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Abstract—A generalization of the majority quorum for the solution of the distributed (k + 1)-exclusion problem is proposed. This
scheme produces a family of quorums of varying sizes and availabilities indexed by integral divisors r of k. The cases r = 1 and r = k
correspond to known majority based quorum generation algorithms MAJ and DIV, whereas intermediate values of r interpolate
between these two extremes. A cost and availability analysis of the proposed methods is also presented. An interesting implication
of this analysis is that in a reasonably reliable environment with a large number of sites, even protocols with low communication
costs attain high availability.

Index Terms— Mutual exclusion, fault-tolerance, distributed systems, replicated data.
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1 INTRODUCTION

HE problem of distributed mutual exclusion has been
extensively studied and many interesting protocols for

its solution have been proposed. Most of these protocols
attempt to provide high performance by reducing the num-
ber of messages involved or by improving the degree of
fault-tolerance and hence improving the chances of
achieving mutual exclusion in the presence of site and
communication failures. A generalization of the mutual
exclusion problem is the k-mutual exclusion problem, where
no more than k processes are allowed to enter the critical
section simultaneously. Since (k + 1)th process will never be
admitted, this problem is also referred to as the (k + 1)-
exclusion problem.

In a distributed environment, the (k + 1)-exclusion prob-
lem arises in several interesting applications. For example,
it could be used to monitor the number of processes in a
distributed system that are allowed to perform a certain
action, such as issuing broadcast messages. In such a case,
the system may restrict the number of broadcasting proc-
esses so as to control the level of congestion. Another appli-
cation is in the context of replicated databases that allow
bounded ignorance [11], i.e., when transactions may specify
that they do not need to be aware of the k most recent
updates to the database. Here also, instead of the tradi-
tional database system that uses distributed mutual exclu-
sion to ensure one update to the replicated data at any time,
several updates may be permitted simultaneously. Efficient
and highly available solutions to the distributed (k + 1)-
exclusion problem would be particularly useful for such
applications.

The distributed (k + 1)-exclusion problem was first solved
by Raymond [15], who provided a simple extension to the
Ricart and Agrawala’s mutual exclusion algorithm [16].
Srimani and Reddy [18] improved on this protocol by using
the notion of privilege of Suzuki and Kasami [19]. This solu-
tion reduces the number of required messages to achieve
mutual exclusion. Recently, there has been a significant
interest in fault-tolerant methods to solve the (k + 1)-
exclusion problem based on the notion of quorums [8].
Fujita et al. [6] discuss some simple techniques and then
propose a scheme with small quorum sizes. Huang et al. [9]
propose an alternative method with small quorums and
high availability in the presence of failures.

The majority quorum algorithm [20], [8] for distributed
mutual exclusion has been widely used to develop quorum-
based protocols for mutual exclusion as well as for (k + 1)-
exclusion by a suitable partitioning of the sites. Agrawal
and El Abbadi [2] partition the sites in a network to con-
struct majority based quorums defined on hybrid logical
structures such as a grid [13] and a tree [3]. Rangarajan and
Tripathi [14] partition the sites into N classes and organize
the classes to form a finite projective plane. Quorums are
then defined using N  classes and within each class a
majority of sites is chosen. Kumar [12] uses the partitioning
approach to recursively define hierarchical quorums based
on the majority rule and quorums. Fujita et al. [6] also use a
partitioning approach for (k + 1)-exclusion in which the sites
are partitioned into k clusters and quorums are constructed
so that mutual exclusion is ensured within each cluster.

In this paper, we generalize the majority quorum algo-
rithm for constructing quorums for (k + 1)-exclusion and
analyze the resulting methods. This analysis is performed
to understand the tradeoff between availability and com-
munication cost for achieving a quorum. In particular, we
propose a sequence of algorithms MAJr indexed by integral
divisors r of k. When r = 1, the quorums correspond to
those produced by MAJ (which partitions the sites into a
single class), and when r = k, the quorums correspond to
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the quorums produced by DIV (which partitions the sites
into k classes) [6]. For intermediate values of r, a sliding
tradeoff between communication cost and availability can
be achieved.

