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Abstract. Given an n-tape nondeterministic finite automaton (NFA)
M with a one-way read-only head per tape and a right end marker $
on each tape, and a nonnegative integer k, we say that M is weakly k-
synchronized if for every n-tuple z = (z1,...,z,) that is accepted, there
is a computation on x such that at any time during the computation,
no pair of input heads, neither of which is on $, are more than k cells
apart. As usual, an n-tuple z = (z1,...,2,) is accepted if M eventually
reaches the configuration where all n heads are on $ in an accepting
state. We show decidable and undecidable results concerning questions
such as: (1) Given M, is it weakly k-synchronized for some k (resp., for
a specified k) and (2) Given M, is there a weakly k-synchronized M’ for
some k (resp., for a specified k) such that L(M') = L(M)? Most of our
results are the strongest possible in the sense that slight restrictions on
the models make the undecidable problems decidable. A few questions
remain open.
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1 Introduction

Motivated by applications to verification problems in string manipulating pro-
gram (see, e.g., [5,6,7] for discussions on the need to validate input strings to
avoid security vulnerabilities such as SQL injection attack), we look at the prob-
lem of whether the input heads in a multitape nondeterministic finite automaton
(NFA) are weakly k-synchronized, i.e., for each accepted input there is an accept-
ing computation where no pair of inputs heads, neither of which is on $, are more
than k tape cells apart at any time.

In a recent paper [2], we studied a different notion of head synchronization: an
n-tape NFA M is strongly k-synchronized if at any time during any computation
on any input n-tuple (z1,...,2,) (accepted or not), no pair of input heads,
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neither of which is on $, are more than & tape cells apart. In [2], we showed the
following (among other things):

(**) It is decidable to determine, given an n-tape NFA M, whether it is k-
synchronized for some k, and if this is the case, the smallest such & can be
found.

Strong synchronization (studied in [2]) is a more restrictive requirement than
what we investigate in this paper. Obviously, a strongly synchronized machine
is also weakly synchronized, but the converse is not true. Consider, e.g., the set
L = {(a™8$,b"$) | m,n > 0}. We can construct a 2-tape NFA M, which when
given input (a™$, b"$), nondeterministically executes (1) or (2) below:

1. M reads a™$ on tape 1 until head 1 reaches $, and then reads b”$ on tape
2 until head 2 reaches $ and then accepts.

2. M reads the symbols on the two tapes simultaneously until one head reaches
$. Then the other head scans the remaining symbols on its tape and accepts.

Then M is not strongly synchronized, because of (1). However, M is weakly
synchronized (in fact, weakly 0-synchronized) because every tuple (a™8$, b"$) can
be accepted in a computation as described in (2). Thus strongly synchronized
implies weakly synchronized, but not conversely.

It turns out that questions concerning weak synchronization are harder to
answer than those for strong synchronization. Moreover, these two cases give
some contrasting results. For example we show that, unlike (**) above, it is un-
decidable to determine, given a 2-ambiguous 2-tape NFA, whether it is weakly
k-synchronized. However, the problem is decidable if M is l-ambiguous, i.e.,
unambiguous. (A machine is k-ambiguous if there are at most k accepting com-
putations for any input. Note that deterministic is a special case of 1-ambiguous.)

Note: Some proofs are omitted due to lack of space. All proofs will be given in
a full version of the paper.

2 Preliminaries

An n-tape NFA M is a finite automaton with n tapes where each tape contains a
string over input alphabet Y. Each tape is read-only and has an associated one-
way input head. We assume that each tape has a right end marker $ (not in X).
On a given n-tuple input = (z1,...,z,), M starts in initial state go with all
the heads on the first symbols of their respective tapes. The transition function &
of M with state set Q is a mapping from Q x (JU{$})" — 29x{01}" If M is in
state ¢ with head H; on symbol a; and (p,ds,...,d,) is in d(q, a;, . .., ay), then
the machine moves H; in direction d; which is 1 or 0 (for right move or stationary
move), and enters state p. When a head reaches the end marker $, that head has
to remain on the end marker. The input = is accepted if M eventually reaches
the configuration where all n heads are on $ in an accepting state.

