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1. INTRODUCTION
Networks of linear threshold functions (LTFs) have been employed
both as models of biological neural networks [1,2], and as models of
computational devices [3]. A given LTF v; may be defined by:

{ 1 if U; > 0, U; = Zt,;jvj + 6;
VU =
0 else

(1)

where v; is the output from the jth LTF; ¢;; represents the strength of
connection between the ith LTF and the jth LTF; and 6; is a thresh-
old value. A network of LTFs is defined in terms of the connectivities
between the various LTFs. These connectivities are given explicitly in
terms of the connectivity matrix T' = {t;;}.

An LTF may be viewed as a limiting case of a more general class of
functions. One such class of functions, the so-called class of “semi-linear
activation functions” [4], takes the form:

v = g(U;) (2)

where g is a monotonically increasing, differentiable function of its ar-
gument and 6; is termed the “bias”. In many applications, g is typically
a sigmoid function with left asymptote O and right asymptote 1 (Figure
1(a)).

We employ the terminology SAF to denote the class of sigmoidal,
semilinear activation functions. Rumelhart et al. [4], for example, employ
the class of logistic functions as an instantiation of the class of SAFs.
These functions take the form:

1
vi = 1+ e BE(tijui+6:) (3)

in which 6; is termed the “bias”, and is analogous to the threshold 8;
in an LTF and f is a parameter. In this instantiation, the LTF may be
viewed as a limiting case of the SAF in which g is a step function (and
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U;

(a) General sigmoidal, semi-linear activation function

Uy =6 U,

(b) Special case step function

Figure 1 General and limiting cases of sigmoidal,
semi-linear activation functions

is hence not differentiable at all points of its domain, see Figure 1(b)).
For many applications, networks of SAFs have come to be called neural
networks. In this paper, we focus our attention on the case of neural
networks that are composed of LTFs, although it will prove necessary
on occasion to consider networks of SAFs.

We believe that it is important to view networks of SAFs in general,
and networks of LTFs in particular, from a computational point of view.
While Minsky [5] showed that networks of LTFs (and hence networks of
SAFs) possess the computational power of a Turing machine, we believe
it to be of particular value to adopt an approach in which we:

(a) define special classes (or “architectures”) of networks of SAF's;

(b) define procedures by which a specified SAF architecture may be
“programmed” ;
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(c) examine which classes of functions are computable by a given SAF
architecture and an associated programming procedure;

(d) examine the question of the computational complexity of a given
class of architectures and associated programming procedures with re-
spect to a given class of functions that they are capable of computing.

We term an approach to the study of neural networks that involves these
four aspects the “computational approach” in order to distinguish it
from approaches adopted by other disciplines, including biology, physics
and psychology.

The outcome of such an approach is of significance in at least two ma-
jor areas of scientific endeavor. In relation to the field of neurophysiolog-
ical investigation, it is important to characterize the class of functions
that a given model of some neural subsystem is capable of computing,
and how efficiently such functions are computed, in order to know the
degree to which the model “explains” neurophysiological phenomena.
There is still a great deal of controversy in the neurophysiological sci-
ences as to whether an SAF is an adequate model of a neuron. There
are researchers who believe that neurons have much greater computing
power than SAFs, with some researchers likening them more to micro-
processors than to SAFs. Others view ensembles of SAF-like units as the
basic computational unit in biological neural nets.

It is premature, however, to make final judgments concerning such
issues, and it is important to continue to study computational (and
other) issues concerning neural nets of SAF's, since they offer a model
that is appealing in both its simplicity and in its computational power.
Only when we have found a relatively complete characterization of a
large class of devices,

{D = (A, P)| Ais a network of SAFs, P is a programming procedure},

both in terms of the classes of functions computable and the complex-
ity of the devices with respect to the classes of functions computable,
and only when the outcome of such research is related to the computa-
tional abilities of biological neural networks, will we be in a position to
make adequate judgments concerning the biological applicability of such
classes of devices.

A similar set of questions is even more relevant in the investigation and
design of specialized computational devices in which massive parallelism
appears to be either required or at least highly desirable in order to com-
pute certain functions in reasonable amounts of time. There are many
difficult computational problems, however, such as visual processing and
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speech understanding, in which the classical approach of employing se-
quential devices and standard analysis of sequential algorithms, has so
far failed to yield major results in terms of systems able to solve the
problems in reasonable amounts of time. Furthermore, the technology
f'wailable for constructing ever-faster sequential devices is now approach-
Ing a state in which the laws of physics are appearing as bounds on the
speed of such devices.

On the other hand, approaches to such problems that involve the use
of both massively parallel systems of relatively simple processing units
jcmd programming procedures based on “learning” appear to offer signif-
icant promise for major advances in our ability to construct devices that
are able to solve these problems in acceptable amounts of time. Such de-
vices will probably prove to be of major significance, for example, in the
construction of “intelligent” mobile robots. Hence it is again important
to characterize the class of functions that a given device D = (A4, P) is
capable of computing, and how efficiently such functions are computed,
in order to design and construct specialized devices for solving difficult
problems.

We believe, therefore, that it is important to emphasize the need for
a theoretical basis for the models of computation described in this pa-
per. Such a basis, which may be provided in terms of the approach to
networks of SAFs that we have stated above, permits a more rational
approach both to the construction of models of neurophysiological phe-
nomena and to the design and construction of specialized computing de-
vices that require massive parallelism. This point of view is particularly

significant in view of the recent profusion of empirical results concerning
such computation.

Special classes of SAF networks

It is evident that one may define many special classes of networks of
SAFs by placing constraints on both the nature of the SAFs involved
and the nature of the network connecting the SAFs. For example, we
may place constraints on: ’

(a) the matrix of connectivity coefficients T = {,};

(b) the response of the computing units in the system. In the case of
SAFs in general, this involves specifying the class of SAFs to be used
while in the case of LTFs, this involves specifying the set of thresholci

val‘ue‘s {6:}. Fgrfzhermore, one may specify whether the response of the
unit 1s deterministic, as in the case of LTFs, or stochastic, as in the case
of some classes of SAFs;

(c) the protocols that determine when a given LTF will “compute”;
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(d) the relative speeds of computation within the SAFs and the rela-
tive speeds of communication between the SAFs.