2 THE PROBLEM STATEMENT

A distributed system consists of a set of sites that commu-
nicate with each other by sending messages over a commu-
nication network. We assume that every site has the capa-
bility to send a message to any other site when there is a
communication path between them. The sites are either fail-
stop or may fail to send or receive messages. Communica-
tion links may fail by crashing, or by failing to deliver mes-
sages. Although quorum-based protocols are resilient both
site and communication failures, our analysis assumes site
failures only [14], [10].

Distributed mutual exclusion is a classical technique for
providing access to shared resources. We postulate the
existence of a resource in the network, which may be
accessed by a single process at a time. To access the
resource, a process (site) pi is required to receive permis-
sion from a set of sites Si. If all sites in Si grant permission to
pi, then it is allowed to access the resource. To ensure mutual
exclusion the sets Si are required to satisfy the intersection
property: For any i and j, Si > Sj π f. These and related con-
cepts were formalized and analyzed in terms of the notions
of quorums and coteries [8], [13], [7]. In (k + 1)-exclusion, up
to k processes are allowed to access the resource simultane-
ously. Thus, if we consider k + 1 sets of sites that grant per-
mission to access the resource then there must exist at least
two among these k + 1 sets with a nonempty intersection.
The (k + 1)-exclusion problem can now be stated in terms of
the requirements 1 and 2 below:

1) The (k + 1)-Intersection Property. For any k + 1 sets S1,

S2, L, Sk+1, there exist two distinct sets Si and Sj such
that Si > Sj π f.

Note that quorums constructed to ensure the traditional
mutual exclusion condition also ensure the above property.
Hence, in order to eliminate trivial solutions to the (k + 1)-
exclusion problem, we add an additional restriction [6], [9].

2) The k-Nonintersection Property. There exist k sets S1,
S2, L, Sk such that for any two distinct sets Si and Sj,
Si > Sj = f.

The second property above is desirable for all values of k.
When k = 1, i.e., in the case of mutual exclusion, it is satis-
fied vacuously.

3 A GENERAL PARADIGM FOR (k + 1)-EXCLUSION

One of the simplest approaches to ensure mutual exclusion
in a distributed system is to use majority quorums [8], [20]

of size n
2 1+ .  For three-exclusion, we can reduce the size

of the permission sets to n
3 1+ .  Clearly, the three-

intersection property holds since any three sets of sites with

size n
3 1+  chosen from n sites will always have two sets

with nonempty intersection. Similarly, the two-

nonintersection property also holds for n > 5, since it is pos-
sible to construct two disjoint sets when only one-third the
number of sites from n are used for each. For (k + 1)-

exclusion, it suffices to take the quorum size to be n
k+

+1 1.

This majority based construction for the (k + 1)-exclusion
problem is referred to as MAJ [6].

Another approach for achieving (k + 1)-exclusion is to
consider k instances of any mutual exclusion solution. A
process wishing (k + 1) exclusive access to a resource acquires
permission from any of the k instances. This ensures the
(k + 1)-intersection property since any k + 1 quorums cho-
sen will consist of at least two quorums in the same instance
of the mutual exclusion solution, and hence must have a
nonempty intersection. Similarly, the k-nonintersection
property is satisfied if each of the k processes chooses a
quorum from different instances of the mutual exclusion
solution. This construction for the (k + 1)-exclusion problem
is referred to as DIV [6].

The two generalizations MAJ and DIV of majority quo-
rums for the solution of the (k + 1)-exclusion problem are at
the opposite ends of a spectrum. In MAJ, the original mutual
exclusion majority solution is generalized whereas in DIV
the sites in the network are partitioned into k classes with
each class using any traditional approach to enforce mutual
exclusion. We explore the possibility of enforcing (k + 1)-
exclusion by varying the number r of classes from 1 to k,
and define a quorum generation method MAJr for any r
dividing k. To simplify the presentation, we assume we are
given a set of n sites where n = kN for some N ≥ 1. In MAJr,
the (k + 1)-exclusion problem is solved by partitioning the
sites into r disjoint classes where r = k/i for some integer i.
Note that for the envisioned applications of (k + 1)-exclusion,
congestion-control in broadcasting and bounded-ignorance
in transaction processing, k is expected to be a reasonably
large integer value and k will most likely have several inte-
gral divisors. Within each class, we choose the quorums of
size qr which guarantee that at least two sets from any col-
lection of i + 1 sets within the class intersect. More precisely
MAJr denotes the method in which

1) The sites 1, 2, º, n are partitioned into r classes of size
n/r = iN each.

