
Parallel Pre�x Computation with Few Proessors ��Omer E�geio�gluDepartment of Computer SieneUniversity of CaliforniaSanta Barbara, CA 93106C�etin Kaya Ko�Department of Eletrial EngineeringUniversity of HoustonHouston, TX 77204AbstratWe present a parallel pre�x algorithmwhih uses 2(p+1)p(p+1)+2n�1 arithmeti and p(p�1)p(p+1)+2n+ 12p(p�1)routing steps to ompute the pre�xes of n elements on a distributed-memory multiproessor withp < n nodes. The algorithm is ompared with the distributed-memory implementation of the parallelpre�x algorithm proposed by Kruskal, Rudolph, and Snir. We show that there is a trade-o� betweenthe two algorithms in terms of the number of proessors, and the parameter � = �R=�A, whih is theratio of the time required to transfer an operand to the time required to perform the operation of thepre�x problem. The new algorithm is shown to be more eÆient when n is large and p2(p� 1) � 4� .CR Categories: F.1.2, F.2, G.4.1980 Mathematis Subjet Classi�ation (1985 Revision): 68Q10, 68Q25.Key Words: Parallel algorithm, parallel pre�x, distributed-memory multiproessor, algorithm eÆ-ieny.1 IntrodutionGiven an ordered n-tuple (x1; x2; : : : ; xn) of elements of a set losed under an assoiative binary operation�, the pre�x problem is the omputation of the partial produts yi = x1 � x2 � � � � � xi for 1 � i � n.The pre�x problem arises in various settings inluding iruit design problems where � is a simpleboolean operation, and numerial problems where � an be as ompliated as oating-point matrixmultipliation. For example, parallel algorithms for omputing the Newton and Hermite interpolatingpolynomials make use of parallel pre�x algorithms where the xi's are oating-point numbers and � isa oating-point addition or multipliation [5℄. Solution of kth order linear reurrenes an be obtainedby a parallel pre�x algorithm where � is k � k matrix multipliation [9, 8, 7℄. Tridiagonal systems anbe solved with Stone's reursive doubling algorithm by omputing the pre�xes of 2� 2 matries whoseentries are oating-point numbers [16℄. More generally, the reursive doubling algorithm an be used�This work is supported in part by the US Army Researh OÆe Grant No. DAAL03{91{G{0106.1



to solve a banded linear system with bandwidth W = 2k + 1 by omputing the pre�x produt of k � kmatries.Parallel pre�x iruits have appliations in the design of optimal-area adders [2℄ and the simulationof sequential iruits by ombinational iruits [11℄. The reader may refer to Fih's paper [6℄ for areview of the literature on parallel pre�x iruits and further appliations. In a parallel pre�x iruit,the onern is to redue the depth (D) and the size (S) of the iruit. Upper and lower bounds on thesize for a restrited family of iruits with minimum or near minimum depth appears in [6℄. Snir provedthe interesting lower bound that S +D � 2n� 2 [15℄.Pre�xes of n elements an be omputed trivially in n � 1 steps sequentially where at eah step asingle � operation is performed. There are several parallel pre�x algorithms [11, 2, 6, 10, 15, 12℄, giveneither in the arithmeti iruit or PRAM model of parallel omputation. Asynhronous algorithms [13℄and implementation on various ensemble arhitetures [14, 3, 4, 1℄ have also been onsidered.In this paper, we fous on the performane of parallel pre�x algorithms on distributed-memorymultiproessors. We assume that we are given p < n proessors with a routing mehanism to sendan operand from one proessor to any other proessor. An arithmeti step (�A) is de�ned as the timerequired to perform a � operation by a single proessor, and a routing step (�R) as the time required totransfer an operand from one proessor to another. It is also assumed that the proessors are identialand the arhiteture is ompletely onneted, i.e., �A and �R are onstants.First in x2 we desribe the distributed-memory multiproessor implementation of a parallel pre�xalgorithm given in [10℄. We then present a new suboptimal parallel pre�x algorithm whih ahieveshigher eÆieny for small values of p, and when �R < �A. The eÆieny of these two algorithms as afuntion of the number