4], Ahlswede and Bezrukov [1], Riordan [11], also contain recent results
on isoperimetric properties of various classes of graphs.
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A related quantity to i(G) is the bisection width. The bisection width
bw(G) of a graph G is the minimum number of edges which must be removed
from G in order to split it into two parts with equal (within one, when the
number of vertices of G is odd) number of vertices. The isoperimetric
number of a graph establishes a lower bound for its bisection width.

The Cartesian product G x H of two graphs G and H is the graph with
vertex set V(G) x V(H), in which vertices (u,v) and (u’,v") are adjacent
if and only if u is adjacent to v’ in G and v = v', or v is adjacent to v’
in H and u = u'. Product graphs are important since many interesting
graphs are products of simpler graphs, and sometimes methods of analysis
can be lifted from the constituent graphs to their products [2, 5]. Among
families of graphs that are products are the d-dimensional hypercube Qg4,
which is the d-fold product of K5, d-dimensional k-torus T,gl, which is the
d-fold product of Ci, and the d-dimensional k-array Ag, which is the d-fold
product of P. In general

i(G x H) < min{i(G),i(H)} (1)

(see [9]), and thus product graphs do not always behave nicely with respect
to isoperimetric numbers of their factors. There are exceptions however:
Mohar [9] showed that i(K2, x G) = min{n,i(G)} whenever G has an even
number of vertices.

Our basic result is that i(Py x G) = i(Py) for a connected graph G on
k vertices, whereas equality fails if G has more than k vertices, even if G is
a tree.

1.1 Multidimensional arrays

Edge-isoperimetric properties of multidimensional arrays and its varieties
have been studied by many authors. This problem is related to the maxi-
mum induced edge problem where, for a given m, a subset of vertices with
the largest number of induced edges is sought among all m-element sub-
sets [4]. The two problems are equivalent for regular graphs, but not for
multidimensional arrays.

The maximum induced edge problem under Hamming metric (hence the
isoperimetric number problem, because of the regularity of the Hamming
metric) was solved by Harper [6] on the discrete cube and extended by
Lindsey [8] to Py, X - -- X Pg,. In both instances, there is a nested structure
of solutions, and the first m vertices in lexicographical order constitute a
solution. The analogue for the even discrete torus appears in Riordan
[11]. The maximum induced edge problem for multidimensional arrays was
solved by Bollobds and Leader [4]. This work also contains bounds for
the isoperimetric number problem. Ahlswede and Bezrukov [1] solved the



isoperimetric number problem for Py, X --- X Py, where the minimum is
taken over all non-empty finite subsets, and gave a solution for Py, x P,
for arbitrary ki, ko as well.

1.2 Motivation

Our initial motivation in this work was to give an alternate proof of the

lower bound

bo(ad) > F 1 (2)
M= k-1

for odd k. This was proved by Nakano [10] by an embedding of a d-

dimensional k-clique into A¢. Prior to this Leighton [7] showed that bw(A{) >

k%=1 when k is even. The proof involves embedding of a complete graph

into Az. However, this embedding does not give a tight bound when £k is

odd. One could attack the problem by first showing that i(A¢) =2/(k—1)

for odd k, then the bisection width bound would follow from

bw(A¢ 2 k-1
2

k-1

Mohar [9] showed that i(P x P,) = min{i(Py),i(P,)}, and therefore
i(A2) = 2/(k —1). Since A} = P, x A%, the computation of i(A¢)
naturally leads to the study of isoperimetric numbers of product graphs
of the form (P, x G) where G is an arbitrary graph (in the most general
case), and i(Py x T') where T is a tree (in a weaker case). General results
on graph products based on the second smallest eigenvalue of the Laplacian
[9], or the bound

1
§m§i(G1xG2x---xGm)§m

where m = min{i(G1),i(G2), - -,i(Gm)} reported by Chung and Tetali [5]
do not give the tight enough lower bound for i(A¢).

The outline of this paper is as follows. In section 2, we prove i(Pj X
Gy) = i(Py) where G}, is any connected graph with k vertices. In section 3,
we consider the isoperimetric number of the product graph Py, x G where G
is an arbitrary connected graph and show that equality does not carry over
to general graphs. First we construct a simple counterexample and then
extend it to an infinite family of graphs. Section 4 concludes with remarks.