2) From each class, all subsets of size

q
iN

ir =
+

M
N
M

P
Q
P +1 1 (1)

are taken as quorums. Here r = k/i.

It should be clear that MAJr produces sets that satisfy both 1
and 2, aside from the trivial cases of small parameters for

which n
k r

n
k r+ + -

= 1  (see [21]). Furthermore, MAJ1 = MAJ,

and MAJk = DIV are special cases of this construction.

4 AVAILABILITY MEASURES

The communication cost associated with obtaining mutual
exclusion by using the quorum approach is directly pro-
portional to the quorum size. The availability and the fault-
tolerance characteristics of a particular method are deter-
mined by the number of ways in which a quorum can be
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constructed from a given number of sites in the network.
The total number of sets produced by MAJr is

r
iN

qr

F
HG

I
KJ

, (2)

where qr is as given in (1). Let q1 = qMAJ be the quorum size
and TMAJ be the number of sets in MAJ. Then

q
n

k
T

n

qMAJ MAJ
MAJ

=
+

M
N
M

P
Q
P + =

F
HG

I
KJ1

1, . (3)

The other extreme of the partitioning approach arises when
r = k. The quorum size qk = qDIV and the total number of
quorums TDIV for DIV are given by the formulas

q
n

k
T k

qDIV DIV

n
k

DIV

=
M
N
M

P
Q
P + =

F
HG

I
KJ2

1, . (4)

When MAJ and DIV are evaluated purely in terms of the
communication costs incurred to enforce (k + 1)-exclusion,
DIV is preferable due to its smaller-sized quorums. How-
ever, if the evaluation criterion includes the number of quo-
rum sets produced, the outcome is not so trivial. Fujita et al.
[6] conjectured that the partitioned approach restricts the
number of ways a quorum can be selected and hence will
provide inferior availability. First, we explore this issue in
the context of these two approaches and isolate the instances
in which DIV actually performs better than MAJ. Our
analysis of availability is based on estimates for truncated
binomial sums [4], [14], and the Vandermonde convolution
identity [17].

Suppose p is the probability that a site is up. If q = qr is
the quorum size given by (1), then the probability Cr(p) that
a quorum set is available in a given class for the method
MAJr is a polynomial Cr(p) of degree iN in p (recall that
there are a total of r classes of iN sites each):

C p
iN

q j
p pr

j

iN q
q j iN q jb g b g=

+

F
HG

I
KJ

-

=

-
+ - -

Â
0

1 . (5)

Let AVr(p) denote the probability that a quorum set is avail-
able when the method MAJr is used. For the extreme cases
of MAJ and DIV, we also use the notation AVMAJ (p) for
AV1 (p), and AVDIV (p) for AVk (p). The probability that
none of the r classes of the partition has a quorum set
available is (1 - Cr(p))

r
, and therefore

AVr(p) = 1 - (1 - Cr(p))
r
. (6)

EXAMPLE 1. Suppose k = 2 and n = 10. Then for i = 2, we get
r = 1 and MAJ1 = MAJ. From (5),

CMAJ(p) = 210p
4
(1 - p)

6
 + 252p

5
(1 - p)

5
 + 210p

6
(1 - p)

4

+ 120p
7
(1 - p)

3
 + 45p

8
(1 - p)

2
 + 10p

9
(1 - p) + p

10
.

For i = 1, r = 2 and MAJ2 = DIV. In this case CDIV(p) =

10p
3
(1 - p)

2
 + 5p

4
(1 - p) + p

5
. Therefore, from (6)

AVMAJ (p) = CMAJ(p),

AVDIV(p) = 20p
3
 - 30p

4
 + 12p

5
 - 100p

6
 + 300p

7

- 345p
8
 + 180p

9
 - 36p

10
.

