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ABSTRACT

Using a directed acyclic graph (dag) model of algorithms, we solve a problem related
to precedence-constrained multiprocessor schedules for array computations: Given a se-
quence of dags and linear schedules parametrized by n, compute a lower bound on the
number of processors required by the schedule as a function of n. In our formulation,
the number of tasks that are scheduled for execution during any fixed time step is the
number of non-negative integer solutions d, to a set of parametric linear Diophantine
equations. We present an algorithm based on generating functions for constructing a
formula for these numbers d,. The algorithm has been implemented as a Mathematica
program. Example runs and the symbolic formulas for processor lower bounds automati-
cally produced by the algorithm for Matriz- Vector Product, Triangular Matriz Product,
and Gaussian FElimination problems are presented. Our approach actually solves the
following more general problem: Given an arbitrary r X s integral matrix A and r-
dimensional integral vectors b and ¢, let d,, (n = 0,1,...) be the number of solutions in
non-negative integers to the system Az = nb + c. Calculate the (rational) generating
function Zn>0 d,t"™ and construct a formula for d,,.

Keywords: Parallel algorithm, array computation, lower bound, Diophantine equation,
lattice point, generating function.

1. Introduction

We consider array computations, often referred to as systems of uniform recur-
rence equations [25]. Parallel execution of uniform recurrence equations has been
studied extensively, from at least as far back as 1966 (e.g., [24, 27, 26, 17, 33, 18,
19, 34, 35, 20]). In such computations, the tasks to be computed are viewed as
the nodes of a directed acyclic graph, where the data dependencies are represented
as arcs. Given a dag G = (N, A), a multiprocessor schedule assigns node v for

processing during step 7(v) on processor 7(v). A valid multiprocessor schedule is



subject to two constraints:

Causality: A node can be computed only when its children have been computed
at previous steps:
(u,v) € A= 7(u) < 7(v).

Non-conflict: A processor cannot compute 2 different nodes during the same time
step:
7(v) = 7(u) = 7w (v) # 7(u).

In what follows, we refer to valid schedules simply as schedules. A schedule is
good, if it uses time efficiently; an implementation of a schedule is good, if it uses
few processors. This view prompted several researchers to investigate processor-
time-minimal schedules for families of dags. These are time-minimal schedules that
in addition use as few processors as possible. Processor-time-minimal schedules
for various fundamental problems have been proposed in the literature: Scheiman
and Cappello [4, 3, 13, 10] examine the dag family for matrix product; Louka
and Tchuente [9] examine the dag family for Gauss-Jordan elimination; Scheiman
and Cappello [11, 12] examine the dag family for transitive closure; Benaini and
Robert [2, 1] examine the dag families for the algebraic path problem and Gaussian
elimination. Clauss, Mongenet, and Perrin [5] developed a set of mathematical tools
to help find a processor-time-minimal multiprocessor array for a given dag. Another
approach to a general solution has been reported by Wong and Delosme [15, 16],
and Shang and Fortes [14]. They present methods for obtaining optimal linear
schedules. That is, their processor arrays may be suboptimal, but they get the
best linear schedule possible. Darte, Khachiyan, and Robert [20] show that such
schedules are close to optimal, even when the constraint of linearity is relaxed.

In [10], a lower bound on the number of processors needed to satisfy a schedule
for a particular time step was formulated as the number of solutions to a linear Dio-
phantine equation, subject to the linear inequalities of the convex polyhedron that
defines the dag’s computational domain. Such a geometric/combinatorial formula-
tion for the study of a dag’s task domain has been used in various other contexts
in parallel algorithm design as well (e.g., [24, 25, 27, 33, 34, 8, 7, 35, 5, 14, 42, 16];
see Fortes, Fu, and Wah [6] for a survey of systolic/array algorithm formulations.)
The maximum such bound for a given linear schedule, taken over all time steps, is
a lower bound for the number of processors needed to satisfy the schedule for the
dag family. Here, we present a more general and uniform technique for deriving
such lower bounds:

Given a parametrized dag family and a correspondingly parametrized
linear schedule, we compute a formula for a lower bound on the number
of processors required by the schedule.

This is much more general than the analysis of an optimal schedule for a given
specific dag. The lower bounds obtained are good; we know of no dag treatable
by this method for which the lower bounds are not also upper bounds. We believe



this to be the first reported algorithm and its implementation for automatically
generating such formulae.

The nodes of the dag typically can be viewed as lattice points in a convex poly-
hedron. Adding to these constraints the linear constraint imposed by the schedule
itself results in a linear Diophantine system of the form

Az=nb+c, (1)

where the matrix A and the vectors b and c are integral, but not necessarily non-
negative. The number d,, of solutions in non-negative integers z = [z, 29, ..., 2]’
to this linear system is a lower bound for the number of processors required when
the dag corresponds to parameter n. Our algorithm produces (symbolically) the
generating function for the sequence d,,, and from the generating function, a formula
for the numbers d,,. We do not make use of any special properties of the system
that reflects the fact that it comes from a dag. Thus in (1), A can be taken to be an
arbitrary r x s integral matrix, and b and c arbitrary r-dimensional integral vectors.
As such we actually solve a more general combinatorial problem of constructing the
generating function " ., dnt" , and a formula for d,, given a matrix A and vectors b
and ¢, for which the lower bound computation is a special case. There is a large body
of literature concerning lattice points in convex polytopes and numerous interesting
results: see for example Stanley [39] for Ehrhart polynomials, and Sturmfels [40, 41]
for vector partitions and other mathematical treatments. Our results are based
mainly on MacMahon [31, 32], and Stanley [38].

