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h uses 2(p+1)p(p+1)+2n�1 arithmeti
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ompute the pre�xes of n elements on a distributed-memory multipro
essor withp < n nodes. The algorithm is 
ompared with the distributed-memory implementation of the parallelpre�x algorithm proposed by Kruskal, Rudolph, and Snir. We show that there is a trade-o� betweenthe two algorithms in terms of the number of pro
essors, and the parameter � = �R=�A, whi
h is theratio of the time required to transfer an operand to the time required to perform the operation of thepre�x problem. The new algorithm is shown to be more eÆ
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ien
y.1 Introdu
tionGiven an ordered n-tuple (x1; x2; : : : ; xn) of elements of a set 
losed under an asso
iative binary operation�, the pre�x problem is the 
omputation of the partial produ
ts yi = x1 � x2 � � � � � xi for 1 � i � n.The pre�x problem arises in various settings in
luding 
ir
uit design problems where � is a simpleboolean operation, and numeri
al problems where � 
an be as 
ompli
ated as 
oating-point matrixmultipli
ation. For example, parallel algorithms for 
omputing the Newton and Hermite interpolatingpolynomials make use of parallel pre�x algorithms where the xi's are 
oating-point numbers and � isa 
oating-point addition or multipli
ation [5℄. Solution of kth order linear re
urren
es 
an be obtainedby a parallel pre�x algorithm where � is k � k matrix multipli
ation [9, 8, 7℄. Tridiagonal systems 
anbe solved with Stone's re
ursive doubling algorithm by 
omputing the pre�xes of 2� 2 matri
es whoseentries are 
oating-point numbers [16℄. More generally, the re
ursive doubling algorithm 
an be used�This work is supported in part by the US Army Resear
h OÆ
e Grant No. DAAL03{91{G{0106.1



to solve a banded linear system with bandwidth W = 2k + 1 by 
omputing the pre�x produ
t of k � kmatri
es.Parallel pre�x 
ir
uits have appli
ations in the design of optimal-area adders [2℄ and the simulationof sequential 
ir
uits by 
ombinational 
ir
uits [11℄. The reader may refer to Fi
h's paper [6℄ for areview of the literature on parallel pre�x 
ir
uits and further appli
ations. In a parallel pre�x 
ir
uit,the 
on
ern is to redu
e the depth (D) and the size (S) of the 
ir
uit. Upper and lower bounds on thesize for a restri
ted family of 
ir
uits with minimum or near minimum depth appears in [6℄. Snir provedthe interesting lower bound that S +D � 2n� 2 [15℄.Pre�xes of n elements 
an be 
omputed trivially in n � 1 steps sequentially where at ea
h step asingle � operation is performed. There are several parallel pre�x algorithms [11, 2, 6, 10, 15, 12℄, giveneither in the arithmeti
 
ir
uit or PRAM model of parallel 
omputation. Asyn
hronous algorithms [13℄and implementation on various ensemble ar
hite
tures [14, 3, 4, 1℄ have also been 
onsidered.In this paper, we fo
us on the performan
e of parallel pre�x algorithms on distributed-memorymultipro
essors. We assume that we are given p < n pro
essors with a routing me
hanism to sendan operand from one pro
essor to any other pro
essor. An arithmeti
 step (�A) is de�ned as the timerequired to perform a � operation by a single pro
essor, and a routing step (�R) as the time required totransfer an operand from one pro
essor to another. It is also assumed that the pro
essors are identi
aland the ar
hite
ture is 
ompletely 
onne
ted, i.e., �A and �R are 
onstants.First in x2 we des
ribe the distributed-memory multipro
essor implementation of a parallel pre�xalgorithm given in [10℄. We then present a new suboptimal parallel pre�x algorithm whi
h a
hieveshigher eÆ
ien
y for small values of p, and when �R < �A. The eÆ
ien
y of these two algorithms as afun
tion of the number of pro
essors and the parameter � = �R=�A is analyzed in x4 together with a
omparison of their arithmeti
 