Let M be an n-tape NFA and k > 0. M is weakly k-synchronized if for every
n-tuple = (z1,...,x,) that is accepted, there is a computation on x such that
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at any time during the computation, no pair of input heads, neither of which
is on $, are more than k cells apart. Notice that, since the condition in the
definition concerns pairs of heads that are both on symbols in X, if one of these
two heads is on $, then we can stipulate that the condition is automatically
satisfied, irrespective of the distance between the heads. In particular, if & = 0,
then all heads move to the right synchronously at the same time (except for
heads that reach the right end marker early). M is weakly synchronized if it is
weakly k-synchronized for some k.

An n-tape NFA that is deterministic is called an n-tape DFA. An n-tape NFA
(DFA) can be augmented with a finite number of reversal-bounded counters. At
each step, each counter (which is initially set to zero and can never become
negative) can be incremented by 1, decremented by 1, or left unchanged and can
be tested for zero. The counters are reversal-bounded in the sense that there is
a specified r such that during any computation, no counter can change mode
from increasing to decreasing and vice-versa more than r times. A counter is 1-
reversal if once it decrements, it can no longer increment. Clearly, an r-reversal
counter can be simulated by [(r + 1)/2] 1-reversal counters.

Given an n-tuple (x1,...,x,), denote by (z1,...,z,) an n-track string where
the symbols of x;’s are left-justified (i.e., the symbols are aligned) and the shorter
strings are right-filled with blanks () to make all tracks the same length. For
example, (01,1111,101) has 01A\ on the upper track, 1111 on the middle track,
and 101 on the lower track. Given a set L of n-tuples, define (L) = {(z) | z € L}.

Lemma 1. Let L a set of n-tuples. Then L is accepted by a weakly 0-synchronized
n-tape NFA if and only if (L) is regular.

Let N be the set of nonnegative integers and k be a positive integer. A sub-
set Q of N¥ is a linear set if there exist vectors vg,vy,...,v, in N¥ such that
Q ={vo +t1v1 + -+ tyvy | t1,...,t, € N}. The vectorsyy (referred to as the
constant vector) and vy, ..., v, (referred to as the periods) are called the gener-
ators of the linear set Q. The set Q@ C N is semilinear if it is a finite union of
linear sets. The empty set is a trivial (semi)linear set, where the set of generators
is empty. Every finite subset of N is semilinear — it is a finite union of linear
sets whose generators are constant vectors. Semilinear sets are closed under (fi-
nite) union, complementation and intersection. It is known that the disjointness,
containment, and equivalence problems for semilinear sets are decidable [3].

Let ¥ ={a1,...,ar}. For w € X*, let |w| be the number of letters in w, and
|wl,, denote the number of occurrences of a; in w. The Parikh image P(w) of w
is the vector (|wlq,,- .-, |w|q,); the Parikh image of a language L is defined as
P(L)={P(w) | we L}.

We will need the following result from [IJ:

Theorem 1. The emptiness (Is L(M) = @ %) and infiniteness (Is L(M) infi-
nite?) problems for 1-tape NFA with reversal-bounded counters are decidable.

Corollary 1. The emptiness and infiniteness problems for n-tape NFA with
reversal-bounded counters are decidable.
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An instance I = (uy,...,uy); (v1,...,v,) of the Post Correspondence Problem
(PCP) is a pair of n-tuples of nonnull strings over an alphabet with at least
two symbols. A solution to I is a sequence of indices i1, 1s,...,%, such that
gy - - Uiy, = Uiy ...V, . 1t is well known that it is undecidable to determine,
given a PCP instance I, whether it has a solution.

Convention: (1) We shall also refer to a set of n-tuples accepted by an n-tape
machine as a language. (2) All input n-tuples (z1,...,z,) are delimited by a
right end marker $ on each tape, although sometimes the end markers are not
explicitly shown. (3) A construction is effective if it can be implemented as an
algorithm.

3 2-Ambiguous Multitape NFA

In this section, we will show that it is undecidable to determine, given a
2-ambiguous 2-tape NFA M and an integer k, whether M is weakly synchro-
nized, whether M is weakly k-synchronized for a given k, and whether there is
a weakly synchronized M’ such that L(M) = L(M’).

We first prove this result for general 2-tape NFA and then show how to modify
the proof so that it applies to the restricted case of 2-ambiguous 2-tape NFA.