The outline of this paper is as follows. In Section 2, we use the examples
of Matriz- Vector Product, Triangular Matriz Product, and Gaussian Elimination
problems to describe the lattice point interpretation of parametric dags. Section 3
describes the general formulation of the problem and the sequence of steps to go from
a dag to a parametric linear Diophantine system. In Section 4, we present sample
runs of the Mathematica implementation: these include the array computation
examples of Section 2, and three others. In Section 5 we describe the main points of
the algorithm to construct the generating function and the ideas behind its proof.
In Section 6 we present a high level description of the implementation, remark on
the complexity of the algorithm, and summarize our results.

2. Examples from Array Computations

2.1. Example 1: n x n Matriz- Vector Product

An algorithm for n x n matrix-vector product is given in the following procedure,
written in a Pascal-like notation. M is the input matrix, z is the input vector, and
y = M - x is the output vector. We index the entries of an n-dimensional vector v

by v[0],v[1],...,v[n —1].
fori = Oton—1do:
yli] <« 0;
for j = 0ton—1do:

ylil < ylil + M, j] - x[5];



endfor;
endfor;
Computation is “located” at certain index pairs defined by the for loop limits,
namely all pairs (7, j) satisfying:

IN

i n—1 (2)
0< j <n-1

IN

Clearly, these pairs (i,j) are the lattice points inside the 2-dimensional convex
polyhedron whose four faces are defined by the four inequalities above. The faces
of the polyhedron are, in turn, constructed from the for loop limits. This geometric
interpretation of the node set leads to a combinatorial interpretation: solutions to
a set of linear Diophantine equations that we describe below. We henceforth are
concerned with only non-negative integral solutions to Diophantine equations. In
this way, the inequalities 0 < i, and 0 < j are implied, and need not be specified.
In order to transform the set of inequalities in (2) to a set of equations (which turn
out to be easier to work with), we introduce integral slack variables s1,s2 > 0 and
write

i + s$1 =n-—1

7 + sy =n-—1

The standard array computation for n x n matrix-vector product is given by G,, =
(N, A), where

o A={[(i,§), (@] | (i,j) € N, (',j) € N and i’ =i+1, and j' = j; or
j'=j+1,andi' =i}

02 Q 12 Q 22 Q
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Figure 1: The matrix-vector product dag for n = 2.

The standard, time-minimal linear multiprocessor schedule for G,, is to execute
node N(i,7) at time i + 5 + 1. For the n x n case, the computation would begin in



time step 1 with the computation of N(0,0), and end in time step 2n — 1 with the
computation of N(n—1,n—1). At time step 7, all nodes N(i,5), where i+j+1 =171
are scheduled for parallel execution (see Figure 1). At time step 7 = n, there are n
nodes scheduled for execution: N(0,n—1), N(1,n—2),..., N(n—1,0). If we include
the linear schedule i + j + 1 = 7 in the set of Diophantine equations describing the
loop index ranges, then number of non-negative solutions to the augmented system
of linear Diophantine equations is the number of tasks scheduled for execution
during time step 7. Thus for any particular 7 with 1 < 7 < 2n — 1, the number of
solutions to the resulting linear Diophantine system is a lower bound on the number
of processors necessary for the schedule.
As an example, for 7 = n, the augmented system obtained from (2) is

vt +J =n-1
i + s1 =n-—-1 (3)
¥ +s2 =mn—-1

The number of non-negative integral solutions to (3) is a processor lower bound for
the n x n Matriz- Vector Product problem. For this example, time step 7 = n obvi-
ously requires the maximum number of nodes that must be computed concurrently,
as 7 ranges from 1 to 2n — 1. Thus, as is well known, to realize this schedule, n
processors are necessary (and clearly sufficient).

2.2. Example 2: n x n Triangular Matriz Product

An algorithm for the computation of the matrix product C = A - B, where A
and B are given n x n upper triangular matrices is given below. The main body of
this algorithm is taken from Golub and Van Loan [23].
fori = Oton—1do:

for j = iton—1do:

for k = i to j do:
endfor;

endfor;
endfor;

The computational nodes are defined by non-negative integral triplets (i, j, k) sat-

isfying
i < n-—1
i< j <n-1
i< k <.

