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PROCESSOR LOWER BOUND FORMULASFOR ARRAY COMPUTATIONSAND PARAMETRIC DIOPHANTINE SYSTEMSPETER CAPPELLO and �OMER E�GECIO�GLUDepartment of Computer ScienceUniversity of California at Santa BarbaraSanta Barbara, CA 93106, USAfomer; cappellog@cs:ucsb:eduReceived 25 July 1997Revised 20 October 1997Communicated by Oscar H. IbarraABSTRACTUsing a directed acyclic graph (dag) model of algorithms, we solve a problem relatedto precedence-constrained multiprocessor schedules for array computations: Given a se-quence of dags and linear schedules parametrized by n, compute a lower bound on thenumber of processors required by the schedule as a function of n. In our formulation,the number of tasks that are scheduled for execution during any �xed time step is thenumber of non-negative integer solutions dn to a set of parametric linear Diophantineequations. We present an algorithm based on generating functions for constructing aformula for these numbers dn. The algorithm has been implemented as a Mathematicaprogram. Example runs and the symbolic formulas for processor lower bounds automati-cally produced by the algorithm for Matrix-Vector Product, Triangular Matrix Product,and Gaussian Elimination problems are presented. Our approach actually solves thefollowing more general problem: Given an arbitrary r � s integral matrix A and r-dimensional integral vectors b and c, let dn (n = 0; 1; : : :) be the number of solutions innon-negative integers to the system Az = nb + c. Calculate the (rational) generatingfunctionPn�0 dntn and construct a formula for dn.Keywords: Parallel algorithm, array computation, lower bound, Diophantine equation,lattice point, generating function.1. IntroductionWe consider array computations, often referred to as systems of uniform recur-rence equations [25]. Parallel execution of uniform recurrence equations has beenstudied extensively, from at least as far back as 1966 (e.g., [24, 27, 26, 17, 33, 18,19, 34, 35, 20]). In such computations, the tasks to be computed are viewed asthe nodes of a directed acyclic graph, where the data dependencies are representedas arcs. Given a dag G = (N;A), a multiprocessor schedule assigns node v forprocessing during step �(v) on processor �(v). A valid multiprocessor schedule is1



subject to two constraints:Causality: A node can be computed only when its children have been computedat previous steps: (u; v) 2 A) �(u) < �(v):Non-conict: A processor cannot compute 2 di�erent nodes during the same timestep: �(v) = �(u)) �(v) 6= �(u):In what follows, we refer to valid schedules simply as schedules. A schedule isgood, if it uses time e�ciently; an implementation of a schedule is good, if it usesfew processors. This view prompted several researchers to investigate processor-time-minimal schedules for families of dags. These are time-minimal schedules thatin addition use as few processors as possible. Processor-time-minimal schedulesfor various fundamental problems have been proposed in the literature: Scheimanand Cappello [4, 3, 13, 10] examine the dag family for matrix product; Loukaand Tchuente [9] examine the dag family for Gauss-Jordan elimination; Scheimanand Cappello [11, 12] examine the dag family for transitive closure; Benaini andRobert [2, 1] examine the dag families for the algebraic path problem and Gaussianelimination. Clauss, Mongenet, and Perrin [5] developed a set of mathematical toolsto help �nd a processor-time-minimal multiprocessor array for a given dag. Anotherapproach to a general solution has been reported by Wong and Delosme [15, 16],and Shang and Fortes [14]. They present methods for obtaining optimal linearschedules. That is, their processor arrays may be suboptimal, but they get thebest linear schedule possible. Darte, Khachiyan, and Robert [20] show that suchschedules are close to optimal, even when the constraint of linearity is relaxed.In [10], a lower bound on the number of processors needed to satisfy a schedulefor a particular time step was formulated as the number of solutions to a linear Dio-phantine equation, subject to the linear inequalities of the convex polyhedron thatde�nes the dag's computational domain. Such a geometric/combinatorial formula-tion for the study of a dag's task domain has been used in various other contextsin parallel algorithm design as well (e.g., [24, 25, 27, 33, 34, 8, 7, 35, 5, 14, 42, 16];see Fortes, Fu, and Wah [6] for a survey of systolic/array algorithm formulations.)The maximum such bound for a given linear schedule, taken over all time steps, isa lower bound for the number of processors needed to satisfy the schedule for thedag family. Here, we present a more general and uniform technique for derivingsuch lower bounds:Given a parametrized dag family and a correspondingly parametrizedlinear schedule, we compute a formula for a lower bound on the numberof processors required by the schedule.This is much more general than the analysis of an optimal schedule for a givenspeci�c dag. The lower bounds obtained are good; we know of no dag treatableby this method for which the lower bounds are not also upper bounds. We believe2



