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Abstract 

The smoothed particle hydrodynamics (SPH) technique has been applied to a problem in kinetic theory, namely, 
the dynamics of liquid crystalline polymers (LCPs). It is a Lagrangian solution method developed for fluid flow 
calculations; its adaption to kinetic theory is outlined. The Lagrangian formulation of the Doi theory for LCPs is first 
described, and the problem is presented in the general framework of nonparametric density estimation. The 
implementation of the SPH technique in this specific problem is given, highlighting particular aspects of our 
implementation of SPH, including the form of the kernel function and use of an adaptive kernel. We then present 
results which demonstrate convergence and other details of the solution method, and also make comparisons with 
other solution techniques and discuss other potential applications. © 1997 Elsevier Science B.V. 
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1. Introduction 

1.1. Kinetic theory of complex fluids 

'Complex fluids' is a term commonly used to describe a wide class of liquid-like materials, in 
which the relaxation toward the equilibrium state occurs sufficiently slowly that significant 
changes in the microstructural configuration, and thus in macroscopic properties, can be 
induced by flow or the action of other external fields of moderate strength. Polymer solutions 
and melts, colloidal and fiber suspensions, surfactant systems, and liquid crystals are all 
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examples of complex fluids. There is much interest in systems of this kind, because it is hoped 
that by tailoring the microstructure of the fluid, one can produce desired macroscopic behavior. 
In addition, one would also like to know what specific macroscopic phenomena can be induced 
by external forces on the system, for example, magnetic fields and flow. For both of these ends, 
modeling is a crucial element. 

A popular theoretical approach to describing the characteristics of complex fluids under flow 
is the kinetic theory pioneered by Kirkwood [1] and later championed by Bird and co-workers 
[2]. In this framework, a physical model is proposed which attempts to capture the essential 
features of the underlying microstructural component of the fluid without being too compli- 
cated. The resulting theory has two distinct parts: first is a set of equations, derived by 
application of classical kinetic theory to an ensemble of microstructural components, which 
govern the evolution of the microstructural configuration in the flow; second are the macro- 
scopic equations of motion, with an equation to calculate the stress from the microstructural 
configuration space distribution function. From this coupled set of equations, one can make 
predictions of the results of various macroscopic experiments. These provide the crucial test of 
whether the proposed model is valid or not. 

The Fokker-Planck formalism is a commonly used description of kinetic theory problems. At 
the heart of this approach is the Fokker-Planck equation, which governs the evolution of a 
configuration distribution function. This function gives the probability of finding the microstruc- 
tural element of the model in a particular configuration. It is a scalar function of a multivariate 
space, the coordinates of which each represent a single configurational degree of freedom of the 
microstructural model. The distribution is influenced by energy potentials in the system, as well 
as dynamic and random Brownian forces. In the Fokker-Planck formalism, this random force 
tends to smooth out gradients in the distribution function, and leads to a diffusive term in the 
distribution function equation. 

It is generally not possible to obtain exact analytic solutions of the Fokker-Planck equation, 
and this is especially so in the case of liquid crystalline polymers considered below, where the 
mean-field Maier-Saupe model for the nematic potential makes it nonlinear. There are two basic 
approaches that can be used to obtain model predictions. The first is to apply mathematical 
approximations guided by physical intuition to reduce the complexity of the problem. This 
includes constructing the asymptotic limit of the equations, or developing so-called closure 
approximations that allow moments of the distribution to be directly calculated numerically (or 
in some cases, analytically) without solving for the distribution function itself. This technique is 
expected to lead to an approximate version of the theory which is manageable enough to 
provide useful and quantitative results for general cases; however, the danger is that the 
simplifications may alter or eliminate important physical effects of the model. The second 
alternative is to retain the full governing equations and attempt a direct numerical solution for 
the distribution function. Although this will provide accurate results, the computational effort 
required is often tremendous. This is especially troublesome because the simulation of actual 
inhomogeneous processing-type flows requires the determination of microstructural behaviour at 
a large number of material points. A desirable goal is then to find the most efficient numerical 
technique, in terms of time and memory requirements. With modern computers, one can also 
take advantage of processor architectures, such as parallel or vectorized computers, so that an 
efficient scheme is obtained. 
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1.2. Lagrangian solution techniques for  the Fokker-Planck  equation 

In order to solve the Fokker-Planck equation numerically, it is helpful to take the viewpoint 
that it describes the convection and diffusion of probability through configuration space. Seen 
in this manner, one may adopt techniques used to solve conventional flow problems to this 
different class of problems. The main difference is that the convection and diffusion obey 
equations of motion that depend on the particular microstructure being described. Another 
important distinction is that the probability density can vary greatly throughout the configura- 
tion space; it can be thought of (in the framework of conventional flow problems) as being 
analogous to the density of a highly compressible fluid. A promising approach would thus seem 
to be to adopt numerical techniques that have been designed for simulating the flow of highly 
compressible fluids. 

Lagrangian solution techniques are particularly weU-suited for convective transport problems 
where material points undergo major motion with respect to each other and where the density 
of these points is expected to be highly non-uniform in a way that is a priori unknown. There 
have been prior attempts at applying Lagrangian techniques to the solution of configuration 
distribution functions [3,4]. However, as described later, this class of convective transport 
problems poses particular challenges that require a more sophisticated approach. 

1.3. Other approaches 

Another way of solving the Fokker-Planck equation is to expand the configuration distribu- 
tion function into a series of orthogonal basis functions, and then numerically solve for the 
coefficients of the series. Truncation of the series at a finite cutoff is necessary, the hope being 
that the surviving terms accurately represent the true dynamics of the system. This approach has 
been used for the particular system, liquid crystalline polymers, that we study below [5,6]. The 
main disadvantage of this method as a general tool is that the procedure is difficult to apply to 
systems for which the governing equations are very complicated. In addition, the method is best 
suited for systems in which variations in the probability density are smooth. If the probability 
density varies greatly, many more terms in the series must be retained, and solving for the 
coefficients becomes very computationally-intensive. 

An approach related to the Fokker-Planck formalism is the Langevin formulation. In this 
description, the motion of an individual microstructural element is described via a stochastic 
differential equation. Brownian forces are modeled by a random noise term which obeys 
prescribed statistics. Recent papers [7,8] have presented the Brownian dynamics implementation 
of the Langevin approach. An apparent disadvantage of this technique is that, due to its 
stochastic nature, a very large number of microstructural elements must be tracked in order to 
obtain statistically accurate answers, thus increasing the computational time and effort. 

1.4. Smoothed particle hydrodynamics 

Smoothed particle hydrodynamics (SPH) is a Lagrangian simulation technique first developed 
for astrophysical problems [9]. It has certain features which address the problems encountered 
by others. Its main advantages are its robustness, simplicity, and its relative accuracy for the 
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amount of computational effort. The current work represents the first time, to our knowledge, 
that SPH has been applied to kinetic theory. Its successful application for our particular model 
system indicates that it may be a useful tool for studying more general kinetic theory problems. 

We consider a specific problem in Section 2, namely, a solution for nematic rigid-rod 
polymers. We first give an overview of the physical problem that we are simulating, and then 
present the governing equations. In Section 3 we present the general Lagrangian formulation of 
the problem and discuss various solution strategies. In Section 4, we describe the smoothed 
particle hydrodynamics technique. We discuss certain implementation issues in Section 5, and 
present some test results in Section 6. 

2. Example problem: kinetic theory of nematic rigid-rod polymers 

2.1. Problem overview 

Liquid crystals are a sub-class of complex fluids in which there are a multiplicity of 
thermodynamics phases, each possessing different degrees of molecular ordering. Systems in the 
nematic liquid crystal phase are characterized by liquid-like translational disorder, but crystal- 
like rotational order. In general, local regions in the system possess a preferred direction of 
orientation, often denoted by a unit vector that is called the director, and the molecules in the 
region tend to align themselves in this direction. This phenomenon generally arises as a result of 
excluded volume and electrostatic interactions between the molecules which give rise to 
collective ordering. The degree to which molecules are mutually aligned is usually characterized 
by an order parameter, which is a scalar measure of this alignment. Nematic liquid crystalline 
polymer (LCP) systems consist of macromolecules which display this type of behavior. 

