Parallel Prefix Computation with Few Processors *

Omer Ejecioglu
Department of Computer Science
University of California
Santa Barbara, CA 93106

Cetin Kaya Kog
Department of Electrical Engineering
University of Houston
Houston, TX 77204

Abstract
We present a parallel prefix algorithm which uses %Hfl arithmetic and %n+%p(pfl)

routing steps to compute the prefixes of n elements on a distributed-memory multiprocessor with
p < n nodes. The algorithm is compared with the distributed-memory implementation of the parallel
prefix algorithm proposed by Kruskal, Rudolph, and Snir. We show that there is a trade-off between
the two algorithms in terms of the number of processors, and the parameter 7 = 75 /74, which is the
ratio of the time required to transfer an operand to the time required to perform the operation of the
prefix problem. The new algorithm is shown to be more efficient when n is large and p?(p — 1) < é.

CR Categories: F.1.2, F.2, G.4.
1980 Mathematics Subject Classification (1985 Revision): 68Q10, 68Q25.

Key Words: Parallel algorithm, parallel prefix, distributed-memory multiprocessor, algorithm effi-
ciency.

1 Introduction

Given an ordered n-tuple (z1, z9, ..., z,) of elements of a set closed under an associative binary operation
x, the prefiz problem is the computation of the partial products y; = 1 * zg % ---x z; for 1 <7 < n.
The prefix problem arises in various settings including circuit design problems where * is a simple
boolean operation, and numerical problems where % can be as complicated as floating-point matrix
multiplication. For example, parallel algorithms for computing the Newton and Hermite interpolating
polynomials make use of parallel prefix algorithms where the z;’s are floating-point numbers and * is
a floating-point addition or multiplication [5]. Solution of kth order linear recurrences can be obtained
by a parallel prefix algorithm where * is k x k& matrix multiplication [9, 8, 7]. Tridiagonal systems can
be solved with Stone’s recursive doubling algorithm by computing the prefixes of 2 x 2 matrices whose
entries are floating-point numbers [16]. More generally, the recursive doubling algorithm can be used

*This work is supported in part by the US Army Research Office Grant No. DAAL03-91-G-0106.

to solve a banded linear system with bandwidth W = 2k 4+ 1 by computing the prefix product of k x k
matrices.

Parallel prefix circuits have applications in the design of optimal-area adders [2] and the simulation
of sequential circuits by combinational circuits [11]. The reader may refer to Fich’s paper [6] for a
review of the literature on parallel prefix circuits and further applications. In a parallel prefix circuit,
the concern is to reduce the depth (D) and the size (S) of the circuit. Upper and lower bounds on the
size for a restricted family of circuits with minimum or near minimum depth appears in [6]. Snir proved
the interesting lower bound that S+ D > 2n — 2 [15].

Prefixes of n elements can be computed trivially in n — 1 steps sequentially where at each step a
single * operation is performed. There are several parallel prefix algorithms [11, 2, 6, 10, 15, 12], given
either in the arithmetic circuit or PRAM model of parallel computation. Asynchronous algorithms [13]
and implementation on various ensemble architectures [14, 3, 4, 1] have also been considered.

In this paper, we focus on the performance of parallel prefix algorithms on distributed-memory
multiprocessors. We assume that we are given p < n processors with a routing mechanism to send
an operand from one processor to any other processor. An arithmetic step (74) is defined as the time
required to perform a * operation by a single processor, and a routing step (7r) as the time required to
transfer an operand from one processor to another. It is also assumed that the processors are identical
and the architecture is completely connected, i.e., 74 and Tr are constants.

First in §2 we describe the distributed-memory multiprocessor implementation of a parallel prefix
algorithm given in [10]. We then present a new suboptimal parallel prefix algorithm which achieves
higher efficiency for small values of p, and when 7 < 74. The efficiency of these two algorithms as a
function of the number of processors and the parameter 7 = 7/74 is analyzed in §4 together with a
comparison of their arithmetic complexities to the lower bound obtained by Snir in [15].