this to be the �rst reported algorithm and its implementation for automaticallygenerating such formulae.The nodes of the dag typically can be viewed as lattice points in a convex poly-hedron. Adding to these constraints the linear constraint imposed by the scheduleitself results in a linear Diophantine system of the formAz = nb+ c ; (1)where the matrix A and the vectors b and c are integral, but not necessarily non-negative. The number dn of solutions in non-negative integers z = [z1; z2; : : : ; zs]tto this linear system is a lower bound for the number of processors required whenthe dag corresponds to parameter n. Our algorithm produces (symbolically) thegenerating function for the sequence dn, and from the generating function, a formulafor the numbers dn. We do not make use of any special properties of the systemthat reects the fact that it comes from a dag. Thus in (1), A can be taken to be anarbitrary r�s integral matrix, and b and c arbitrary r-dimensional integral vectors.As such we actually solve a more general combinatorial problem of constructing thegenerating functionPn�0 dntn , and a formula for dn given a matrixA and vectors band c, for which the lower bound computation is a special case. There is a large bodyof literature concerning lattice points in convex polytopes and numerous interestingresults: see for example Stanley [39] for Ehrhart polynomials, and Sturmfels [40, 41]for vector partitions and other mathematical treatments. Our results are basedmainly on MacMahon [31, 32], and Stanley [38].The outline of this paper is as follows. In Section 2, we use the examplesof Matrix-Vector Product , Triangular Matrix Product , and Gaussian Eliminationproblems to describe the lattice point interpretation of parametric dags. Section 3describes the general formulation of the problem and the sequence of steps to go froma dag to a parametric linear Diophantine system. In Section 4, we present sampleruns of the Mathematica implementation: these include the array computationexamples of Section 2, and three others. In Section 5 we describe the main points ofthe algorithm to construct the generating function and the ideas behind its proof.In Section 6 we present a high level description of the implementation, remark onthe complexity of the algorithm, and summarize our results.2. Examples from Array Computations2.1. Example 1: n� n Matrix-Vector ProductAn algorithm for n�n matrix-vector product is given in the following procedure,written in a Pascal-like notation. M is the input matrix, x is the input vector, andy = M � x is the output vector. We index the entries of an n-dimensional vector vby v[0]; v[1]; : : : ; v[n� 1].for i = 0 to n� 1 do:y[i] 0;for j = 0 to n� 1 do:y[i] y[i] +M [i; j] � x[j]; 3



endfor;endfor;Computation is \located" at certain index pairs de�ned by the for loop limits,namely all pairs (i; j) satisfying:0 � i � n� 1 (2)0 � j � n� 1Clearly, these pairs (i; j) are the lattice points inside the 2-dimensional convexpolyhedron whose four faces are de�ned by the four inequalities above. The facesof the polyhedron are, in turn, constructed from the for loop limits. This geometricinterpretation of the node set leads to a combinatorial interpretation: solutions toa set of linear Diophantine equations that we describe below. We henceforth areconcerned with only non-negative integral solutions to Diophantine equations. Inthis way, the inequalities 0 � i, and 0 � j are implied, and need not be speci�ed.In order to transform the set of inequalities in (2) to a set of equations (which turnout to be easier to work with), we introduce integral slack variables s1; s2 � 0 andwrite i + s1 = n� 1j + s2 = n� 1The standard array computation for n�n matrix-vector product is given by Gn =(N;A), where� N = f(i; j) j 0 � i; j � n� 1g.� A = f[(i; j); (i0; j0)] j (i; j) 2 N; (i0; j0) 2 N and i0 = i + 1, and j0 = j; orj0 = j + 1, and i0 = i g.
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i + j  + 1 = 2Figure 1: The matrix-vector product dag for n = 2.The standard, time-minimal linear multiprocessor schedule for Gn is to executenode N(i; j) at time i+ j + 1. For the n� n case, the computation would begin in4



time step 1 with the computation of N(0; 0), and end in time step 2n� 1 with thecomputation of N(n�1; n�1). At time step � , all nodes N(i; j), where i+j+1 = �are scheduled for parallel execution (see Figure 1). At time step � = n, there are nnodes scheduled for execution: N(0; n�1); N(1; n�2); : : : ; N(n�1; 0). If we includethe linear schedule i+ j + 1 = � in the set of Diophantine equations describing theloop index ranges, then number of non-negative solutions to the augmented systemof linear Diophantine equations is the number of tasks scheduled for executionduring time step � . Thus for any particular � with 1 � � � 2n� 1, the number ofsolutions to the resulting linear Diophantine system is a lower bound on the numberof processors necessary for the schedule.As an example, for � = n, the augmented system obtained from (2) isi + j = n� 1i + s1 = n� 1j + s2 = n� 1 (3)The number of non-negative integral solutions to (3) is a processor lower bound forthe n� n Matrix-Vector Product problem. For this example, time step � = n obvi-ously requires the maximum number of nodes that must be computed concurrently,as � ranges from 1 to 2n � 1. Thus, as is well known, to realize this schedule, nprocessors are necessary (and clearly su�cient).2.2. Example 2: n� n Triangular Matrix ProductAn algorithm for the computation of the matrix product C = A � B, where Aand B are given n�n upper triangular matrices is given below. The main body ofthis algorithm is taken from Golub and Van Loan [23].for i = 0 to n� 1 do:for j = i to n� 1 do:for k = i to j do:C[i; j] C[i; j] +A[i; k] � B[k; j];endfor;endfor;endfor;The computational nodes are de�ned by non-negative integral triplets (i; j; k) sat-isfying i � n� 1i � j � n� 1i � k � j :Fewer than 5 constraints are needed to de�ne this polyhedron. The �rst inequalityabove is a consequence of the two on the next line, for example. In fact, the wholepolyhedron is de�ned by the inequalitiesi � k � j � n� 1:5