Let I = (u1,...,un);(v1,...,v,) be an instance of the PCP. Let ¢ and d be
new symbols. We construct a 2-tape NFA M to accept the language

L={(zc',yd) | i,j >0,z #y} U
{(zc',xd?) | 4,5 > 0,7 = 24,z is a solution of the PCP instance I}

as follows: M on input (zc', yd?) nondeterministically selects to check (a) or (b)
below:

(a) M first checks that « # y by moving both heads in sync (0-synchronized)
until it finds the first position where z differs from y (note that this also takes
care of the case when their lengths are different). When M finds a discrep-
ancy, both heads are moved to the right in sync until one head reaches the
end marker and then the other head is moved to the right until it reaches the
end marker. Then M accepts. Note that the whole process is deterministic.

(b) M guesses a sequence of indices 1,12, .... After guessing an index i;, M
verifies that u;; is on tape 1, and then v;; is on tape 2. This process is
repeated until both z and y are exhausted. If there is no discrepancy and
the heads reach the first ¢ and d on their tapes, the second head moves right
twice for every right move of the first head to check that j = 2¢, and then
M accepts.

There are six possible outcomes from a computation of M:

1. (xct,yd’), where x # y and (a) is selected: there is a O-synchronized accepting
computation of M on this input.

2. (zc,yd?), where x # y, (b) is selected, and either the selected indices yield
a discrepancy or j # 2i: this input will be rejected in (b).
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3. (zct,yd?), where x # y, (b) is selected, and the selected indices do not yield
a discrepancy and j = 2i: this input will be accepted in (b). Note that this
input will also be accepted in (a).

4. (zct,zd’), and (a) is selected: this input will be rejected.

5. (zc’,xd’), (b) is selected, and the selected indices yield a discrepancy or
j # 2i: this input will be rejected.

6. (zc',xd’), (b) is selected, and the selected indices do not yield a discrepancy
and j = 2¢: this input will be accepted.

We observe the following:

Note 1: (i) From (1) and (3), it is possible that the same input of the form
(xct,yd’), where x # y can be accepted in both processes (a) or (b). (ii) Another
source of ambiguity is in process (b) itself — different sequences of (guessed)
indices 41, 12, ... may yield no discrepancies when matching = and y, so the same
input may be accepted in many ways in (b).

Note 2: An input of the form (zc, zd”), where the selected indices did not yield
a discrepancy (i.e., the PCP has a solution) and j = 2, is only accepted in (b)
(it is rejected in (a)). Furthermore, since ¢ is arbitrary, the heads will be out of
sync unboundedly.

Hence, if the PCP instance I does not have a solution, then (xc?,yd?) is
accepted iff  # y, so there is a 0-synchronized accepting computation (type
(a)). In other words, M is weakly 0-synchronized and hence (L(M)) is regular
by Lemma 1.

On the other hand, if PCP instance I has a solution, then L(M) contains
tuples of the form (xc!, zd*"). We claim that L(M) cannot be accepted by any
weakly
0-synchronized 2-tape NFA. If it is, then by Lemma 1, (L(M)) is regular. But
then for large enough 4, we can pump the string (wc?, zd*) to get a string
(wctk pdtEdY) for some k > 0 to be in (L(M)). But (zc**, zd**d") is not
in L(M), a contradiction.

To summarize, PCP instance I has a solution iff there is no weakly
0O-synchronized 2-tape NFA M’ such that L(M) = L(M’). Furthermore, the
construction above shows that either M is weakly 0-synchronized or it is not
weakly k-synchronized for any k. Together these results yield

Theorem 2. The following problems are undecidable, given a 2-tape (and hence
multitape) NFA M :

1. Is M weakly k-synchronized for a given k?

2. Is M weakly k-synchronized for some k?

3. Is there a 2-tape (multitape) NFA M’ that is weakly 0-synchronized (or
weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M') = L(M)?

We now modify the construction of the 2-tape NFA M above to make it 2-
ambiguous. The sources of ambiguity are cited in Notes 1 and 2 above. Clearly,
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since process (a) is deterministic, if we can make process (b) deterministic, then
the 2-NFA will be 2-ambiguous.