2 The KRS Parallel Prefix Algorithm

First we consider the distributed-memory implementation of the parallel prefix algorithm (henceforth
named the KRS algorithm) given by Kruskal, Rudolph, and Snir. This algorithm is designed using the
EREW PRAM computation model in [10]. When p = n, the KRS algorithm reduces to Stone’s recursive
doubling algorithm. It follows that, on a distributed memory multiprocessor with n processors, prefixes
of n elements can be computed in log n arithmetic and logn routing steps.

When p < n processors Py, Py, ..., P, are available, we first partition the list (z1,22,...,2,) into p
sublists, each containing m = n/p contiguous elements. The sequential prefix algorithm is then applied
within each sublist. Thus, processor P; computes the prefixes of (.'I;(]-,UmH L1)mt2s - - - ,f[;(j,nerm)

for j = 1,2,...,p sequentially using the locally available data. This step takes m — 1 arithmetic steps.
Let
Yjm = T(—1)ym41 ¥ T(i-1)ym42 * " * L(j—1)m+m
for j = 1,2,...,p. We apply the recursive doubling algorithm to compute the prefixes of the list
(Ym>Y2ms - - - » Ypm) using all p processors. This step of the KRS algorithm takes log p arithmetic and
log p routing steps.
Now we have the term
Ym * Yom * * % Yjm

at processor P; for j = 1,2,...,p. This quantity, replacing y;,, at P;, is sent from processor P; to
processor Py for j = 1,2,...,p — 1 in a single parallel routing operation. The received item is then

multiplied with every prefix term in processor Pj;; except the last one. This step also requires m — 1
parallel arithmetic steps. Summing the contribution of arithmetic and routing steps, we have

Theorem 1 The KRS algorithm computes the prefizes of n elements on a distributed-memory multi-
processor with p < n nodes using Ap(n) = 2% + logp — 2 arithmetic and Ry(n) = logp + 1 routing
steps.

The details for the distributed-memory implementation of the KRS algorithm and its implementation
on the hypercube multiprocessor can be found in [4]. The KRS algorithm achieves linear speedup for
p < n. Furthermore, the number of routing operations required is very small; R,(n) = logp + 1, which
is not a function of the input size. However, for small values of p the KRS algorithm is not efficient in
terms of its arithmetic complexity. For example, when p = 2 we have

AQ(n):2g+log272:n71

which is the number of operations required to perform this computation sequentially. Thus in this case
having 2 processors instead of 1 provides no reduction in the execution time.

The optimal value of A,(n) for 2 processors is AY"(n) = 202 a5 given by Snir [15]. Furthermore,
Snir has provided parallel prefix circuits with depth D = 11)211 where w is the width of the circuit, i.e.,
the number of processors required to execute the algorithm in D parallel arithmetic steps [15]. Here

the PRAM computation model is used where interprocessor communication is not an issue. Thus Snir’s

parallel prefix algorithm is optimal (up to an additive constant) if one considers only the number of
arithmetic steps.

In the next section we present a new parallel prefix algorithm which is suboptimal in terms of the
number of arithmetic steps, but more efficient than the distributed-memory implementation of the KRS
algorithm for small values of p and 7.

3 A New Parallel Prefix Algorithm

We propose the following two-phase algorithm for computing the prefixes of (z1,z9,...,2,) on a
distributed-memory multiprocessor with p < n processors. Let «y, be a rational number with 0 < o, < 1,
to be determined later. As a function of o, the first phase of the algorithm is to partition (z1, z2,...,%,)
into two sublists L1 = (z1,22,...,Za,n) and Ly = (Taynt1, Tapnt2, - - - > Zn) of lengths apyn and (1—ay)n,
respectively. Then we assign p — 1 processors Py, P, ..., P, for the computation of the prefixes of
Ly, and a single processor P, to the computation of the prefixes of L,. In the second phase, all of
the prefixes of the given list are computed by combining the partial products available. The further
partitioning of the data in L; is done recursively by assigning the first «;,,_1cpn elements of Ly to the
first p — 2 processors Py, Py, ..., P, 5 and the remaining (1 — 1), elements to processor P,_1, and
so on. Our rule in picking the numbers ¢, in this partitioning scheme is as follows:

Choose oy, in such a way that the number of parallel arithmetic steps performed by Py, ..., P,y
to compute the prefizes of the list Ly is the same as the number of arithmetic steps performed
by processor P, to sequentially compute the prefizes of Lo.