Note that as before we assume from the outset that the variables are non-negative.Introducing integral slack variables s1; s2; s3 � 0, we obtain the equivalent linearDiophantine system j + s1 = n� 1� j + k + s2 = 0i � k + s3 = 0A linear schedule for the corresponding dag is given by �(i; j; k) = i+j+k+1. Since� ranges from 1 to 3n � 2, we can augment the system by adding the constrainti+j+k+1 = �(3n�2) for any rational number � between 0 and 1. In particular thehalfway point in this schedule is time step � � 32n� 1. When n is an even number,say n = 2N , then we can take � to be 3N � 1. Adding the schedule constraint tothe system we already have, we obtain the augmented Diophantine systemi + j + k = 3N � 2j + s1 = 2N � 1� j + k + s2 = 0i � k + s3 = 0 (4)If n = 2N + 1 is an odd number, then the exact midpoint of the schedule is � =3N + 1. The augmented system now becomesi + j + k = 3Nj + s1 = 2N� j + k + s2 = 0i � k + s3 = 0 (5)Therefore, a lower bound for the number of processors needed for the n � nTriangular Matrix Product problem is the number of solutions of (4) if n = 2N ,and the number of solutions of (5) if n = 2N + 1.2.3. Example 3: Gaussian Elimination without PivotingThe algorithm for performing Gaussian elimination on an n�n matrixM belowis taken from Golub and Van Loan [23].for i = 0 to n� 1 do:for j = i+ 1 to n� 1 do:wj  M [i; j];endfor;for j = i+ 1 to n� 1 do:�  M [j; i]=M [i; i];for k = i+ 1 to n� 1 do:M [j; k] M [j; k]� � � wj ;endfor;endfor;endfor; 6



We are interested in the triply-nested for loop, the heart of the computation.The computational nodes are de�ned by non-negative integral triplets (i; j; k) sat-isfying the constraints i � n� 1i+ 1 � j � n� 1i+ 1 � k � n� 1Note that as before we assume that the variables are non-negative. Since the �rstinequality is superuous, introducing integral slack variables s1; s2; s3; s4 � 0, weobtain the equivalent linear Diophantine systemi � j + s1 = �1j + s2 = n �1i � k + s3 = �1k + s4 = n �1A linear schedule for the corresponding dag is given by �(i; j; k) = i+j+k+1. Since� ranges from 1 to 3n � 2, we can augment the system by adding the constraintat the halfway point: � � 32n � 1. When n is an even number, say n = 2N , thenwe can take � to be 3N � 1. Adding the schedule constraint to system we alreadyhave, we obtain the augmented Diophantine systemi + j + k = 3N �2i � j + s1 = �1j + s2 = 2N �1i � k + s3 = �1k + s4 = 2N �1 (6)Here b = [3; 0; 2; 0; 2]t and c = [�2;�1;�1;�1;�1]t. The system for Gaussianelimination for n = 2N + 1 isi + j + k = 3N �1i � j + s1 = �1j + s2 = 2Ni � k + s3 = �1k + s4 = 2N (7)which di�ers from the even case only in the vector c.Therefore, a lower bound for the number of processors needed to implement theschedule of the algorithm for Gaussian elimination without pivoting of an n � nmatrix is the number of solutions of (6) if n = 2N , and the number of solutions of(7) if n = 2N + 1.In the examples above, the �nal problem to be solved is the determination ofthe number of non-negative integral solutions dn to a linear parametric Diophantinesystem of the form Az = nb + c where A is some r � s integral matrix, b and care r-dimensional integral vectors. 7



3. The General FormulationWe now generalize these examples and consider the problem of computing alower bound for the number of processors needed to satisfy a given linear schedule.That is, we show how to automatically construct a formula for the number of latticepoints inside a linearly parameterized family of convex polyhedra, by automaticallyconstructing a formula for the number of solutions to the corresponding linearlyparameterized system of linear Diophantine equations. The algorithm for doingthis and its implementation are our principal contributions.Our use of linear Diophantine equations, we believe, is well-motivated: the com-putations of an inner loop are typically de�ned over a set of indices that can bedescribed as the lattice points in a convex polyhedron. Indeed, in two languages,SDEF [21] and Alpha [42], one expressly de�nes domains of computation as theinteger points contained in some programmer-speci�ed convex polyhedron.The general setting exempli�ed by Matrix-Vector Product , Triangular MatrixProduct , and Gaussian Elimination problems is as follows: Suppose a (also denotedby A) is an r � s integral matrix, and b and c are r-dimensional integral vectors.Suppose further that, for every n � 0, the linear Diophantine system az = nb+ c,i.e. a11z1 + a12z2 + : : : + a1szs = b1n+ c1a21z1 + a22z2 + : : : + a2szs = b2n+ c2... ... ... = ...ar1z1 + ar2z2 + : : : + arszs = brn+ cr (8)in the non-negative integral variables z1; z2; : : : ; zs has a �nite number of solutions.Let dn denote the number of solutions for n. The generating function of the se-quence dn is f(t) = Pn�0 dntn. For a linear Diophantine system of the form (8),f(t) is always a rational function, and we provide an algorithm to compute f(t) sym-bolically. The Mathematica program implementing the algorithm also constructs aformula for the numbers dn from this generating function.Given a nested for loop, the procedure to follow is informally as follows:1. Write down the node space as a system of linear inequalities. The loop boundsmust be a�ne functions of the loop indices. The domain of computation isrepresented by the set of lattice points inside the convex polyhedron, describedby this system of linear inequalities.2. Eliminate unnecessary constraints by translating the loop indices (so that0 � i � n � 1 as opposed to 1 � i � n, for example). The reason for thisis that the inequality 0 � i is implicit in our formulation, whereas 1 � iintroduces an additional constraint.3. Transform the system of inequalities to a system of equalities by introducingnon-negative slack variables, one for each inequality.4. Augment the system with a linear schedule for the associated dag, \frozen"in some intermediate time value: � = �(n);8



