BIT 30 (1990), 268-288

A PARALLEL METHOD FOR FAST AND PRACTICAL
HIGH-ORDER NEWTON INTERPOLATION

¢). EGECIOGLU*, E. GALLOPOULOS**

Department of Computer Science, Center for Supercomputing Research and Development
University of California Santa Barbara, and Department of Computer Science
Santa Barbara, CA 93106, USA University of Hllinois at Urbana-Champaign

Urbana, TL 61801, USA

and C. K. KOC

Department of Electrical Engineering, University of Houston, Houston, Texas 77204, USA

Abstract.

We present parallel algorithms for the computation and evaluation of interpolating pelynomials, The
algorithms use parallel prefix techniques for the calculation of divided differences in the Newton
representation of the interpolating polynomial. For #t + 1 given input pairs, the proposed interpolation
algorithm requires only 2 Mog(n + 1)1+ 2 parallel arithmetic steps and circuit size O{n?), reducing the
best known circuit size for parallel interpolation by a factor of log . The algorithm for the computation of
the divided differences is shown to be numerically stable and does not require equidistant points,
precomputation, or the fast Fourier transform. We report on numerical experiments comparing this with
other serial and parallel algorithms, The experiments indicate that the method can be very useful for very
high-order interpolation, which is made possible for special sets of interpolation nodes.

AMS Subject Classifications (1985): 65D05, 65W05, 68C25.

1. Introduction.

Given a set of n + 1 pairs of values, (x;, f) fori =0, 1,....n with x; distinct, there
exists a unique polynomial p,(x) of degree n such that

pilx) = fi fari=0,1,....,n

* Supported in part by the National Science Foundation under Grant No. NSF DCR-8603722.

** Supported by the National Science Foundation under Grants No. US NSF MI1P-8410110, US
NSF DCR85-09970, and US NSF CCR-8717942 and AT&T under Grant AT&T AFFL67Sameh.

Author to whom correspondence should be addressed. stratis@uicsrd.csrd.uiuc.edu

Received June 1989. Revised September 1989.

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER . . . 269

This interpolating polynomial p,(x) can be written in the Newton form

(1) pax) = Z Sor...fx = XMt — X)X — Xi-1)
i=0

in which the coefficients f,, ; are the divided differences (DD) of f.

Polynomial interpolation in various forms has been studied both in the context of
numerical analysis and in that of computational complexity. Despite the advances
in the construction of fast interpolation algorithms (of time complexity less than
O(n?)) by researchers in the latter group (e.g. Kungin [13], Horowitzin [10], Reifin
[21]) numerical algorithms are still based on the slow serial schemes or small
improvements thereof, which require O(n?) operations [11], [23], [15]. In view of
the increasing availability of parallel systems, the impracticability of the existing
approaches can be attributed mainly to the following two reasons:

(i) constant of proportionally of the order tends to be large,
(i) the current fast interpolation algorithms are subject to significant roundoff
errors when implemented in finite precision arithmetic.

Regarding (i), we note that a large constant multiplier means that the dimen-
sionality of the problem must increase considerably to make an asymptotically fast
algorithm competitive. This can be self-defeating as polynomial interpolation may
suffer for very large number of points. Recent work, however, on suitable node
sequences has caused renewed interest in high-order interpolation ([7,26]).

As for (ii), we may echo Miller’s remark in [18], that in the quest for fast and
optimal algorithms there is little practical value in studying those whose numerical
stability is unsatisfactory.

As a partial answer to these problems we present a fast and practical parallel
algorithm for the computation of interpolating polynomials. By fast we mean that
the algorithm requires time O(logn). More cxplicitly, the parallel time is
2[log(n + 1)1+ 2 (all algorithms in this paper are base 2) using n(n + 1) processors.
By practical we mean that the proposed algorithm is stable and may be implemented
in floating-point with resulting error accumulation similar to that of the widely used
serial algorithms. Some of these results were first reported in [4]. It is fair to say
however that it makes little sense using parallel interpolation for low-order prob-
lems. We thus used our algorithm for high-order interpolation based on results of
recent research ([7,26]). Experiments with our algorithm indicate that in a parallel
environment, high-order polynomial interpolation can be possible, fast, and practical.

Traditionally, fast algorithms for interpolation have made use of the Lagrange
representation of the interpolating polynomial. With this representation it is pos-
sible to perform parallel interpolation using an arithmetic circuit of depth O(log n)
and size O(n?logn) [21] (cf. the definitions in Section 2). This approach is based on
a novel scheme to multiply more than two polynomials by fast convolution. Here
the constant of proportionality in the order turns out to be larger than 4, as the

270 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOG

algorithm requires fast implementations (e.g. by means of FFT) of the forward and
the inverse Discrete Fourier Transform (DFT).

The algorithm presented here makes use of the Newton representation of the
interpolating polynomial. This representation allows for parallel computation of
the required coefficients using an arithmetic circuit of depth 2[log(n + 1)]+ 2 and
size O(n?). Central to our approach are weli-known fast algorithms and circuits for
the parallel prefix computation (described in Section 2) for the evaluation of the DD
coefficients. The expressions obtained for the expansion of the DD’s as a linear
combination of the function values turn out to be sufficiently simple in this case, yet
promising for similar treatment of other interpolation schemes [6,5]. The algo-
rithms for interpolation and evaluation may by implemented either on distributed
or shared-memory machines. In particular, the PRAM model of a shared-memory
machine ([8]), in its concurrent read, exclusive write (CREW) version as classified by
Snir in [24] is most suitable for the algorithms presented. At the expense of a small
constant number of operations, the algorithms are also suitable for the even weaker
exclusive read, exclusive write (EREW) model,

The outline of this paper is as follows: Section 2 contains preliminary notions and
definitions. In Sections 3 and 4 we present the basic algorithms for interpolation and
evaluation, and prove the stated results concerning depth and size. Section 5 is on
the error properties of the algorithms. In Section 6 we describe the numerical
experiments. Section 7 contains conclusions and suggestions for further research.