Therefore in the first phase of the algorithm, the prefixes of the a,n terms in L; are computed by
p — 1 processors while the last processor computes the prefixes of the (1 — a,)n elements in Ly. In the
second phase of the algorithm, we essentially perform a scatter operation to equally distribute all the
computed terms among p processors to finish the remaining work.

Note that during the computation of the prefixes of L; there is some time spent for routing operations
among Py, P, ..., P,_1. By our choice of o, the idle time experienced by processor P, is exactly equal
to the time spent by P;, P, ..., P,_; for these routing operations.

In the following analysis we will ignore the time spent for the initial loading of the data and the
final unloading of the prefix terms computed. The prefix terms may have been scattered among the
processors, i.e., since we do not require the prefixes of the terms in list L; to be computed by processor P;,
these quantities may not be found in processor L; after the execution of the algorithm by all processors.
However, it turns out that the longest prefix term of list L; will always be computed by and thus found
in processor Pj.

In order to determine the fractions «, explicitly for p = 2,3,..., we will first take a closer look at
the boundary cases p = 2 and p = 3.

Case p =2 : Here we assign the first asn elements (Li) to processor P, and the remaining (1 —
a9)n elements (L) to processor P,. The processors independently perform sequential prefix
computation with their local data. According to the stated rule, we determine as so that P;
and P, perform an equal number of arithmetic operations. Since r — 1 operations are required to
compute the prefixes of r elements sequentially, this trivially implies that

aon —1 = (1 —ay)n — 1.

Thus we pick ay = % After the sequential prefix is performed, we have the prefixes of the elements
of Ly in processor P; and the prefixes of the elements of Ly in processor P». We then transfer the
term xy % g * - - - % Tq,, from processor P; to processor P. After this step, the first half of the
prefix terms computed in P, i.e.,

Yaon+1yYaan+2, - - - ay(a2+1*2"2 Yn

are forwarded to processor P;. Now each processor works on its own data and the data just
received to compute the remaining prefixes by combining cross products. Notice that at the end
of the execution the longest prefix product terms of lists L; and Ly will be in processors P; and
P;, respectively. The total number of parallel arithmetic steps required for the algorithm is found

to be) 5
Ag(n):agn—l—}—%:zn—l .
The number of routing steps required is
1—a9)n 1
Rg(n)—%—i—l—zn—i—l .

Case p =3 : Here we assign the initial agn elements of the input list to the first two processors P
and Py, and the remaining (1 — a3)n to P;. P; and P, execute the parallel prefix algorithm with
azn elements using the algorithm for p = 2 above, while processor P; performs a sequential prefix
algorithm on (1 — a3)n elements. Thus, by our selection of a3, we must have

As(agn) = (1 —ag)n — 1.

Thus 3
Z(agn) ~1=(1-ag)n-1,

which implies that we should pick a3z = %. In the second phase, as before, all three processors
equally share the work to compute the remaining prefixes. The total number of parallel arithmetic
steps required for the algorithm is easily computed to be
3 (1—as)n 4
As(n)=-asgn— 14+ ——=-n—-1.
3(n) e 3 7
To determine the number of routing steps, we note that in addition to the number of routing
steps performed by the first two processors internally, we need to equally distribute (1 — as)n
elements among three processors, and also to send the last term (the longest prefix product of
list Lo) computed by processor P, to processors P; and Ps. The first task is achieved by sending

l1—as)n
% terms from processor P3 to processor P, and an equal number of terms from processor

2(1—as3)n
3

P5 to processor P. This requires communication steps. Thus, the the total number of

routing steps is found to be

2(1 — 14 2 3
w+2———n+1+—n+2:—n+3.