5. Run the program DiophantineGF.m on the resulting data. The programcalculates the rational generating function f(t) = P dntn, where dn is thenumber of solutions to the resulting linear system of Diophantine equations,and produces a formula for dn.4. Mathematica RunsOnce the Mathematica program DiophantineGF.m we have written for thiscomputationa has been loaded by the command << DiophantineGF.m, the usermay request examples and help in its usage. The program essentially requires threearguments a;b; c of the Diophantine systemaz = nb+ c : (9)The main computation is performed by the call DiophantineGF[a;b; c]. The out-put is the (rational) generating function f(t) =Pn�0 dntn, where dn is the numberof solutions z � 0 to (9). After the computation of f(t) by the program, the usercan execute the command formula, which produces formulas for dn in terms of bi-nomial coe�cients (with certain added divisibility restrictions), and in terms of theordinary power basis in n when such a formula exists. The command formulaN[c]evaluates dn for n = c. If needed, the generating function f(t) computed by the pro-gram subsequently can be manipulated by various Mathematica commands, suchas Series[].Below, we provide sample runs of DiophantineGF.m . The �rst three are pro-cessor lower bound computations for the array computation problems formulated,the rest are examples from combinatorics.4.1. Sample Run 1: n� n Matrix-Vector MultiplicationFor the linear schedule of the Matrix-vector Product example, the augmentedDiophantine system in (3) can be written in the form (9) wherea = 24 1 1 0 01 0 1 00 1 0 1 35 ; b = 24 111 35 ; c = 24 �1�1�1 35 : (10)In[1]:= << DiophantineGF.mIn[2]:= a = {{1, 1, 0, 0},{1, 0, 1, 0},{0, 1, 0, 1}};In[3]:= b = {1, 1, 1}; c = {-1, -1, -1};In[4]:= DiophantineGF[a, b, c]ahttp://www.cs.ucsb.edu/~omer/personal/abstracts/DiophantineGF.m9



tOut[4]= ---------2(-1 + t)In[5]:= formula;Binomial Formula : C[n, 1]Power Formula : nIn the output, C[x; k] denotes the binomial coe�cient �xk� = x!k!(x�k)! when x is anon-negative integer, and zero otherwise.4.2. Sample Run 2: n� n Triangular Matrix Product (n = 2N)For the n � n Triangular Matrix Product problem the Diophantine system isaz = Nb+ c wherea = 2664 1 1 1 0 0 00 1 0 1 0 00 �1 1 0 1 01 0 �1 0 0 1 3775 ; b = 2664 3200 3775 (11)and c = [�2;�1; 0; 0 ]T for n = 2N , and c = [0; 0; 0; 0 ]T for n = 2N + 1. In the�rst case,In[1]:= << DiophantineGF.mIn[2]:= a = {{1, 1, 1, 0, 0, 0},{0, 1, 0, 1, 0, 0},{0,-1, 1, 0, 1, 0},{1, 0,-1, 0, 0, 1}};In[3]:= b = {3, 2, 0, 0}; c = {-2,-1, 0, 0};In[4]:= DiophantineGF[a, b, c]tOut[4]= --------3(1 - t)In[5]:= formulaBinomial Formula : C[1 + n, 2]n (1 + n)Power Formula : ---------2Since the n in this formula is our N , substituting n=2, we �nd that a lowerbound for the number of processors needed to satisfy the linear schedule �(i; j; k) =i+ j + k + 1 for the n� n Triangular Matrix Product isn(n+ 2)810



when n is even. When n = 2N + 1, the Mathematica run for the n � n problemresults in the generating function (1 + t2)=(1� t)3(1 + t). This time the formulafor dn depends on whether or not N is even. It is found to be 2m2 +2m+ 1 if n isof the form 4m+ 1, and 2(1 +m)2 if n is of the form 4m+ 3.To summarize, a lower bound for the number of processors needed to satisfy athe linear schedule �(i; j; k) = i+ j+ k+1 for the n�n Triangular Matrix Productis 2m2 +m if n = 4m;2m2 + 3m+ 1 if n = 4m+ 2;2m2 + 2m+ 1 if n = 4m+ 1;2m2 + 4m+ 2 if n = 4m+ 3:In particular, a lower bound that holds for all cases for this problem isbn4 c (2 bn4 c+ 1) :4.3. Sample Run 3: Gaussian EliminationFor Gaussian Elimination without pivoting of an n�n matrix the Diophantinesystem is az = Nb+ c wherea = 266664 1 1 1 0 0 0 01 �1 0 1 0 0 00 1 0 0 1 0 01 0 �1 0 0 1 00 0 1 0 0 0 1 377775 : (12)Here b = [3; 0; 2; 0; 2]t and c = [�2;�1;�1;�1;�1]t, for n = 2N . The generatingfunction computed is t2(3 + t)(1� t)3(1 + t) :The actual formula DiophantineGF.m produces for the coe�cient of tN in theexpansion of this function is(3C[(N � 2)=2; 0]� C[(N � 4)=2; 0]� 2C[(N � 3)=2; 0])=8 + (13)(C[N � 3; 2] + 3C[(N � 2)=2; 0]� C[N � 2; 2]� 5C[N � 1; 2] + 21C[N; 2])=8However, note that C[x; 0] = 0 unless x is an integer. This means that3C[(N � 2)=2; 0]� C[(N � 4)=2; 0]� 2C[(N � 3)=2; 0] = � 2 N even;�2 N odd:Simplifying the other binomial coe�cients in (13), we get the lower bound forn = 2N as 2N2 �N2 if N is even; 2N2 �N � 12 if N is odd;11



