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Abstract 

We report on the use of the topology preserving properties of Feature Maps for 
speaker independent isolated digit recognition. The results of recognition experi- 
ments indicate that Feature Maps can be effectively used for input normalization, 
which is an important concern for practical implementations of neural network- 
based classifiers. Recognition rates can be increased when a third Feature Map 
is trained to integrate the responses of two Feature Maps, each trained with dif- 
ferent transducer-level features. Despite the use of a rudimentary classification 
scheme, recognition rates exceeded 97 pment for integrated, Feature Map normal- 
ized, transducer-level features. 

1. Introduction 
Feature Maps, as developed by Kohonen [9], have proven to be useful and versatile neural net- 
works, with applications ranging from clustering/classification to control and to optimization. 
See [ll] for a thorough review. 

Feature Maps are most often used for clustering, i.e. for producing symbols. Recently, 
however, there has been an interest in exploring the use of the much-heralded topology 
preserving capabilities of the Feature Maps for practical applications [l] [16]. The essence of 
topology preservation is that, after training, the weights of a Feature Map are arranged such 
that their location on the Map preserves information about the topological relationships in the 
input space. 

In this paper we present the results of speaker independent isolated digit recognition ex- 
periments which were designed to explore the use of the topology preservation capability 
of Feature Maps. First, we propose a training strategy which both preserves topology and 
forms a good representation of the input space. Second, we explore the use of Feature Maps 
for input pattern normalization, which is a critical issue when applying neural networks to 
practical problems. Finally, we explore the use of Feature Maps to integrate information from 
different somes. 

n1-677 



Figure 1: Three cases of nearest neighbor neighborhoods (shown as a) about a given unit 
(shown as 0) in a 2-dimensional Feature Map: a) +adjacent rectangular tesselation, b) &adjacent 
rectangular tesselation, c) &adjacent hexagonal tesselation. In this paper &adjacent rectangular 
neighborhoods are used. 

2 Feature Map Learning 
A Feature Map consists of neuron-like units in a bounded ddimensional space: typically d = 1 
or d = 2. Usually the units are placed uniformly on the map, and, for the two dimensional 
case, with either a rectangular or hexagonal tessellation. Rgure 2 illustrates rectangular and 
hexagonal tesselations, as well as examples of nearest-neighbor neighborhoods. 

For Kohonen learning, the map is trained iteratively, with each unit ui updating its weight 
vector yi. For each iteration, Kohonen’s Feature Map training algorithm proceeds as follows: 

1. Find the unit U whose weight vector is closest to the input vector 2. 

2. Update the weight vectors of unit U and all units in the neighborhood of U as a convex combination 
of the input vector z and the corresponding weight vector, i.e. 

(1 - a , ) y j ( t )  + at z if uj E neighborhood (U), 
otherwise y j ( t  + 1) = 

with 0 < at < 1. Herein we only consider Euclidean distance. Furthermore, only the neigh- 
borhood relationships between the units is used to determine whether a weight is modified 
or not. These constraints are ubiquitous in the literature (e.g. [l] [9] [lo] [ll] [16]). In general, 
other distance measures may be used, and the magnitude of the weight changes can vary as 
a function of the distance between the units on the Feature Map. 

Note that when an input is presented, a given unit U is updated if and only if the closest 
unit is in U’S neighborhood. Thus with Kohonen learning, the expected value of a unit‘s weight 
vector is the centroid of all input patterns for which either the unit or one of its neighbors wins 
the competition. 

3 Experiments 
All experiments were conducted using the isolated digits subset of the studio quality TI 
Connected Digit Database [12]. The sampled data was extracted from the 10 Khz sampling 
rate distribution, and a noiseadaptive endpoint detection algorithm described in [8] was used 
to determine the endpoints of the utterances. The experiments used utterances from either 
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men, women, or both (men and women). The data from 55 men and 57 women, and another 
54 men and 57 women, were used to construct the training sets and testing sets, respectively. 
Each person uttered two repetitions of each of the 11 digits (”ze”’ through ”nine”, plus ”oh”). 
The standard partitioning of data into training and testing sets was used, as given in [13]. 