We accomplish this as follows. Instead of x, we use x’ where z’ has two
tracks: track 1 contains z and track 2 contains the “encoding” of the indices
that are used to match z and y; y remains single-track. Specifically, let I =
(u1,...,un); (v1,...,v,) be an instance of the PCP. Let #,e1,...,e, be new
symbols. For 1 < i < n, let the string E(i) = e;#/“~1. Thus, the length of F(4)
is equal to the length of u;. Let A = {#,e1,...,e,}, and define the language:

L = {(2'¢,yd?) | i,5 > 0,2’ is a 2-track tape where the first track contains =
and the second track is a string in A*, z # y} U{2'ct,yd?) | i,5 > 0,2 is a
2-track tape where the first track contains x and the second track is a string
E(Zl) E(ZT) for some iy eslp, T=Y, T = Ugy » o Uiy Y = Uiy "‘Ui,,.,j = QZ}

One can easily check that processes (a) and (b) described earlier can be made
deterministic. However, it is possible that the same input of the form (z'c?, yd?),
where z # y can be accepted in both processes (a) or (b). (x is the first track of
a'.) Hence, M is 2-ambiguous. Therefore we have:

Theorem 3. The following problems are undecidable, given a 2-ambiguous 2-
tape (and hence multitape) NFA M :

1. Is M weakly k-synchronized for a given k?
2. Is M weakly k-synchronized for some k?
3. Is there a 2-tape (multitape) NFA M’ that is weakly 0-synchronized (or

weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M'") = L(M)?

4 Unambiguous Multitape NFA

In this section, we show that given an unambiguous multitape NFA M and an in-
teger k, it is decidable to determine whether M is weakly synchronized, whether
M is weakly k-synchronized for a given k, and whether L(M) = L(M’) for some
weak synchronized multitape unambiguous NFA M’. Recall that unambiguous
multitape NFA have at most one accepting computation for every input n-tuple.
Note that multitape DFAs are a special case. The results in this section are
modifications of the corresponding results for synchronized multitape automata
in [2], and we omit their proofs.

Theorem 4. [t is decidable to determine, given an unambiguous n-tape NFA
M, whether it is weakly k-synchronized for some k.

Corollary 2. It is decidable to determine, given an unambiguous n-tape NFA
M and an integer k > 0, whether M is k-synchronized.

The following follows from the previous two results.
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Corollary 3. It is decidable to determine, given an unambiguous n-tape NFA
M, whether it is weakly k-synchronized for some k. Moreover, if it is, we can
effectively determine the smallest such k.

The above results generalize to machines with reversal-bounded counters:

Theorem 5. [t is decidable to determine, given an unambiguous n-tape NFA M
augmented with reversal-bounded counters, whether it is weakly k-synchronized
for some k. Moreover, if it is, we can effectively determine the smallest such k.

5 Multitape NFA on ABO-Bounded Inputs

A language is bounded if it is a subset of af - - - a for some distinct letters (sym-
bols) a1, ..., a,. A multitape NFA is unary if each tape contains a string over a
single symbol (letter); bounded if each tape contains a string from a bounded lan-
guage; and all-but-one-bounded (ABO-bounded) if all but the first tape contains
a string from a bounded language. We also refer to the inputs of such machines
as unary, bounded, ABO-bounded, respectively.

In section 3, we showed that it is undecidable to determine, given a 2-tape
NFA M and an integer k > 0, whether M is weakly k-synchronized. Here we
show that the problem is decidable for n-tape NFA when the inputs are ABO-
bounded. In fact, the result holds for n-tape NFA over X* x 23,--- z3,,, X ---
X @y, for some (not necessarily distinet) nonnull strings @;;.

Note that if L is a set of n-tuples of strings, then L (the complement of L)
is the set of n-tuples (z1,...,x,) such that (z1,...,2,) is in L if and only if
(z1,...,2n) is not in L.

An n-tape NFA is strictly k-synchronized if in any accepting computation, any
pair of the heads are within k cells apart (when neither head is on $). In compar-
ison, this condition must hold for only some accepting computation in weakly
k-synchronized machines and for any computation in strongly k-synchronized
machines.

Lemma 2. Let M be an n-tape NFA that is strictly k-synchronized that accepts
the language (set of n-tuples) L = L(M). Then:

1. We can effectively construct a strictly 0-synchronized n-tape DFA M; ac-
cepting L.

2. We can effectively construct a strictly 0-synchronized n-tape DFA M ac-
cepting L.

Moreover, (1) holds for n-tape weakly k-synchronized NFA as well.

Proof. For the first part, given M, we construct an ordinary (i.e., 1-tape) NFA
Aj such that (x1,...,2,) is accepted by M if and only if (the aligned version)
(x1,...,2,) is accepted by A;. This is possible as A; need only maintain a finite
buffer of symbols in its state. A; can then be converted to be deterministic (by
the usual subset construction), i.e., we can convert A; to an equivalent DFA As.
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Then from As, we can trivially construct a strictly 0-synchronized n-tape DFA
M; accepting L.