Since AVDIV(p) - AVMAJ(p) = 20p
3
(1 - p)

6
(1 - 6p) , set-

ting AVDIV(p) > AVMAJ (p) and solving for p, we find
that whenever p < 1/6, DIV provides better quorum
availability than MAJ.

The above example can be generalized by deriving as-
ymptotic results for the availabilities of MAJr for r = 1 (MAJ)
and r = k (DIV). For simplicity of exposition, we first dis-
cuss the three-exclusion case (k = 2). Since in this case

q q
n

q q
n

MAJ DIV1 23 1 4 1= =
M
N
M

P
Q
P + = =

M
N
M

P
Q
P +,

from (1), it is convenient to assume that n = 12m for some
m ≥ 1. Then qMAJ = 4m + 1, qDIV = 3m + 1 with

AV p
m

j
p p

AV p
m

j
p p

MAJ
j m

m
j m j

DIV
j m

m
j m j

b g b g

b g b g

=
F
HG

I
KJ

-

= - -
F
HG

I
KJ

-
L

N
M
M

O

Q
P
P

= +

-

= +

-

Â

Â

12
1

1 1
6

1

4 1

12
12

3 1

6
6

2

 

 

,

.

The values of p in 0 < p < pn for which AVDIV (p) > AVMAJ (p)
for small values of n = 12m are tabulated in Table 1
(computed with the aid of MACSYMA). Even though the
numbers pn are decreasing, the limit of pn as n gets large is
nonzero. In fact, it can be shown that for three-exclusion,
DIV provides better availability for large n than MAJ when
the probability of a site being up is less than 0.0299 [1]. This
result can be generalized in two directions, both valid for
large n. First, it is possible to compare analytically the
availability of MAJ and DIV for arbitrary k and derive a
constant bk = O(1/k

2
) such that whenever 0 < p < bk, the

availability of DIV is greater than that of MAJ. Alternately,
given k, it is possible to compute the range of values of p (as
a function of k and r) for which MAJr provides better avail-
ability than MAJ. However, these generalizations are of
theoretical interest as they are valid only for very small val-
ues of p [1].

5 AVAILABILITY OF MAJr QUORUMS

In general, MAJ has better availability than DIV as well as

all the other MAJr, except for systems with high site failure
probability. On the other hand, from the formula in (1),
MAJ quorums have twice the size of DIV, and are always

larger than MAJr quorums for r > 1.

TABLE 1

COMPUTED RANGE OF VALUES 0 < p < pn FOR WHICH

AVDIV (p) > AVMAJ(p)

n 12 24 36 48 60 72 84 96
pn 0.0461 0.0423 0.0408 0.0399 0.0394 0.0391 0.0388 0.0386
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In this section, we show that for large n, and p close to 1,
the increase in availability provided by MAJ itself as com-
pared to MAJr is actually quite small. This is significant
since in most current systems we expect sites to have a low
probability of failure. Hence in these cases we can use the
smaller-sized quorums of MAJr without losing much on
availability, while reducing the communication overhead
by up to a factor of two.

Let Dr(p) = | AVMAJ (p) - AVr(p) | denote the magnitude

of the absolute error in availability made when MAJr in-

stead of MAJ itself is used. Then Dr(p) is given by

n

j
p p

n r

j
p pj n j

j

q
j n r j

r

j

q
rMAJ F

HG
I
KJ

- -
F
HG

I
KJ

-
L

N
M
M

O

Q
P
P

-

=

-
-

=

-

ÂÂ   1 1
0

1

0

1

b g b g
/ /

Factoring (1 - p)
n
 and letting q = p/(1 - p), we can write

D p p
n

j
q

n r

j
qr

n j

j

q
j

r

j

q
rMAJ

b g b g= -
F
HG
I
KJ

-
F
HG

I
KJ

L

N
M
M

O

Q
P
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-

=

-

ÂÂ1
0

1

0

1

  
/

Consider the coefficients cj in the expansion

n r

j
q c qj

j

q
r

j
j

j

r q
r r/

.
F
HG

I
KJ

L

N
M
M

O

Q
P
P

=

=

-

=

-

Â Â 
0

1

0

1c h

By the Vandermonde convolution identity [5], [17], c
n

jj £
F
HG
I
KJ

with equality in the range 0 £ j £ qr - 1. Therefore,

D p p
n

j
q c q

p
n

j
q

r

n j
j

j

j q

r q

j q

q

n j

j q

r q

r

r

r

MAJ

r

r

b g b g

b g

c h
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F
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KJ
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-

=

-
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11

1

   

 .