We will term any such set of constraints A the “architecture” of the
device. We now briefly characterize a few of the more significant types
of constraint that have been employed in the analysis of networks of
SAFs.

Concerning the matrix T of connectivity values, we may classify dif-
ferent topologies of connectivity among the SAFs (in terms of the set of
pairs of SAFs for which ¢;; = 0). It is of particular interest to distinguish
between locally connected systems and more globally connected systems
as well as between systems in which feedback between SAFs is permitted
(directly or indirectly) and systems in which only feedforward is permit-
ted. It is also of interest to classify systems on the basis of the values of
the non-zero t;; and in particular to distinguish systems on the basis of
whether or not the ¢;; are symmetric. The nature of the matrix T, as
we note below, may be quite important in determining both the class of
functions computable by a network of SAFs and on the complexity of
computation.

Concerning the protocols that determine when a given unit will com-
pute, we may differentiate continuous response (as in the case of many
SAFs investigated) from discrete response (as in the case of networks of
LTFs). For networks of LTFs in particular, we may distinguish between
synchronous and asynchronous systems. A synchronous system is one
in which each of the LTFs execute simultaneously, typically driven by
some clock in the system. In asynchronous systems of LTFs, the units
execute at different times. There are various protocols that may be used
to determine when a given LTF will execute. For example, each LTF
may execute at times that are randomly selected by the unit itself, or
each LTF may execute at times that are determined by the execution of
at least one unit that is connected by a non-zero t;; to the unit in ques-
tion. As we note below, the execution protocols may be quite important
in determining which functions a given architecture of device is capable
of computing.

Classes of functions computable by networks of SAFs

All of the devices that we consider in this paper may be viewed as
mapping a binary string of length n into a one-parameter family of bi-
nary strings of varying length. In the case of networks of LTFs, however,
an initial string may be mapped into a sequence of strings of different
lengths. The length of the sequence may be finite or infinite. If the se-
quence is of finite length and terminates with a binary string of length
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m, then the computation is convergent and the device computes a func-
tion from binary strings of length n to binary strings of length m. In
particular, the lengths m = 1 and m = n are cases of special interest,
with the case m = 1 corresponding to the ¢lass of boolean functions.
While a given set of constraints on a network of SAFs defines the class
of functions computable by the device, it will in all probability prove
to be an intractable problem to determine such a class in the general
case. From the experience gathered in the cases examined below, a more
tractable task involves determining the class of functions computable
using a specific architecture A in conjunction with a given procedure P.
The procedure P may be employed, for example, to specify the matrix
T = {t;;} and the set of biases {6;}. The procedure P will, in general,
depend on the class of functions that one wishes the device to compute.
It is important to emphasize that one should attempt to specify the
class of functions computable by any device D = (A, P) in terms of the

pair (A, P), rather than purely in terms of the architecture A of the
device.

Programming networks of SAFs

It follows that a question of major significance relating to any given
class of SAF networks, and in particular to very large networks, concerns
the procedures that may be employed for programming the device in
order to compute a specific function. As noted above, such programming
generally involves the choice of the matrix 7' and a set of biases {§;}.
There are some cases (see below) in which the matrix T can be written
down upon inspection or after some relatively simple analysis of the
function to be computed. There are other cases in which it is apparently
eagier to invoke some (iterative) learning procedure P by which the
device comes to learn the nature of the matrix T from examples of the
class of functions to be computed. Questions concerning the existence
and construction of powerful, iterative learning procedures for systems
of SAFs are of major significance from a computational point of view.

Computational complexity and networks of SAFs

It is important to emphasize the need for an understanding of com-
putational complexity issues for networks of SAFs. The formalization of
this concept is not only interesting from a purely theoretical point of
view, but also important in terms of applications. For example, char-
acterizing the computation of certain classes of functions on networks
of SAFs in terms of an appropriate measure of computational complex-
ity has practical implications for the design and production of analog
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VLSI that may be used for visual processing and speech understanding
in robotic devices.

With the advent of the sequential computer, the analysis of the com-
plexity of computations and the study of hierarchies of language classes
brought to the fore a formal theory of complexity and a correspondence
between complexity classes of languages and functions computable by re-
stricted versions of the Turing Machine (TM) model. The interpretation
of decision problems as languages over a finite alphabet under a suitable
encoding scheme allows such problems to be viewed as the computa-
tion of the characteristic function of the language of “yes” instances of
the problem. Futhermore, the identification of classes of functions that
are in principle computable by TMs but that, from a practical point
of view, seem to require unacceptable amounts of time and/or space
for their computation, initiated a fruitful study into the separation of
decision problems into polynomial and exponential classes, as well as a
distinction between deterministic and nondeterministic computations.

The simplest class of languages, regular expressions, were shown to
capture the power of McCulloch—Pitts nerve nets by Kleene [6]. The
corresponding, restricted TM in this case is the finite automaton (deter-
ministic or nondeterministic).

The class of machines with a pushdown stack and finite control, like
finite automata, corresponds in the deterministic case to deterministic
context-free languages and in the non-deterministic case to context-free
languages. Allowing the TM only an amount of tape linear in the length
of the input string yields context-sensitive languages. Further up in the
hierarchy are recursive functions (corresponding to recursive sets) and
the full computing power of unrestricted TM (deterministic or nondeter-
ministic) defines the class of partially recursive functions (corresponding
to recursively enumerable sets and phrase structure grammars).

Certain other restrictions on the TMs, however, do not reduce its
computing power. If the input alphabet is not restricted, for instance,
recursively enumerable sets can be recognized by a TM with only three
states. Similarly, TMs with only a binary alphabet and a single tape can
be shown to be as powerful as the unrestricted model.