For part 2, we can easily construct from the DFA As a DFA Ajs accepting
(1,...,2,) if and only if As does not accept (z1,...,2,). Let L' = {(z1, ...,
Zn) | 21, ..., Tn are strings with no X’s }. Clearly, L’ is regular and is accepted
by some DFA A,. Construct a DFA As accepting L(As) N L(A4). (The reason
for the intersection is to make sure that we only retain the well-formed aligned
strings.) From As, we can then construct a strictly 0-synchronized 2-tape DFA
M accepting L. a

We are now ready to prove the main result of this section. To illustrate the
construction, we consider 3-tape NFA.

Theorem 6. It is decidable to determine, given a 3-tape NFA M that accepts
a subset of X* x a* x b* (where X is any alphabet and a,b are symbols) and a
nonnegative integer k, whether M is weakly k-synchronized.

Proof. Construct from M a 3-tape NFA M; over X* x a* x b* that is strictly
k-synchronized: on input (21, x2,x3), M; simulates the computation of M faith-
fully and accepts (x1,z2,23) if M accepts (z1, z2,x3) and during the computa-
tion, the heads are always within k cells apart (provided no head has reached $).

From Lemma 2, part 2, we can effectively construct from M; a strictly 0-
synchronized 3-tape DFA M, accepting L(Mj).

Clearly, M is weakly k-synchronized if and only if L(M) C L(M;) (in fact
L(M) = L(My)), hence, if and only if L(M)NL(M;) = @, i.e., L(M)NL(M) =
.

To decide the above, we construct from M and Ms, a 3-tape NFA M’ with
four 1-reversal counters C1,Co, D1, Dy that works as follows when given input
(z,a",b%):

M’ reads a” and b® and stores 7 in counters C; and D; and s in counters Cy
and Dy. Then M’ simulates M on (z,a",b*%) by using counters Cy and Co, ie.,
it decreases Cy (resp., C3) by 1 every time the second head (resp., third head)
of M moves right on a” (resp., b°). At the same time, M’ also simulates Ms
on (z,a",a®) using counters D7 and Ds. Note that since My is 0-synchronized,
D; (resp., Ds) is decreased only when M moves its first head to the right on z.
M’accepts if M and M, accept.

It follows that M is weakly k-synchronized if and only if L(M’) is empty,
which is decidable by Corollary 1. O

Corollary 4. It is decidable to determine, given a 3-tape NFA M over X* x a}
car x by -+ b for distinct symbols aq,...,ar, bi,...,bs and a nonnegative
integer k, whether M is weakly k-synchronized.

In fact, we can prove a stronger result:

Corollary 5. It is decidable to determine, given a 3-tape NFA M over X* X
vl - Uk X wi - wk for (not necessarily distinct) nonnull strings vy, - -, vy,
w1, ..., ws and a nonnegative integer k, whether M is weakly k-synchronized.
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The above corollary generalizes to multitape NFA:

Corollary 6. It is decidable to determine, given an n-tape NFA M over X* X

Tyy-er Xy, X oo X Thy-e-x), o for some (not necessarily distinct) nonnull
strings x;; ’s and a nonnegative integer k, whether M is weakly k-synchronized.

6 Multitape NFA on Unary Inputs
In this section, we look at decision problems for multitape NFA on unary inputs.

6.1 Synchronizability

In Theorem 3, we saw that if the inputs of the 2-tape NFA M is unrestricted,
it is undecidable to determine if there exists a weakly O-synchronized 2-tape
NFA M’ equivalent to M. But what about the case when one tape has bounded
input, or when both tapes have bounded inputs? At present, we do not know
the answer. However, as the following shows, even for the unary case, there are
machines that cannot be converted to be weakly 0-synchronized:

Proposition 1. L = {(a™,b") | m > 0,n = 2m} can be accepted by a 2-tape
NFA M but cannot be accepted by a weakly 0-synchronized 2-tape NFA.

6.2 Weakly Synchronized Regular Languages

First we consider the extension of the definition of strongly k-synchronized and
weakly k-synchronized to languages (instead of machines in the original defini-
tions) over a binary alphabet X' = {a, b} and show that whether or not a regular
language is weakly synchronized is decidable. We do so via a structural char-
acterization of weakly synchronized regular languages, which is of independent
interest.