Fewer than 5 constraints are needed to define this polyhedron. The first inequality
above is a consequence of the two on the next line, for example. In fact, the whole
polyhedron is defined by the inequalities

i <k <j<n-1



Note that as before we assume from the outset that the variables are non-negative.
Introducing integral slack variables si,s2,s3 > 0, we obtain the equivalent linear
Diophantine system

7 + s =n-—1
-3 +k + s2 =0
1 —k + S3 =0

A linear schedule for the corresponding dag is given by 7(i, j, k) = i+j+k+1. Since
7 ranges from 1 to 3n — 2, we can augment the system by adding the constraint
i+j+k+1 = a(3n—2) for any rational number a between 0 and 1. In particular the
halfway point in this schedule is time step 7 =~ %n — 1. When n is an even number,
say n = 2N, then we can take 7 to be 3N — 1. Adding the schedule constraint to

the system we already have, we obtain the augmented Diophantine system

i +j +k = 3N -2
j + 51 = 2N -1
*j -|-k -|-52 :0 (4)
i —k + S3 =0

If n = 2N + 1 is an odd number, then the exact midpoint of the schedule is 7 =
3N + 1. The augmented system now becomes

i+ +k = 3N
j =+ S1 = 2N
_ 7 + k + S9 — 0 (5)
i —k + s3 =0

Therefore, a lower bound for the number of processors needed for the n x n
Triangular Matriz Product problem is the number of solutions of (4) if n = 2N,
and the number of solutions of (5) if n = 2N + 1.

2.3. Exzample 3: Gaussian Elimination without Pivoting

The algorithm for performing Gaussian elimination on an n x n matrix M below
is taken from Golub and Van Loan [23].
fori = Oton—1do:
forj = i+1ton—1do:
wj  MIi, jl;
endfor;
forj = i+1ton—1do:
n < M[j,i]/M]i, i];
fork = i+1ton—1do:
Mj k] MIj, k] — - wj:
endfor;
endfor;
endfor;



We are interested in the triply-nested for loop, the heart of the computation.
The computational nodes are defined by non-negative integral triplets (i, j, k) sat-
isfying the constraints

i <n-—1
1+1< 5 <n-1

i1+1< k <n-1

Note that as before we assume that the variables are non-negative. Since the first
inequality is superfluous, introducing integral slack variables sp, s2,s3,54 > 0, we
obtain the equivalent linear Diophantine system

1 — ] + s1 = -1
7 + s9 =n -1

) — k + S3 = -1
k +s4 =n -1

A linear schedule for the corresponding dag is given by 7(4,j, k) = i+j+k+1. Since

7 ranges from 1 to 3n — 2, we can augment the system by adding the constraint

at the halfway point: 7 = %n — 1. When n is an even number, say n = 2N, then

we can take 7 to be 3N — 1. Adding the schedule constraint to system we already
have, we obtain the augmented Diophantine system

i +7 +k = 3N -2
i — + 51 = -1
J + So = 2N -1 (6)
i -k + s3 = -1
k +s4 = 2N -1
Here b = [3,0,2,0,2] and ¢ = [-2,—-1,—1,—1,-1]%. The system for Gaussian
elimination for n = 2N + 1 is
i +7 +k = 3N -1
i — + 51 = -1
J + 89 = 2N (7
i -k + s3 = -1
k +s4 = 2N

which differs from the even case only in the vector c.

Therefore, a lower bound for the number of processors needed to implement the
schedule of the algorithm for Gaussian elimination without pivoting of an n x n
matrix is the number of solutions of (6) if n = 2N, and the number of solutions of
(7)if n=2N + 1.

In the examples above, the final problem to be solved is the determination of
the number of non-negative integral solutions d,, to a linear parametric Diophantine
system of the form Az = nb + ¢ where A is some r X s integral matrix, b and ¢
are r-dimensional integral vectors.



3. The General Formulation

We now generalize these examples and consider the problem of computing a
lower bound for the number of processors needed to satisfy a given linear schedule.
That is, we show how to automatically construct a formula for the number of lattice
points inside a linearly parameterized family of convex polyhedra, by automatically
constructing a formula for the number of solutions to the corresponding linearly
parameterized system of linear Diophantine equations. The algorithm for doing
this and its implementation are our principal contributions.

Our use of linear Diophantine equations, we believe, is well-motivated: the com-
putations of an inner loop are typically defined over a set of indices that can be
described as the lattice points in a convex polyhedron. Indeed, in two languages,
SDEF [21] and ALPHA [42], one expressly defines domains of computation as the
integer points contained in some programmer-specified convex polyhedron.

The general setting exemplified by Matriz- Vector Product, Triangular Matriz
Product, and Gaussian Elimination problems is as follows: Suppose a (also denoted
by A) is an r x s integral matrix, and b and ¢ are r-dimensional integral vectors.
Suppose further that, for every n > 0, the linear Diophantine system az = nb + c,

i.e.
ai121 + a1229 + oo+ a5z = b1n+61
a1 21 + a9929 + oo+ a9gzg = bgn + co
(8)
ar1z1 + apzs + ... 4+ apezs = byn+e,
in the non-negative integral variables 21, 2o, . .., z; has a finite number of solutions.

Let d,, denote the number of solutions for n. The generating function of the se-
quence d, is f(t) = ), <, dnt". For a linear Diophantine system of the form (8),
f(t) is always a rational function, and we provide an algorithm to compute f(t) sym-
bolically. The Mathematica program implementing the algorithm also constructs a
formula for the numbers d,, from this generating function.

Given a nested for loop, the procedure to follow is informally as follows:

1. Write down the node space as a system of linear inequalities. The loop bounds
must be affine functions of the loop indices. The domain of computation is
represented by the set of lattice points inside the convex polyhedron, described
by this system of linear inequalities.