2 The Product Graph P, x Gy

Let us first consider the Cartesian product of the path P, with G, where
G, is a connected graph on k vertices.



Theorem 1 i(Py x Gi) = 1/|k/2] for any connected graph Gy on k ver-
tices.

Proof We prove the theorem for odd k, i.e. i(Py xGy) = 2/(k—1), as this
is the interesting case. First note that among all connected graphs with &
vertices, the isoperimetric number of Py is the smallest. Thus by (1)

Z(Pk X Gk) < mln{z(Pk),z(Gk)} = Z(Pk) = m,
and to prove the theorem we only need to show i(Py x Gy) > 2/(k—1). Let
V(Py) ={1,2,...,k} and X C V(P x G,) with 1 < |X| < (k* —1)/2. For
i=1,2,...,klet X; = XN (V(G) x {i}). Thus X is the disjoint union
of X1, Xs,..., X). We partition the set of edges in the boundary as 0X =
OpX U0 X where 0p X is the set of interlevel boundary edges, i.e. edges
lying in copies of Py in the product graph, and g X is the set of intralevel
boundary edges, i.e. edges internal to each copy of Gy. This is illustrated
in Figure 1. Define Ny and N by No = {X; | |X;] = 0,1 <i < k}| and

intralevel edges

interlevel
edges ;-

Figure 1: The Cartesian product P x G.

Ni = {X; | | Xi| = k,1 <i < k}|. Consider the intralevel edges 0gX; in
the boundary of X;. If |X;| = 0 or |X;| = k then |0gX;| = 0, otherwise
|0cX;| > 1. Similarly, the contribution of the interlevel edges between X;
and X;41 to X is the symmetric difference of these two sets X; A X;41.
Thus

k—1
0X| =06 X|+10pX| >k —No— Ni + Y |X; AXipq].

i=1

By the triangle inequality, the sum of symmetric differences is minimum
when | X;|’s are in sorted (increasing or decreasing) order. Thus |0X]| >
k — No — N + | X;] — | Xk|, and to prove the theorem it suffices to prove



the inequality
2
k*No*Nk+|X1\*|Xk\Zm\X|: (4)

subject to
L k> Xy > [Xa] > > [Xy| >0,
2. |X| = |1Xq] + | Xa| + -+ [ Xk]s
3.1 |X| < (K —1)/2.

Proof of (4) is broken down into 4 cases according to possible values of Ny
and Ny.

Case (1) No =0, N; =0 : In this case, (4) reduces to
B Xl X 2 I
' M=g—1h

First suppose that not all |X;| are equal. Then the inequality holds since

k2 -1 2
>
E—1 2 T k-1

If all | X;| are equal then |X| <k (k —1)/2 and

E+ X1 — | Xp| > k+1= |X|.

2 k-1 2
X=Xk =k = > X|.
B X = X = k= ks > X

Case (2) Ng > 0, N; =0 : In this case the first condition becomes
k> X0 2 [Xo[ 2 2 [X0| > 0= [Xpp | = - = | X
And (4) becomes
2
L+ X0 2 o= (K4 [ X+ + X))
Thus, it is sufficient to prove
4+ X)| > —2 1|y (5)
] 1

or equivalently, (k — 1)l + (k — 1)|X4| > 21|X;]. Since Il < k —1 and
|X1| < k—1, we have

(k= DI+ (k= 1)[X1] > 17 + [ X, %



But 1%+ |X;|? > 21|X;| since (I —|X1])? >0, and (5) follows.
Case (3) Ng =0, N > 0: Now the | X;| satisty
k=|X1] > |Xo| >+ > |Xg| >0,
while the inequality we want to prove becomes
k- Ny+k— [Xp] > ——|X]
k-1
It suffices to prove

% — Ny — | Xp| > k+1 (6)

since | X| < (k? — 1)/2. This condition on |X| also forces N}, < (k —1)/2
and |Xp| < (k—1)/2, and (6) follows.