A word w is strongly k-synchronized if for any factorization x = uv

—k < |ulg — Julp < k. (1)

A language L over X is strongly k-synchronized if all of its words are strongly
k-synchronized, and strongly synchronized if it is strongly k-synchronized for
some k. L is called weakly k-synchronized if for every w € L, there is a corre-
sponding w’ € L such that P(w’') = P(w) and w’ is strongly k-synchronized. L
is weakly synchronized if it is weakly k-synchronized for some k. Suppose M is
a DFA over ¥ = {a,b}. Consider an r-cycle C' in M given by the sequence of
states

q1,492,---,4qr+1 (2)

with » > 2 and ¢1 = ¢r4+1. The word associated to C' is ajas---a, where
0(¢iya;) = qiv1 (i = 1,2,...,7). When there is no ambiguity, we use C to
also denote the associated word aqas .. .a,. We call C balanced if |C|, = |C|p. C
is a-heavy if |C|q > |Clp, and b-heavy if |C|q < |Clp. C is a simple cycle if ¢; # g¢;

(i,j=1,2,...,r) in (2).
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Lemma 3. Suppose M is a DFA with m states with no unbalanced simple cycles.
If C is a cycle in M then the word C' is strongly m-synchronized.

Theorem 7. L is weakly synchronized iff the minimum state DFA M for L has
no unbalanced simple cycles.

Proof. Suppose M has an unbalanced simple r-cycle C. We will show that L
is not weakly synchronized. WLOG C' is a-heavy. By the minimality of M, the
beginning state q; of C' is reachable from the initial state of M, and there is a
path from ¢,11 = ¢1 to a final state of M. It follows that we can pump C' i.e.
there exists words x,y such that for every ¢t > 0, w; = xC'y € L. Then P(w;) =
(co + c1t, do + dit) for constants ¢, c1,dg, d1 > 0 with ¢; > dy. Therefore for any
word w; with P(w,) = P(wy), taking v = wy,, |u|e —|uly = co —do+ (c1 —d1)t —
o0 as t — oo, so (1) cannot hold for any fixed k. Therefore L is not weakly
synchronized. Conversely, assume that every simple cycle in M is balanced. We
will show that L is strongly synchronized, and therefore weakly synchronized. Let
m be the number of states of M. We show that L is strongly 2m-synchronized.
Any w accepted by M can be written as w = 2¢C1x1Cs . . . Cyxy where each Cj is
a balanced cycle (not necessarily simple) and |zoz1 - - - 2¢| < m. By lemma 3, each
cycle is strongly m-synchronized. Since the contribution of the part zgzy - - - x¢
to the difference of the number of occurrences of a’s and b’s in w is at most m,
any prefix u of w satisfies (1) with k = 2m. O

Corollary 7. A regular language L is strongly synchronized iff it is weakly syn-
chronized.

Corollary 8. It is decidable whether a regular language L is weakly synchro-
nized.

Finally, we can state the condition for the weak synchronizability of a regular
language L in terms of its Parikh image. Consider a linear set that appears in
P(L): {(ag,bo) + k1(a1,b1) + -+ + ks(as,bs) | k1,k2,...,ks > 0}. Each of the
vectors (a;,b;),7 = 1,...,s are called periods. A period (a;,b;) is balanced iff
a; = b;. If a; > b;, then the period is a-heavy, if b; > a; then it is b-heavy.
These notions are translations of the ones on cycles to the Parikh images where
a balanced period corresponds to a balanced simple cycle, etc. Therefore

Corollary 9. For a regular language L over X = {a, b}, the following are equiv-
alent:

1. L is strongly synchronized,

2. L is weakly synchronized,

3. The minimum state DFA for L has no unbalanced simple cycles,
4. The Parikh image P(L) has no unbalanced periods.

6.3 Weakly Synchronized NFA on Unary Inputs

In Section 3, we showed that it is undecidable to determine, given a 2-tape
NFA M, whether it is weakly k-synchronized for some k. The problem is also
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ab - b
LM Bs | M

A a,b : a
M, [:$ | M,

Fig. 1. An ordinary NFA that accepts accepting computations of a 2-tape NFA

undecidable when k is specified, even for £ = 0. In Section 5, we showed that
it is decidable to determine, given a 2-tape NFA M one of whose tapes con-
tains a string over a bounded language and an integer k, whether it is weakly
k-synchronized. We currently do not know if this restriction would make deter-
mining whether a 2-tape NFA M is weakly k-synchronized for some unspecified
k decidable. It appears to be a difficult combinatorial problem. However, for the
special case when the two tapes are unary, we can show that the problem is
decidable.