Complexity issues in the case of networks of SAFs are more difficult
to define precisely. While the number of iterations required by a given
device D = (A, P) to converge to a solution, as a function of the length
of the input string, is an obvious measure of “time” complexity, it may
prove to be an extremely difficult quantity to analyze in general. Fur-
thermore, in the instances of networks of SAFs that are programmed
with the use of learning procedures, any realistic time-complexity mea-
sure for such a device should involve the running time of the learning
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procedure itself. This is because even in the case of simple LTF devices
for which there exist effective learning algorithms, the procedure may
require exponential time in the size of the input string to terminate [7].
Similarly, learning algorithms that employ probabilistic hill-climbing al-
gorithms may require exponential time in the worst case. It is possible
to define simulation complexity of a network as the time required to sim-
ulate a network computation on a serial device. Note that this measure
is dependent on simulation techniques.

The question of the spatial complexity of a given device D = (A, P)
with respect to a given class of functions is also a problem of great in-
terest. In the case of convergent computations (with the device mapping
an n-bit string into an m-bit string) it is natural to use as a measure
of computational complexity the manner in which the number of SAFs
required to compute a given class of functions increases as the length of
the input string to the device. Since the complexity of a network in terms
of connections required is dependent on the particular implementation
employed, spatial (or hardware) complexity for networks is similar to the
time complexity of sequential algorithms. With this analogy in mind, we
may apply the usual distinction between exponential and polynomial hi-
erarchies of sequential algorithms to the hardware complexity of neural
networks.

The classes of device considered

In the present paper, we examine a small set of classes of SAF net-
works, concentrating in particular on networks of LTFs, and associated
programming procedures. We examine each in terms of the computa-
tional approach stated above. The devices that we examine include:

(a) the perceptron (LTFs);
(b) the generalized feedforward device (SAFs);
(c) the Hopfield device (LTFs and SAFs);

We will also briefly examine several variants of the three classes of net-
works listed above, and investigate the various computational questions
in relation to such devices.

2. SPECIAL CLASSES OF NETWORKS OF SAFS
Perceptrons

(a) Architecture

In the classification of neural networks in terms of their architecture,
the simplest and probably the best understood LTF device is the per-
ceptron. In addition to the simplicity of 1its dynamics, the architecture
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of the perceptron does not include multilayers or feedback. Due to the
limited nature of the computing power of the processing units and the
simplicity of the topology of the device, an essentially comprehensive
analysis of the class of functions that they are capable of computing is
available.

Perceptrons in their simplest form were introduced by Rosenblatt 12].
In their neuron-like assembly structure, they are similar to McCulloch—
Pitts nerve nets [1]. Although they were proposed to account for, and to
pave the way to an understanding of, simple aspects of nervous activity,
they were not meant to be precise and faithful models of neurophysio-
logical systems.

As a mathematical model, a perceptron ¢ is an extremely simple
network of LTFs, consisting of three basic components:

(i) A matrix of binary inputs 1z -+ - T (or “retina”);

(ii) A set of LTFs vi,va,...,vN (or predicates in the most general
case) with fixed connections to subsets of the retina (“feature detec-
tors” );

(iii) An LTF with modifiable connection weights to these predicates
(a “decision unit”).

Thus the perceptron model is characterized by feed-forward connections
and a single layer of modifiable weights. In the simplest case where
n = N and v; = z;, the processing units themselves can be viewed as
the input layer. Then 1 becomes a single LTF. This is the classical model
of an n-input neuron or Rosenblatt’s simple perceptron.

In the general case, each processing unit v; of the perceptron may be
viewed as a boolean function that depends on some fixed small subset
of the retina. The activation value of these processing units is then the
value of the function v;, which is either O or 1. The device responds to
an input [ with the output of ¢ = 1 or ¢(I) = 0, depending on whether

Zvj(f)tj > 0

Here t; is the strength of the connection between the unit v; and the
decision unit, and @ is the threshold of the device. Thus ¢ is a special
type of a boolean function. It separates the image of the vector valued
function v = (vy,vz,...,vy) defined on the retina by means of the N
dimensional hyperplane defined by

{xe EN|x-t =16}

(b) Programming the perceptron
Supervised learning is possible for the perceptron by using a variant of
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the Hebbian rule (8] to adjust the weights ¢; of the synaptic connections.
The algorithm that achieves this is the perceptron convergence procedure
of Rosenblatt [2]. More precisely, suppose that f is a boolean function
defined on the retina, which is 1 or 0 depending on whether or not
ST x;c; > 6 for some vector ¢ and a constant §. Put A = f~1(1) and
B = f71(0) . Then the sets A and B are linearly separable. It is then
possible to construct a perceptron with processing units given by v; = z;
that computes f in an iterative manner as follows: starting with an
arbitrary initial weight vector w, and a pattern [ for which ¢(I) # f(I)
, the value of the weight w; is increased if ] € A and v; = 1, and
decreased if I € B and v;([) = 1 for¢ = 1,2,...,N. Given that the two
sets A and B are linearly separable, then cycling through the patterns
I will result in a vector of weights w for which ¢ = f in a finite number
of steps.

(c) Functions computable by the perceptron

By the perceptron convergence theorem, only linearly separable func-
tions are computable by simple perceptrons. On the other hand, any
boolean function f can be computed by a perceptron in trivial ways if
we allow a larger set of predicates v;. For instance, we can take one of
the v;s to be f itself. Alternately, setting for each subset S of the retina

'US:Hilti H(l—zj)

€S JES®

we can trivially define a perceptron that computes f by linear inequality

> us()f(S) >0 (4)
s

Thus in theory, if no restrictions are put on the power of the v;s, the
device becomes boolean complete. Clearly, in this generality, the original
idea of parallelism is lost, and in the above cases the global properties

of the given function are not computed from local information.
Therefore, the question here is not one of pure existence but: what
classes of functions are computable given some restrictions on the device
and how economically can this be done with the given restrictions? The
economy in question here can be considered in terms of the complexity
of the connections, the computing power of the individual v;s, and the
magnitude of the weights (and the time taken by the learning algorithm
involved). More specifically, we would like to restrict the total number
of connections of LTFs to a polynomial in the size of the input binary
string. Note that the above construction for ¢ to compute an arbitrary
f requires an exponential number of processing units and connections
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in the size of the input pattern. An interesting issue then is the class of
functions computable given such restrictions on the device.