The most successful kinetic theory model describing the behavior of LCPs is due to Doi [10]. 
The microstructural element of this model is a rigid axisymmetric rod of infinite aspect ratio; the 
forces acting on the rods are hydrodynamic, Brownian, and intermolecular forces that give rise 
to a nematic liquid crystalline phase. These latter forces are approximated by a mean-field 
potential, which substitutes multi-body interactions by an overall uniform field based on the 
average behavior of a single molecule. The theory is further simplified by assuming that the 
nematic potential depends only on the local orientation distribution, but is independent of 
spatial gradients in the orientation. Hence, the theory strictly applies only to homogeneous 
systems, in which the director and order parameter are the same throughout the sample, and the 
velocity field is also uniform. Such situations are encountered approximately, in viscometric 
flows, and the theory has found success in predicting rheological properties of certain model 
systems in shear flow; namely, those in which the polymer molecules actually behave as rigid 
rods in solutions. 

2.2. Governing equations 

The Doi theory leads to the Fokker-Planck equation which gives the time evolution of the 
orientation distribution function ~p(u, t), where u is a unit vector representing a given orienta- 
tion. ~(u) gives the probability density of rods being oriented in the direction u. As mentioned 
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above, it is assumed in the present development that this probability is the same no matter 
where in the system one looks. The Fokker-Planck equation for the Doi model is often given 
in the following form: 

o-~ = - o-u . [ ( o  .u + e . u  - E :uu . )O ]  + ~ .  Yu ' (1) 

where E is the rate-of-strain tensor, 12 is the vorticity tensor, and D r is the rotational diffusivity. 
UMF represents the nematic mean-field potential, which will be modelled here in the Maier- 
Saupe form, 

3 UMF = -- ~ UkTuu:$,  (2) 

where $ is related to the second moment of the distribution function, 

S= < u u >  - ' 3fi, 

with (uu> = ~uu¢(u)du .  U is a dimensionless parameter which measures the strength of 
interaction between the rods. Brownian forces are accounted for via the diffusive term d¢/~u,  
which tends to smooth out gradient in ¢,. The scalar order parameter S is defined by: 

s - (~ S:S) ''~. 

3. Lagrangian formulation of equations 

The problem to be solved is the time evolution of the orientation distribution function ¢,(u, t) 
as governed by Eq. (1). As noted earlier, this equation is actually an example of a classical 
convection diffusion problem, except in this case the dependent variable is the probability 
density, whose domain is the surface of the unit sphere in configuration space. In order to see 
this interpretation, it is instructive to recast Eq. (1) into two coupled equations: 

a t  + v • (,i¢,) = o, (3) 

r o u ~  l~u  ] ti=12"u+E'u-E:mm-DrL~-~u +- ~ , (4) 

The Eqs. (3) and (4) represent the conservation relation (3) and equation of motion (4) in the 
configuration space which describes the system. The orientation is specified by the unit vector u 
and hence can be specified by a point on the surface of a unit sphere. The probability density 
function of interest here is the orientation of the polymer rods. Thus one can regard the system 
as analogous to a compressible fluid on the surface of a sphere, with the probability density used 
instead of the mass density. Compressibility, in this context, refers to the fact that the 
(probability) density is not uniform, and the motion of particles in the system is influenced by 
the probability density at their locations. The equation of motion (4) depends on the overall 
global behavior of the orientation distribution through the nematic potential. Additionally, since 
we consider the system to be spatially uniform, the velocity gradient of the fluid, given in terms 
of 12 and E, enters into Eq. (4) as a constant tensor. Other than this distinction, the system (3) 
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and (4) resembles a typical convection-diffusion problem. Therefore, we can use techniques 
employed in compressible flow simulations to obtain solutions. 

Some difficulties with the traditional Eulerian schemes are well known. For example, let us 
consider solving Eq. (1) for the time evolution of g,. In an Eulerian approach, we would 
maintain a mesh on the domain of our problem, which in this case would be the surface of the 
unit sphere, and calculate the evolution of the probability density at the mesh points. Gradients 
of ~, can then be determined via standard difference formulae. However, in the present class of 
problems, there are typically regions with steep density gradients, and this requires a very high 
degree of spatial resolution to minimize discretization error. Although one could, in principle, 
employ an adaptive mesh the positions of regions with steep gradients change with time, which 
makes it necessary to change the mesh with time, and the management of such adaptive meshes 
can get extremely complicated. In general, Eulerian methods are difficult to use when different 
resolution is required at different regions in space, especially when these regions change with 
time. 

In a general Lagrangian framework, the distribution function is discretized in terms of the 
positions of a finite set of interpolation points on the surface of the unit sphere. Each point is 
tracked as it is convected by the equation of motion (4). The discrete version of this equation 
for the rod with orientation ui is given by 

_FauMF ~1 7UaO 1 l i i  : ~-~ "11 i + E u , -  E : u i u i l l  i - Drl ~ -t- i" (~) 

The positions of all the points collectively represent the distribution function ~,. Because of the 
term in square brackets, the motion of each individual point depends on the entire distribution. 
Eq. (5) must be solved in a manner which is consistent with the conservation relation (3). The 
main advantage of the Lagrangian formulation is that the density of interpolation points 
automatically increases in regions requiring high resolution (and vice versa). 

Up until now, the discussion has been general to any Lagrangian method. The distinction 
between different techniques is the way in which ~, is represented, and consequently the way 
terms depending on ~, are calculated. In the next section, we will briefly describe various ways 
of representing a distribution from a discrete set of points, including the method which is 
ultimately invoked in SPH. 

3.1. Non-parametric estimation of probability density functions 

Non-parametric density estimation is concerned with the estimation of a probability density 
function, given discrete samples from the distribution. No assumption is made about the type of 
distribution from which the samples are taken, in contrast to parametric estimation in which the 
density is assumed to be of a given parametric form, and the parameters are estimated. The 
solution of Eq. (5) involves repeatedly estimating the term in square brackets as time marches 
forward, essentially a problem of non-parametric density estimations. The conservation relation 
(3) will in general always be satisfied if the method of density estimation conserves probability. 

The problem of non-parametric density estimation has been well studied. Good descriptions 
of various methods and their analyses can be found in [11,12]. Results of the comparison of 
some widely used methods is also given in [13,14]. Among the various methods that have been 
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proposed for general non-parametric density estimation are histograms, kernel methods [15-17], 
orthogonal series methods [18,19], and the nearest neighbor method [11]. 

The histogram method is the simplest to implement. The domain is divided into a number of 
cells. The probability density function within a cell is taken to be proportional to the number of 
samples from the distribution in the cell, scaled by the size of the cell. In general, this method 
is very sensitive to the location and sizes of the cells. This causes it to require extremely small 
cells and hence large sample sizes to give accuracy comparable to other methods. 

The nearest neighbor method is based on the idea that in regions of high probability density, 
a sample point can be expected to be closer to its kth nearest neighbor than in a low density 
region. So, this method estimates the true probability density at a sample point in terms of the 
distance from the kth nearest neighboring sample point. One of the drawbacks of this method 
is that it has discontinuous derivatives and so we may expect sensitivity to local noise. In the 
context of iterative calculations, the noise will arise from errors in the discretization, as well as 
round-off due to the finite precision of the arithmetic. 