2. Preliminaries.

An arithmetic circuit oy over a field [21] is an acyclic labeled digraph with

(i) alist of N distinguished input nodes with fan-in (;

(ii) constant nodes with fan-in 0 labeled with the elements of the field;

(iii) operational nodes with fan-in 2, each labeled with one of the symbols from
1+, —, %,/

(iv) a list of M distinguished output nodes of fanout 0.

The depth of the circuit is the length of its longest path. The size of the circuit is the
number of operational nodes. The circuit accepts inputs from the N input nodes and
produces outputs by evaluation of the operational nodes in topological order. This
process is well defined since the graph is acyclic. Hence the depth of an arithmetic
circuit is proportional to the time required to run the corresponding algorithm on
a parallel machine.

Let * be an associative binary operation on a set T. The prefix computation
problem is defined as follows: Given an ordered n-tuple (yy, 2, ..., y,) of elements of
T. compute all n prefixes y, # y,# yy3#... %y, for i =1,2,...,n The parallel algo-
rithms for this computation are commonly known as parallel prefix algorithms. The

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER ... 271

following results are well known and essential for the remaining discussion
([12,14]).

LEMMA 2.1,

iy The n input parallel prefix computation can be performed in [logn] time with
n processors.

i) There exists a family of arithmetic circuits Py(n) for the n input prefix computation,
such that if S and D denote the arithmetic size and depth then

(2) S(P(m) <201l +2Fn —4
(3) D(P,(n) < k +[log nl.

Part (i) of the Lemma for k = 0 shows that n input parallel prefixes can be
computed in [log ndepth and size less than 4n.
The following algorithm summarizes the required computations [12].

PROCEDURE Parallel. Prefix(n, y)
FOR j:= 0 To[logn]— 1 DO
FORALL i€ {2/ + 1,...,n} DO IN PARALLEL newy[i]:= y[i]* y[i — 2]
END FORALL
FORALL i€ {2/ 4 1,...,n} DO IN PARALLEL y[i]:= newy[i]
END FORALL
END FOR
END PROCEDURE. {y[i] contains y, % y, * ... y;}.

3. Parallel Newton interpolation algorithm.

The interpolation polynomial in Newton form is completely determined by the
divided difference coefficients. In a serial setting two methods for their derivation
are the Neville and Aitken methods, both of sequential complexity O(n?). These
algorithms are described in most introductory numerical analysis textbooks. For
example the Neville procedure uses

f- = f;_r'-i!.....,i‘:p"l _.){}+I.i+2 ,,,,, i+p

Xi— Xitp

272 6. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOG

to calculate the terms in the following triangular table
o
fi Jor
f2 f].l .IE)IZ

{3 .f.‘!j .fIIZB f0123
fo fas Jaza Jizaa Jorzas

The entries on the diagonal are the required DD’s. Note that the terms in a given
column can be calculated independently of onc another, and they depend only on
the entries in the previous column and the x;’s. This gives a straigthforward parallel
algorithm for the computation of DD’s, where each column is computed in constant
time using as many processors as there are entries in the column. Thus this approach
requires O(n) time to calculate all the DD’s using O(n) processors. Similar techniques
can be used for the construction of systolic arrays for parallel interpolation [17].

We now present the parallel Newton interpolation algorithm.

Instead of the Neville or the Aitken recurrence formulae, our point of departure is
a classical alternate formulation for the DD’s given in [1], [3] and elsewhere. This
can be stated as follows: Let y; = (x; — xj)fori,j = 0,1,...,nandi # j. Then the kth
DD of f can be expressed as a linear combination of the given values fo, f1.---» fi
with coefficients that are inverses of products of the quantities y;/'s in the form

PO N ST

YorYoz -+ Yo Yio¥iz- Yk Yeo¥et - Vik—1

where k ranges from 0 to n. Denoting the inverse of the coefficient of f; in the linear
expansion of fo15. (I < K)byfor2. 4ls, the coefficients in the expansion of Eq. (4)
can be written as

Jorz. klp, = VioYir oo Vii—1Viiw -+ Ve
Hence
fmlfu = Yoi
f612|fn = YorYoz

f0123|f0 = Yoi1Vo2Vo3

Jor2. ulg, = Yo1Yo2)o3 - Yon

and therefore the computation of this sequence of coefficients amounts to the
calculation of the prefixes of (o1, Yoz, Yon)- By Lemma 2.1 this requires [log n|time
with n processors. Since n + 1 concurrentinstances of a parallel prefix algorithm are

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER.. .. 273

needed to compute the prefixes of the term (Vigs Vitse-os Vii— 1> Visid 10+ Vin) fOT
i ranging from 0 to n, we need no more than O(n?) processors for the whole
computation. Note that if all f;,, 4, are known for i < k < n, then the DD’s
{ fos fo1s fo125+ - Jor2....} Of f that are required for the interpolating polynomial p(x)
can be calculated in O(logn) time using O(n?) processors. First all y;; can be
calculated in a single step using n(n + 1)/2 processors foralli,j =0, 1,...,nandi # j.
Next by using n + 1 concurrent instances of the parallel prefix algorithm, all of
Joir2..4ly fork=1,2,...,nand i < kcan be computed in at most [logn | arithmetic
steps. This requires n(n + 1) processors. Subsequently a parallel division using
n(n 4+ 1)/2 processors is performed. Finally, the application of n + 1 concurrent
instances of a binary tree addition algorithm (with the one corresponding to f; being
trivially empty) yields the values in an additional [log(n + 1)larithmetic steps using
n(n + 1) processors. Thus n(n + 1) processors suffice to compute all fo,,. 4 for
k=0,1,...,nin 2[log(n + 1)1+ 2 parallel time.