2. Eliminate unnecessary constraints by translating the loop indices (so that
0 <i<n-—1asopposed to 1 < i < n, for example). The reason for this
is that the inequality 0 < 4 is implicit in our formulation, whereas 1 < i
introduces an additional constraint.

3. Transform the system of inequalities to a system of equalities by introducing
non-negative slack variables, one for each inequality.

4. Augment the system with a linear schedule for the associated dag, “frozen”
in some intermediate time value: 7 = 7(n);



5. Run the program DiophantineGF.m on the resulting data. The program
calculates the rational generating function f(t) = > d,t", where d,, is the
number of solutions to the resulting linear system of Diophantine equations,
and produces a formula for d,,.

4. Mathematica Runs

Once the Mathematica program DiophantineGF.m we have written for this
computation® has been loaded by the command << DiophantineGF.m, the user
may request examples and help in its usage. The program essentially requires three
arguments a, b, ¢ of the Diophantine system

az=nb+c. (9)

The main computation is performed by the call DiophantineGF [a, b, c]. The out-
put is the (rational) generating function f(t) = > 5, dnt™, where d,, is the number
of solutions z > 0 to (9). After the computation of f(t) by the program, the user
can execute the command formula, which produces formulas for d,, in terms of bi-
nomial coefficients (with certain added divisibility restrictions), and in terms of the
ordinary power basis in n when such a formula exists. The command formulaN[c]
evaluates d,, for n = ¢. If needed, the generating function f(t) computed by the pro-
gram subsequently can be manipulated by various Mathematica commands, such
as Series[].

Below, we provide sample runs of DiophantineGF.m . The first three are pro-
cessor lower bound computations for the array computation problems formulated,
the rest are examples from combinatorics.

4.1. Sample Run 1: n X n Matriz-Vector Multiplication

For the linear schedule of the Matriz-vector Product example, the augmented
Diophantine system in (3) can be written in the form (9) where

ool eo|1] e w
1 01

"o | N A

In[1]:= << DiophantineGF.m
In[2]:=a = {{1, 1, 0, 03},
{1, 0, 1, 0},
{0, 1, 0, 1}};
In[3]:=b =41, 1, 1}; c = {-1, -1, -1};

In[4]:= DiophantineGF[a, b, c]

%http://www.cs.ucsb.edu/ omer/personal /abstracts/DiophantineGF.m



(-1 + t)
In[5]:= formula;
Binomial Formula : C[n, 1]

Power Formula :n

In the output, Clz, k] denotes the binomial coefficient (Z) = ﬁlk), when z is a
non-negative integer, and zero otherwise.

4.2. Sample Run 2: n x n Triangular Matriz Product (n = 2N )

For the n x n Triangular Matriz Product problem the Diophantine system is
az = Nb + ¢ where

1 1 1000 3
0 1 0100 2

=10 -1 1010 b=1 (11)
1 0 -100 1 0

and ¢ = [-2,-1,0,0]" for n = 2N, and ¢ = [0,0,0,0 ]” for n = 2N + 1. In the
first case,
In[1]:= << DiophantineGF.m
In[2]:= a = {{1, 1, 1, 0, O, O},
{0, 1, 0, 1, 0, 0},
{0,-1, 1, 0, 1, 0},
{1, 0,-1, 0, 0, 1}};

In[3]:=b = {3, 2, 0, 0}; c = {-2,-1, 0, 0};
In[4]:= DiophantineGF[a, b, c]

1 -1t)
In[5] := formula
Binomial Formula : C[1 + n, 2]
n (1 + n)
Power Formula H itk

Since the n in this formula is our N, substituting n/2, we find that a lower
bound for the number of processors needed to satisfy the linear schedule (i, j, k) =
i+ j+ k+ 1 for the n x n Triangular Matriz Product is

n(n + 2)
8

10



when n is even. When n = 2N + 1, the Mathematica run for the n x n problem
results in the generating function (1 +?)/(1 —#)3(1+¢). This time the formula
for d,, depends on whether or not N is even. It is found to be 2m? + 2m + 1 if n is
of the form 4m + 1, and 2(1 4+ m)? if n is of the form 4m + 3.

To summarize, a lower bound for the number of processors needed to satisfy a
the linear schedule 7(i,j, k) =i+ j+ k + 1 for the n x n Triangular Matriz Product

is
2m? +m if n = 4m,
2m? +3m+1  if n=4m + 2,
2m2 +2m+1  if n=4m+1,
2m? +4m+2  if n =4m + 3.

In particular, a lower bound that holds for all cases for this problem is

1F@lFl+).

4.8. Sample Run 3: Gaussian Elimination

For Gaussian Elimination without pivoting of an n x n matrix the Diophantine
system is az = Nb + ¢ where

(12)

M

|
ORr O+~ KF
OO~ = KH
- O O =
OO O = O
OO = OO
O = O OO
-0 O O O

Here b = [3,0,2,0,2]" and ¢ = [-2,—1,—1,—1,—1]%, for n = 2N. The generating
function computed is
t?(3+1t)
(1-t)31+1t)
The actual formula DiophantineGF.m produces for the coefficient of ¢V in the
expansion of this function is

(3C[(N —2)/2,0] — C[(N —4)/2,0] — 2C[(N — 3)/2,0))/8 + (13)
(CIN —3,2] + 3C[(N - 2)/2,0] — C[N —2,2] — 5C[N — 1,2] + 21C[N, 2])/8

However, note that C[z,0] = 0 unless z is an integer. This means that

2 N even,

3C[(N —2)/2,0] — C[(N — 4)/2,0] - 2C[(N - 3)/2,0] = { ~2 N odd.