omplexities to the lower bound obtained by Snir in [15℄.2 The KRS Parallel Pre�x AlgorithmFirst we 
onsider the distributed-memory implementation of the parallel pre�x algorithm (hen
eforthnamed the KRS algorithm) given by Kruskal, Rudolph, and Snir. This algorithm is designed using theEREW PRAM 
omputation model in [10℄. When p = n, the KRS algorithm redu
es to Stone's re
ursivedoubling algorithm. It follows that, on a distributed memory multipro
essor with n pro
essors, pre�xesof n elements 
an be 
omputed in logn arithmeti
 and logn routing steps.When p < n pro
essors P1; P2; : : : ; Pp are available, we �rst partition the list (x1; x2; : : : ; xn) into psublists, ea
h 
ontaining m = n=p 
ontiguous elements. The sequential pre�x algorithm is then appliedwithin ea
h sublist. Thus, pro
essor Pj 
omputes the pre�xes of (x(j�1)m+1; x(j�1)m+2; : : : ; x(j�1)m+m)for j = 1; 2; : : : ; p sequentially using the lo
ally available data. This step takes m� 1 arithmeti
 steps.Let yjm = x(j�1)m+1 � x(j�1)m+2 � � � � � x(j�1)m+mfor j = 1; 2; : : : ; p. We apply the re
ursive doubling algorithm to 
ompute the pre�xes of the list(ym; y2m; : : : ; ypm) using all p pro
essors. This step of the KRS algorithm takes log p arithmeti
 andlog p routing steps.Now we have the term ym � y2m � � � � � yjmat pro
essor Pj for j = 1; 2; : : : ; p. This quantity, repla
ing yjm at Pj , is sent from pro
essor Pj topro
essor Pj+1 for j = 1; 2; : : : ; p � 1 in a single parallel routing operation. The re
eived item is then2



multiplied with every pre�x term in pro
essor Pj+1 ex
ept the last one. This step also requires m � 1parallel arithmeti
 steps. Summing the 
ontribution of arithmeti
 and routing steps, we haveTheorem 1 The KRS algorithm 
omputes the pre�xes of n elements on a distributed-memory multi-pro
essor with p � n nodes using Ap(n) = 2np + log p � 2 arithmeti
 and Rp(n) = log p + 1 routingsteps.The details for the distributed-memory implementation of the KRS algorithm and its implementationon the hyper
ube multipro
essor 
an be found in [4℄. The KRS algorithm a
hieves linear speedup forp < n. Furthermore, the number of routing operations required is very small; Rp(n) = log p+ 1, whi
his not a fun
tion of the input size. However, for small values of p the KRS algorithm is not eÆ
ient interms of its arithmeti
 
omplexity. For example, when p = 2 we haveA2(n) = 2n2 + log 2� 2 = n� 1whi
h is the number of operations required to perform this 
omputation sequentially. Thus in this 
asehaving 2 pro
essors instead of 1 provides no redu
tion in the exe
ution time.The optimal value of Ap(n) for 2 pro
essors is Aopt2 (n) = 2n�23 as given by Snir [15℄. Furthermore,Snir has provided parallel pre�x 
ir
uits with depth D = 2nw+1 where w is the width of the 
ir
uit, i.e.,the number of pro
essors required to exe
ute the algorithm in D parallel arithmeti
 steps [15℄. Herethe PRAM 
omputation model is used where interpro
essor 
ommuni
ation is not an issue. Thus Snir'sparallel pre�x algorithm is optimal (up to an additive 
onstant) if one 
onsiders only the number ofarithmeti
 steps.In the next se
tion we present a new parallel pre�x algorithm whi
h is suboptimal in terms of thenumber of arithmeti
 steps, but more eÆ
ient than the distributed-memory implementation of the KRSalgorithm for small values of p and � .3 A New Parallel Pre�x AlgorithmWe propose the following two-phase algorithm for 
omputing the pre�xes of (x1; x2; : : : ; xn) on adistributed-memory multipro
essor with p < n pro
essors. Let �p be a rational number with 0 < �p < 1,to be determined later. As a fun
tion of �p, the �rst phase of the algorithm is to partition (x1; x2; : : : ; xn)into two sublists L1 = (x1; x2; : : : ; x�pn) and L2 = (x�pn+1; x�pn+2; : : : ; xn) of lengths �pn and (1��p)n,respe
tively. Then we assign p � 1 pro
essors P1; P2; : : : ; Pp�1 for the 
omputation of the pre�xes ofL1, and a single pro
essor Pp to the 
omputation of the pre�xes of L2. In the se
ond phase, all ofthe pre�xes of the given list are 
omputed by 
ombining the partial produ
ts available. The furtherpartitioning of the data in L1 is done re
ursively by assigning the �rst �p�1�pn elements of L1 to the�rst p� 2 pro
essors P1; P2; : : : ; Pp�2 and the remaining (1��p�1)�pn elements to pro
essor Pp�1, andso on. Our rule in pi
king the numbers �p in this partitioning s
heme is as follows:Choose �p in su
h a way that the number of parallel arithmeti
 steps performed by P1; : : : ; Pp�1to 
ompute the pre�xes of the list L1 is the same as the number of arithmeti
 steps performedby pro
essor Pp to sequentially 
ompute the pre�xes of L2.Therefore in the �rst phase of the algorithm, the pre�xes of the �pn terms in L1 are 
omputed byp� 1 pro
essors while the last pro
essor 
omputes the pre�xes of the (1� �p)n elements in L2. In these
ond phase of the algorithm, we essentially perform a s
atter operation to equally distribute all the
omputed terms among p pro
essors to �nish the remaining work.3