Rg(ﬂ) = RQ((}.;;TL) + 3 =7 7 7

Note that As(n) + Ra(n) = n and Az(n) + R3(n) = n + 2. In general, one can show that A,(n) +
Ry(n) =n+ ip(p — 1) — 1. More precisely, we have

Theorem 2 The above algorithm computes the prefizes of n elements on a distributed-memory multipro-

cessor with p < n nodes using A,(n) = péfi%;}r?n—l parallel arithmetic and R, (n) = p(pﬁ%ﬁr?n—k%p(p—l)
routing steps with o, = %.

Proof The partitioning for the algorithm is depicted in Figure 1. According to our rule the number
of parallel arithmetic steps performed by processors Py, P»,..., P,_1 must be equal to the number of
arithmetic steps performed by the last processor P,. Thus, to find the total number of arithmetic steps
required, we add the number of arithmetic operations performed by processor P, (phase one) to the
number of arithmetic steps required by all p processors to compute the prefixes of the elements indexed
from ayn + 1 to n (phase two). This gives

(1-ap)n p+1

Ap(n) =(1—-ay)n—1+ (I—apy)n—1.
2 P D D P
Let A,(n) = V,n —1, ie.,
p+1
Vi=——(0~-0a), (1)
p
then we have V,_ja,n —1 = (1 — a,)n — 1, as can be seen from Figure 1. Thus
1
Yy = —————— . 2
(}/p 1_‘_%71 ()
It also follows from equation (1) that
p—l—l Vp,1
Vpy=r—-r—"—. 3
D P 1+ I/})f] ()
A recursion for R,(n) can be given as
p—1
Ry(n) = Ry 1(apn) + T(l —ap)nt+p—1, (4)

where the first term comes from the routing operations performed by p — 1 processors and the second
term is the number of routing operations required to send (1 — «,)n terms from the last processor to
all the others. Finally p — 1 routing operations are required to send the last prefix value from processor
P,_; to all the other processors. These operations are illustrated in Figure 2.

Since Vo = 3, ap = 1, and Ry(n) = In + 1, using these initial values and induction on p in (3), (2),
and (4), we obtain

2(p+1) _plp—1)+2

1
=, ap= n+-plp-1),
P plp+ 1) +2 P pp+ 1) +2 plp=1)

;and Ry(n) =

as claimed. Since Ay(n) = V,n — 1, we also have

2(p+1)

=~ n-—1.
P pp+1)+2

4 Efficiency Analysis

In Figure 3, A,(n) for the KRS algorithm and the new algorithm is shown for n = 1024 and 2 < p < 10,
2;:]2. We see that when p is small,
the new algorithm is quite efficient in terms of arithmetic complexity but inefficient as far as the total
number of routing operations is concerned. However there is a trade-off between the new algorithm and
the KRS algorithm as a function of 7. As we mentioned in the introduction, the operation * can be as
simple as a boolean function, or as complex as multiplication of two k& x k matrices with floating-point
entries. The total execution time can be expressed as a function of the time required to perform a *
operation (74) and the time required to perform a routing operation (7). For the KRS algorithm, we
obtain

together with the optimal number of arithmetic operations AS”*(n) =

Tkrs = [2%+logp2 74+ [logp + 1] 7R . (5)

For the new algorithm the total execution time is given as

_ [2+ 1 L[=D L]
T”e“’[p(p+1)+2" 1} A+{p(p+1)+2 Taple =T (6)