Simplifying the other binomial coefficients in (13), we get the lower bound for
n = 2N as

2N%2 - N 2NZ2 - N -1

5 if N is even, 5 if N is odd,

11



which can be combined into LQNZT*NJ for n = 2N. The system for Gaussian elimi-
nation for n = 2N + 1 is given in (7). In this case ¢ = [-1,—1,0,—1,0]! and a and
b are the same as above. The generating function computed by the program is

t(1+ 3t)
(1—1)3(1+1¢)

Simplifying the automatically produced formula as before,
(CI(N —1)/2,0] = 3C[(N —3)/2,0] + 2C[(N - 2)/2,0))/8 +
(3C[N —2,2] —11C[N - 1,2] + 17C[N,2] + 7C[N +1,2])/8,
we obtain

2N%2 - N 2N2 - N -1

5 if N is even, 5 if N is odd.

Therefore the lower bound for n = 2N + 1 is also L2N22’NJ. Combining with the
previous case, we obtain the processor lower bound

CIETER
2

,_
[SIB]
[,

| ]

for n x n Gaussian elimination without pivoting for arbitrary n.

Next we present examples of sample runs for a few problems that do not arise
from array computations.

4.4. Sample Run 4

Consider the inequalities

z17 < n-—1
zo < n—1
z3 < n—1

in non-negative integers zi, 2o, z3. The number of solutions is d,, = n® for n > 1
since each z; can be independently picked from {0,1,...,n — 1}. To verify this
using DiophantineGF.m , we first introduce integral slack variables si,s9,s3 > 0
and write the corresponding system of equalities

21 + s1 =n-—1
29 + S9 =n-—1
23 +s3 = n—1
with [1 0010 0] (1] (1]
lootoonl "l T W™

12



The Mathematica run gives the formula for d,, in the power basis as well as in
terms of binomial coefficients, resulting in

o= (5) (") (15

In[1]:= << DiophantineGF.m
In[2]:= a = {{1, 0, 0, 1, O, O},

{o’ 1’ O, o’ 1, 0},

{0, 0, 1, 0, O, 1}};
In[3]:=b =41, 1, 1}; c = {-1, -1, -1};

In[4]:= DiophantineGF[a, b, c]
2
t (1 +4t+t)

(-1 +t)
In[5]:= formula
Binomial Formula : C[n, 3] + 4 C[1 + n, 3] + C[2 + n, 3]
3
Power Formula T n

4.5. Sample Run 5

For this example consider the linear Diophantine system

zZ1 — 29 + 223 =n+1
2 + 2 = n-2 (15)
221 + 23 +2z5 = n+ 3

DiophantineGF.m gives the generating function of the number of solutions d,, of
this system in non-negative integers as
2 2 3 4
t ((-1-2t-t +t +2¢t)

(-1 +t) (1L+t) A +t+1t)

2 3 4 5 6 7 8 9
=t +3t 45t +7t +9t +12t + 14t + 0[t]

In particular, we see from the Taylor series expansion of the generating function

above that dg = 14, and thus there are 14 solutions to (15) when n = 8. This result
can be checked in another way as follows: We can first substitute n = 8 in (15),

13



resulting in the system

z1 — 2o + 22’3 =9
22 + 24 =6 (16)
221 + z3 + z5 =11

This system then should have 14 solutions as well. Running DiophantineGF.m with
the corresponding input

1 -1 2 0 O 0 9
a:{o 1 0 10], b:[o], 02[6]
[ 2 0 1 0 1 J [ 0 J [ 11J
we obtain
14 2 3 4 5 6
Qut[b]= —————- =14 + 14t + 14t + 14t + 14t + 14 t + 0[t]
1 -t

which again implies that the number of solutions to (16) is 14, independently of n.

4.6. Sample Run 6

For the linear Diophantine system

21 — 229 —2z23 = n-—4
21+ 29 —2z3 = 2n+3 (17)
z1 — 223 = 2n—2

DiophantineGF.m calculates the generating function of the number of solutions as
2 5 8
Out[6]l=t +t +t

Thus (17) has unique solutions in non-negative integers for n = 2,5, and 8, and no
other solutions.