The processor count in the argument above was given for a system where each
processor is able to do any of the 4 arithmetic operations and where the processors
may be reused. From Lemma 2.1 it follows that the solution to the parallel prefix
problem can be calculated with a circuit of depth [log(n + 1)] and size less than
4(n + 1). We claim that this allows for an arithmetic circuit of size 0O(n?) and depth
2[log(n + 1)1+ 2 for interpolation. To see this, consider each of the steps in the
algorithm: At first all y;; are calculated. This can be done in one step with n(n + 1)/2
operational nodes. Next the parallel prefix algorithm is applied to form all the
for2...xls,- Hence all these terms may be calculated in parallel with that same depth
and with size at most 4n(n + 1). As with the subtraction, the parallel division also
requires n(n + 1)/2 nodes. Finally the additions of the constituent terms for the
calculation of the DD coefficients is done by means of n + 1 parallel circuits for
binary summation each having depth less than Mognland total size at most O(n?).
Thus we have proved

THEOREM 3.1. The Newton interpolating polynomial for n + 1 points can be com-
puted in 2[log(n + 1) 1+ 2 parallel arithmetic steps using n(n + 1) processors and can
be implemented as an arithmetic circuit having the same depth, and size O(n?).

We remark that by making use of further results from [14] and [2], tighter bounds
may be found for the circuit size by only small increases to its depth.

Figures 1 and 2 illustrate the structure of the algorithm. The parallel prefix circuit
in Figure 2 is a pictorial reresentation of the algorithm as given in Section 2. For
simplicity of representation we only depict the size O(nlogn) circuit instead of the
more efficient O(n) circuit of [14].

We next make an observation which will be important in the following dis-
cussions for the algorithm’s implementation in the limited processor case: the
summation of n elements can be achieved in [logn|time using the parallel prefix
algorithm, with addition as its basic operation. From this it follows that the two

274 6. EGECIOGLU, E. GALLOPOULOS AND ¢. K, KO¢

frrr frrr It

Hy

Sorh..i

Fig. 1. Parallel Newton interpolation algorithm, H; is a sum tree of depth Nog(i + N1

To z T3 k- Ty E43 s 7

g
-]
__-.._..__j._..__-__-
1]
w

[

Fig. 2. Expansionof G;fori=dandn=7.

basic steps of the interpolation can be implemented using the same type ofalgorithm
and circuit. Thus alternately we have:

I Computeall y; = x; —x;for 0 <i#j<nsetting y; = L.

[I Foralli=0,...,ncompute in parallel the prefixes Y;; = y;o... y;; of the terms
(yiﬂs yi]s.}’ils"'iyin]-

111 Foralli=0,...,nandforallj=0,...,nsetZ;; = f/¥;wheni < jand 0 other-
wise.

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER. .. 275

IV For all j=0,...,n compute in parallel the sum of the terms
(ZojpZippZsajso-s L)) using parallel prefix; at the end of this last step, the term
Zoj + ... + Z;;is the jth DD.

We next consider the case of a limited number of processors p, in particular when
p=m(n + l)where 1 <m <n + lisaninteger. For simplicity it is assumed that the
parallel additions in the last step are done using the parallel prefix algorithm. It has
been shown in [12] that one instance of parallel prefix for n + 1 elements can be
computed in

2[(n + 1ym] +logm] — 2

parallel arithmetic steps when m processors are available. Since the parallel Newton
interpolation algorithm requires n + 1 concurrent instances of parallel prefix, we
assign to each group of m processors, one instance of the required n + 1 parallel
prefix operations. The resulting parallel Newton algorithm uses limited processor
parallel prefix both for the product and summation parts of the algorithm, and uses
all of the m(n + 1) processors for the required parallel subtractions and divisions. It
can be easily shown that:

COROLLARY 3.1. The parallel Newton algorithm for n + 1 data points can be done
in 67(n + 1)/m] + 2[log m| — 4 arithmetic steps when p = m(n + 1) processors are
available.

If the number of available processors pis less thann + 1, then the algorithm above
will become inefficient. A better strategy in this case would be to calculate the entries
in the DD table columnwise in parallel using p < n + 1 processors since the entries
in a column are independent of one another and can be calculated in parallel. Asan
example when p = n + 1 then it will take exactly n + 1 arithmetic steps to calculate
all the entries in the DD table. This amounts to O(n) speedup over the sequential
algorithm which requires n(n + 1)/2 arithmetic steps.

4. Evaluation of the interpolating polynomial.

Whenever polynomial interpolation is used, it is frequently required to also
evaluate the polynomial at a single or many points. Indeed, a fast algorithm for the
interpolation would not be very useful unless an algorithm of comparable speed
could be designed for the evaluation. Polynomial evaluation has been studied by
many authors and fast algorithms have been proposed. It is well known that given
n processors, a polynomial of degree n can be evaluated in O(log n) arithmetic steps
[16], [19]. Even though all these algorithms are designed for evaluating a poly-
nomial in its standard form, they can be applied to the Newton polynomial as well.