of proessors and the parameter � = �R=�A is analyzed in x4 together with aomparison of their arithmeti omplexities to the lower bound obtained by Snir in [15℄.2 The KRS Parallel Pre�x AlgorithmFirst we onsider the distributed-memory implementation of the parallel pre�x algorithm (heneforthnamed the KRS algorithm) given by Kruskal, Rudolph, and Snir. This algorithm is designed using theEREW PRAM omputation model in [10℄. When p = n, the KRS algorithm redues to Stone's reursivedoubling algorithm. It follows that, on a distributed memory multiproessor with n proessors, pre�xesof n elements an be omputed in logn arithmeti and logn routing steps.When p < n proessors P1; P2; : : : ; Pp are available, we �rst partition the list (x1; x2; : : : ; xn) into psublists, eah ontaining m = n=p ontiguous elements. The sequential pre�x algorithm is then appliedwithin eah sublist. Thus, proessor Pj omputes the pre�xes of (x(j�1)m+1; x(j�1)m+2; : : : ; x(j�1)m+m)for j = 1; 2; : : : ; p sequentially using the loally available data. This step takes m� 1 arithmeti steps.Let yjm = x(j�1)m+1 � x(j�1)m+2 � � � � � x(j�1)m+mfor j = 1; 2; : : : ; p. We apply the reursive doubling algorithm to ompute the pre�xes of the list(ym; y2m; : : : ; ypm) using all p proessors. This step of the KRS algorithm takes log p arithmeti andlog p routing steps.Now we have the term ym � y2m � � � � � yjmat proessor Pj for j = 1; 2; : : : ; p. This quantity, replaing yjm at Pj , is sent from proessor Pj toproessor Pj+1 for j = 1; 2; : : : ; p � 1 in a single parallel routing operation. The reeived item is then2



multiplied with every pre�x term in proessor Pj+1 exept the last one. This step also requires m � 1parallel arithmeti steps. Summing the ontribution of arithmeti and routing steps, we haveTheorem 1 The KRS algorithm omputes the pre�xes of n elements on a distributed-memory multi-proessor with p � n nodes using Ap(n) = 2np + log p � 2 arithmeti and Rp(n) = log p + 1 routingsteps.The details for the distributed-memory implementation of the KRS algorithm and its implementationon the hyperube multiproessor an be found in [4℄. The KRS algorithm ahieves linear speedup forp < n. Furthermore, the number of routing operations required is very small; Rp(n) = log p+ 1, whihis not a funtion of the input size. However, for small values of p the KRS algorithm is not eÆient interms of its arithmeti omplexity. For example, when p = 2 we haveA2(n) = 2n2 + log 2� 2 = n� 1whih is the number of operations required to perform this omputation sequentially. Thus in this asehaving 2 proessors instead of 1 provides no redution in the exeution time.The optimal value of Ap(n) for 2 proessors is Aopt2 (n) = 2n�23 as given by Snir [15℄. Furthermore,Snir has provided parallel pre�x iruits with depth D = 2nw+1 where w is the width of the iruit, i.e.,the number of proessors required to exeute the algorithm in D parallel arithmeti steps [15℄. Herethe PRAM omputation model is used where interproessor ommuniation is not an issue. Thus Snir'sparallel pre�x algorithm is optimal (up to an additive onstant) if one onsiders only the number ofarithmeti steps.In the next setion we present a new parallel pre�x algorithm whih is suboptimal in terms of thenumber of arithmeti steps, but more eÆient than the distributed-memory implementation of the KRSalgorithm for small values of p and � .3 A New Parallel Pre�x AlgorithmWe propose the following two-phase algorithm for omputing the pre�xes of (x1; x2; : : : ; xn) on adistributed-memory multiproessor with p < n proessors. Let �p be a rational number with 0 < �p < 1,to be determined later. As a funtion of �p, the �rst phase of the algorithm is to partition (x1; x2; : : : ; xn)into two sublists L1 = (x1; x2; : : : ; x�pn) and L2 = (x�pn+1; x�pn+2; : : : ; xn) of lengths �pn and (1��p)n,respetively. Then we assign p � 1 proessors P1; P2; : : : ; Pp�1 for the omputation of the pre�xes ofL1, and a single proessor Pp to the omputation of the pre�xes of L2. In the seond phase, all ofthe pre�xes of the given list are omputed by ombining the partial