The orthogonal series method [18,19] approximates the probability density by a series 
expansion, and determines the coefficients from the locations of the sample points. One of the 
problems with this method is that the series approximation can give a negative probability 
density estimate in low density regions. This would lead to non-convergence for most iterative 
calculations. There are also results for some series estimators suggesting that stronger conditions 
on the true probability density are required for them to give the same optimal convergence rates 
as kernel estimators [8]. However, when taking into account the computational effort involved, 
these methods may yet prove competitive. 

3.2. The kernel method 

The kernel method for non-parametric density estimation is asymptotically more accurate 
than the*** histogram method as the number of particles increases, does not suffer from the 
drawbacks mentioned above for the nearest neighbor and orthogonal series methods, has been 
well studied theoretically, and so is very popular in applications. We shall discuss the kernel 
method in greater detail here, since this is the method used in SPH. 

Let u @ s denote the distance along the surface of the unit sphere, between points u and s. If 
the kernel method is applied to the problem of estimating the probability density on the surface 
of a sphere, the distribution function is approximated in the form; 

where ui are the positions of the n samples, K is a so-called kernel function that depends on the 
distance between sample points ui and the points of interest u. The parameter h is known as the 
window width; it provides the length scale over which the kernel function varies. Ah normalizes 
the right-hand side to make it a probability density function, and ~,, is an estimate of ~, using 
n sample points. We take K to be a symmetric bounded and non-negative function with 

K ( u Q s ) d u  = Ah for any given points s on the surface of the unit sphere. If the derivative of 
the probability density is also desired, then it is estimated by replacing the kernel by the 
derivative of the kernel in the above equation, e.g. 
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Ou nab ~ -~u K 

One needs to consider the accuracy of the above results. There are, of course, a number of 
error measures. The most widely used is the mean integrated square error (MISE), defined as 

= j ( ¢ . ( u )  - ¢(u)) du, MISE 

where the integration is performed over the entire domain. As the sample size approaches 
infinity, we need to ensure that the MISE approaches 0. This criterion for convergence of the 
estimate to the true probability density is satisfied under the following condition [11]: 

h ~ 0  a n d n h a ~ c o  a s n ~ ,  (6) 

where d is the dimension of the domain. On the surface of the sphere, d = 2. Eq. (6) follows from 
the fact that the MISE is approximately bounded by 

otklh 4 + f in -  lh -a, (7) 

where ~ and/?  depend on the specific form of the kernel function, and k~ depends on the true 
probability density. Intuitively one may consider the first term, the square of the bias, as being 
due to the non-local nature of the kernel, while the true probability density is a locally 
determined quantity. The second term, the variance, can be considered as due to a bad sample. 
If more sample points contribute to the density estimate at a given point, we can expect the error 
due to the variance to be lower. However, there is a trade off between these two terms. The bias 
gets smaller as the kernel function approaches a delta function, but this could cause the variance 
to increase if the number of sample points contributing to the estimate at a given position gets 
smaller. The convergence criterion states that the window width should get narrower as the 
sample size increases, but also gives a bound on how fast the window width can decrease. The 
equation for the bound on the MISE suggests a form for an ideal kernel function, referred to 
as the Epanechnikov kernel. However, it can be shown that most of the kernel functions that 
have been considered are close to this kernel in their effectiveness in estimating the probability 
density [11]. Therefore we may choose the form of the kernel function based on factors other 
than accuracy, such as the ease of evaluation. Nevertheless, we shall later discuss some 
constraints which arise because of the details of the application for which the kernel method is 
currently being used. 

Convergence of the probability density estimate does not imply convergence of the estimate 
for the derivative of the probability density. Generally, convergence of the derivative requires 
stronger conditions. In the present case, convergence of the derivatives requires a slower rate of 
decrease of the window width than convergence of the estimate of the density [20,12,21]. 

4. Smoothed particle hydrodynamics 

In the following section we show how the kernel method of non-parametric probability 
density estimation can be incorporated into a dynamical simulation. We then describe the 
smoothed particle hydrodynamic (SPH) technique in detail, and discuss how it compares or is 
related to more conventional methods. 
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4.1. Precursors of SPH 

The basis of all Lagrangian schemes for solving Eq. (1) [or Eqs. (3) and (4)] is a set of 
interpolation points that move on the surface of the unit sphere according to Eq. (5). The 
distinction between these schemes is the method of interpolation used to estimate ~, from the 
spatial distribution of these points. 

In mesh-based Lagrangian schemes, the interpolation points are viewed as defining a mesh on 
the sphere surface, which distorts as the points move, and the density estimation is accomplished 
via a variant of the nearest neighbor method. Specifically, we observe that for any given 
interpolation point, the neighbors on the mesh define a polygon. The probability density will be 
inversely related to the area of this polygon, since in high density regions we expect a large 
number of points, causing the neighboring points to be closer than in a region of lower density. 
Gradients of the probability density can be computed using a finite difference scheme on the 
mesh. The advantage of the Lagrangian mesh (as opposed to an Eulerian mesh) is that points 
naturally convect to regions with high density, thus providing high resolution in regions where 
we need a high resolution without the need for active mesh management. This method was 
utilized by Szeri and Leal to solve a problem related to the current one [4]. 

There is a difficulty, however, with mesh based Lagrangian schemes. As the configuration of 
the interpolation points evolves with time, the mesh can get extremely distorted and the grid can 
become meaningless since the points that are the neighbors of any point on the mesh may move 
apart, rendering the finite difference calculations innacurate. Indeed, in simulations performed 
on the system of interest here using the method of Szeri and Leal mentioned above, this precise 
problems was noted. The conventional solution is mesh reconnection every few iterations. In 
regions of high distortion, however, this leads to a high computational overhead since the mesh 
is distorted very rapidly. 

In order to overcome the difficulty with distortion in a mesh based Lagrangian scheme, a 
number of so-called 'particle methods' were invented for the analogous fluid flow problem 
[22-24]. Most of these methods shared a common feature [9], namely, the use of a combination 
of an Eulerian mesh, and a set of Lagrangian points, or 'particles'. 

The earliest and best known of these schemes is the Particle In Cell (PIC) method [22]. This 
method involves an interpolation from a Lagrangian set of particles to an Eulerian grid, 
followed by certain calculations on the Eulerian grid, and finally an interpolation back to the 
Lagrangian particles at the end of each iteration. The probability density estimation in the 
original PIC technique was carried out via a histogram method. Suppose the positions of the 
particle (or interpolation points) are known at a certain time step. The surface of the sphere is 
divided into a number of cells. The probability density at the center of each cell is computed by 
dividing the number of the particles in the cell by the area of the cell, and then normalizing the 
result with the total number of particles. The value of ~, at the cell center is then interpolated 
back to the Lagrangian particles. There are a number of ways the interpolation can be done. 
The simplest is just to assign the value of the probability density at the cell center to each 
particle in that cell. Gradients of the probability density at the center of each cell can be 
calculated via finite difference formulae using the values of the probability density at neighbor- 
ing cells. These values can then be interpolated back to the particles, and then the new positions 
of the particles can be computed. The major disadvantages of this scheme are the extra memory 
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required for the Eulerian mesh, and the inaccuracy of the interpolation from the particles to the 
Eulerian mesh. 

Smoothed particle hydrodynamics [9,25] can be considered a generalization of PIC, but 
involving the more sophisticated kernel method of probability density estimation, as discussed 
in Section 3.2. This technique avoids the two disadvantages of the PIC method mentioned 
above, at the cost of possible increase in the computational effort for the same number of 
particles being tracked. However, we can expect the SPH method to require fewer particles for 
the same accuracy as PIC, leading to a net savings in computational effort. This method will be 
discussed further in the next section. 

4.2. Description of SPH 

SPH associates an interpolating kernel function with each Lagrangian particle (or interpola- 
tion point). The averaging or 'smoothing' of the influence of each particle, inherent in the use 
of kernel functions for interpolation, is the source of the name SPH. As discussed earlier, and 
also shown in Fig. 1, the probability density at any point is computed by summing the 
contribution of the kernels of all of the interpolation points within a distance of O(h) from that 
location. 