5. The Algorithm

We demonstrate the algorithm on a specific instance, and sketch its proof. Con-
sider the linear Diophantine system

z21 — 2zy = n

z1 + zo = 2n (18)

in which z; and z, are non-negative integers. Let d,, denote the number of solutions

o (18). Associate indeterminates A; and A; to the first and the second equations,
respectively, and also indeterminates ¢; and ¢, to the first and the second columns
of the system. Consider the product of the geometric series

1 1

R= :
L= MM 1= A 2ALt

= 2o i) | | DD (g

a1 >0 as>0

14



where the exponents of A; and \s in the first factor are the coefficients in the first
column and the exponents of A; and Ay in the second factor are the coefficients in
the second column. Individual terms arising from this product are of the form

/\t111*2!12 /\5114-112 tiﬂqtgz : (19)

where a1, as are non-negative integers. Following Cayley, MacMahon [28] makes use
of the operator Q which picks out those terms (19) in the power series expansion
whose exponents of A; and Ay are both equal to zero (this is the A-free part of
the expansion). Thus, the contribution of the term in (19) to Q(R) is non-zero if
and only if the exponents of A\; and Ay are equal to zero. If this is the case, the
contribution is ¢7'¢5? if and only if 21 = a; and 22 = s is a solution® to the
homogeneous system

z1 — 2z9 = 0

Z1 + zZ9 = 0
This means, in particular, that what MacMahon calls the “crude” generating func-
tion of the solutions to the homogeneous system (20) is

1 1
L= XAt 1= A2

(20)

and

1
Q =) 185
= <(1/\%/\§t1)(1/\12/\§t2)> Z L

where the summation is over all solutions z; = a; and zo = as of (20). Let
R, = /\f"A;2nR, where the exponents of A\; and Ay are the negatives of the right
hand sides of first and the second equations of (18), respectively. Then

QR,) =y 17152
where now the summation is over all non-negative integral solutions z; = ay, 29 =
as of (18), since generic terms arising from the expansion of R are now of the form

a]—2a2—n yai1+as—2n jaq 300
A0 AS £01452

If we let t; = to = 1, then Q(R,,) specializes to the number of solutions d, to
(18). Let L denote the substitution operator that sets each t; equal to 1. Then
d, = LQ(R,), and the operator Q commutes both with £ operation and addition
of series. Thus,

) = Y LR,

n>0
= 0> LRt (21)
n>0
1 —ny—2n
= 0 SOATA | (22)

(1= A A2)(1 =A%) =

bThere is only a single solution to (20) in this case, but this does not effect the general nature
of the demonstration of the algorithm on this example.
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Since
1

DN = ey (23)
et 1=A7 A ¢
the generating function f(t) can be obtained by applying the operator Q to the
crude generating function

1

F= — ——5 < - (24)
(T=XA) (1= A7 " A2)(X = A A% 1)

Now, we make use of the identity that appears in Stanley [38] for the computa-
tion of the homogeneous case above, namely
1 1 1 1

A-A0-B)  (1-4B)(1-4) T T-4aB1-B) 1-4B (25)

We demonstrate the usage of this identity on the example at hand. Taking the
first two factors of (24) as (1 — A)~" and (1 - B)~' (ie. A= MMy, B= X"\ ),
and using (25),

1
F = , 26
(T=A"AD (1 = M) (1= AN % 8) (26)
1

(=AM (1= A7) (1 = AN 8)

+

1
(=AM - AT 1)
which we can write as F = Fy + Fy, — F3, where F, Fy, and F3 denote the three
summands above. By additivity,

f@) = QF) = Q1) + Q(F) — Q(F) -
Continuing this way by using the identity (25), this time on F3 with (1 — A)~! and
(1 — B)~! as the two factors, we obtain the expansion

1 1 1
- + - - - -
=27 H0=AT"A)  (=A7 )0 =ATA20 (1=-XA71)

F; =

= I3 + F3 — F33. (27)

Call a product of the form

+1
(1-A)(1-B)---(1-2)

(28)

that may arise during this process uniformly-signed if the exponents of A\; that
appear in A, B, ..., Z are either all non-negative, or all non-positive; the exponents
of Ay that appearin A, B, ..., Z are either all non-negative, or all non-positive, etc..
Clearly if U is such a uniformly-signed product, then Q(U) is obtained from U by
discarding the factors which are not purely functions of ¢, as there can be no “cross
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cancellation” of any of the terms coming from different expansions into geometric
series of the factors (1 — A)~", (1—-B)"',...,(1—2Z) ' of U.

The idea, then, is to use identity (25) repeatedly using pairs of appropriate
factors in such a way that the resulting products of the form (28) that arise are all
uniformly-signed. The contribution of a uniformly-signed product to f(t) is simply
the product of the terms in it that are functions of ¢ only, and all other factors
can be ignored. Each of the summands of F3 given in (27) above, for example, are
uniformly signed. Since neither term contains a factor which is a pure function of
t, the contribution of each is zero.

The problem is to pick the (1 — A)~!, (1 — B)~! pairs at each step appropriately
to make sure that the process eventually ends with uniformly-signed products only.
This cannot be done arbitrarily, however. For example in the application of the
identity (25) to .

(1= A7 A) I = AAD (A = AN

with 1 — A =1 - X'\ and 1 — B = 1 — M\ (in which the \; exponents
have opposite sign), one of the three terms produced by the identity to be further
processed is

(29)

1
(L= ATADA = AAA =AY

Continuing with the choice 1 — A =1- A} ,;and 1 — B =1 MX," (in which
the Ay exponents have opposite sign), one of the three terms produced is

1
(L= ATADA = MDA =AY

which is identical to (29). In particular the weight argument in Stanley [38] does not
result in an algorithm unless the \; are processed to completion in a fixed ordering
of the indices i (e.g. first all exponents of A\; are made same signed, then those of
A, etc.)