A case in point for the limitations of the simple perceptron is the
computation of the logical function XOR. For the XOR function, two

of the least similar input patterns are required to generate identical
outputs as given below:

L1 X2 outpul
00 0
10 1
01 1
11 0

Geometrically, it is easy to see that the two sets of input vectors {00,11}
and {01,10} are not linearly separable (Figure 2(a)).

% ®  Output=0
B OQutput=1
01lg D 11
> . >
00 10 X
(a) XOR in 2-Space
Xy ® Output=0
010 [=] output=1
L
aj
111
N =4 >
000 100 X1
X%,
(b) XOR in 3-Space

Figure 2 XOR function in 2-space and 3-space

Algebraically, the existence of a simple perceptron 1 to compute XOR
is equivalent to the existence of a solution to the system of inequalities
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0<49
t1 >0
to, >0
tp ity <0

which is clearly impossible. Note that by the same token a simple per-
ceptron is also unable to compute the function XOR.

If we are allowed to use higher order predicates, the XOR problem
has an easy solution. For example, searching for a second order predicate
of the form z1t; + zoty + Ty x9t1s > 8 requires the existence of a solution
to the system of linear inequalities

0<9
ty >0
ty > 0
t1+tg ttp <0

One possible solution is given by § =0, ¢; = t; = 1, and t;3 = —2. This
procedure corresponds to lifting the given function to three-dimensional
space via the embedding given in Figure 2(b) with coordinate axes
T1,T3,T1T2. Viewed in this manner, XO R becomes linearly separable in
accordance with (4). However, in this case the resulting perceptron that
can learn to compute XOR is no longer simple and requires a “hidden
unit”.

Generalizing from the example of XOR, it it possible to define a
hierarchy of the class of boolean functions in terms of computability
by perceptrons by considering the least dimensional space required in
which a boolean function f becomes linearly separable. This and related
concepts were made precise by Minsky and Papert [7].

(d) Issues of complexity for the perceptron

An in-depth analysis of the computing power of the general perceptron
was performed in the sixties by Minsky and Papert [7]. This extensive
analysis spans restrictions on the class of functions v; and the topology
of the device in terms of the connectivities, along with questions of mag-
nitude of the weights required and the convergence rate of the learning
procedure for a wide variety of functions. The following notation proves
of value when we briefly discuss some of their results concerning the
power of perceptrons in terms of order. For a subset S of the retina, let

xs = Hicsz;
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Then by (4), any perceptron 1 has a representation of the form

ZXS(.)wS >0 (5)

In this representation, the size of the largest subset S of the retina for
a given ¢ for which the weight wg is nonzero may be called the order
of the perceptron. This can be thought of as the maximun fan-in of the
processing elements of this 4.

For predicates that express geometric properties of plane figures, it
is useful to view the retina as a two-dimensional lattice, and for some
predicates as a torus. Invariance of ¢ under a group of transformations
of the retina translates into a condition on the equality of the coefficients
wg and wr in (5), whenever the subset S is a translate of a subset T by
an element of the group. This is the group invariance theorem of Minsky
and Papert.

As an example, given that the predicate ¢ is of order k and is invariant
under the full symmetry group on the retina, then at least (',:) processing
units must have a fan-in of size k. For the generalization of XOR to n
dimensions (the parity function), Minsky and Papert show further that
the coefficient ws must be nonzero for every subset S of the retina. As a
consequence, the number of nodes plus the number of connections of a
perceptron that can compute the parity of an n-bit string can be shown
to be 2(n2"). Furthermore, the weights of such a perceptron are also
exponential in the size of the input in the sense that the ratio of the
largest one to the smallest one must be Q2(2").

Another function that cannot be computed by perceptrons of constant
order, in particular by simple perceptrons, is connectedness. The ques-
tion here is whether or not there is a path connecting any two points
of a given set S that lies entirely in S. Minsky and Papert showed that
any perceptron that computes connectedness must have order Q(y/n).
Furthermore, the total number of processing units and connections must
again be exponential in n.

Note that as soon as we know that a class of boolean functions is
computable by a perceptron of order k for some constant k, then the
total number of processing units and the number of connections required
is a function of the input size O(n*).

The following results concerning the upper bound on the orders re-
quired to compute the given geometric predicates, furnish some inter-
esting examples of functions computable by perceptrons that are poly-
nomial in size. Here I is a geometric pattern on the retina:

147



outputs
v =2 O m output
SAFs
layers of hidden
units (SAFs)
n input
T T T e ? SAFs
inputs

Figure 3 A multilayer network of SAFs involv-
ing hidden units

(1) Counting predicates “Is the size of I < m?”, “Is the size of I >
m?” are of order 1,

(2) “Is I convez?” is of order < 3;

(3) “Is I a solid rectangle?”, “Is I a hollow rectangle?”, “Is I a solid
square?” | “Is I a hollow square?” are all of order 3;

(4) “Is the BEuler number of [ < m?” has order < 4, “Is the Euler
number of I = m?” has order < 8;

(5) “Is I a circle?” has order 4;

(6) If the retina is a horizontal strip, then “Does I have a symmetry
under reflection about some point?” has order < 4;

The generalized feedforward device

(a) Architecture

While Minsky and Papert [2] discussed generalizations of the percep-
tron to devices with more than two layers of LTFs, they were pessimistic
about whether it would be possible to discover a powerful analogue to
the perceptron learning (or “programming”) procedure. There has been
a recent resurgence of interest in multilayer machines, and one outcome
of this research has been the architecture and the associated “program-
ming” procedures investigated by Le Cun [9], Parker [10] and Rumelhart
et al. [4], which we term the generalized feedforward (GFF) device.