Note that during the 
omputation of the pre�xes of L1 there is some time spent for routing operationsamong P1; P2; : : : ; Pp�1. By our 
hoi
e of �p, the idle time experien
ed by pro
essor Pp is exa
tly equalto the time spent by P1; P2; : : : ; Pp�1 for these routing operations.In the following analysis we will ignore the time spent for the initial loading of the data and the�nal unloading of the pre�x terms 
omputed. The pre�x terms may have been s
attered among thepro
essors, i.e., sin
e we do not require the pre�xes of the terms in list Lj to be 
omputed by pro
essor Pj ,these quantities may not be found in pro
essor Lj after the exe
ution of the algorithm by all pro
essors.However, it turns out that the longest pre�x term of list Lj will always be 
omputed by and thus foundin pro
essor Pj .In order to determine the fra
tions �p expli
itly for p = 2; 3; : : :, we will �rst take a 
loser look atthe boundary 
ases p = 2 and p = 3.Case p = 2 : Here we assign the �rst �2n elements (L1) to pro
essor P1 and the remaining (1 ��2)n elements (L2) to pro
essor P2. The pro
essors independently perform sequential pre�x
omputation with their lo
al data. A

ording to the stated rule, we determine �2 so that P1and P2 perform an equal number of arithmeti
 operations. Sin
e r � 1 operations are required to
ompute the pre�xes of r elements sequentially, this trivially implies that�2n� 1 = (1� �2)n� 1:Thus we pi
k �2 = 12 . After the sequential pre�x is performed, we have the pre�xes of the elementsof L1 in pro
essor P1 and the pre�xes of the elements of L2 in pro
essor P2. We then transfer theterm x1 � x2 � � � � � x�2n from pro
essor P1 to pro
essor P2. After this step, the �rst half of thepre�x terms 
omputed in P2, i.e.,y�2n+1; y�2n+2; : : : ; y(�2+ 1��22 )n ,are forwarded to pro
essor P1. Now ea
h pro
essor works on its own data and the data justre
eived to 
ompute the remaining pre�xes by 
ombining 
ross produ
ts. Noti
e that at the endof the exe
ution the longest pre�x produ
t terms of lists L1 and L2 will be in pro
essors P1 andP2, respe
tively. The total number of parallel arithmeti
 steps required for the algorithm is foundto be A2(n) = �2n� 1 + (1� �2)n2 = 34n� 1 .The number of routing steps required isR2(n) = (1� �2)n2 + 1 = 14n+ 1 .Case p = 3 : Here we assign the initial �3n elements of the input list to the �rst two pro
essors P1and P2, and the remaining (1� �3)n to P3. P1 and P2 exe
ute the parallel pre�x algorithm with�3n elements using the algorithm for p = 2 above, while pro
essor P3 performs a sequential pre�xalgorithm on (1� �3)n elements. Thus, by our sele
tion of �3, we must haveA2(�3n) = (1� �3)n� 1 .Thus 34(�3n)� 1 = (1� �3)n� 1 ,4



whi
h implies that we should pi
k �3 = 47 . In the se
ond phase, as before, all three pro
essorsequally share the work to 
ompute the remaining pre�xes. The total number of parallel arithmeti
steps required for the algorithm is easily 
omputed to beA3(n) = 34�3n� 1 + (1� �3)n3 = 47n� 1 .To determine the number of routing steps, we note that in addition to the number of routingsteps performed by the �rst two pro
essors internally, we need to equally distribute (1 � �3)nelements among three pro
essors, and also to send the last term (the longest pre�x produ
t oflist L2) 
omputed by pro
essor P2 to pro
essors P1 and P3. The �rst task is a
hieved by sending(1��3)n3 terms from pro
essor P3 to pro
essor P1, and an equal number of terms from pro
essorP3 to pro
essor P2. This requires 2(1��3)n3 
ommuni
ation steps. Thus, the the total number ofrouting steps is found to beR3(n) = R2(�3n) + 2(1 � �3)n3 + 2 = 14 47n+ 1 + 27n+ 2 = 37n+ 3 .Note that A2(n) + R2(n) = n and A3(n) + R3(n) = n+ 2. In general, one 
an show that Ap(n) +Rp(n) = n+ 12p(p� 1)� 1. More pre
isely, we haveTheorem 2 The above algorithm 
omputes the pre�xes of n elements on a distributed-memory multipro-
essor with p < n nodes using Ap(n) = 2(p+1)p(p+1)+2n�1 parallel arithmeti
 and Rp(n) = p(p�1)p(p+1)+2n+12p(p�1)routing steps with �p = p(p�1)+2p(p+1)+2 .Proof The partitioning for the algorithm is depi
ted in Figure 1. A