produts available. The furtherpartitioning of the data in L1 is done reursively by assigning the �rst �p�1�pn elements of L1 to the�rst p� 2 proessors P1; P2; : : : ; Pp�2 and the remaining (1��p�1)�pn elements to proessor Pp�1, andso on. Our rule in piking the numbers �p in this partitioning sheme is as follows:Choose �p in suh a way that the number of parallel arithmeti steps performed by P1; : : : ; Pp�1to ompute the pre�xes of the list L1 is the same as the number of arithmeti steps performedby proessor Pp to sequentially ompute the pre�xes of L2.Therefore in the �rst phase of the algorithm, the pre�xes of the �pn terms in L1 are omputed byp� 1 proessors while the last proessor omputes the pre�xes of the (1� �p)n elements in L2. In theseond phase of the algorithm, we essentially perform a satter operation to equally distribute all theomputed terms among p proessors to �nish the remaining work.3



Note that during the omputation of the pre�xes of L1 there is some time spent for routing operationsamong P1; P2; : : : ; Pp�1. By our hoie of �p, the idle time experiened by proessor Pp is exatly equalto the time spent by P1; P2; : : : ; Pp�1 for these routing operations.In the following analysis we will ignore the time spent for the initial loading of the data and the�nal unloading of the pre�x terms omputed. The pre�x terms may have been sattered among theproessors, i.e., sine we do not require the pre�xes of the terms in list Lj to be omputed by proessor Pj ,these quantities may not be found in proessor Lj after the exeution of the algorithm by all proessors.However, it turns out that the longest pre�x term of list Lj will always be omputed by and thus foundin proessor Pj .In order to determine the frations �p expliitly for p = 2; 3; : : :, we will �rst take a loser look atthe boundary ases p = 2 and p = 3.Case p = 2 : Here we assign the �rst �2n elements (L1) to proessor P1 and the remaining (1 ��2)n elements (L2) to proessor P2. The proessors independently perform sequential pre�xomputation with their loal data. Aording to the stated rule, we determine �2 so that P1and P2 perform an equal number of arithmeti operations. Sine r � 1 operations are required toompute the pre�xes of r elements sequentially, this trivially implies that�2n� 1 = (1� �2)n� 1:Thus we pik �2 = 12 . After the sequential pre�x is performed, we have the pre�xes of the elementsof L1 in proessor P1 and the pre�xes of the elements of L2 in proessor P2. We then transfer theterm x1 � x2 � � � � � x�2n from proessor P1 to proessor P2. After this step, the �rst half of thepre�x terms omputed in P2, i.e.,y�2n+1; y�2n+2; : : : ; y(�2+ 1��22 )n ,are forwarded to proessor P1. Now eah proessor works on its own data and the data justreeived to ompute the remaining pre�xes by ombining ross produts. Notie that at the endof the exeution the longest pre�x produt terms of lists L1 and L2 will be in proessors P1 andP2, respetively. The total number of parallel arithmeti steps required for the algorithm is foundto be A2(n) = �2n� 1 + (1� �2)n2 = 34n� 1 .The number of routing steps required isR2(n) = (1� �2)n2 + 1 = 14n+ 1 .Case p = 3 : Here we assign the initial �3n elements of the input list to the �rst two proessors P1and P2, and the remaining (1� �3)n to P3. P1 and P2 exeute the parallel pre�x algorithm with�3n elements using the algorithm for p = 2 above, while proessor P3 performs a sequential pre�xalgorithm on (1� �3)n elements. Thus, by our seletion of �3, we must haveA2(�3n) = (1� �3)n� 1 .Thus 34(�3n)� 1 = (1� �3)n� 1 ,4