The architecture of the GFF device involves a set of n input units and
a set of m output units. The device also possesses a set of intermediate
layers of units (known as “hidden units”), with each layer containing an
arbitrary number of units (see Figure 3).
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It is course possible to constrain both the number of levels and the
number of hidden units at each level. The device is feedforward in its
operation, with communication between units occurring only from units
at some lower level to units at a higher level. It is possible to constrain the
degree of localness in the feedforward connections between levels: The
machine, like the perceptron, is essentially synchronous in its execution
protocol, although subtle timing considerations may be important when
conections between units span several layers.

The units in the GFF device are not the LTFs defined in (1), but are
SAFs. For example, Rumelhart et al. [4] employ a member of the class
of logistic functions as the function ¢ in (2). Such units were chosen for
reasons of programmability discussed below. As noted above, however,
the LTF is a limiting case of the logistic SAF and it is possible to ap-
proximate an LTF to any required degree of accuracy by varying the
parameter 3 in the logistic function (3). This fact, and evidence pre-
sented below, suggests that many of the important results of Rumelhart
et al. may carry over to systems in which the units are LTFs.

(b) Programming the GFF device

Minsky and Papert [7] noted that, given a sufficient set of hidden units
and the appropriate matrix T = {t;, }, it is possible to find a device that
performs any mapping from input strings to output strings. The main
problem of concern to them was the existence and construction of a
programming procedure P by which the device could be configured to
compute some member of a class of input—output pairs. Rumelhart et
al., however, have investigated a programming procedure by which their
architecture “learns” to compute a large subclass of functions mapping
n-bit strings into m-bit strings.

One successful programming procedure proposed for GFFs is termed
the generalized delta rule [4,11]. It is an essentially iterative procedure
that uses examples of the functions to be computed in order to modify
the elements ¢;; of the matrix T. The procedure is based upon a simpler
procedure known as the Widrow—Huff or “delta” rule [4,11]. The gener-
alized delta rule operates in two phases. During the first phase, an input
is presented to the system and propagated through the network and an
output value is computed for each unit. In the second phase, differences
between actual output values and desired output values are propagated
backwards through the system, starting from the output units. Dur-
ing this backwards propagation the t;;s are modified according to the
generalized delta rule.

The generalized delta rule takes the form:
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Apti; = nbjp0ip (6)

where the change in the connection strength &;; for the pth input—output
pair is given by the product of some coefficient 7, an error term 6,
(which depends in form on whether the unit is an input/output unit or
an internal unit) and a term o;p, which is the output pattern produced
on the presentation of the pth input pattern to the ¢th SAF. The error
terms involve the derivative of the SAF, and for this reason Rumelhart et
al. employed the logistic SAF rather than the LTF, since the derivative
of the LTF becomes infinite at the point of inflection.

Hence the GFF device involves a procedure P that is based on a pro-
cess of steepest descent on a surface in the space of the connectivities
t;;. This surface represents the error measure. An important theoretical
contribution made by the investigators was to show that the derivatives
involved may be computed in an efficient manner. Furthermore, empiri-
cal results indicated that the problem of the procedure becoming stuck
in local minima is irrelevant in a large variety of learning tasks. Another
empirically based fact is that the time to reach a solution in the learn-
ing procedure nearly always decreases with an increase in the number
of hidden units.

Finally we note that since for every network with feedback there is a
corresponding feedforward network with identical behavior over a finite
period of time [7], it is possible to extend the technique to networks
involving feedback. Hence the procedure is able to learn sequences.

(c) Functions computable by the GFF device

It is presently unclear as to the set of functions computable by the
GFF devices, either in general or in terms of the subclass of GFF devices
in which the logistic function response approaches the limit of the step
function response of an LTF. There are no mathematical proofs con-
cerning the class of “programmable” functions under the GFF learning
procedure, and all conclusions are based upon a large number of com-
putational experiments carried out, for example, by Rumelhart et al.
[4]. As of the present writing, however, the device has yet to fail in this
regard in any significant manner.

The functions that the GFF device has learned to compute include,
among others:

(1) the XOR (exclusive or) function;
(2) the parity testing function;

(3) the encoding function;

(4) the symmetry testing function;
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(5) the binary addition function;
(6) the negation testing function;
(7) the function for discriminating between alphabetic characters;

In Figure 4 we illustrate two of the solutions to the XOR function that
were learned by the GFF device [4]. The two solutions correspond to
different constraints on the topology of the connections between the
units of the device.

output
unit
£-0.4i
4.2 H 4.2
¢ hidden }
un@ ".‘
wd o '~.,~ .
L -6.4 8.4 " N .
input input
unit unit
(@
output
e unit
65 53
hidden hidden
unit unit
4
8.8
input input
unit unit
(b)

Figure 4 Two solutions to the XOR function
problem as learned by the GFF device (after
Rumelhart et al. [4])
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In Figure 4(a), for example, thesolution represents a case in which
direct connections arepermitted between input and output units.

Since many of these functions are not computable by the simple per-
ceptron, it is of interest to enquire as to the reasons for the increased
computational power of the GFF device. An important point to note
about devices without hidden units, i.e., those composed of only an in-
put and an output layer of units like the perceptron, is that they map
the input patterns directly into the output layer. In such devices, there
is no internal representation of the inputs, and thus similar input pat-
terns tend to generate similar output patterns. This has the advantage
of enabling generalizations from a limited set of input samples by way of
a smoothing out effect, but prevents the device from learning arbitrary
mappings in an economical manner.

Such limitations of the perceptron do not apply to the more general
GFF networks. If layers of hidden units are allowed between the input
and the output units, then the model gains enough power to generate
representations of the input space internally, thereby acquiring the abil-
ity to allow the computation of interesting classes of functions. As noted
below, for example, GFF networks can compute the parity function with
a reasonable number of processing units.