ording to our rule the numberof parallel arithmeti
 steps performed by pro
essors P1; P2; : : : ; Pp�1 must be equal to the number ofarithmeti
 steps performed by the last pro
essor Pp. Thus, to �nd the total number of arithmeti
 stepsrequired, we add the number of arithmeti
 operations performed by pro
essor Pp (phase one) to thenumber of arithmeti
 steps required by all p pro
essors to 
ompute the pre�xes of the elements indexedfrom �pn+ 1 to n (phase two). This givesAp(n) = (1� �p)n� 1 + (1� �p)np = p+ 1p (1� �p)n� 1 .Let Ap(n) = Vpn� 1, i.e., Vp = p+ 1p (1� �p) , (1)then we have Vp�1�pn� 1 = (1� �p)n� 1, as 
an be seen from Figure 1. Thus�p = 11 + Vp�1 . (2)It also follows from equation (1) that Vp = p+ 1p Vp�11 + Vp�1 . (3)A re
ursion for Rp(n) 
an be given asRp(n) = Rp�1(�pn) + p� 1p (1� �p)n+ p� 1 , (4)5



where the �rst term 
omes from the routing operations performed by p � 1 pro
essors and the se
ondterm is the number of routing operations required to send (1 � �p)n terms from the last pro
essor toall the others. Finally p� 1 routing operations are required to send the last pre�x value from pro
essorPp�1 to all the other pro
essors. These operations are illustrated in Figure 2.Sin
e V2 = 34 , �2 = 12 , and R2(n) = 14n+ 1, using these initial values and indu
tion on p in (3), (2),and (4), we obtainVp = 2(p+ 1)p(p+ 1) + 2 , �p = p(p� 1) + 2p(p+ 1) + 2 , and Rp(n) = p(p� 1)p(p+ 1) + 2n+ 12p(p� 1) ,as 
laimed. Sin
e Ap(n) = Vpn� 1, we also haveAp = 2(p+ 1)p(p+ 1) + 2n� 1 . 24 EÆ
ien
y AnalysisIn Figure 3, Ap(n) for the KRS algorithm and the new algorithm is shown for n = 1024 and 2 � p � 10,together with the optimal number of arithmeti
 operations Aopt2 (n) = 2n�2p+1 . We see that when p is small,the new algorithm is quite eÆ
ient in terms of arithmeti
 
omplexity but ineÆ
ient as far as the totalnumber of routing operations is 
on
erned. However there is a trade-o� between the new algorithm andthe KRS algorithm as a fun
tion of � . As we mentioned in the introdu
tion, the operation � 
an be assimple as a boolean fun
tion, or as 
omplex as multipli
ation of two k � k matri
es with 
oating-pointentries. The total exe
ution time 
an be expressed as a fun
tion of the time required to perform a �operation (�A) and the time required to perform a routing operation (�R). For the KRS algorithm, weobtain TKRS = �2np + log p� 2� �A + [log p+ 1℄ �R . (5)For the new algorithm the total exe
ution time is given asTnew = � 2(p+ 1)p(p+ 1) + 2n� 1� �A + � p(p� 1)p(p+ 1) + 2n+ 12p(p� 1)� �R . (6)The eÆ
ien
y of these parallel algorithms with respe
t to the optimal sequential algorithm is 
omputedas E = (n� 1)�Ap [Ap(n)�A +Rp(n)�R℄ = n� 1p [Ap(n) +Rp(n)� ℄whi
h is a fun
tion of the ratio � = �R=�A. Figure 4 illustrates the eÆ
ien
y of these two algorithmsas � ranges from 0 to 2 for p = 2 and n = 1024. Also in Figure 5, the eÆ
ien
y is shown as a fun
tionof p for � = 0:01 and n = 1024. As it 
an be seen from Figure 4, for p = 2 the new algorithm is moreeÆ
ient if � < 1, otherwise the KRS algorithm is preferred. Similarly, we observe from Figure 5 that if� = 0:01 then for p > 8 we have EKRS > Enew and for p < 8 we have EKRS < Enew.>From (5) and (6), we derive that for n large,limn!1EKRS = 12 ,6



whi
h is independent of � , and limn!1Enew = p2 + p+ 2�p3 + (2� �)p2 + 2p .Thus, Enew � EKRS whenever p2 + p+ 2�p3 + (2� �)p2 + 2p � 12 .Thus, the new algorithm is more eÆ
ient than the KRS algorithm forp2(p� 1) � 4� .Finally we note that most distributed-memory parallel 
omputers available on the market are 
apableof overlapping 
ommuni
ation with 
omputation. Thus, a more 
areful analysis of the algorithm 
analso be made by overlapping some of the 
ommuni
ation with 
omputation performed by pro
essors.Su
h analysis implies that the ratio �R=�A is e�e
tively smaller than for the nonoverlapping 
ase, whi
hin turn means the new parallel pre�x algorithm will obtain higher speedup.Referen
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