which can be combined into b 2N2�N2 c for n = 2N . The system for Gaussian elimi-nation for n = 2N +1 is given in (7). In this case c = [�1;�1; 0;�1; 0]t and a andb are the same as above. The generating function computed by the program ist(1 + 3t)(1� t)3(1 + t) :Simplifying the automatically produced formula as before,(C[(N � 1)=2; 0]� 3C[(N � 3)=2; 0] + 2C[(N � 2)=2; 0])=8 +(3C[N � 2; 2]� 11C[N � 1; 2] + 17C[N; 2] + 7C[N + 1; 2])=8;we obtain 2N2 �N2 if N is even; 2N2 �N � 12 if N is odd:Therefore the lower bound for n = 2N + 1 is also b 2N2�N2 c. Combining with theprevious case, we obtain the processor lower boundbbn2 c(2bn2 c � 1)2 cfor n� n Gaussian elimination without pivoting for arbitrary n.Next we present examples of sample runs for a few problems that do not arisefrom array computations.4.4. Sample Run 4Consider the inequalities z1 � n� 1z2 � n� 1z3 � n� 1in non-negative integers z1; z2; z3. The number of solutions is dn = n3 for n � 1since each zi can be independently picked from f0; 1; : : : ; n � 1g. To verify thisusing DiophantineGF.m , we �rst introduce integral slack variables s1; s2; s3 � 0and write the corresponding system of equalitiesz1 + s1 = n� 1z2 + s2 = n� 1z3 + s3 = n� 1with a = 24 1 0 0 1 0 00 1 0 0 1 00 0 1 0 0 1 35 ; b = 24 111 35 ; c = 24 �1�1�1 35 : (14)12



The Mathematica run gives the formula for dn in the power basis as well as interms of binomial coe�cients, resulting indn = n3 = �n3�+ 4�n+ 13 �+�n+ 23 � :In[1]:= << DiophantineGF.mIn[2]:= a = {{1, 0, 0, 1, 0, 0},{0, 1, 0, 0, 1, 0},{0, 0, 1, 0, 0, 1}};In[3]:= b = {1, 1, 1}; c = {-1, -1, -1};In[4]:= DiophantineGF[a, b, c]2t (1 + 4 t + t )Out[4]= ----------------4(-1 + t)In[5]:= formulaBinomial Formula : C[n, 3] + 4 C[1 + n, 3] + C[2 + n, 3]3Power Formula : n4.5. Sample Run 5For this example consider the linear Diophantine systemz1 � z2 + 2z3 = n+ 1z2 + z4 = n� 22z1 + z3 + z5 = n+ 3 (15)DiophantineGF.m gives the generating function of the number of solutions dn ofthis system in non-negative integers as2 2 3 4t (-1 - 2 t - t + t + 2 t )Out[5]= ------------------------------3 2(-1 + t) (1 + t) (1 + t + t )2 3 4 5 6 7 8 9= t + 3 t + 5 t + 7 t + 9 t + 12 t + 14 t + O[t]In particular, we see from the Taylor series expansion of the generating functionabove that d8 = 14, and thus there are 14 solutions to (15) when n = 8. This resultcan be checked in another way as follows: We can �rst substitute n = 8 in (15),13



resulting in the systemz1 � z2 + 2z3 = 9z2 + z4 = 62z1 + z3 + z5 = 11 (16)This system then should have 14 solutions as well. Running DiophantineGF.m withthe corresponding inputa = 24 1 �1 2 0 00 1 0 1 02 0 1 0 1 35 ; b = 24 000 35 ; c = 24 9611 35we obtain 14 2 3 4 5 6Out[5]= ------ = 14 + 14 t + 14 t + 14 t + 14 t + 14 t + O[t]1 - twhich again implies that the number of solutions to (16) is 14, independently of n.4.6. Sample Run 6For the linear Diophantine systemz1 � 2z2 � z3 = n� 4z1 + z2 � z3 = 2n+ 3z1 � 2z3 = 2n� 2 (17)DiophantineGF.m calculates the generating function of the number of solutions as2 5 8Out[6]= t + t + tThus (17) has unique solutions in non-negative integers for n = 2; 5; and 8, and noother solutions.5. The AlgorithmWe demonstrate the algorithm on a speci�c instance, and sketch its proof. Con-sider the linear Diophantine systemz1 � 2z2 = nz1 + z2 = 2n (18)in which z1 and z2 are non-negative integers. Let dn denote the number of solutionsto (18). Associate indeterminates �1 and �2 to the �rst and the second equations,respectively, and also indeterminates t1 and t2 to the �rst and the second columnsof the system. Consider the product of the geometric seriesR = 11� �11�12t1 11� ��21 �12t2 = 0@X�1�0(�11�12t1)�11A0@X�2�0(��21 �12t2)�21A14