3.1 Feature Generation 
Transducerlevel features were generated from the sampled data, using a frame length of 200 
samples and a shift of 100 samples per frame. The features were a critical-band filterbank, 
zemss ing  rate, and log mx energy. The filterbank was FET-based, with seventeen digital 
filters ecpally spaced on a bark scale from 99 Hz to 5000 Hz [q. 

Various square1 Feature Maps were then trained [9], frame by frame, using the transducer- 
level features. Inputs were either the seventeen critical band filterbank responses, or both the 
zerocrossing rate and log rms energy. Following [3] and [lo], each of the the inputs was also 
normalized to constant length, and the resultant data was used to train additional Feature 
Maps. In all cases the outputs of a Feature Map consisted of the Cartesian coordinates of the 
best matching unit‘s location on the Feature Map. 

To test the utility of using line-segment Feature Maps to normalize each component of the 
input vector, as opposed to the constant length input normalization used above, we trained 
line-segment Feature Maps, each on a single component of a (unnormalized) transducer-level 
feature. The output of the line-segment feature map was the position of the best matching 
unit on the line segment. Then we used the resultant line-segment Feature Map responses to 
construct input patterns for square Feature Maps. 

Finally, to explore their feature integration capabilities, Feature Maps were trained using 
the outputs of pairs of the previously trained Feature Maps. 

3.2 Feature Map Training Strategy 
Torkkola and Kokkonen have independently studied the direct use of topology preservation 
for speech recognition [16]. Their results, when compared to using Feature Maps to produce 
symbols [lo], were unfavorable. Upon inspection, however, one finds that Feature Maps 
were trained with the final stages of training including the nearest neighbors of the best 
matching unit. the focus was to maintain good topology preservation. Such Feature Map 
training strategies produce poor codebooks in a vector quantization sense, however, because 
of the smoothing of codevectors within their respective neighborhoods. So, in [16], topology 
preservation was presumably obtained2, but at the cost of having a codebook which poorly 
represented the input distribution. 

Our viewpoint is that, when using the their topology preserving capabilities, the goal 
of Feature Map learning for recognition of studioquality speech is (ideally) to arrange an 
optimal noiselesschannel VQ codebook on the Feature Map so as to preserve topology. In 
this way the codevectors represent the input space, and topology is preserved. To compare 

‘Hemin a square Feature Msp is two d i m m i d  and has its units arranged in a rectangular tesselation on a unit square, and a b 
w g ” t  Feature Msp is o m  dimensionsl and hes its units mnmged on a unit line segment. Since the position ofthepset matching unit is 
used for finthsr procemiug, a square Feature Msp maps a vector of reals to a finite sub& of [O,l]x[O,l], and a linsasgment Feahua Map 
mrpravectorofrealstoafinitesubeetof 10.11. Inthispaper,aFeatureMapisassumedtobesquareunlsesotherwiaenoted. 

2in [la] thKs is no mention of a measure to determine how well topology is preasrved. See [2] for a discussion of this issm. 
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Representation 
cbfilt 

Length--cMilt 
Feature Map-cbfilt 

zero-lrms 68.4 69.6 71.2 
Length-zero-lrms // ;’:; I 72.7 I 74.3 

Feature Map-zero-lrms 71.5 72.2 

Recognition Rate (?A) 
Both Female Male 
63.9 89.6 91.3 
94.8 94.3 95.2 
95.7 94.1 93.2 

Table 1: Recognition rates for Feature Maps trained on critical band filterbank responses (cbfilt), 
or zerocrossing rate and log rms energy (zero-lrms). “Length” indicates that the inputs were 
normalized to constant length, and “Feature Map” indicates that inputs were normalized using 
line-segment Feature Maps, as explained in Section 2.2. 

these two viewpoints we performed a preliminary experiment, with the male data, using the 
Feature Map normalized critical band filterbank responses as input to another Feature Map, 
and classified patterns using the K nearest neighbor classifier described in Section 3.3. With a 
neighborhood including the best matching unit and its nearest neighbors, the recognition rate 
was only 72.9 percent. When the neighborhood including only the best matching unit, the 
recognition rate increased substantially, to 93.2 percent. Therefore, in subsequent experiments, 
we used a neighborhood consisting of only the closest unit in the final stages of training. 