(d) Issues of complexity for the GFF device

Since most of the examples examined by Rumelhart et al. involved
feedforward systems, the natural measure of complexity to use is the rate
at which the required number of hidden units and connections between
such units increase with the number of input and output units. For
several of the problems examined by the investigators, this measure of
complexity is well-defined. However, the minimal number is a function
of the architecture chosen, since one may constrain connections from
spanning more than one level of hidden units.

We now provide some examples of these measures of space complexity.
For the parity testing function (of which the XO R function is a special
case with two inputs), with no direct connections between the n input
units and the output unit permitted, a minimum of n hidden units and
n? 4+ n connections are required. For the symmetry testing function with
n Input units and one output unit, only two hidden units and 2n + 2
connections are required. The encoding function with n input units and
n output units requires log, n hidden units in one layer. Finally, for the
binary addition function, with 2n input units and n + 1 output units,
only n hidden units are sufficient.
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The Hopfield device and generalizations

(a) Architecture ‘

The architecture of the basic Hopfield device and its generalizations
differs from the feedforward networks discussed previously. In particular,
a restricted form of feedback plays an essential role in the computational
dynamics of Hopfield devices. In Hopfield’s original formulation [12], the
device consists of a fully connected network of units, and computations
are accomplished by all units executing in parallel.

A critical constraint on the Hopfield architecture is that the connec-
tion matrix T = {t;;} is required to be symmetric (¢, = t;;). This
symmetry, together with the asynchronous execution protocol, allows
the computational dynamics to be described as a relaxation process in
which a Lyapunov (or “energy”) function E is minimized. When the
computational units in the network are modeled as LTFs or SAFs, the

-energy function is necessarily quadratic. Hence, the Hopfield network is

able to compute classes of functions that may be characterized in terms
of the minima of a certain class of quadratic forms.

A number of alternative architectural constraints have been imposed
on Hopfield devices. These constraints mainly concern the nature of the
response function of the computational units. Three alternatives have
been studied extensively:

.

(1) The basic device studied by Hopfield [12] employs deterministic
LTFs (1) executing in an asynchronous mode. Typically, the execution
of each unit occurs randomly in time. The energy function E may be
expressed as:

=- (% > tiguivg + 9¢“¢>

It is easy to show that the dynamics given by (1) minimize E. First, we
note that U; in (1) can be written as

U,; — —dE/dvi

and that the change in energy can therefore be written as

AE = -Ui . A’U,L'
With the LTF update rule of (1),

Av; = (sin(T;) + 1)

it is clear that & will decrease monotonically as the LTFs execute. Since
E is bounded, a state of minimum energy will be reached.
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(ii) Networks in which the units are similar to LTFs but with a stochas-
tic response function, have been employed in the so-called Boltzmann
machine [13]. The computational dynamics of such systems differ from
those of a network of LTFs in that the response of the 1th unit v; is
a probabilistic function of the input U;. The probability distribution
function g is typically sigmoidal and involves a scaling parameter (or
“temperature”’) T. A common choice for this distribution is the logistic
function:

9(U:) = 3(1+ tanh(8U;/2))  B=1/T
The deterministic case (1) may be viewed as a limiting case of the
stochastic case (ii) in which 7' = 0.

Such systems have been extensively studied by physicists, because of
their relationship to Ising spin systems at finite temperature [3,14-18].
In many computations employing networks of stochastic LTF's, includ-
ing all those implemented as Boltzmann machines, a simulated annealing
procedure [19,20] is employed, whereby the temperature T is slowly low-
ered as the computation proceeds. The annealing procedure commences
at an initially high temperature, allowing the system to find good ap-
proximations to the global minimum of the energy function E. As the
temperature is lowered toward zero, these approximate solutions tend
to converge to the global energy minimum provided that the anneal-
ing schedule is slow enough. Annealing that proceeds faster than a well
specified schedule [21] will result in the network finding a local, rather
than a global minimum of the energy.

(iii) Hopfield devices have been studied in which the computational
units are SAFs [22]. The response functions of these units are deter-
ministic and continuous in time, with the states of all units evolving
simultaneously. If the response function g is taken to be the logistic
function (3), as in the case of the GFF device, 3 represents the “gain”
of a unit, rather than an inverse temperature. A unit g; can be thought
of as an operational amplifier (op amp). A network can then be realized
as an analog electronic circuit comprised of op amps connected by resis-
tors with conductances t;; and biased by input currents 6, (see Figure
5). "

The appropriate circuit equations are a set of coupled differential equa-
tions, which express the conservation of current:

dUi Ui

Vbias <
—Vbias 8 S
1 ¢
P
VR
T —5 Va
21 J‘VAI
T11 g V1
U+ U2 J
g1 92
N
H ) J
P

Figure 5 Analog implementation of a continu-
ous Hopfield device

Here U; represents the input current to op amp ¢, C"i the input capa}c;—

itance. and R; the total input resistance. The total input remsﬁance- g
’ 1 R

depends upon the op amp input resistance p; and the connections t;;:

1 1
AP
1
b= R
Experimental VLSI implementations descr

already been constructed. o
As in the case of the basic Hopfield device (i), these analog networks

e characterized in terms of a quadratic energy function [22]:

ibed by these equations have

may also b

vi
E= '%Ztijvivj +Z(‘}£> /0 g; H(v)dv — z;oi”i
273 1

A proof similar to that given above shows that the.a circult equations
guarantee convergence to a stable minimum energy, 1.€.:

",

d =
dE _ o, % _gyy
dt dt

The reader is referred to Hopfield’s original work [12,22] for a beautiful,
and more detailed, discussion.

In computational applications, the state o
a boolean interpretation. For example, any out

f a network of SAFs is given
put greater than 0.9 may
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be interpreted as 1 and any output less than 0.1 may be interpreted as
0, with intermediate states being left as indeterminate. In the infinite
gain limit 8 = oo, the SAFs become LTFs. This fact is sometimes used
in analog networks to enforce a discrete, boolean representation as a
calculation converges. The process of slowly increasing the gain during
a computation is analogous to the process of simulated annealing in the
stochastic, discrete case (ii).