whih implies that we should pik �3 = 47 . In the seond phase, as before, all three proessorsequally share the work to ompute the remaining pre�xes. The total number of parallel arithmetisteps required for the algorithm is easily omputed to beA3(n) = 34�3n� 1 + (1� �3)n3 = 47n� 1 .To determine the number of routing steps, we note that in addition to the number of routingsteps performed by the �rst two proessors internally, we need to equally distribute (1 � �3)nelements among three proessors, and also to send the last term (the longest pre�x produt oflist L2) omputed by proessor P2 to proessors P1 and P3. The �rst task is ahieved by sending(1��3)n3 terms from proessor P3 to proessor P1, and an equal number of terms from proessorP3 to proessor P2. This requires 2(1��3)n3 ommuniation steps. Thus, the the total number ofrouting steps is found to beR3(n) = R2(�3n) + 2(1 � �3)n3 + 2 = 14 47n+ 1 + 27n+ 2 = 37n+ 3 .Note that A2(n) + R2(n) = n and A3(n) + R3(n) = n+ 2. In general, one an show that Ap(n) +Rp(n) = n+ 12p(p� 1)� 1. More preisely, we haveTheorem 2 The above algorithm omputes the pre�xes of n elements on a distributed-memory multipro-essor with p < n nodes using Ap(n) = 2(p+1)p(p+1)+2n�1 parallel arithmeti and Rp(n) = p(p�1)p(p+1)+2n+12p(p�1)routing steps with �p = p(p�1)+2p(p+1)+2 .Proof The partitioning for the algorithm is depited in Figure 1. Aording to our rule the numberof parallel arithmeti steps performed by proessors P1; P2; : : : ; Pp�1 must be equal to the number ofarithmeti steps performed by the last proessor Pp. Thus, to �nd the total number of arithmeti stepsrequired, we add the number of arithmeti operations performed by proessor Pp (phase one) to thenumber of arithmeti steps required by all p proessors to ompute the pre�xes of the elements indexedfrom �pn+ 1 to n (phase two). This givesAp(n) = (1� �p)n� 1 + (1� �p)np = p+ 1p (1� �p)n� 1 .Let Ap(n) = Vpn� 1, i.e., Vp = p+ 1p (1� �p) , (1)then we have Vp�1�pn� 1 = (1� �p)n� 1, as an be seen from Figure 1. Thus�p = 11 + Vp�1 . (2)It also follows from equation (1) that Vp = p+ 1p Vp�11 + Vp�1 . (3)A reursion for Rp(n) an be given asRp(n) = Rp�1(�pn) + p� 1p (1� �p)n+ p� 1 , (4)5



where the �rst term omes from the routing operations performed by p � 1 proessors and the seondterm is the number of routing operations required to send (1 � �p)n terms from the last proessor toall the others. Finally p� 1 routing operations are required to send the last pre�x value from proessorPp�1 to all the other proessors. These operations are illustrated in Figure 2.Sine V2 = 34 , �2 = 12 , and R2(n) = 14n+ 1, using these initial values and indution on p in (3), (2),and (4), we obtainVp = 2(p+ 1)p(p+ 1) + 2 , �p = p(p� 1) + 2p(p+ 1) + 2 , and Rp(n) = p(p� 1)p(p+ 1) + 2n+ 12p(p� 1) ,as laimed. Sine Ap(n) = Vpn� 1, we also haveAp = 2(p+ 1)p(p+ 1) + 2n� 1 . 24 EÆieny AnalysisIn Figure 3, Ap(n) for the KRS algorithm and the new algorithm is shown for n = 1024 and 2 � p � 10,together with the optimal number of arithmeti operations Aopt2 (n) = 2n�2p+1 . We see that when p is small,the new algorithm is quite eÆient in terms of arithmeti omplexity but ineÆient as far as the totalnumber of routing operations is onerned. However there is a trade-o� between the new algorithm andthe KRS algorithm as a funtion of � . As we mentioned in the introdution, the operation � an be assimple as a boolean funtion, or as omplex as multipliation of two k � k matries with oating-pointentries. The total exeution time an be expressed as a funtion of the time required to perform a �operation (�A) and the time required to perform a routing operation (�R). For the KRS algorithm, weobtain TKRS = �2np + log p� 2� �A + [log p+ 1℄ �R . (5)For the new algorithm the total exeution time is given asTnew = � 2(p+ 1)p(p+ 1) + 2n� 1� �A + � p(p� 1)p(p+ 1) + 2n+ 12p(p� 1)� �R . (6)The eÆieny of these parallel algorithms with respet to the optimal sequential algorithm is omputedas E = (n� 1)�Ap [Ap(n)�A +Rp(n)�R℄ = n� 1p [Ap(n) +Rp(n)� ℄whih is a funtion of the ratio � = �R=�A. Figure 4 illustrates the eÆieny of these two algorithmsas � ranges from 0 to 2 for p = 2 and n = 1024. Also in Figure 5, the eÆieny is shown as a funtionof p for � = 0:01 and n = 1024. As it an be seen from Figure 4, for p = 2 the new algorithm is moreeÆient if � < 1, otherwise the KRS algorithm is preferred. Similarly, we observe from Figure 5 that if� = 0:01 then for p > 8 we have EKRS > Enew and for p < 8 we have EKRS < Enew.>From (5) and (6), we derive that for n large,limn!1EKRS = 12 ,6
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