The following algorithm evaluates the Newton interpolating polynomial p,, at x in

276 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOg

2[log(n + 1)] + 2 arithmetic steps using n processors. This is based on the same idea
as the computation of the DD’s for the interpolating polynomial given in Section 3.
Briefly, it consists of the following steps:

I Compute all differences y; = x — x;for0<i<n—1,

II Compute the prefixes of the terms (g, Y1, Vase v s Va— 1)
III Compute the quantities f5,5. VoV; ... V- for 0 <i < n,
1V Add the terms computed in step (III) to obtain p,(x).

Thus we have

THEOREM 4.1. The Newton interpolating polynomial of degree n can be evaluated in
2[log(n + 1)1 + 2 parallel arithmetic steps using n processors and can be implemented
as an arithmetic circuit of size O(n).

Proor. The proof is essentially a special case of the argument given for the proof
of Theorem 3.1, and will be omitted.

By a straigthforward extension it can also be shown that the evaluation can be done
at n points with a circuit of depth O(log n) and size O(n?).

This evaluation algorithm is suitable in a parallel processing environment where
the parallel Newton interpolation algorithm itselfis implemented since it follows the
same steps as the parallel interpolation algorithm given in Section 3: the same
parallel prefix algorithm is used to carry out (IT) and a (possibly prefix based)
summation algorithm is necessary in (IV). This uniformity may be desirable for
VLSI implementation of the algorithms.

5. Error analysis.

We outline here the forward error analysis for the parallel Newton interpolation
algorithm and demonstrate its stability. The methodology follows [22] and [25],
and [9] (where it was used to demonstrate the stability of pipelined recurrence
solvers).

Assuming that symmetric rounding is used and that the mantissa has yu radix
B digits, let e = 0.5 x f~** 1. Inputs may be subject to data errors whenever they
cannot be represented exactly in memory. For real {, fi({) is the floating-point
number closest to {, so that

[(E) — & =< &lZ].

Arithmetic operations may be subject to rounding errors due to finite precision
arithmetic: Assuming that 5, { are exactly representable as floating-point numbers

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER.. .. 277
with © the machine operation corresponding to operation * (one of { +, —, x,/}):
O L —nxll < en*l].

We are concerned with absolute error, the difference between exact and computed
results. Data and rounding error effects are considered separately and only to first
order. The total error is the sum of the rounding and data errors. The computation
of bounds for the errors is facilitated by introducing the notions of a computational
graph and of magnification factors. A straight-line algorithm (an algorithm in which
the flow of control is independent of the particular input values, though it may
depend on the number of inputs) can be represented by a directed acyclic graph,
called a computational graph. This consists of input and operational nodes, with
some of them also marked as output nodes. In fact, with the exception of the
treatment of the output nodes, the computational graph is nothing more than
another representation of an arithmetic circuit as defined in Section 2. Each arc of
the graph is labeled with an absolute error magnification factor as given in Table 1 for
Figure 3. For a given arc, the corresponding magnification factor shows how the
absolute error is magnified in that segment of the computation. For example, when
computing z = x + y with x and y known only approximately with corresponding
absolute errors 8, and 8, Table 1 and Figure 3 tell us that d, is magnified by a factor
of y and &, by a factor of x.

Table 1. Absolute error magnification factors (assume the result and y not equal to 0).

Operation 9, d,

XXX ¥ X
x/ v 1!.l y - x!.' y 2

x+y 1 1

xX—y 1 —1

To determine the influence of data and rounding errors on the final floating-point
results we attach magnification factors to every arc of the computational graph.
Although in general an algorithm will have many outputs (e.g. the n + 1 DD’s for
Newton interpolation), we continue the discussion for a single output. In the
multiple output case, the same discussion is applied to each one of them separately.
Since not all input and operational nodes necessarily introduce error, we define an
indicator variable I, which is equal to 1 if input or operation at node (is subject to
error and is 0 otherwise. Let each of the different paths from { to the output be
labeled from an index set J,. For every non-output node { of the graph, one forms the
products P; of all magnification factors along all different paths from { to the output
node.

278 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOg
82 6y
Fig. 3. Absolute magnification factors for x + y.

For the output node S,,,, = 1. The absolute data and rounding error for the
output arc [22]

Fp= Z |S;|'|L‘a£ue[ﬂ|'l{'£

{inputnode

Fip= Y S| |value[{]| 1, €.
L operational node
Then as shown in Theorem | of [22], the total absolute error corresponding to the
output satisfies

F < Fg + Fy+ 0.

Since the distribution of I, is unknown, we take the worst case I, = 1 atall {, and
define absolute data and rounding condition numbers:

(5) ap= Y. |S{"|value[{]]

I input node

(6) ox= Y IS4 lvaluelC]]

{ operationalnode

It follows that F, < o6 and Fg < oy.¢ so that ignoring second order terms
F<(og+ope

An algorithm for the evaluation of an expression is called numerically stable when
the worst effect of the rounding errors (the rounding condition number) is not worse
than some positive scalar, possibly dependent only on the structure of the expression
(e.g. number of arguments), multiplied with the worst effect of the data errors (the
data condition number).