Gradients of the probability density at specific positions are calculated by analytically 
differentiating the interpolating kernel, and summing the contributions from the same set of 
Lagrangian points. The conditions under which this estimate of the density gradient approaches 
the true density gradient were explained in Section 3.2. Since this particle method is meshless, it 
does not suffer from any problems due to mesh distortion, and thus avoids the computational 
effort of frequent mesh reconnection encountered in mesh-based Lagrangian techniques. The 
SPH algorithm is most often discussed in the context of astrodynamical calculations [26,25]. 
Here, we describe SPH in the context of our particular problem. 

As just discussed, the kernel method involves an estimate of the probability density on the 
surface of the sphere in terms of a sum of contributions from the kernel functions associated 
with a set of N interpolation points or particles, i.e. 

@ 

Position 

Fig. 1. This sketch demonstrates density estimation using kernels. The solid lines show the kernels at each of the 
sample points, marked by x's. The dotted line is the density estimate obtained by summing the contributions of each 
of the kernels at each point. 
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1 N 
¢(u) = w(u@u, ;  h), C8) 

where ui specifies the position of particle i, N is the total number of particles and W(d; h) is the 
kernel function. The parameter h is called the smoothing length, and gives a measure of the 
'distance' away from a particle's center within which the particle contributes to the probability. 
The gradient of the probability density function is estimated as 

-~u O(u) = -~u W(u@ui; h ). (9) 
i ~ l  

Finally, moments of the distribution are given as follows: 

{uu'")-- f (uu'")O(u)du= ~=,~ f W(u@u~;h)(uu...)du. (10) 

Note that the integral in the last term is a function of u; only, and the integration may therefore 
be performed ahead of time; the resulting algebraic expression would simply be evaluated for 
each term in the summation when needed. 

The function W is a special form of the kernel function mentioned in Section 3.2, with 
W(r; h) = K(r/h)/Ah. As noted earlier there is a great amount of flexibility in the choice of this 
function. But it is important that it satisfy the requirement of a delta function in the limiting 
case, i.e. 

f W(uQu';h)du= 1; W(u@u';h)=3(uOu').  (11) lim 
h ~ 0  

The integration is performed over the entire surface of the sphere. 
In practice, it is convenient to choose W such that it has continuous derivatives, as this allows 

for gradients to be calculated smoothly. Although a Gaussian form for W has been found to 
give good results for some applications [9], a desirable property for the kernel to possess is that 
it have compact support, which implies that it becomes identically zero when its argument is 
sufficiently large. This allows the interpolation procedure to take advantage of the finite cutoff 
and hence save on calculation time through techniques such as range-searching, as will be 
explained later in Section 5. 

4.3. Comparison of methods 

One can study the relationship between PIC, SPH and finite difference methods based on the 
ideas of density estimation. PIC estimates density based on the histogram. SPH uses the kernel 
method for this purpose. A Lagrangian finite difference scheme would estimate the density based 
on the nearest neighbor method. Observing that such an estimate is the true value of the density 
at some point inside the polygon, and taking a Taylor's series expansion for the true density 
about this point, it can be shown that the error in the estimate of the density is bounded by the 
order of the length of this polygon. If the number of particles is N, then this length is of the 
order of 1/w/N. If we use a finite difference scheme, with a fixed number of neighbors, to 
compute the derivatives, then we divide by a quantity that is of the same order of magnitude, 
leading to a bound on the error that suggests a high error in the estimation of the derivative. 
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This suggests sensitivity to noise, as noted earlier for the nearest neighbor approach. Increasing 
the number of neighbors in the calculation leads to an SPH-type computation. It should be 
noted that the kernel method currently requires a lot more computation than the finite difference 
method for the same number of points. The SPH method proves advantageous when this is 
offset by being able to use fewer points for the same accuracy, and the fact that we can dispense 
with remeshing. Presumably, more efficient algorithms for density estimation will ultimately 
widen the range of situations in which SPH is preferable. 

It is also informative to compare the SPH method as applied to kinetic theory with other 
methods of simulating complex fluids. The orthogonal basis function expansion technique has 
been shown to provide good results for this particular problem [5,6]. However, as mentioned 
earlier, if the distribution function is highly peaked, then more terms in the expansion must be 
retained, and the efficiency of the method begins to suffer, since the complexity of the problem 
increases very rapidly as more terms are included. Brownian dynamics can be thought of as a 
related Lagrangian solution method, since a discrete set of microstructural elements or 'particles' 
are tracked, and they collectively describe the distribution function. These techniques, however, 
typically require vast numbers of particles, anywhere from 10000 to 100000 (e.g., [6,8]). By 
contrast, SPH requires far fewer points for an equivalent result. Whether this actually results in 
shorter computations would again depend on the development of efficient algorithms. An 
example is given in the test studies presented in Section 6. 

The major bottleneck for this scheme is that we currently require up to O(N 2) time for 
calculations involving N particles. This especially shows up in higher dimensions, where more 
particles are required for a given accuracy. This can be improved to a certain extent by the use 
of effective range searching algorithms which will be described in Section 5. However, in our 
application, we observed that in order to perform range searching, the number of operations 
involved is quadratic in the number of particles. Thus range-searching alone cannot make the 
algorithm faster than quadratic, and additional approaches need to be tried to speed up the 
computations. For example, E~ecio~lu and Srinivasan [27,28] have recently proposed an almost 
linear algorithm for density estimation, which is conceptually similar to some of the fast 
algorithms used in N-body calculations. Though the proportionality constant here is fairly large, 
this method has shown significant improvements in speed in certain situations over the kernel 
method even with relatively few points, and it is easy to parallelize. However, further studies 
need to be made to test this algorithm in dynamical situations, in contrast to its present use in 
density estimation computations. In any case, we expect that further attention to this problem 
can produce faster methods that will make SPH even more appealing. 

5. Implementation issues 

In this section, we discuss the details of implementing the SPH technique. Although some of 
the issues that arise are concerns which are specific to our particular problem, by studying 
qualitative trends in this case, we are able to offer some generalizations about performance of 
the method. 
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5. I. Kernel form 

It was mentioned earlier that the form of the kernel function does not have much effect on 
the accuracy of density estimation. However, for dynamical situations, a more careful choice of 
the kernel function is needed, due to the requirement of numerical stability, i.e., we wish to 
avoid a situation where the numerical errors at each iteration keep adding up to produce a large 
error. If there is an error pushing the system in one direction, we would want the scheme to push 
the system in the opposite direction at the next iteration in order to bring it closer to the true 
state. It has, for example [29], been observed in some situations that clustering of particles 
occurs at distances of the order of the window width. We too observed this initially. This is due 
to the fact that most of the popular kernels have a continuous derivative which vanishes when 
the distance to the particle is zero. For example, we originally used the following spline-based 
kernel: 

W(x;  h) = 

r." 