However, q
j
 is an increasing function of j whenever p ≥ 0.5.

Thus for p ≥ 0.5

D p p p
n

jr

r q n r q

j q

r q

r r

r

r

b g b gc h c h
c h

£ -
F
HG
I
KJ

- - -

=

-

Â
1 1

1

1 .

But since 1 £ r £ k, r(qr - 1) = (r/(k + r)), n £ n/2 , and there-
fore

n

j
j q

r q
n

r

r F
HG
I
KJ

£

=

-

-

Â
1

12
c h

.

Furthermore, n - (r/(k + r)) n = (k/(k + r))n, and 1 is an up-

per bound for p
r qr -1c h . Therefore,

D p pr

nk
k rb g b g£ -

L
NM

O
QP

+
1
2 2 1 .

If p is close enough to 1 so that 2 1 1- <+p
k

k rb g , or equiva-

lently when

p

k r
k

> -
F
HG

I
KJ

+

1
1
2 , (7)

the error Dr(p) goes to zero as n gets large. To summarize,

THEOREM 1. If p is in the range given by (7), then

AV p AV p pMAJ r

nk
k rb g b g b g- £ -

L
NM

O
QP

+ 
1
2 2 1 , (8)

and the right hand side of (8) goes to zero as n gets large.

To get a rough idea of the magnitude of the difference in
availability which will hold for all algorithms MAJr at once
regardless of r, we note that (k + r)/k £ 2 since r is a divisor
of k. Therefore, whenever p > 1 - (1/2)

2
 = 0.75 , the error in

availability satisfies

AV p AV p pMAJ r

n
b g b g d i- £ - 

1
2 2 1 , (9)

independent of the value of r.

EXAMPLE 2. Consider a system with n = 100 sites in which
the probability of a site being up is p = 0.9. From (9),
the difference between the availabilities of MAJ and
DIV for any (k + 1)-exclusion is about 6.3 ¥ 10

-21
, a

negligible amount. On the other hand, when k = 9,
MAJ requires quorums of size qMAJ = 11, while DIV
requires quorums of size only qDIV = 6.

6 DISCUSSION

In this paper, we proposed a family of quorum-based pro-
tocols MAJr that generalize majority quorums for distrib-
uted (k + 1)-exclusion. These protocols are indexed by inte-
gral divisors r of k, with MAJ1 = MAJ and MAJk = DIV. In
addition, we considered the whole spectrum of resulting
protocols with respect to availability and communication
cost. Recently, Kakugawa et al. [10] analyzed MAJ versus a
centralized site solution adapted for (k + 1)-exclusion called
SGL, and showed that for networks with low probability of
site failure, MAJ provides optimal availability performance
over all quorum-based mechanisms, whereas for sites with
a high probability of failures, SGL gives higher availability
than MAJ. Our analysis is similar except that our quorums
generalize majority, and instead of the two extremes, we
consider a whole spectrum of protocols. Each protocol
MAJr, r > 1 considered here, provides higher availability
than MAJ in a large network where the probability of a site
being up is sufficiently small [1]. On the other end of the
probability spectrum in which the network has a low prob-
ability of site failure, the increase in availability achieved by
MAJ over any member of the family MAJr, r > 1 decreases
rapidly as the number of sites gets large. Since the commu-
nication overhead of solving the (k + 1)-exclusion problem is
directly proportional to the quorum sizes, reductions up to
a factor of two in communication overhead can be achieved
without significant sacrifice in availability. Thus for highly
available geographically dispersed distributed systems
with a large number of sites, MAJr for r > 1 may be prefer-
able over MAJ. Even when individual site availability is
greater than about 75%, the increased availability offered
by MAJ becomes inconsequential when compared even to
DIV, which falls on the other end of the spectrum. Interme-
diate values of r serve to further interpolate between com-
munication cost and availability.
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