LEMMA 5.1. If o, p and o, denote the data and rounding condition numbers
respectively for the k™ divided-difference associated with the parallel Newton interpo-
lation algorithm, then:

k |jx k
o= L gmeal &

¥ f; Xi
2 (‘i’(k}(xl j{k}(xj]) Xi— X

SO
and gy < (2k + [Mog(k + 1)) Z |t}f)[-k}(x-]1

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER. .. 279

k
where ¢ (x) = [(x — x,).
v=0

vEi

Proor. The computational graph for parallel Newton interpolation when k = 3
is given in Figure 4. Although as noted at the end of Section 3, the parallel prefix
computations in this graph correspond to a larger than minimum size circuit, it is
casy to show that the same discussion applies to the smaller circuits of [14]. Input
nodes are given by double circle nodes. Arcs are annotated with the corresponding
magnification factors. It is important to note that for each operational node, the left
and right operands are determined by the magnification factors on the incoming
arcs, and not by the order of these arcs in the figure. To avoid overlapping we
inserted x; as an input node more than once. For each x;, there are 2k paths leading

(+) forza —>
@ _];O\w
SR

= — 2/ (Fro21219)

W:uﬁnﬂu

@_ T31T3

p z
::(9’ * —fa/ (T30zg1%32)"
T
@)}sn:m’-‘sz)

Fig. 4. Computational graph and magnification factors for the calculation of fy,23.

280 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOg

to the ouput node. Out of these 2k paths, k correspond to x;'s contribution in x; — x
J=0,....k j+# i Each contribution can be seen to be:

e
‘f’gk] (xg) x; — Xj
The remaining k paths correspond to the x; contributions in x; — x;. Each
contribution can be seen to be:
i l

PP (x) x;— x;

y i

7

forj=0,...,i—1,i+1,...,k

(8)

forj=0,...,i— Li+1,...,k

Hence from Equations (7, 8) for a single x;, the sum of products of the magnifica-
tion factors of all paths to the output is equal to

k -
fi ! L
9 S, =—
@) L j'z—':l) ‘75?0{)5;} Xp— X * E ff’m(%) Xy — X
Ji#i J?"I
Finally, there is a single path from each f; to the output node contributing;
(10) S, =1/¢® (x

From the definitions in Equations (5, 6):

k
Okp = Z (1851 |A + 185, [xd),
i=0

hence multiplying each of the terms in Equations 9 and 10 with the input node values
x; and f respectively and adding the modulus of all such terms we obtain:

S Jj
Oxp = Z qb""(r ; Z(tbmu d)&k](xj))xl-ixj

i=0
i#*

and the equality for the data condition number follows.

To derive the upper bound for the absolute rounding condition number, we must
account for each of i) the subtraction nodes in the first step of the algorithm, ii) the
multiplication nodes in the parallel prefix computation of the denominators, 1i1) the
division nodes and finally iv) the addition nodes. From each of these nodes, there is
only one path leading to the output, and hence each of the corresponding sums of
products of the magnification factors consists of a single term, namely

Sy = Py, Six) = Prays Sin = Py Siy = Piyy
For example, for the subtraction node having the value x; — x

fi 1
dP (x) x; — x;

i

Sioy=— which leads to

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER. .. 281

3 k 1
Hl”_%mdcslst—ﬂ |Uﬂ{u€[(-’)n0dc]| == ;;0 JZO (i){k){‘c) X — x Ix[=t ."CJ.|
E
(11) k
=k Y 1718 (x)
i=0
and similarly
k
(12) Y ISes) loaluel(x)nodell = (k — 1) ¥ 1i/168)

all{ ®)nodes i=0

since there are k — 1 (x) nodes per prefix tree, and

(13) Y IS lvalues[(/ynode]| = 3, [fil/I{ (x).
i=0

all{/) nodes

For (+) nodes we note that S, = P, = 1 and that the value corresponding to
each depends on its position on the addition tree. Next observe that the sum of
products at a given level ¢ of the addition tree satisfies

Y S| lvaluel(+)node]l < Y 1fil/168 (x)l.
i=0

all{ +)nodes
atlevelr

Since the addition tree has k + 1 leaves, and hence [log(k + 1)1levels, we obtain

k
(14) Y IS+ [valuel(+)node]| <Tlog(k + 1)1 3, 1fil/1¢ ()l
all(+) nodes =0

For example, when k + 1 is a power of 2

Y IS¢+l lvalue[(+)node]| =

all(+)nodes

Jo h fa iy f3 o
ff’g”(xo} (b(k}{xl (f’m(X3) ‘35{3;‘]{3‘3])
Je-1 S fo i fz S
s P ideerent I P e e RO R CTEN)
" Si-3 i Ji2 Ji-1 Ji
@Lkla(xk—a} ‘f){k} (Xk-2) Ql){k} (Xk-1) ‘f’ik}{xk)
fo i fa S5 S
Sl P T ST et T SN T IT e
Adding the terms in Equations (11-14) we get
oer= 2, ISl |value[(—)node]| + Y IS« lvalue[(x) node]| +

all{ =)nodes all{ *)nodes

282 0. EGECIOGLU, E. GALLOPOULQS AND §. K. KOg

+ Y ISyl lvaluel(Hnode]l + Y. IS+l |value[(+) node]|

all{/}nodes all{ +)nodes

k
and thus O < (2k +[logtk + D Y fi/1¢™ (x))

i=0

and the upper bound for the absolute rounding condition number follows.
THEOREM 5.1. The paralliel Newton algorithm is numerically stable.