.V 
O, ~ > 2 ,  

2 -  , 1 < ~ < 2 ,  

_ 3_(x~ ~ ~_(_x~ ~ x 
1 2k, hJ +4\h,}' 0<~<1 

(12) 

A perturbation of a nearby point which causes it to be placed at a distance less than 2h/3 
from the sample point leads to a smaller magnitude of the gradient of the kernel. In our 
calculations, the Brownian force, which keeps particles from coming too close together, depends 
on the gradient of the density function (Eq. (4)). This force becomes weaker when the particle 
separation is smaller than this critical distance, due to the peculiarity of this type of kernel, 
rather than due to the physical situation. In order to avoid this problem in our calculations, we 
chose to use a kernel that did not have a continuous derivative at the origin, namely 

0, 

W(x;h)= 3 ( hx 2 x 3) 

1-5- h2x--5-+-i5 

X 
~ > 2 ,  

X 
0 < ~ < 2  

(13) 

Using this kernel, the magnitude of the derivative of the kernel with respect to distance does 
not decrease as the sample point is approached. Fig. 2 gives a graph of W vs. x for each of these 
kernels, as well as their derivatives as a function x. The derivative of the kernel defined in Eq. 
(13) is not defined at the origin. In our calculations, we defined the derivative as 0 at the origin. 
This causes a discontinuity in the derivative. However, this does not invalidate the convergence 
results for the derivative because the error is expressed in terms of integrals involving the 
derivative of W, and the discontinuity is only on a set of measure 0. Intuitively, one can justify 
this as follows: as the sample size increases, the number of points contributing significantly to 
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Fig. 2. Graphs  of W and W' vs. x for the cubic spline kernel, Eq. (12) (left), and the kernel defined by Eq. (13) (right). 

the estimation of the derivative at any given location keeps increasing, and so an error in the 
contribution made by a single sample (i.e., the sample whose coordinates are the same as that 
of the location where we are estimating the derivative of the density) becomes negligible. 
Clustering disappeared on the use of the kernel defined in Eq. (13). 

5.2. Kernel width and convergence 

There has been extensive discussion in the literature on choosing the proper window width. 
However, most of the discussion is in the context of data analysis and involves choosing the 
optimal window width for a given set of data. The situation is slightly different in iterative 
calculations. 

It will be useful to compare our situation with traditional schemes in this regard. For example, 
while using finite differences, one might keep increasing discretization until previous results are 
sufficiently close to the current results. One assumes that these results have converged to the true 
value since we have convergence results which prove that as the mesh size decreases to zero, the 
solution approaches the true value. Similarly, in the density estimation case, we do not as much 
require the optimal window width for the given sample as much as being confident that if we 
increase the sample size and our results do not change much, then we have indeed converged to 
the actual solution. 

We observe another analogy between a typical finite difference scheme and SPH. If we 
consider finite difference discretization of partial differential equations, then often we cannot 
vary the time step independent of  the spatial resolution. Results will often converge only if a 
certain relationship is maintained between the time step size and the spatial resolution. We have 
an analogous situation with the kernel method. We cannot decrease the window width 
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arbitrarily. There is a dependence on the number  of  interpolation points given by Eq. (6). 
Convergence to the true density is guaranteed only if this relationship is maintained. 

The solution of  Eq. (5) involves t ime-stepping,  with the spatial discretization handled via the 
SPH approach. Since the time stepping uses a conventional finite difference approach, we 
discuss only the errors in spatial discretization using the SPH approach, in which the errors in 
the estimation of  the density and its gradient are the major factors. 

Fig. 3 is a typical sketch of  error vs. window width for different values of  the sample size. One 
can view the convergence results in terms of  this figure. We can carry out  the following 
procedure for ensuring convergence of  the estimate to the true value. We fix h and increase N. 
We are assured convergence for high N, though not necessarily to the correct value. Next, we 
choose a smaller value of  h and again increase N until we observe convergence. We continue this 
process until the results for successive values of  h give similar results for high N. This ensures 
convergence. The alternate is to choose h as a suitable function of  N and follow the dashed line. 
When the results do not change much, we have converged to the true solution. Following this 
procedure, we can save on calculations. We give further details on this procedure below. We can 
make h a suitable function of  N to satisfy the convergence results for density estimation. For  
example, an approximate error bound of  the form 

klh 4 + k2n i h -  212,.+ J+ 1), (14) 

can be obtained for the error in the rth derivative of  the density, where d is the spatial 
dimension. This yields an optimal window width of  the form hop, = k / N  119 on the surface of  a 
sphere for the first derivative, where k = 5k2/(4kO is a constant. The error bound  under the 
MISE criterion with this variation of  h with N is given by 

WINDOW WIDTH 

Fig. 3. Sketch of curves for error vs. h. The curves that are lower are for higher values of N. The dotted lines show 
one possible approach to convergence. We keep h fixed and vary N until the results converge. We repeat this process 
until the limiting values for successive h's converge. The other approach is to use the convergence results to 
simultaneously change h and N. This is shown by the dashed line. 
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C 
E 2 = N 4/----'~ (15) 

where • is the square root of the M.I.S.E., and C is a constant. Provided the true error follows 
the relation given by the error bound for sufficiently large values of N, then simulations with N1 
and N2 = 29/4N1 particles, respectively, will have errors el and •2, w i t h  N/ / /2•2  = E l . This gives 
el ~ 3.4(e~ - •2). Thus we can estimate the error •1 since the difference in the results for the two 
simulations is also the difference in their errors. We increase N and stop when our estimate of 
• is sufficiently small. We also need to choose an appropriate value of k. Although we are 
guaranteed convergence as N--. oo, if we choose a sub-optimal value of C, we would require a 
higher value of N to achieve the desired accuracy than if we had chosen the optimal value. We 
suggest the following procedure to help solve this problem. Often one knows analytical solutions 
for some simple cases. We can solve with different values of h with N for those flows and 
determine a range of k which appears to give a good variation of h with N. Then, in the actual 
calculations, we can use this value. For example, in the problem we have considered, we know 
the analytical steady state solution for elongational flow. We tried computations with different 
values of N and h and noted the error in the scalar order parameter S, which indicates how 
aligned the polymer molecules are. Using these values of error, we can find a value of k which 
gives a relationship between h and N such that the error is minimized. We then use this value 
of k in other calculations where we do not know the exact solution. 

5.3. Symmetries of the problem 

The domain of our problem is the surface of the unit sphere. Most of the convergence results 
are for Euclidean domains, though there has also been some work specifically for the sphere 
[30,31,27,28]. However, we can still use the types of kernels used in Euclidean space since 
probability density is a local phenomenon, and a sphere is locally Euclidean. In addition, since 
our phase space is closed upon itself, boundary conditions are not present in this problem. We 
store the positions of the particles as Cartesian vectors and perform all the calculations in 
Cartesian coordinates. The distance between the points is measured along the surface of the unit 
sphere. 

There is an additional feature of this particular problem which we can use to our advantage. 
Because the microstructural elements which comprise this model, i.e., the rigid rods, are fore-aft 
symmetric, the orientation distribution function ~,(u) is invariant with respect to the transforma- 
tion ( u ) ~  ( -  u). To make use of this constraint, we create 'ghost particles' with antiparallel 
coordinates for every particle we track. We employ these ghost particles in all density 
estimations, but we don't need to keep track of their locations, since this is determined by their 
corresponding 'real' particle. This effectively doubles the resolution of the simulation, without 
increasing the computational complexity. In general, any additional known symmetries in the 
distribution function can be utilized by creating other corresponding ghost particles. 

5.4. Adaptive rule 

Many of the more recent SPH calculations make use of some form of an adaptive kernel. In 
this modification, each interpolation point has a different kernel width, which is in general 
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inversely related to the local density. This leads to better accuracy in high density regions. 
Different adaptive rules with varying degrees of sophistication have been explored [32,33], but 
there is so far no definitive prescription for how to make the kernel width adaptive. 

In our work, we found an adaptive rule of the form h i =-hi(~li)= (C1(¢ i - -C2)  ) -  1/2 to be 
effective, where h i is the kernel width for particle i and ¢i = ~,(u;). The two parameters C~ and 
C2 are chosen such that the following two conditions are met: 

h (~/iso) = H,  

h (¢min) = hmax. 