where the exponents of �1 and �2 in the �rst factor are the coe�cients in the �rstcolumn and the exponents of �1 and �2 in the second factor are the coe�cients inthe second column. Individual terms arising from this product are of the form��1�2�21 ��1+�22 t�11 t�22 ; (19)where �1; �2 are non-negative integers. Following Cayley, MacMahon [28] makes useof the operator 
= which picks out those terms (19) in the power series expansionwhose exponents of �1 and �2 are both equal to zero (this is the �-free part ofthe expansion). Thus, the contribution of the term in (19) to 
=(R) is non-zero ifand only if the exponents of �1 and �2 are equal to zero. If this is the case, thecontribution is t�11 t�22 if and only if z1 = �1 and z2 = �2 is a solutionb to thehomogeneous system z1 � 2z2 = 0z1 + z2 = 0 (20)This means, in particular, that what MacMahon calls the \crude" generating func-tion of the solutions to the homogeneous system (20) is11� �11�12t1 11� ��21 �12t2 ;and 
= � 1(1� �11�12t1)(1� ��21 �12t2)� =X t�11 t�22where the summation is over all solutions z1 = �1 and z2 = �2 of (20). LetRn = ��n1 ��2n2 R; where the exponents of �1 and �2 are the negatives of the righthand sides of �rst and the second equations of (18), respectively. Then
=(Rn) =X t�11 t�22where now the summation is over all non-negative integral solutions z1 = �1, z2 =�2 of (18), since generic terms arising from the expansion of R are now of the form��1�2�2�n1 ��1+�2�2n2 t�11 t�22 :If we let t1 = t2 = 1, then 
=(Rn) specializes to the number of solutions dn to(18). Let L denote the substitution operator that sets each ti equal to 1. Thendn = L 
=(Rn), and the operator 
= commutes both with L operation and additionof series. Thus,f(t) = Xn�0L 
=(Rn) tn= 
= 0@Xn�0L(Rn) tn1A (21)= 
= 0@ 1(1� �1�2)(1� ��21 �2)Xn�0��n1 ��2n2 tn1A : (22)bThere is only a single solution to (20) in this case, but this does not e�ect the general natureof the demonstration of the algorithm on this example.15



Since Xn�0��n1 ��2n2 tn = 11� ��11 ��22 t ; (23)the generating function f(t) can be obtained by applying the operator 
= to thecrude generating functionF = 1(1� �1�2)(1� ��21 �2)(1� ��11 ��22 t) : (24)Now, we make use of the identity that appears in Stanley [38] for the computa-tion of the homogeneous case above, namely1(1�A)(1�B) = 1(1�AB)(1�A) + 1(1�AB)(1�B) � 11�AB : (25)We demonstrate the usage of this identity on the example at hand. Taking the�rst two factors of (24) as (1� A)�1 and (1� B)�1 (i.e. A = �1�2, B = ��21 �2 ),and using (25),F = 1(1� ��11 �22)(1� �1�2)(1� ��11 ��22 t) (26)+ 1(1� ��11 �22)(1� ��21 �2)(1� ��11 ��22 t)� 1(1� ��11 �22)(1� ��11 ��22 t)which we can write as F = F1 + F2 � F3, where F1; F2, and F3 denote the threesummands above. By additivity,f(t) = 
=(F ) = 
=(F1) + 
=(F2)�
=(F3) :Continuing this way by using the identity (25), this time on F3 with (1�A)�1 and(1�B)�1 as the two factors, we obtain the expansionF3 = 1(1� ��21 t)(1� ��11 �22) + 1(1� ��21 t)(1� ��11 ��22 t) � 1(1� ��21 t)= F31 + F32 � F33 : (27)Call a product of the form �1(1�A)(1�B) � � � (1� Z) (28)that may arise during this process uniformly-signed if the exponents of �1 thatappear in A, B; : : : ; Z are either all non-negative, or all non-positive; the exponentsof �2 that appear in A, B; : : : ; Z are either all non-negative, or all non-positive, etc..Clearly if U is such a uniformly-signed product, then 
=(U) is obtained from U bydiscarding the factors which are not purely functions of t, as there can be no \cross16