Proor. From Lemma 5.1 it immediately follows that

T AN < o0

Comparing o, , with ¢, the inequality o, , < A(k)s, , follows with
A(k) = 2k + [log(k + 1)1 Since this is valid for k = 1,...,n, it follows from the
definition of numerical stability, that the computation of any DD coeflicient by
means of parallel Newton is stable.

Intuitively, the factor A(k) can be taken as a measure of the stability of the
algorithm. In [22], an algorithm is classified as unconditionally stable if A is
independent of k, while it is conditionally stable if A depends on k. An even finer
classification was recently proposed by Gao in [9], by observing how A4 varies with
k: Since A(k) = O(k) parallel Newton interpolation is linearly stable. We emphasize
that what we have shown is the numerical stability of the parallel algorithm, i.c. the
coefficients of the interpolating polynomial in the Newton form can be computed in
a stable way. This, however, does not salvage the overall numerical behavior of the
polynomial interpolation problem which can be badly conditioned when n is large.

6. Numerical experiments,

The numerical experiments were performed on a Sun 3/50 running Berkely 4.2
Unix. The arithmeticis done in IEEE floating-point with a machine ¢ approximately
equal to 107 for single precision.

First we choose points x, and coeflicients ¢, to define a Newton polynomial

n

(15) Y, cux = Xo). . (X — Xy—1)

k=0
and use Horner’s algorithm to evaluate it at x, = —1 4 2kf(n—1) for
k =0,....,n— | in double precision. These values are in turn input to each of the

interpolation algorithms (Aitken, Neville and parallel Newton) from which approxi-
mations ¢4 for the DD’s ¢, are recovered. The interpolation algorithms are
run in single precision arithmetic in order to highlight their numerical proporties as
much as possible. The difference |, — c{f°™P***¥|is then a measure of the error for the

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER. .. 283

corresponding algorithm. Figures 5a and 5b correspond to n = 16 and coefficients
¢, = (—1)¥/(k + 1) and ¢, = 1/(k + 1)? respectively. They depict |c; — gleamputed. g
a function of k. Since ¢, is available directly, results are shown only for k > 0. We see
that the errors in the DD coefficients calculated with the new algorithm are very
similar to the errors corresponding to the serial Neville and Aitken algorithms.
Figure 6 shows the effectiveness of polynomial interpolation to approximate
a known function. As inputs we use the function values at n + 1 points computed in
double precision. The rest of the computation is in single precision. Interpolating
polynomials are produced by means of each of the i) Newton based algorithms
(parallel, Aitken, Neville), and ii) the parallel algorithm of [21] which utilizes the
Lagrange representation and FFT. The interpolating polynomials are calculated at
the midpoints of the interpolation nodes and the error is computed by comparing
with the known function values at those points. The algorithms used for evaluation
are different for the sequential (Neville, Aitken) and parallel (Lagrange-FFT, paral-
lel Newton) interpolation schemes. This is because the speed advantage of O(logn)in
interpolation is meaningful only in context of an evaluation algorithm of the same
complexity. For this reason, the polynomials constructed using the sequential
algorithms are evaluated by means of Horner’s scheme, whereas those constructed

101 = 100 =
E =% 3 F 3
: & E 4 F e = = n
- i F =]
102} P 5 101k Lusni® E
E £ E E *: 3
E n 3 E . 3
g 8" - = 4
A9E 5 E oty E
C " . o]
104 s K = 109} - E
g E | - -
103k o: Parallel Newton E 10k o: Parallcl Newten g
= = : Altken 3 E x : Adtken 3
F " =:MNeville . F . *:Nevile .
os 10-%
10 5 10 15 20 [5 10 15 20
a) ()
2 {compuied) (_ 1}}‘ !
Fig. 5. DD error ¢, — ¢ |, k=0,1,....15for (@) ¢, = and (b) ¢y = ———-
k+1 k+ 1)
104 =’—/__/_\§ 10* = 3
F -1 E o: Parallel Newion 7
i N = 1 Altken
103 | - = g 10" £ | = Neville E
E - o £\ -:FFT E
a o 3 E: 3
d o u i T
- Bw*e " " a=m A e o
10°% & "o E 100 | =
10-14 & o: Parallel Newton = 10 3 E
£ x: Altken 3 E 3
- = : Neville : : :
T -:FFT 1
20 10
19%s 0.5 1 -5 s
(L3) ()

1
Fig. 6. Midpoint error when n = 15 for {a) In(x) and (b) T-F

284 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOG

using the parallel algorithms are evaluated as described in Section 4. Figure 6a
shows the error at the midpoints, that is

(16) |fGxi + Bf2) — Py(x; + hy2)

as a function of x where f(x) = log.(1 + x). The interpolation nodes are x; = ih for
0<i<n-—1h=1/n— 1)and n = 16. For ease of representation, any differences
smaller than 107 2° were set equal to that value. Figure 6b shows the same experi-
ment for the function f(x) = 1/(1 + x?) in the interval [=35, 5]. This function was
used as an example by Runge [3] for which the interpolating polynomial diverges
from f outside the interval |x| < 3.63.. for any choice of equidistant interpolation
points, (this result is of course independent of our “algorithmic” discussions). In this
case, we choose a different order for the interpolation nodes, namely x; = —5 + ih
fori=0,2,....n—2 and x; = ih for 1,3,...,n — 1 with h = 5/(n — 1) (n is taken
even). Unlike Lagrange interpolation, Newton interpolation is sensitive to the order
of the interpolation nodes and this interleaved order was chosen to reduce the error,

Figure 6a indicates that in that case the combination of the parallel computation
of the DD and parallel polynomial evaluation in single precision is slightly inferior
for values of x to the right of the middle of the interval. The figures also indicate that,
for single precision,these algorithms are superior to the FFT based parallel algo-
rithm for the case of equidistant interpolation. This may be due to the use of the FFT
for polynomial multiplication in the latter ([10]). Nevertheless, a rigorous analysis
of the FFT based interpolation algorithms remains to be done.