¢iso-  1/4n is the value of ~, everywhere for an isotropic distribution (when the orientation 
probability is uniform), hmax -~/r/4 is the highest value that we allow h to obtain. This maximum 
separation is determined by dictating that the range of influence of a particle's kernel should not 
extend into the range of influence of that particle's corresponding 'ghost'. Since h is the 
half-width of the kernel, h = re~4 means that the kernel's range of influence is one hemisphere 
(on the unit sphere); the other hemisphere would effectively be covered by the corresponding 
ghost particle. Finally, ~//min would be the value of ¢ at a particle if no particle other than itself 
contributed to the density at that point; from Eq. (8), this value depends self-consistently on h, 
as well as the number of points N. This form was chosen because it provides variations of h with 

that are rapid enough to significantly improve resolution, and yet slow enough to prevent 
large fluctuations in h which would prevent smooth interpolation. Setting the parameter H has 
the effect of determining an average value of h; therefore, increasing or decreasing this value has 
the effect of biasing the adaptive rule towards larger or smaller kernel widths. In all our 
simulations, we use H as the parameter which describes the average width of the kernel function. 

Generally, it has been suggested that h(ri) ~ ~k(ri) - 1/d be used [34] in a d dimensional domain. 
While this is consistent with our formula since we are in a two dimensional domain, it has been 
suggested by others [35,11] that it may be better to use the first formula in any dimension, since 
the bias can be shown, in this case, to be of a smaller order than in the case of a fixed width 
kernel. 

5. 5. Sharpness of  density function 

For nematic systems, the existence of a preferred orientation of the microstructure gives rise 
to a sharp peak in the orientation density (in this case, two peaks, since the microstructure and 
hence its distribution is fore-aft symmetric), which may be further focussed (or defocussed) by 
the effect of the flow. The sharpness of the orientation probability density for nematic systems 
makes it necessary to take a larger sample size than for a uniform distribution. The error from 
the bias term depends on the second derivative of the probability density. Sharp probability 
density functions have high bounds on the second derivative. In order to reduce the bias, it is 
necessary to decrease h. In order to compensate for this in the variance term, it is necessary to 
increase the sample size. Thus, sharp distributions require more computational effort than more 
uniform distributions. Using an adaptive kernel mitigates the effect of the sharpness of the 
density to a certain extent, since it leads to a lower bias as mentioned earlier. 
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5.6. Moments of the distribution function 

Eq. (10) gives the SPH prescription for calculating moments of the distribution func- 
tion. In that equation, the integral in the last term may be analytically integrated 
ahead of time. In practice, it is convenient to perform this integration in a reference 
coordinate system, where the calculations are easier, and then rotate the answer back 
to the original coordinates. In the reference coordinates, the polar axis is aligned with 
the particle; this integration then depends only upon the kernel width of the particle. 
By contrast, the rotation then depends only upon the coordinates of the particle. 

Other functionals of the distribution function may be performed in a similar man- 
ner. However, it might not be possible to perform the integration analytically, and 
then some sort of numerical fit would be necessary. Nevertheless, once this fit is de- 
termined, it is a simple matter of evaluating this algebraic expression for each term in 
the summation. 

5. 7. Range searching 

Since the number of points that contribute significantly to the density estimate at 
any given point is much fewer than the total sample size, it is more efficient to come 
up with a search strategy that avoids determining the contributions of points with 
negligible contribution. We wish to determine the contribution of only those points 
within a certain cut-off distance. This is the problem of range searching. Several al- 
gorithms have been proposed in the computational geometry literature [36] for effective 
range searching. The more sophisticated algorithms are faster than the cruder methods 
only when the number of particles is much larger than we consider in our current 
application. Hence simpler algorithms can be used when the number of particles is 
reasonably small. In one such scheme, one keeps track of the set of neighbors that 
contributed in the previous time step; this list is continually updated by considering a 
particle's neighbor's neighbors as possible new neighbors. The drawback of this scheme 
is the increase in the amount of memory required. A popular strategy, which is the 
scheme we employed, is based on projecting the data onto a one dimensional space, 
sorting this, and then performing range searching. We project the particles from the 
surface of the sphere to a line segment. In our case, this line is the vector pointing 
along the preferred orientation, since most points will tend to be clustered around this 
direction. Let x/ be the coordinate of the projection of point Xi. By the triangle in- 
equality, the distance between X, and ~ is at least the distance between xi and xj. 
Thus while computing the density at point X,-, with cut-off distance h, we can ignore 
all points X, such that [ x i - x i [ > h .  We can determine the points with Ix~-x;[ <_h by 
sorting the projected coordinates of each point, and then searching for those locations 
that have projected coordinates within a distance h of xi for each point ~.. It should 
be noted that in some computations, especially involving gravitational forces, a tree- 
code similar to the Barnes-Hut scheme has been tried, since it fits i n  with the rest of 
the computations. 
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6. Test results 

In this section, we present numerical results for certain test cases. We consider the following 
cases: (i) uniaxial elongational flow, and (ii) simple shear flow, both with various values for the 
nematic potential strength. Uniaxial elongation flow is a special case where an exact steady state 
solution to Eq. (1) can be found analytically, allowing a direct comparison. In this case, the 
sharpness of the nematic orientation distribution is increased by the aligning tendency of the 
elongational flow, making this a difficult case for density estimation. Shear flow is normally 
difficult to compute with mesh based Lagrangian techniques due to mesh distortion. In addition, 
it proves to be the most difficult flow for mathematical approximations to accurately reproduce 
[4]. The SPH method, however, is able to provide accurate results with a reasonably small 
number of particles. 

In all the tests reported here, we started with an initial distribution of particles placed 
randomly over the surface of the unit sphere, using a random-number generator to provide 
cartesian coordinates. Although a random distribution is not perfectly isotropic, there is no 
analytic expression for disturbing points isotropically over the unit sphere surface; nevertheless, 
the initial distribution is sufficiently close to isotropic for test purposes. In addition, the test 
results, unless otherwise noted, make use of the adaptive scheme described in Section 5, with the 
parameter H as specified. Although we use a simple first-order time-stepping scheme, other 
methods could equally well be applied. The nematic interaction parameter U is dimensionless; 
we can use the following nondimensionalization for the remaining parameters. 

For elongational flow, 

I --1 0 i l  e 
E = e  0 - 1  ; Q---0; P e =  

0 0 Dr" 

For shear flow, 

0 ~ 0 0 - ~  0 

E =  ¢, 0 ; ~ = ~ 0 ; P e -  . 
0 0 Dr 

Pe is the Peclet number, and gives the ratio of the magnitude of hydrodynamic to Brownian 
forces. 

We first present results for elongational flow, with U = 7.5 and Pe = 2. Figs. 4 and 5 show the 
evolution of the scalar order parameter S (as defined in Section 2.2) with time for different 
values of the window width and two sample sizes of 129 and 289 Lagrangian interpolation 
points, respectively. The dotted line shows the exact steady state value. The other lines are the 
results of the numerical computation for different values of window width. From Fig. 4 we can 
see that even for 129 particles, we obtain results that are accurate to within around 1% of the 
exact solution. Fig. 5 shows the results with 289 particles. We can observe that, apart from 
getting more accurate results, the solution obtained is not as sensitive to the window width as 
with 129 particles. We also observe from Figs. 4 and 5, that more accurate results are obtained 
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Fig. 4. Variation of  the order parameter S vs time for 129 particles in elongational flow. Parameters: U = 7.5 Pe = 2 
Dt  = 0.03. The solid line is the simulation result with H = 0.6. The dashed line is the simulation result with H = 0.55. 
The dashed-dot line is the simulation result with H =  0.5. The dotted line shows the exact solution obtained 
analytically. 

for the higher H values. This is not a general trend. We observe this trend in these figures 
because the H values for the results presented are all smaller than the optimal H value for the 
particular value of  N. 