Accordingly, we use the following criterion: Given a term of the form (28), pick
the \; with the smallest i for which a negative and a positive exponent appears
among A, B,...,Z. Use two extremes (i.e. maximum positive and minimum neg-
ative exponents) of such opposite signed factors (1 — A)~"' and (1 — B)~! of the
current term in (28), and apply identity (25) with this choice of A and B. This
computational process results in a ternary tree whose leaves are functions of ¢ only,
after the application of the operator Q. The generating function f(¢) can then be
read off as the (signed) sum of the functions that appear at the leaf nodes. The
reader can verify that the example at hand results in the generating function

1

= 1—0)1 +t+t2)

after the functions of ¢ at the leaf nodes of the resulting ternary tree are summed
up and necessary algebraic simplifications are carried out.
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In the case above, ¢ = 0. Now, we consider the more general case with ¢ # 0.
These are the instances for which the description and the proof of the algorithm is
not much harder, but the extra computational effort required justifies the use of a
symbolic algebra package.

As an example, consider the Diophantine system

n—2
2n+ 3

z1 — 22’2

Z1 + z9 (30)

As before, let d,, be the number of solutions to (30) in non-negative integers z1, z2,
and let f(¢) be the generating function of the d,,. As in the derivation of the identity
(22) for f(t), this time we obtain

1
t)=Q § A TENE T 31
f( ) = (1 - )\1>\2)(1 - A;2A2) = 1 2 ( )
Since -
A;n+2A272n73 t'n. — A1A2
E “1-—2 ’
"0 1= A%t

the generating function f(¢) is obtained by applying the operator Q to the crude
generating function
2,3
YD

F= —2 —1y-2 (32)
(T=XA)A =22 = A" A % 1)

Now, we proceed as before using the identity (25), ignoring the numerator for
the time being. It is no longer true that there can be no “cross cancellation” of any
of the terms coming from different expansions into geometric series of the factors
(1-A4)"", 1-=B)""....,(1=2Z)""in a product U of the form (28) even if the
term is uniformly-signed. It could be that the exponents of all of the A; that
appear in U are negative, and the exponents of all of the A; that appear in U
are all positive, but there can be A—free terms arising from the expansions of the
products that involve A’s, since the numerator /\%)\f can cancel terms of the form
AIQ)\gtk that may be produced if we expand the factors into geometric series and
multiply. The application of Q would then contribute t* from this term to the final
result coming from U, for example. The important observation is that the geometric
series expansion of the terms that involve A in U need not be carried out past powers
of Ay larger than 2, and past powers of Ay smaller than —3. This means that we
need to keep track of only a polynomial in A1, A> and ¢ before the application of Q
to find the A-free part contributed by this leaf node. In this case, this contribution
may involve a polynomial in ¢ as well. Therefore when ¢ # 0, we need to calculate
with truncated Taylor expansions at the leaf nodes of the computation tree. It is
this aspect of the algorithm that is handled most efficiently (in terms of coding
effort) by a symbolic algebra package such as Mathematica.
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6. Implementation, Complexity, and Remarks

The main computational effort of the algorithm is the construction of the ternary
tree (Figure 2), where each internal node is expanded according to identity (25),
until uniform-signed leaf expressions are reached. For simplicity, we consider the
case ¢ = 0. Carrying out this portion of the computation symbolically is unwise:

Q(F)
+ + -
Q(F) Q(F) Q(F)

Figure 2: Generation of the ternary tree from identity (25).

instead, we represent each expression F' that (2 operates on as a (r + 1) x (s + 1)
matrix My of integers. The 0*" row is reserved for the exponents of ¢ in each factor
in the denominator of F. The i*" row is the exponents of A; in F.. For example, the
initial F' in (24) is encoded by the matrix

) [ 0 0 1 ]
F = — —— — Mp=11 -2 -1 |.
(1*/\1/\2)(1*% >‘2)(1*/\1 Ay t) [ 1 1 -2 J

Identity (25) applied to F' now turns into column operations on M = Mp: Let
C and C' be two columns of M. Then the three matrices corresponding to the
summands Fy, Fy and Fj in the application of (25) are obtained from M by

1. My : Replace C by C + C"in M,
2. My : Replace C' by C +C" in M,
3. M3 : Replace C' by C + C’, and C by the zero vector in M.

The calculation in (26) followed by (27) results in the portion of the computa-
tion tree represented as matrices with sign in Figure 3. When the computation is
continued, it can be seen that the middle subtree in this example produces a leaf

{01
|13

The contribution of this to the generating function is the term

node

o | !
0 | R G B V5 WS TS Wy [ e &

1 1
¢ ((1—/\1/\2)(1—/\2 t)(1—t2)> 1o
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0 0 1 0 0 1 0 0 1
1-1-1 -1-2 -1 -1 0 -1
1 2 -2 2 1-2 2 0-2
+ + -
1 0 1 0 0 1 0 0 1
-2 0 -1 -1 0 -2 0 0-1
0O 0-2 2 0 O 0O 0-2

Figure 3: The start of the computational tree.