All square Feature Maps had 400 units, arranged with a 20 x 20 rectangular tesselation 
All linesegment Feature Maps had 101 units. Training always started with neighborhoods 
including all of the units (to initialize the weights to the centroid of the set of input vectors), 
and the size of the neighborhoods were slowly dmased  until the neighborhood consisted of 
a single unit. 

3.3 Classifier 
Since the f m s  of this paper is a comparative study of various strategies for using Feature 
Maps for ASR, we used a simple K nearest neighbor (K”) classifier. We thus had to produce 
fixed length pattern sequences from the Feature Map responses over an utterance. 

Here we simply linearly expanded or contracted the pattern sequences f” each utterance 
to a constant length of 16 patterns, using linear interpolation of the responses occurring in 
each of the 16 equal intervals of time. The results reported here use K = 5, which generally 
produced the best results. 

3.4 Results and Discussion 
The results of the experiments are given in Tables 1 and 2. Input normalization clearly im- 
proved recognition rates, and linesegment Feature Map normalization was as effective as 
constant length normalization Furthermore, when Feature Map-normalized features were 
combined (table 2), the recognition rates were above 97 percent. 

Our use of Feature Maps automatically affods a uniform representation for different fea- 
tures. Regardless of the statistics of the input, the outputs of square and linesegment Feature 
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Feature Maps used for input 11 Both I Female I Male 11 
Leng th-cbf i I t 
Length-cbfilt 

Feature Map--cbfiR 
Feature Map-cbfilt 

Length-zeroJrms 93.6 93.4 94.5 
Feature Map-zero-lrms 94.2 92.7 - 95.2 

Length-zero-lrms 96.7 95.4 97.2 
Feature Map-zero-lrms 97.2 97.6 98.2 

Table 2: Recognition rates for Feature Maps trained using pain of the feature maps shown in 
Table 1 

Maps have, respectively, identical ranges, and similar variances. This has been shown useful 
in the above experiments for Feature Map based feature integration, and should prove to be 
useful for input to other types of neural networks, where input representation is a well-known 
determinant of network performance [14]. 

4 Conclusions 
There are three main conclusions that can be drawn from this study: 

1. Updating only the closest unit in the final stages of training resulted in a marked im- 

2. Feature maps can be effectively used to normalize input patterns. 

3. Feature maps can be effectively used to integrate features from different sowes. 

provement in recognition rates. 

In addition to further study concerning the main conclusions, we are also studying the fol- 
lowing: 

1. the use of dynamic (transducer-level) featum. 

2. running experiments with scalar-input line-segment Feature Maps where the codevectors 

3. the use of more sophisticated classification strategies to deal with the timevarying aspects 

The use of dynamic features [5] is important because such features are ubiquitous in digit 
recognition[l5], and also are useful for recognizing speech in midealistic conditions (e.g. with 
added noise, speech produced in noisy conditions), i.e. for practical speech recognizers. 

The study of equiprobable codevectors is important because scalar-input Feature Maps 
are scalar quantizers: when the neighborhood consists of a single unit in the later stages of 
training, the codevector distribution tends to be proportional to the cube root of the input 
probability distribution [lq, rather than the directly proportional locations of equiprobable 
codevectors that [6] and [4] claim are ideal. 

Finally, we note that good performance was achieved with only basic transducerlevel 
features and a rudimentary classification scheme, and so we expect a commensurate inmase 
in performance when we introduce dynamic features and more sophisticated classifiers to the 
system. 

are equiprobable. 

of speech. 
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