We also wish to consider the variation of the optimal window width with the sample size. Fig. 
6 shows the variation of steady state results obtained for the scalar order parameter for different 
H and N. The dotted line is the exact solution. These curves clearly show that the range of H 
over which we get good results is wider when we take a larger sample. Using this figure, we also 
need a regression model to predict the variation of  Hop t with N. Based upon a prescribed form, 
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Fig. 5. Variation of  the order parameter S vs time for 289 particles in elongational flow. Parameters: U = 7.5 Pe = 2 
Dt  = 0.03. The solid line is the simulation result with H = 0.6. The dashed line is the simulation result with H = 0.55. 
The dashed-dot line is the simulation result with H =  0.5. The dotted line shows the exact solution obtained 
analytically. 
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Fig. 6. Variation of the order parameter S vs. H in elongation flow. Parameters: U = 7.5 Pe = 2 Dt = 0.01. The dotted 
line shows the exact solution obtained analytically. Note that the vertical scale is expanded. 

Hopt ~ k / N  c we obtained Hop t ,~ 0.734/N °'°22. If we consider convergence results for the deriva- 
tive of the density given by Eq. (14), we expect Hopt = k i N  b9. (We consider the error in the 
derivative of the density because our equations have terms involving both the density, and its 
derivative. Since the estimate of the derivative has a larger error, this is the dominating error 
term). Here, k is higher for sharper distributions. Since//opt does not vary as we would expect 
based on the asymptotic error bound, we expect that at least one of the terms in our error 
bound, the bias or the variance, is much looser than the other. 

Fig. 7 compares the estimated orientation distribution function to the exact solution for U = 8 
and Pe = 0.2. Because of the symmetry of the flow, the solution is axisymmetric and does not 
depend on the azimuthal angle. In addition, the distribution has fore-aft symmetry, so ¢ on the 
interval [rc/2:rc] is the mirror image of ¢ on [0:re/2]. We can see that even for 289 particles, the 
computed solution is very close to the true solution. It should be noted that 0 = 0 is a degenerate 
point, due to the peculiarity of the coordinate system; therefore, any difference between the 
exact value of ¢ and its approximated value is greatly exagerated near this point. For n greater 
than 513 particles, the estimated solution is nearly indistinguishable from the exact solution on 
the scale of the graph. 

We next consider some results for simple shear flow, with U = 4 and Pe = 1. Figs. 8 and 9 
show the evolution of one of the components of the second moment  of the orientation 
distribution function with time for different values of the window width and sample sizes. In this 
case, we started with H values which had given good results in elongational flow. Then we 
performed two sets of numerical experiments. In the first set, we took H =  0.6 and H =  0.6/ 
xf2 ~ 0.42. We increased N until we obtained convergence for each of the cases. The error 
bound, (7), suggests that the error for the smaller H in this example, in the limit of large N, 
should be half of the error for the larger H. Thus, the results in Figs. 8 and 9 can give us an idea 
of the accuracy of the above procedure. We can expect the error in the steady state value for 
H = 0.42 to be within twice the difference between the values for this case and for H = 0.6. This 
is approximately an error of 3%. Note that since we consider the situation for large N, the 
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variance term in the error bound is negligible. Thus, we need to consider this bias term alone. 
We can see from Eq. (14) that the bias for the error in the derivative of the probability density 
is of the same form as that for the probability density, itself. It should also be noted that the 
term involving the bias in the MISE has the square of the bias in it. The bias is thus the square 
root of that term. Fig. 8 presents the results obtained through this procedure by changing N and 
H independently. We also present a curve (shown by the dotted line) for H = 0.42 and N = 289. 
The bias for this test is the same as for the test with H =  0.42 and N = 1250. The difference 
between the two curves is due to the difference in their variance terms. The figure shows that the 
variance term is small, and that even a relatively small number of particles provides good results. 
In the next set of experiments, presented in Fig. 9, we started with H = 0.624, N =  129, and took 
higher values of N, varying H according to the empirical formula above and observed the 
convergence trend of the curves. This demonstrates the procedure for obtaining convergence by 
simultaneously changing H and N described earlier. 

6. I. Effectiveness of  the adaptive kernel 

Next, we show some results which demonstrate the effectiveness of using an adaptive kernel. 
Fig. 10 shows convergence of a test case using a fixed width kernel with U = 8 and Pe = 21. As 
can be seen, even with more than 1000 points, the results have still not converged for this value 
of H = 0.15. By contrast, in Fig. 11, which shows the same case except using the adaptive kernel 
with H = 0.354,, the results with 801 points have nearly converged. This example illustrates that 
the use of an adaptive rule in SPH calculations can greatly improve convergence. 
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Fig. 7. Profile of  the density d is t r ibut ion funct ion ~ as a funct ion of  0 for uniaxial  e longat ional  flow. Because the flow 
is axisymmetric,  the solution doesn ' t  depend on  the az imutha l  angle. Parameters :  U =  8 Pe = 0.2 Dt = 0.025. The 
dot ted line is the s imulat ion with n = 289, H =  0.50. The dashed line is the s imulat ion with n = 5t3,  H = 0.50. The 
solid line is the exact solut ion obta ined  analytically. 
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Fig. 8. Convergence of calculations for shear flow by separately reducing the bias and the variance. Parameters: 
U = 4.0 Pe = 1 D t  = 0.05. The solid line is the simulation result for 1250 particles, with H = 0.42. We obtained this 
curve after simulations which kept H fixed and increased N until the results converged, and thus the error is due to 
the bias alone. The dashed line is the simulation result for 801 particles, with H =  0.6. We obtained this curve too 
after simulations which kept H fixed and increased N until the results converged. The dotted line shows the results 
of simulation with 289 particles, H = 0.42. Since the curve is close to the solid line, this test demonstrates that we can 
achieve sufficient accuracy even with a small number of particles. 

6.2. High Pe results 

The results o f  our study indicate that g o o d  results can obta ined at low P e  using around  800 

points.  At  higher P e ,  the number  o f  points  required for convergence  w o u l d  in general be 

expected to be fewer, because  the relative importance  o f  the Brownian  term, which  involves  a 

density est imat ion Eq. (5), is smaller compared  to the terms involv ing  the flow, which is a 

funct ion only  o f  pos i t ion  o f  a particle. Fig. 12 shows  a s imulat ion with U = 8 and P e  = 100 for 
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Fig. 9. Convergence of calculations for shear flow by simultaneously reducing the bias and the variance. Parameters: 
U = 4.0 Pe = 1 D t  = 0.05. The solid line is the simulation result for 801 particles, with H = 0.6. The dashed line is the 
simulation result for 513 particles, with H=0.605. The dashed-line is the simulation result for 289 particles, 
H = 0.613. The dotted line shows the results of simulation with 129 particles, H =  0.624. 
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Fig. 10. Convergence of calculations for shear flow using a fixed width kernel with H =  0.15. Parameters: U= 8.0 
Pe = 21 Dt = 0.025. The solid line is the simulation result for 289 particles. The dotted line is the simulation result 
for 513 particles. The dashed line is the simulation result for 801 particles. The dashed-dot line shows the results of 
simulation with 1153 particles. 

two values o f  H and  several values o f  N. The two values o f  H,  0.354 and  0 .354/v/2  = 0.25, were 
chosen because the error o f  the latter should be ha l f  tha t  o f  the former,  for  sufficiently large N; 
see Eq. (7). On the expanded  vertical scale, it can be seen tha t  for H =  0.354, N =  1000 is 
sufficient for convergence,  while for H = 0.25, N = 1500 is sufficient. The difference in the value 
at top o f  the peak (UU)l,1 is approximate ly  2%, indicat ing tha t  this is the m a x i m u m  error  in the 
more  refined ( H =  0.354) result. In bo th  cases, however,  N =  500 is more  than  sufficient to 
obta in  good  results; the difference between N =  500 and  N = 1500 in the terminal  value o f  
(uu)~.~ for  H =  0.25 is a round  3%. 
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Fig. 11. Convergence of calculations for shear flow using an adaptive kernel with H =  0.354. Parameters: U= 8.0 
Pe = 21 Dt = 0.025. The solid line is the simulation result for 289 particles. The dotted line is the simulation result 
for 513 particles. The dashed line is the simulation result for 801 particles. The dashed-dot line shows the results of 
simulation with 1153 particles. 