In general, when we arrive at a leaf node (i.e. when all rows of the current matrix
are uniformly-signed), suppose d,ds,...,d; are the positive elements in the 0

row, with the added property that the entries below each d; in the leaf matrix are
all zeros. The contribution of this leaf node to the generating function is then

+1
(1 th) (1 td2) - (1 gar)

(33)

with the appropriate sign. It is immediate that the resulting generating function is
rational with a common denominator of the form (33).

We give a high level description of the algorithm using matrices to represent the
coefficients. We assume that the given system is of the form (8) where ¢ = 0. The
input is of the form of a matrix M = M;pitim given in (34). The rows of M are
indexed 0 through r, and the columns are indexed 0 through s.

[ 0 o ... 0 1 "

ann a2 ... @y —b

Minitiar = | %20 22 - G2 by | (34)
Gr1 Qr2 ... Gpg _br

with signinitiar = +1. Assume the following functions

Zerocolumn[M, j] : Returns true iff the entries of M in the j-th column in
rows 1 through r are all zeros.

Uniformsigned[M] : Returns true iff rows of M are all nonnegative or all
nonpositive.



Minindex[M,i]: Returns the index of a smallest element in row i of M.
Mazindex[M,i]: Returns the index of a largest element in row i of M.

Firstnonuniform[M] : Returns the index of the first non uniformly-signed
row in M.

Addcolumn|[M, u,v]: Returns the matrix which is obtained from M by adding
its v-th column to its u-th column.

Zapcolumn[M,v]: Returns the matrix obtained by replacing the v-th column
of M by zeros.

Updatelgf, M, sign]:
begin
Calculate S = {j | Zerocolumn|[M, j|};
Let {di,ds,...,d;} be the multiset of positive values among M0, 5],

JES;
gf = gf +signx1/(1 —tD)(1 —¢d2) ... (1 —th);
end Update

The main recursion for the ¢ = 0 case that generates the ternary tree consists
of the basic steps given in Figure 4.

The number of leaves in the generated ternary tree is exponential in n =
> {a;} @il, where {a;} is the set of coefficients describing the set of Diophantine
equations. The depth of recursion can be reduced somewhat, when the columns to
be used are picked carefully. It is also possible to prune the tree when the input
vector ¢ determines that there can be no A-free terms resulting from the current
matrix (e.g., some row is all strictly positive or all negative with ¢ = 0, or the row
elements are weakly negative but the corresponding ¢; is positive, etc.). Further-
more, the set of coefficients describing the Diophantine system coming from an array
computation is not unique. Translating the polyhedron, and omitting superfluous
constraints (i.e., not in their transitive reduction) reduces the algorithm’s work.
Additional preprocessing may be possible (e.g., via some unitary transform).

The fact that the algorithm has worst case exponential running time is not
surprising however; the simpler computation: “Are any processors scheduled for a
particular time step?”, which is equivalent to “Is a particular coefficient of the series
expansion of the generating function non-zero?” is already known to be an NP-
complete problem [36, 22]. This computational complexity is further ameliorated
by the observation that, since a formula can be automatically produced from the
generating function, it needs to be constructed only once for a given algorithm. In
practice, array algorithms typically have a description that is sufficiently succinct
to make this automated formula production feasible.

To summarize the main ideas of this paper: given a nested loop program whose
underlying computation dag has nodes representable as lattice points in a convex
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Program Main[M]:

begin
9f =0;
M = Minitiar;

Sign = SigNinitial = +1;

Recurse[M, sign] :
begin
if Uni formsigned[M] then Update[gf, M, sign] and return;

else begin
i = Firstnonuniform[M];
u = Minindex[M,i];
v = Mazindex[M,i];

M; = Addcolumn|[M, u,v];
My = Addcolumn|[M, v, ul;
M;3 = Zapcolumn|[My, v];

Recurse| My, sign];

Recurse[ M, sign];

Recurse|Ms, —sign];
end;
end Recurse;

end Main

Figure 4: Basic description of the algorithm for ¢ = 0.

polyhedron, and a multiprocessor schedule for these nodes that is linear in the loop
indices, we produce a formula for the number of lattice points in the convex poly-
hedron that are scheduled for a particular time step (which is a lower bound on the
number of processors needed to satisfy the schedule). This is done by constructing
a system of parametric linear Diophantine equations whose solutions represent the
lattice points of interest. Our principal contribution is devising an algorithm and
its implementation for constructing the generating function from which a formula
for the number of these solutions is produced.

Several examples illustrated the relationship between nested loop programs and
Diophantine equations, and were annotated with the output of a Mathematica pro-
gram that implements the algorithm. The algorithmic relationship between the
Diophantine equations and the generating function was illustrated with a simple
example. Proof of the algorithm’s correctness was sketched while illustrating its
steps. The algorithm’s exponential computational complexity should be seen in
light of two facts:

e Deciding if a time step has any nodes associated with it is NP-complete; we
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construct a formula for the number of such nodes;

e This formula is a processor lower bound, not just for one instance of a sched-
uled computation but for a parameterized family of such computations.

In bounding the number of processors needed to satisfy a linear multiprocessor
schedule for a nested loop program, we actually derived a solution to a more gen-
eral linear Diophantine problem of the type given by (8). This leaves open some
interesting combinatorial questions of rationality and associated algorithm design:
e.g. the analogue of (23) when the right hand side of the system in (8) consists of
higher degree polynomials in n.
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