It could be argued that by the time the proposed parallel algorithm becomes
effective, polynomial interpolation breaks down due to ill-conditioning. Recent
studies have shown that a suitable choice of interpolation nodes would make
high-order Newton interpolation numerically practical. In the next experiment we
test our parallel algorithm for high-order problems, using the results of [7,26]. The
next set of experiments were conducted using MATLAB (hence double precision) on
a Sun 3/50. We interpolated the “shifted” Runge function, f(x) = 1/(1 + 25x%/4), in
the interval [—2, 2] using a polynomial of degree n. We used two node sequences.
1. Nodes xj are constructed as follows: Set ¢y, = 0,xj = —2andfork = 1,..., ntake

the binary representation

.t o

j=0
oo
> - = f=i].
and define = k2771,
J=0
Then x; = 2cos(me, -)

Obviously ¢, is the van der Corput sequence whose favorable properties for
Newton interpolation were recently discussed in [7, 20].

2. Nodes x§ for k = 0,...,n are equidistant: x; = —2 + 4k/n.
We used n = 70, and 127 and plotted in each case the magnitude of the DD

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER.. .. 285

coefficients (Fig. 7, Fig. 9), and error (16) (Fig. 8, Fig. 10). Both the computation of
the DD and the polynomial evaluations were done using the parallel Newton
algorithms discussed in this paper. Table 2 also shows the maximum magnitudes of
the DD and of the error for each sequence, ‘as well as for n = 30 and 128. This

104 100
103 |- -~ 4 wals J
o ok, %
102 |- L B o5
e ° 102 | - 4
100 | e o E s
i L L °% | 103 . 4
° 4
- *
101 | . - 1o+ L " .
2 .
- %
e "]"’- 1 103} i
£ z o
103 % g E G
= 2 108} e s J
T e 5] 4 el
.
wsl | 107 { o
.
o
1045 20 40 &0 80 E 20 a0 60 80
= ®)
Fig. 7. Magnitude of DD coefficients for interpolation of I__(W on (a) x° and (b) x° nodes, for
+ (22X
n="70.
1030 = 109 &
- F d e 1
B £ 104 - -+
3 & B el oY 3
3 &] - P
2 10-7 | s E
- - o E =3
108 |7 s 3 E T . ety
e E F . = . &
i r 3 10% & * +E
s F; . o i
10 % 5 o r = .
E % - 3 10° | N g
E % Fa 3 = = =
E £] E 3
- 1“&_;“ 1 C . o
uf =10
1% 21 o 1 2 12 -1 ° 1 z
(m) (b)

1
Fig. 8. Midpoint error for parallel Newton interpolation UIW based on (a) x* and (b) x° nodes,
g

for n = T70.

1018 109
Al _ o .
10 102 | i
10101 4 E 3
= 10-1 E
107 | o L] E ;

-
£, ,;g 10+ |y E
104 | r “ - E % 3
& E]
2 * 107 | T 1
100 L E =5 E
4 . - s :
- 2. -

102 - Al 1Q-10] - - L
3 .
o w3

10-° - i 10-13

[+ 30 100 150 o 350 100 150
o))

1
Fig. 9. Magnitude of DD cofficients for interpolation ofm on (a) x® and (b) x° nodes, for
n=127.

286 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KOG

1048 10-10

1040 9 3
- 10ME S gazsemey, :
R 3

1022 o ‘::' M 4‘:‘ "v‘:-}_a]
1012 L - :’ v o+

102 SR T
1016 :_1_- @ R "E
1013 | E

1010 § + E
104 1014 | ‘+§
104} E 3
et 1 o 1 2 10723 =) () 1 z

(a) (b)
Fig. 10. Midpointerror for parallel Newton interpolation ﬂl‘m based on (a) ¥ and (b) x* nodes,
Sx)

form = 127

confirms the results in [7,26], that {x} is a much more attractive sct to use than {x*}.
More importantly for this discussion, it demonstrates that high-order interpolation
is possible, rendering the use of a parallel algorithm very desirable. When n = 127
for example, we see from Theorem 3.1 that given parallel prefix hardware, we can
compute the DD using a circuit of depth 16. This contrasts with 2n = 254 parallel
operations in order to go through the n = 127 stages of a systolic array designed to
compute the DD entries and with approximately 3n(n 4 1) = 24,384 operations for
the sequential algorithms.

In experiments not reported here we found that there was no practical difference
in the quality of the results when the same experiments were repeated but this time
using sequential algorithms for the computation of the DD and polynomial evalu-
ation.