C.V, Chaubal et al./J. Non-Newtonian Fluid Mech. 70 (1997) 125-154 149 

A 

V 

1.o 

0.8 

0.6 

0.4 

0.2 

. . . . .  r . . . . . . . . .  0 . 1 2 5  

i 

£ 

0.100 

0.075 

0.050 

0.0 L 0.025 
0 25 50 0 25 50 

time time 

Fig. 12. Convergence of calculations for high Pe shear flow. Parameters: U = 8.0 Pe = 100 Dt = 0.025. Solid line: 
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7. Discussion 

7.1. Comparison with results f rom other methods 

It is illuminating to compare our results with those from Brownian dynamics, which is a 
currently used method for solving kinetic theory problems that is most closely analogous to 
SPH, in that a set of discrete particles is tracked in a Lagrangian fashion and the distribution 
function is represented by their collective positions. In one set of simulation performed on a 
slightly different LCP model under similar conditions, Brownian Dynamics required 10000 
microstructural elements [6]. Despite the large number of particles, the figures of  results that 
they presented had a noticeable amount  of noise. Another simulation [8] performed on the same 
related system also showed noise in the results; the number of particles used in that study ranged 
from 2000 to 4000. 

In contrast, the results we obtain using SPH show much less numerical noise on the same 
scale. In addition, even the results with fewer particles are noise-free. In fact, we observe that the 
qualitative nature of the results does not change when a relatively small number of points is used 
(see for example Figs. 8 and 9 and Fig. 11). This suggests that using SPH-type calculations with 
suboptimal numbers of  particles might yield results that are still acceptable for making 
quantitative predictions. This would especially be useful for inhomogeneous flow simulation, in 
which the distribution function at many material points is calculated. Certainly, the results with 
a suboptimal number of particles are superior to all mathematical closure-based approximations 
which have been so far attempted for this particular class of problems. For example, the value 
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of the stress tensor calculated from simulations with fewer particles would probably not greatly 
alter the results if they were embedded in a full flow simulation. 

The only situation in which having fewer than optimal particles would have a qualitative 
effect would be near very sensitive boundaries in phase space. In these regions, the dynamics of 
the system can be profoundly affected by the accuracy of the solution [5]. For these situations, 
having a converged result is crucial to tracking the correct solution branch, for example, and it 
would be necessary to have both a sufficiently small H and sufficiently many particles such that 
the error does not affect the qualitative dynamics. In these applications, the increase in accuracy 
with computational effort might not be rapid enough, and it would perhaps be best to study the 
system of interest with a more rigorous, analytic approach. 

Hua and Schieber [8] mentioned that in their work the reason for the relatively small upper 
limit on particle number (compared with Brownian dynamics simulations of other polymer 
systems) is that this particular calculation is quadratic in the number of particles. This is because 
the rotational diffusivity Dr which they employ is a function of ~, and hence must be calculated 
separately for each particle; in addition, they use a more complicated expression for the nematic 
potential UMv (the Onsager form) which also depends on ~, and not simply on (uu). In 
calculations on simpler systems, Brownian dynamics can be performed in O(N) time, permitting 
the use of many more particles to obtain desired accuracy. Although we use a simple (constant) 
rotational diffusivity and the simpler Maier-Saupe nematic potential, our calculations are 
already quadratic in the number of particles; using the more complicated expression for Dr 
would not increase the computational complexity of the method, and indeed would not even 
greatly affect the time per iteration. We would still be able to obtain accurate results for less 
than 1000 particles. It should be emphasized, however, that the total computational time for 
each method depends upon the actual set of calculations which are performed. 

7.2. Application to other systems 

The use of SPH to solve other kinetic theory problems is straightforward. The configuration 
space of another model would depend on the degrees of freedom of the microstructural element. 
One would generally have a multi-dimensional vector, the components of which span the 
configuration space. The equivalent conservation of probability Eq. (3) would be the same 
except for dimensionality and geometry of configuration space. The equation(s) of motion 
would depend upon the particular model, but any term which involves the distribution function 
~, would be replaced by the equivalent kernel-based density estimation, i.e., the equivalent of (8). 

The main issue which arises from the application of SPH to other models is the dimensionality 
of phase space. Most non-parametric density estimation techniques suffer loss of accuracy with 
increase in dimensionality. The kernel method is not different from other methods in this 
respect, and indeed, the similar challenge is posed for related techniques such as Brownian 
dynamics. More particles would be required to obtain results with the same relative accuracy in 
any method. At the same time, the flexibility of SPH allows one to adopt different solution 
strategies. For example, one may employ different kernel functions for each degree of freedom; 
if the dynamics of any particular direction in the configuration space are unique, the kernel for 
that direction could be appropriately modified. The algorithm could be made even more 
adaptive by having extra particles introduced where necessary and removing them when desired. 
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One may also make use of the more sophisticated algorithms for computing many- 
body interactions that were discussed in Section 4.3; as the number of particles be- 
comes greater, these algorithms provide proportionally more time savings. In short, 
there are many variations on the SPH technique, and they have only begun to be ex- 
plored. 

8. Summary 

The SPH method appears to be an effective and practical technique for solving 
Fokker-Planck equations which arise from kinetic theory. It is easy to adapt to a 
wide variety of systems, and provides robust and accurate solutions. In addition to 
the Doi model for nematic LCPs, we are also currently undertaking an investigation 
into a model which attempts to account for flexibility in rigid rod polymers. This is 
done by incorporating a flexible hinge in the middle of the rod. The kinetic theory 
equations which result from this model are more complicated, but application of the 
SPH technique is quite straightforward. We believe that this method could find appli- 
cation in a wide variety of Fokker-Planck type problems, especially complicated ones 
where other methods would become too cumbersome to implement. 
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Appendix A. Convergence of the SPH simulation 

We wish to solve for the probability density distribution of orientations. We dis- 
cretize the system by following the particles. In this section, we first give the general 
expression for interpolation as used in SPH. We then prove that if we follow the 
particles and satisfy the conditions for convergence of the derivatives of a probabiilty 
density function, then our estimate of the distribution function will converge to the 
true distribution function. We prove this by showing that the differential equation sa- 
tisfied by the estimate approaches the differential equation satisfied by the true distri- 
bution function. 
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A.I .  General interpolation 

We can interpolate any function A ( r )  by 

['A(s) 
Ai , (r )  = A ( s ) W ( r  - s, h)  ds = 2 g , ( s )  ¢ ( s ) W ( r  - s, h)  ds, (A1) 

where ¢ is a probability density function and W is some kernel function. Using the fact that [37] 

where E denotes the expected value, f some function, and xi samples from the probability 
density function ~, the interpolated value Ain can be estimated as follows. 

= V a ( r i )  W ( r  - r,, h) .  (A2) aE(r) ,~ ~i 

Note that AE is an estimate of the interpolated value Ai,. The derivative of A too can be 
estimated by differentiating the kernel in the above equation, as shown below. 

VAs(r) = ~ A (ri) V W (r  - ri, h). (A3) 

A.2. Satisfaction o f  convergence criteria 

The orientation distribution function is defined by 

0 ~  
0--7 + v • ( ,~ , )  = 0. 

Using the SPH technique, the estimate of the density, ~'E is given by 

Using the chain rule, the derivative of the estimate of the density is obtained as follows 

0-7 (") - E V O(.,) "O(.,). 

From Eq. (18), we can show that this approaches 

- v ( a ¢ ( u ) ) ,  

if we satisfy the conditions for convergence of the estimate of the derivative of a probability 
density function. The above equation is the same as the equation for the true distribution 
function. Hence, we have completed our proof. 
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