cancellation" of any of the terms coming from di�erent expansions into geometricseries of the factors (1�A)�1, (1�B)�1; : : : ; (1� Z)�1 of U .The idea, then, is to use identity (25) repeatedly using pairs of appropriatefactors in such a way that the resulting products of the form (28) that arise are alluniformly-signed. The contribution of a uniformly-signed product to f(t) is simplythe product of the terms in it that are functions of t only, and all other factorscan be ignored. Each of the summands of F3 given in (27) above, for example, areuniformly signed. Since neither term contains a factor which is a pure function oft, the contribution of each is zero.The problem is to pick the (1�A)�1, (1�B)�1 pairs at each step appropriatelyto make sure that the process eventually ends with uniformly-signed products only.This cannot be done arbitrarily, however. For example in the application of theidentity (25) to 1(1� ��11 �12)(1� �21�12)(1� �11��12 ) (29)with 1 � A = 1 � ��11 �12 and 1 � B = 1 � �21�12 (in which the �1 exponentshave opposite sign), one of the three terms produced by the identity to be furtherprocessed is 1(1� ��11 �12)(1� �11�22)(1� �11��12 ) :Continuing with the choice 1 � A = 1� �11�22 , and 1 � B = 1� �11��12 (in whichthe �2 exponents have opposite sign), one of the three terms produced is1(1� ��11 �12)(1� �21�12)(1� �11��12 ) ;which is identical to (29). In particular the weight argument in Stanley [38] does notresult in an algorithm unless the �i are processed to completion in a �xed orderingof the indices i (e.g. �rst all exponents of �1 are made same signed, then those of�2, etc.)Accordingly, we use the following criterion: Given a term of the form (28), pickthe �i with the smallest i for which a negative and a positive exponent appearsamong A, B; : : : ; Z. Use two extremes (i.e. maximum positive and minimum neg-ative exponents) of such opposite signed factors (1 � A)�1 and (1 � B)�1 of thecurrent term in (28), and apply identity (25) with this choice of A and B. Thiscomputational process results in a ternary tree whose leaves are functions of t only,after the application of the operator 
= . The generating function f(t) can then beread o� as the (signed) sum of the functions that appear at the leaf nodes. Thereader can verify that the example at hand results in the generating functionf(t) = 1(1� t)(1 + t+ t2)after the functions of t at the leaf nodes of the resulting ternary tree are summedup and necessary algebraic simpli�cations are carried out.17



In the case above, c = 0. Now, we consider the more general case with c 6= 0.These are the instances for which the description and the proof of the algorithm isnot much harder, but the extra computational e�ort required justi�es the use of asymbolic algebra package.As an example, consider the Diophantine systemz1 � 2z2 = n� 2z1 + z2 = 2n+ 3 (30)As before, let dn be the number of solutions to (30) in non-negative integers z1; z2,and let f(t) be the generating function of the dn. As in the derivation of the identity(22) for f(t), this time we obtainf(t) = 
= 0@ 1(1� �1�2)(1� ��21 �2)Xn�0��n+21 ��2n�32 tn1A : (31)Since Xn�0��n+21 ��2n�32 tn = �21��321� ��11 ��22 t ;the generating function f(t) is obtained by applying the operator 
= to the crudegenerating functionF = �21��32(1� �1�2)(1� ��21 �2)(1� ��11 ��22 t) : (32)Now, we proceed as before using the identity (25), ignoring the numerator forthe time being. It is no longer true that there can be no \cross cancellation" of anyof the terms coming from di�erent expansions into geometric series of the factors(1 � A)�1, (1 � B)�1; : : : ; (1 � Z)�1 in a product U of the form (28) even if theterm is uniformly-signed. It could be that the exponents of all of the �1 thatappear in U are negative, and the exponents of all of the �2 that appear in Uare all positive, but there can be ��free terms arising from the expansions of theproducts that involve �'s, since the numerator �21��32 can cancel terms of the form��21 �32tk that may be produced if we expand the factors into geometric series andmultiply. The application of 
= would then contribute tk from this term to the �nalresult coming from U , for example. The important observation is that the geometricseries expansion of the terms that involve � in U need not be carried out past powersof �1 larger than 2, and past powers of �2 smaller than �3. This means that weneed to keep track of only a polynomial in �1; �2 and t before the application of 
=to �nd the �-free part contributed by this leaf node. In this case, this contributionmay involve a polynomial in t as well. Therefore when c 6= 0, we need to calculatewith truncated Taylor expansions at the leaf nodes of the computation tree. It isthis aspect of the algorithm that is handled most e�ciently (in terms of codinge�ort) by a symbolic algebra package such as Mathematica.18



6. Implementation, Complexity, and RemarksThe main computational e�ort of the algorithm is the construction of the ternarytree (Figure 2), where each internal node is expanded according to identity (25),until uniform-signed leaf expressions are reached. For simplicity, we consider thecase c = 0. Carrying out this portion of the computation symbolically is unwise:
(F )Ω= 3(F )

(F)