Case (4) Ng > 0, N, > 0: As in the previous case, it is sufficient to prove
k—No—Npy+k>k+1

which obviously holds for Ng + Ny < k — 1. For No + N, = k, |X| <
k(k —1)/2. Thus, we have
2 k—1 2

_ _ =k = > .
2k~ No - Np=k=r"sk —5— > ||

Therefore inequality (4) holds in all cases, and the theorem follows. O

At this point, consider i(Py x G,,) for a connected graph G,, with ar-
bitrary number of vertices n. It is tempting to conjecture that Theorem 1
extends to this general case as well, i.e. i(P, x G) = 2/(k —1). Of course,
in view of (1), this can only hold for G with i(G) > 2/(k — 1). We show in
the next section that even for such graphs the equality does not hold.

3 The Product Graph P, x G

We start with an example for k& = 5. Consider the graph G = G711 on
11 vertices shown in Figure 2. By inspection, an isoperimetric set for G

T =——"

Figure 2: The graph G = G1;.



Figure 3: P5 x G131, subset X and the boundary edges 0X.

consists of the two leftmost vertices in Figure 2, and therefore i(G) = 1/2.
If £ =5 then i(G) = 1/2 > i(Ps) = 2/(5 — 1) = 1/2, and i(G) satisfies
the necessary condition mentioned above. The product graph Ps x G1; is
shown in Figure 3. Assume X is the subset indicated by the dark vertices.
Then |X| = 27 < (5 x 11 — 1)/2 as required. The dotted edges comprise
the boundary 0X and |0X| = 13. Thus

i(Psy x Gu1) < |0X|/|1X| =13/27 < 2/(k — 1) = 1/2.

The following proposition provides an infinite family of graphs, gener-
alizing this counterexample.

Proposition 1 For any odd number k, there exists an infinite family of

graphs G, with i(Gy) > 2/(k—1) and i(Py x Gg) <2/(k —1).

Proof Suppose k¥ = 2m + 1. Consider the graph G, on g =m +m' +1
vertices for m’ > m obtained by joining the path P, and the star graph
K e as shown in Figure 4. We pick m' so that g is odd. Since m' > m, an
isoperimetric set for G is the first m vertices on the left in Figure 4. Thus
i(Gy4) = 1/m. The graph P, x G, is shown in Figure 5. It has (2m + 1)g

m m >m
' v ' '

Figure 4: The base graph for the general case.

vertices. Consider the subset X represented by dark vertices in Figure 5. X



is defined by taking X, Xo,---, X, to be G, X1, Xint2, -+, Xom to be
the vertices on P, in the corresponding copy of G in P, x Gy, and Xp,41 to
be the singleton as indicated in Figure 5. The dotted edges are the edges in

X O o

o b dli i id i

Figure 5: The structure of the product graph for the general case.

the boundary X . Then |X| = mg+m?+1and [0X| = g—1+m+1=m+g.
Furthermore whenever m' is chosen so that g > 2m? + 3, the inequality

|X‘:mg+m2+]gw
holds. Therefore
0X| m+g <l_ 2
IX|  mg+m2+1 m (k—-1)
and (P, x Gy) < 2/(k—1). O

Note that the graphs G, are trees. Hence even for trees T with i(T) =
2/(k — 1), it is possible to have i(P, x T') # i(Py), unless T has k vertices,
as guaranteed by Theorem 1.

4 Conclusion and Remarks

We considered the isoperimetric number of graphs of the form Py x G. If G
is a connected graph on k nodes, then i(Py x G) = i(Py), whereas equality
fails in general if i(G) = i(Py) but G has more than k vertices. For every
odd k, we constructed an infinite family of graphs (actually trees) G, for
which 'L(Pk X Gg) < Z(Pk)



Our motivation for studying product graphs with paths is the bound
(2) on the bisection width of A{, and the inequality (3) in terms of its
isoperimetric number. Our result shows that for odd &, the calculation of
i(A%) = i(Py x A{™') does not follow from a general result on isoperimetric
numbers of Cartesian product graphs P x G, and the fact that G = Azfl
is necessary.
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