As a concrete example, two op amps may be connected with mutual
inhibition to form a bistable device known as a flip-flop. For finite gain,
the attractors or energy minima [0,1] and [1,0] will not be precisely at the
corners of the two-dimensional state space. Rather, they will lie on the
interior of the space. Figure 6 (adapted from ref. 22) shows the energy
contours and “down-hill” gradients for such a system. If the op amp
gain is increased, the two attractors will move closer to the corners; if
the gain is decreased, they will move closer to the center and eventually

coalesce.
B T i b ety e e e mefn —pp . e P e

G e = oo e G m G e e e e
- P P e P P —P —B —p —b

F 4

e e e a4 t— t— t— o - a— @ o

Figure 6 The flow field and E-contours for a
bi-stable circuit of two amplifiers (flip—flop)
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(b) Programming the Hopfield device

Programming a Hopfield device consists of first choosing a represen-
tation for the problem of interest (i.e., assigning a meaning to the state
of each unit 1) and then specifying the pattern of connections t;; and
input biases 4.

The simplest and most elegant approach involves selecting a quadratic
energy function E(vy,...,v,), which represents the constraints on the
optimization problem. One may then extract the connections #;; and
biases §; from the energy function. Alternative approaches determine the
connection weights and biases directly, without reference to an energy
function, via various “supervised learning” or “encoding” algorithms.

(c) Functions computable by Hopfield devices

As noted above, the class of functions computable by a Hopfield de-
vice may be defined implicitly in terms of the minima of a symmetric
quadratic form. It is therefore quite difficult to provide an explicit char-
acterization of this class of functions. Hence we discuss three specific
examples of functions computable by Hopfield devices. Each example
corresponds, respectively, to a function that is computable by one of the
three variants of the Hopfield device described above. These examples
include associative memory functions, the XO R function, and functions
that represent solutions to the traveling salesman problem.

(1) Associative memory

Associative memory was the first application of Hopfield devices. Hop-
field’s original architecture used symmetric 7 and asynchronously exe-
cuting LTFs [12], although associative memories employing SAFs have
since been studied extensively and implemented in analog VLSI.

The task of associative memory is to retrieve a correct and complete
memory vector v$ from a set of stored memories when provided with an
incomplete or imperfect cue for that vector. It is easy to write down an
energy function for a Hopfield device that has local minima correspond-
ing to a set of m uncorrelated stored memories v°, s =1,2,...,m. One
such energy function is given by:

"

E=- Z(Z(zvf —1)- (2w - 1)>2

3 =1
The connections and biases correspond to the quadratic and linear terms
in E; the resulting connection matrix 7T is given by the Hebbian [8] outer
product rule:

ti; = — 2(21;5 —1)- (203 - 1)

3
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A number of more complicated encoding or learning algorithms have
been applied to the Hopfield associative memory, such as the adaline, ge-
ometric, pseudo-inverse, and hetero-associative rules [9,16,23-25|. These
tend to provide better network performance in terms of capacity and/or
reliability of recall, depending upon the correlations contained in the
stored vectors and the order in which vectors are learned. One approach,
which is particularly interesting because of its generality, is the so-called
master /slave formalism due to Lapedes and Farber [26] in which the t;;s

are determined by minimizing an energy function with respect to a fixed
set of stored memories {v°®}:

BT) = 305 (0 - tiyul)?

8 3=

The t;;s calculated in this manner are in general assymetric. By plac-
ing restrictions upon the t;;s one can use the master/slave approach to
program more general architectures. In fact, Lapedes and Farber have
shown that the GFF back-propagation algorithm is a special case of mas-
ter/slave in which the connections ¢;; are restricted to be feed-forward
only.

A very different kind of associative memory based upon internal rep-
resentations (IRs) has recently been proposed by Baum et al. [27]. Al-
though originally intended for feed-forward networks, it is possible to
generalize IRs to networks with symmetric connections. Networks that
utilize IRs offer much greater capacity than networks based upon the
outer product rule. They are also more easily programmed. An internal
representation basically labels each stored memory. In standard digital
technology, such labels are called addresses. For associative memory, a
unary or a sparse, distributed representation is used. It is desired that
the label representation be sparse in order to avoid the interference be-
tween memories, which is inherent in the outer product rule.

Memories are stored as connections between the internal representa-
tlon units B* and the standard memory vector units v;. The energy
function for such a memory can be expressed in a general form as:

-FE = Z R*S*P y2v; + quadratic constraints on R®

A particular internal representation is chosen by specifying the sparse
representation matrix S*? and a set of appropriate constraint terms.
(ii) Computing XOR
The problem of teaching a network to learn how to compute the XOR
function has been studied as a “toy” problem by Hinton and Sejnowski
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on the Boltzmann machine [13,28]. The network for these problems has
one input layer of two units, one intermediate unit, and one output
unit. The procedure involves supervised learning in which the network
is taught using sets of input—output pairs. During learning, an algorithm
based upon statistics and information theory called G-minimization is
used to adjust the connections between units. The network gradually
develops an internal representation for computing the function correctly.

(iii) Traveling salesman problem

The problem of programming a network to find good, but not neces-
sarily optimal, solutions to the traveling salesman problem (TSP) has
been studied by Hopfield and Tank [29], Tesauro [30], and Moody [31].
This problem, which belongs to a class of combinatorially intractable
(NP-complete) problems [32], is to find the shortest closed path con-
necting a set of n destinations. The approach has been to choose first
a boolean representation for the problem (assign meaning to the states
of the computing units), and then write down a quadratic form whose
minima represent appropriate solutions. This quadratic form includes
a cost function (tour length) and a set of constraints that insure that
only valid tours are found. The t;;s and 6;s are then extracted from this
quadratic form.