(F )1 2Ω=

Ω=

Ω
=

+ + -Figure 2: Generation of the ternary tree from identity (25).instead, we represent each expression F that 
= operates on as a (r + 1) � (s + 1)matrix MF of integers. The 0th row is reserved for the exponents of t in each factorin the denominator of F . The ith row is the exponents of �i in F . For example, theinitial F in (24) is encoded by the matrixF = 1(1� �1�2)(1� ��21 �2)(1� ��11 ��22 t)  ! MF = 24 0 0 11 �2 �11 1 �2 35 :Identity (25) applied to F now turns into column operations on M = MF : LetC and C 0 be two columns of M . Then the three matrices corresponding to thesummands F1, F2 and F3 in the application of (25) are obtained from M by1. M1 : Replace C by C + C 0 in M ,2. M2 : Replace C 0 by C + C 0 in M ,3. M3 : Replace C 0 by C + C 0, and C by the zero vector in M .The calculation in (26) followed by (27) results in the portion of the computa-tion tree represented as matrices with sign in Figure 3. When the computation iscontinued, it can be seen that the middle subtree in this example produces a leafnode 24 0 1 21 0 01 1 0 35  ! 1(1� �1�2)(1� �2 t)(1� t2) :The contribution of this to the generating function is the term
= � 1(1� �1�2)(1� �2 t)(1� t2)� = 11� t2 :19
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Figure 3: The start of the computational tree.In general, when we arrive at a leaf node (i.e. when all rows of the current matrixare uniformly-signed), suppose d1; d2; : : : ; dl are the positive elements in the 0throw, with the added property that the entries below each di in the leaf matrix areall zeros. The contribution of this leaf node to the generating function is then�1(1� td1)(1� td2) � � � (1� tdl) (33)with the appropriate sign. It is immediate that the resulting generating function isrational with a common denominator of the form (33).We give a high level description of the algorithm using matrices to represent thecoe�cients. We assume that the given system is of the form (8) where c = 0. Theinput is of the form of a matrix M = Minitial given in (34). The rows of M areindexed 0 through r, and the columns are indexed 0 through s.Minitial = 2666664 0 0 : : : 0 1a11 a12 : : : a1s �b1a21 a22 : : : a2s �b2... ... ...ar1 ar2 : : : ars �br
3777775 ; (34)with signinitial = +1. Assume the following functionsZerocolumn[M; j] : Returns true i� the entries of M in the j-th column inrows 1 through r are all zeros.Uniformsigned[M ] : Returns true i� rows of M are all nonnegative or allnonpositive. 20



Minindex[M; i]: Returns the index of a smallest element in row i of M .Maxindex[M; i]: Returns the index of a largest element in row i of M .Firstnonuniform[M ] : Returns the index of the �rst non uniformly-signedrow in M .Addcolumn[M;u; v]: Returns the matrix which is obtained fromM by addingits v-th column to its u-th column.Zapcolumn[M; v]: Returns the matrix obtained by replacing the v-th columnof M by zeros.Update[gf;M; sign]:beginCalculate S = fj j Zerocolumn[M; j]g;Let fd1; d2; : : : ; dlg be the multiset of positive values among M [0; j],j 2 S;gf = gf + sign � 1=(1� td1)(1� td2) � � � (1� tdl);end UpdateThe main recursion for the c = 0 case that generates the ternary tree consistsof the basic steps given in Figure 4.The number of leaves in the generated ternary tree is exponential in n =Pfaig jaij, where faig is the set of coe�cients describing the set of Diophantineequations. The depth of recursion can be reduced somewhat, when the columns tobe used are picked carefully. It is also possible to prune the tree when the inputvector c determines that there can be no �-free terms resulting from the currentmatrix (e.g., some row is all strictly positive or all negative with c = 0, or the rowelements are weakly negative but the corresponding ci is positive, etc.). Further-more, the set of coe�cients describing the Diophantine system coming from an arraycomputation is not unique. Translating the polyhedron, and omitting superuousconstraints (i.e., not in their transitive reduction) reduces the algorithm's work.Additional preprocessing may be possible (e.g., via some unitary transform).The fact that the algorithm has worst case exponential running time is notsurprising however; the simpler computation: \Are any processors scheduled for aparticular time step?", which is equivalent to \Is a particular coe�cient of the seriesexpansion of the generating function non-zero?" is already known to be an NP-complete problem [36, 22]. This computational complexity is further amelioratedby the observation that, since a formula can be automatically produced from thegenerating function, it needs to be constructed only once for a given algorithm. Inpractice, array algorithms typically have a description that is su�ciently succinctto make this automated formula production feasible.To summarize the main ideas of this paper: given a nested loop program whoseunderlying computation dag has nodes representable as lattice points in a convex21



Program Main[M ]:begingf = 0;M =Minitial;sign = signinitial = +1;Recurse[M; sign] :beginif Uniformsigned[M ] then Update[gf;M; sign] and return;else begini = Firstnonuniform[M ];u =Minindex[M; i];v =Maxindex[M; i];M1 = Addcolumn[M;u; v];M2 = Addcolumn[M; v; u];M3 = Zapcolumn[M1; v];Recurse[M1; sign];Recurse[M2; sign];Recurse[M3;�sign];end;end Recurse;end MainFigure 4: Basic description of the algorithm for c = 0.polyhedron, and a multiprocessor schedule for these nodes that is linear in the loopindices, we produce a formula for the number of lattice points in the convex poly-hedron that are scheduled for a particular time step (which is a lower bound on thenumber of processors needed to satisfy the schedule). This is done by constructinga system of parametric linear Diophantine equations whose solutions represent thelattice points of interest. Our principal contribution is devising an algorithm andits implementation for constructing the generating function from which a formulafor the number of these solutions is produced.Several examples illustrated the relationship between nested loop programs andDiophantine equations, and were annotated with the output of a Mathematica pro-gram that implements the algorithm. The algorithmic relationship between theDiophantine equations and the generating function was illustrated with a simpleexample. Proof of the algorithm's correctness was sketched while illustrating itssteps. The algorithm's exponential computational complexity should be seen inlight of two facts:� Deciding if a time step has any nodes associated with it is NP-complete; we22
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