The efficiency of these parallel algorithms with respect to the optimal sequential algorithm is computed
as
B (n—1)T4 B n—1
plAp(n)Ta+ Ryp(n)7r] p[Ap(n) + Rp(n)7]
which is a function of the ratio 7 = 7p/74. Figure 4 illustrates the efficiency of these two algorithms
as 7 ranges from 0 to 2 for p = 2 and n = 1024. Also in Figure 5, the efficiency is shown as a function
of p for 7 = 0.01 and n = 1024. As it can be seen from Figure 4, for p = 2 the new algorithm is more
efficient if 7 < 1, otherwise the KRS algorithm is preferred. Similarly, we observe from Figure 5 that if
7 = 0.01 then for p > 8 we have Exps > Fpeq and for p < 8 we have Fgps < Epeyw.
JFrom (5) and (6), we derive that for n large,

lim Egps = 5,
n—00 2

which is independent of 7, and

. p?+p+2
lim Epey = —5 5 .
n—00 *+ (2 - T)p* + 2p
Thus, Fyew > Frrs whenever
PP +p+2 1
T+ 2—-T)p2+2p 2
Thus, the new algorithm is more efficient than the KRS algorithm for

>

P <
-

Finally we note that most distributed-memory parallel computers available on the market are capable

of overlapping communication with computation. Thus, a more careful analysis of the algorithm can

also be made by overlapping some of the communication with computation performed by processors.

Such analysis implies that the ratio 7/74 is effectively smaller than for the nonoverlapping case, which

in turn means the new parallel prefix algorithm will obtain higher speedup.

References

[1] S. G. AKkl. The Design and Analysis of Parallel Algorithms. Englewood Cliffs, N.J: Prentice-Hall,
1989.

[2] R.P.Brent and H. T. Kung. A regular layout for parallel adders. IEEE Transactions on Computers,
31(3):260 264, March 1982.

[3] D. A. Carlson. Modified mesh-connected parallel computers. IEEE Transactions on Computers,
37(10):1315 1321, October 1988.

[4] O. Egecioglu, C. K. Ko, and A. J. Laub. A recursive doubling algorithm for solution of tridiag-
onal systems on hypercube multiprocessors. Journal of Computational and Applied Mathematics,
27(142):95-108, 1989.

[5] O. Egecioglu, E. Gallopoulos, and Q. K. Koc. Parallel Hermite interpolation: An algebraic approach.
Computing, 42(4):291 307, 1989.

[6] F. E. Fich. New bounds for parallel prefix circuits. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, pages 100 109, 1983.

[7] A. G. Greenberg, R. E. Ladner, M. Paterson, and Z. Galil. Efficient parallel algorithms for linear
recurrence computation. Information Processing Letters, 15(1):31 35, 1982.

[8] L. Hyafil and H. T. Kung. The complexity of parallel evaluation of linear recurrences. Journal of
the ACM, 24(3):513-521, July 1977.

[9] P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient solution of a general class of
recurrence equations. IEEE Transactions on Computers, 22(8):786-792, August 1973.

[10] C. P. Kruskal, L. Rudolph, and M. Snir. The power of parallel prefix. ITEEE Transactions on
Computers, 34(10):965-968, October 1985.

[11]

[12]

[13]

R. Ladner and M. Fischer. Parallel prefix computation. Journal of the ACM, 27(4):831-838,
October 1980.

S. Lakshmivarahan, C. Yang, and S. K. Dhall. On a new class of optimal parallel prefix circuits
with (SIZE + DEPTH) = 2n — 2 and [logn]| < DEPTH < (2[logn]| — 3). In Proceedings of the
International Conference on Parallel Processing, pages 58—65, August 17-21 1987.

B. D. Lubachevsky and A. G. Greenberg. Simple, efficient asynchronous parallel prefix algorithms.
In Proceedings of the International Conference on Parallel Processing, pages 66—69, August 17-21
1987.

H. Meijer and S. G. Akl. Optimal computation of prefix sums on a binary tree of processors.
International Journal of Parallel Programming, 16(2):127-136, 1987.

M. Snir. Depth-size trade-offs for parallel prefix computation. Journal of Algorithms, 7(2):185 201,
1986.

H. S. Stone. An efficient parallel algorithm for the solution of a tridiagonal linear system of
equations. Journal of the ACM, 20(1):27 38, January 1973.