The TSP solution of Hopfield and Tank has been implemented using
continuous dynamics and uses the “tour position” representation. In
this representation, n? units are required for n destinations. Each unit
carries two indices, one for destination d and one for tour position p.
A valid tour, where each city is visited once and only once, is given by
a permutation matrix in the indices (d, p). Figure 7, adapted from ref.
29, illustrates the matrix of analog output voltages v; at an intermediate
stage in a ten-destination TSP calculation, along with the final tour that
the network converged to.

The approach to TSP taken by Tesauro uses the link representation,
which offers some advantages for spatial complexity and hardware im-
plementations. The link representation requires at least n(n—1)/2 units,
where each unit represents one of the possible connections between des-
tinations. A valid tour contains n links. However, the link representation
has a serious problem: it often produces disconnected tours. In fact, 1t
is impossible using the link representation alone to enforce the global
constraint that tours must be connected using only O(n?) units.

Moody has developed a hybrid representation, which captures the
complexity advantages of the link representation, but also enforces the
global constraint that tours be connected in a way analogous to that
used in the tour position representation. Moody’s solution uses directed
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tour for 10-city TSP

links and a special set of hidden units for a total of O(n?) units. TSP in
the hybrid representation has been implemented using both continuous
and stochastic dynamics.

(d) Issues of complexity for Hopfield devices

It is often possible to provide an upper bound on the computational
complexity associated with the computation of a given function on some
Hopfield device, using the nurber of units and connections required as
the measures of complexity. The computation of a function on a Hopfield
device is equivalent to finding a representation for the problem along
with a symmetric quadratic form whose minima constitute a solution
to the problem. Thus, the complexity of a solution measured in number

of units or connections required is very dependent upon the particular
network implementation chosen.

(i) For the Hopfield associative memory, the spatial complexity is O(n)
units and O(n?) connections, where n is the number of binary variables
in the input string. While spatial complexity is of interest, the real issue
for associative memory is storage capacity. The capacity m, of the net-
work for perfect recall of uncorrelated memories is: m, ~ n/(4log, n)
[33]. If perfect recall is not needed, the capacity for uncorrelated mem-
ories is better: my a2 .0.14n [12,14,15]. Thus, the network can store only
n-my bits. However, since each connection must have a logical depth of
(log, my, +1) bits in order to store m,, memories using the outer product
rule, the connections could in principle represent at least n? log, m,, bits
of information. Thus, the bit efficiency of the memory is rather low.
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For the IR associative memory [27|, the spatial complexity is O(n+r)
units and O(n-r) connections. Here, r is the number of internal units B*.
If the internal representation is unary, then the capacity is n-r for perfect
recall; this requires only one trit or two bits per connection. If more bits
per connection are allowed, and a sparse, distributed representation is
adopted, the storage capacity can be very much greater.

(ii) For the XOR problem, a Boltzmann machine network was able to
learn to compute XO R correctly with the minimum required number of
units and connections.

(iii) For the traveling salesman problem, Hopfield and Tank [29] have
computed approximate solutions using n? units and O(n®) connections,
for n destinations. In contrast, the hybrid representation [31] has yielded
valid solutions with a network having O(n?) units and only O(n?) con-
nections.

As mentioned in the introduction, it is possible to define a simulation
complexity for networks that allows comparison of network calculations
to standard serial calculations. This has been discussed for Hopfield type
networks with particular reference to the TSP [31]. The simulation com-
plexity is proportional to the actual time required to simulate a network
calculation on a serial machine. Precisely, it is defined as the number
of connections in the network times the number of network updates re-
quired for convergence. In the case of discrete networks, one network
update time occurs after n asynchronous unit updates, where n is the
number of units in the network. For continuous networks, a network
update time is the RC time constant of the circuit. While the num-
ber of connections in a given network is fixed, the number of network
update times required for convergence is not a constant quantity; it de-
pends upon the dynamics used, the initial state of the network, and
the quality of the solution desired. For example, simulated annealing re-
quires exponentially slow convergence to guarantee reaching the global
minimum [21]. However, quite often, a good, but not globally optimum
solution is desired. Under these circumstances, convergence time is typ-
ically constant, logarithmic, or linear with problem size. Although time
complexity is the most comprehensive measure of network complexity,
a Tull discussion with examples is beyond the scope of this paper.

3. CONCLUSIONS

We may draw the following general conclusions from the preceding
discussion:

(a) 1t is possible to define a large class of parallel computational de-
vices, each composed of a massive number of simple processing units,
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by prescribing an architecture A for each device and a procedure P by
which the system is programmed to compute a given class of functions.
The architecture of the device may be specified in terms of a number
of parameters that represent a set of constraints concerning the nature
of the computational units of the device, the nature of the connections
between the units, and the execution protocols of the units. Questions
of computational interest concerning such devices include the class of
functions that a given device D = (A, P) is capable of computing and
the complexity of the associated computations.

(b) With the appropriate use of hidden units, feedback between units
and learning procedures, it is now possible to construct devices whose
computational power is significantly greater than that of the earlier mod-
els.

(c) Classical computational approaches, involving the construction
and analysis of sequential algorithms to difficult computational prob-
lems such as visual processing and speech understanding, have yet to
achieve much success. There is a growing body of evidence, however,
that such problems may be amenable to solution on the classes of de-
vice discussed in this paper. It is therefore of critical importance that
a formal basis for studying both the architectures and procedures that
define such devices be established. This basis should have as a major
goal the task of understanding the classes of functions computable by
such devices and the complexity of the resulting computations.

(d) As both the architectures and the procedures of such devices
become increasingly complex, new approaches to the investigation of
computational problems will probably be necessary. Some of these ap-
proaches will require cross disciplinary analytical tools not generally
employed by computer scientists, such as statistical mechanics and dy-
namical systems. Furthermore, at this stage of development, an emphasis
on experimental aspects of computer science also seems necessary.

We believe that such a program of investigation will have profound
impacts both on the study of neurophysiological structures and processes

and on the design and implementation of massively parallel computing
devices.
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