Table 2. Parallel Newton high-order interpolation

m Max. DD Max. DD Max, error Max. error
for x*° for x° Jor x¢ for x*

30 8.842E + 00 2.404E — 01 1.425E + 03 1.970E — 02
70 LLO99E + 03 2.404E — 01 4.677E + 16 2.291E — 06
127 3.364E + 09 2.404E — 01 9.882E + 43 2.603E — 11
128 2.943E 4+ 09 2.404E — 01 4.211E + 42 7.861E — 12,

7. Summary and conclusions.

We have presented a parallel algorithm to construct the interpolating polynomial
in its Newton form by fast evaluation of divided differences using the parallel prefix
algorithm. Given n + 1 input pairs, the algorithm requires 2[log(n + 1)1+ 2 paral-
lel arithmetic steps and circuit size O(n?) This parallel computational complexity is

A PARALLEL METHOD FOR FAST AND PRACTICAL HIGH-ORDER . .. 287

better than the parallel implementations of the Neville and Aitken algorithms and
the FFT based, Lagrange interpolation algorithms described in the literature. The
computation of the divided differences required by the algorithm for the construc-
tion of the interpolating polynomial is then shown to be numerically stable. Further-
more, no precomputation with the data or equidistant interpolation points are
required.

The interpolating polynomial in its Newton form can be evaluated by means of
a fast parallel algorithm having the same characteristics. A natural consequence 1s
circuit similarity in VLSI implementation. Furthermore, it is shown in [4] that the
parallel Newton interpolation algorithm can be implemented on a cube-connected
system using only twice the number of parallel routing steps as would be required by
a fully connected multiprocessor system. Similar techniques are applicable to the
computation of generalized divided differences for parallel Hermite interpolation as
well [6,5].

[t is worth noting that the evaluation of the products may cause overflow or
underflow. Therefore, some care may be required in the implementation. Finally
there seems to be no direct carry-over of the permanence property of the Newton
representation which is valuable in the serial context: the parallel version as pres-
ented here requires O(log n) time to update the coefficients when a new point is added
to the data set.

REFERENCES

[1] M. Abramowitz and 1. A.‘Stegun, Handbook of Mathematical Functions, Dover, 1965.
[2] A. Bilgory and D. Gajski, A heuristic for suffix solutions, 1TEEE Trans. Comput., C-35 (January
1986), pp. 34-42.
[3] P.). Davis, Interpolation and Approximation, Dover, 1975,
[4] O. Egecioglu, E. Gallopoulos, and . Kog, Fast and practical parallel polynomial interpolation,
Tech. Rep. 646, Center for Supercomputing Research and Development, January 1987.
[5] O. Egecioglu, E. Gallopoulos, and C. Kog, Fast computation of divided differences and parallel
Hermite interpolation, . Complexity, (to appear).
[6] O. Egecioglu, E. Gallopoulos, and C. Kog, Parallel Hermite interpolation: an algebraic approach,
Computing, (to appear).
[7] B. Fischer and L. Reichel, Newton interpolation in Fejér and Chebyshev points, Math. Comp., 53
{1989), pp. 265-278.
[8] S. Fortune and J. Wyllie, Parallelism in Random Access Machines, in Proc. 10th ACM Symp.
Theory of Computing, San Diego, CA., May 1978.
[9]1 G. R. Gao, A stability classification scheme and its application to pipelined solution of linear
recurrences, Parallel Comput., 4 (June 1987), pp. 305-322.
[10] E. Horowitz, A fast method for interpolating using preconditioning, IFIP Letters, 1 (1972), pp.
157-163.
[11] F. Krogh, Efficient algorithms for polynomial interpolation and divided differences, Math. Comp., 24
(January 1970), pp. 185-190.
[12] C. P. Kruskal, L. Rudolph, and M. Snir, The power of paralle! prefix, IEEE Trans. Comput., C-34
(October 1985), pp. 965-968.
[13] H. T. Kung, Fast evaluation and interpolation, Tech. Rep., Departmenlt of Computer Science,
Carnegie-Mellon University, January 1973.
[14] R.Ladnerand M. Fischer, Parallel prefix computation, J. Assoc. Comput. Mach., 27 (October 190),
pp. 831-838.

288 0. EGECIOGLU, E. GALLOPOULOS AND ¢. K. KO¢

[15] A. Macleod, A comparison of algorithms for pelynomial interpolation, J. Comput. Appl. Math,,
8 (1982), pp. 275-277.

[16] K. Maruyama, On the parallel evaluation of polynomials, IEEE Trans. Comput., C-22 (January
1973), p. 25.

[17] G. P. McKeown, lterated interpolation using a systolic array, ACM Trans. Math. Softw., 12 (June
1986), pp. 162-170.

[18] W. Miller, Computational complexity and numerical stability, SIAM J. Comput., 4 (June 1975), pp.
97-107.

[19] I Munro and M. Paterson, Optimal algorithms for parallel polynomial evaluation, J. Comput. Sys.
Sci., 7(1973), pp. 189-198.

[20] L.Reichel and G. Opler, Chebyshev-Vandermonde systems, Tech. Rep. 88/48, IBM Bergen Scientific
Centre, November 1988.

[21] 1. Reil, Logarithmic depth for algebraic functions, SIAM J. Comput., 15 (February 1986), pp.
231-242.

[22] W. Rénsch, Stability aspects in using parallel algorithms, Parallel Comput., 1 (August 1984), pp.
75-98.

[23] K. Singhal and J. Vlach, Accuracy and speed of real and complex interpolation, Computing, 11
(1973), pp. 147-158.

[24] M. Snir, On parallel search, in Ottawa Conl. Distr. Comput., August 1982,

[25] F.Stummel, Perturbation theory for evaluation algorithms of arithmetic expressions, Math. Comp.,
37 (October 1981), pp. 435-473.

[26] H. Tal-Ezer, High degree polynomial interpolation in Newton form, Tech. Rep. 88-39, [CASE, 1988.