Let M be a 2-tape NFA where the inputs are of the form (a"$,b™$). We
assume that exactly one of the heads moves during the computation of M.

The transitions of M can be labeled with letters from X = {a,b,$}. A head
movement on the first (second) tape is labeled with a (b). The last move by each
head is labeled $. In this way each computation path of M can be identified
with a word over Y. Each such word contains exactly two occurrences of the
symbol $. We will not consider these when we look at the Parikh vectors of the
words accepted by M. Since M is nondeterministic, there may be many accepting
computation paths w for an accepted input, but each of these has Parikh vector
P(w) = (a™,b™).

M can be trivially modified into an ordinary NFA M’ that accepts the ac-
cepting computations of M as shown in Figure 1.

There are two types of accepting computations:

1. w=2$y$ with = € {a,b}* and y € {b}*,
2. w = x$y$ with = € {a,b}* and y € {a}*.

The first type comes from accepting computations in which the first head reaches
$ first, and then the computation continues on tape two with the second head
moving to the right consuming b’s until it reaches $ on the second tape. The
second type is similar, with the roles of the two tapes interchanged. Consequently,
whether M is weakly k-synchronized is equivalent to showing that for any given
word w € L(M'), there is a strongly k-synchronized word u such that either
ub’ € L(M') and P(w) = P(u)+(0,j), or ua® € L(M’) and P(w) = P(u)+(i,0).
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Theorem 8. Suppose M is a unary 2-tape NFA. Then it is decidable whether
or not M is weakly synchronized.

Proof. We can assume that exactly one of the heads moves one cell to the right
in each step until the heads reach $§. Let L = L(M). We can assume that the
automata that appear in the boxes in Figure 1 are minimum state DFA. The lan-
guage accepted by the upper part of Figure 1 can be written as the disjoint union
of languages accepted by pairs of DFA, corresponding to final states of My’ oIt
M*P has
t final states, then this results in ¢ pairs of minimum state DFA (F/“", N?).
The corresponding language accepted is the concatenation L(Fia’b)L(Nib). There
is a similar decomposition for the language accepted by the lower part of Figure
1. For any given 4, consider P; = P(Fia’b). Eliminating each unbalanced period
from each of the linear sets in P; results in a new Parikh image P/. This is the
Parikh image of the automaton obtained from Fia’b by eliminating unbalanced
cycles as follows.

Consider a simple unbalanced r-cycle C' of Ff’b given by q1,q2, ..., ¢r+1 With
r>2and q1 = gr+1. Let a1 - - -a, € X* be the word associated where §(g;, a;) =
gi+1 (i =1,2,...,r) Consider the new alphabet X' = Y U{x1, z2,...,z,}. Alter
the labels on C' by replacing a; (a; € {a,b}) by the symbol z;. Denote by Lo
the language of all words over X’ taking the start state of Fia’b to g1, and by L1y
the language of all words over X’ taking ¢,41 = ¢1 to the final state of Fia’b. If
h is the homomorphism defined by h(x;) = a;, (i = 1,...,r), then the language

h (L(Fi“’b) \ Loiz1&2 - - xTLlf)

is the language of words in L(Fia’b) which are accepted without traversing the
cycle C'. Since there are finitely many simple cycles in Fia’b7 in finitely many steps
we can take away from L(Fia’b) all of the words that traverse an unbalanced cycle
of Fia’b. This has the effect of deleting all of the unbalanced periods from the
linear sets that appear in the Parikh map.

Let P! be the Parikh image of the resulting automaton, and let P* be the
union of the sets P/ + P(N?) over i. For the lower part of the diagram, a similar
construction results in the set P'. By the characterization of weak synchro-
nization preceding the statement of Theorem 8, M is weakly synchronized iff
P(L) C P*U P! Each of the Parikh images above can effectively be constructed
and the containment required can be effectively checked, since Parikh images of
regular languages are semilinear. O

7 Conclusion

We looked at decision questions concerning weak synchronization of the heads
of multitape NFA. Most of our results are the strongest possible in the sense
that slight restrictions on the models make the undecidable problems decidable.
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Some questions remain open. In particular, is it decidable to determine, given
a 2-tape NFA whose tapes are over bounded languages, whether it is weakly
k-synchronized for some k£ 7 This question seems quite difficult — we have only
been able to resolve this question (in the positive) for the bounded unary case.
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