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Abstract

Using a directed acyclic graph (dag) model of al-
gorithms, we solve a problem related to precedence-
constrained multiprocessor schedules for array computa-
tions: Given a sequence of dags and linear schedules
parametrized byn, compute a lower bound on the num-
ber of processors required by the schedule as a function ofn. In our formulation, the number of tasks that are sched-
uled for execution during any fixed time step is the num-
ber of non-negative integer solutionsdn to a set of para-
metric linear Diophantine equations. We illustrate an al-
gorithm based on generating functions for constructing a
formula for these numbersdn. The algorithm has been im-
plemented as a Mathematica program. An example run and
the symbolic formula for processor lower bounds automat-
ically produced by the algorithm forGaussian Elimination
is presented.

1. Introduction

We consider array computations, often referred to as sys-
tems of uniform recurrence equations. Parallel execution of
uniform recurrence equations has been studied extensively,
from at least as far back as 1966 (see, e.g., [15]). In such
computations, the tasks to be computed are viewed as the
nodes of a directed acyclic graph, where the data dependen-
cies are represented as arcs. Given a dagG = (N;A), a
multiprocessor schedule assigns nodev for processing dur-
ing step�(v) on processor�(v). A valid multiprocessor
schedule is subject to two constraints: 1) A node can be
computed only after its predecessor nodes have been com-
puted; 2) A processor cannot compute 2 different nodes
during the same time step. We will refer to valid sched-
ules simply as schedules. A schedule is good, if it uses
time efficiently; an implementation of a schedule is good,
if it uses few processors. This view prompted several re-

searchers to investigate processor-time-minimal schedules
for families of dags that represent fundamental problems
(e.g. [1, 5, 6, 4]). These are time-minimal schedules that
in addition use as few processors as possible. Clauss, Mon-
genet, and Perrin [2] developed a set of mathematical tools
to help find a processor-time-minimal multiprocessor array
for a given dag. Another approach to a general solution
has been reported by Wong and Delosme [8], and Shang
and Fortes [7]. They present methods for obtaining opti-
mal linear schedules. That is, their processor arrays may
be suboptimal, but they get the best linear schedule pos-
sible. Darte, Khachiyan, and Robert [11] show that such
schedules are close to optimal, even when the constraint of
linearity is relaxed. A lower bound on the number of pro-
cessors needed to satisfy a schedule for a particular time
step can be formulated as the number of solutions to a lin-
ear Diophantine equation, subject to the linear inequalities
of the convex polyhedron that defines the dag's computa-
tional domain. The maximum processor bound for a given
linear schedule, taken over all time steps, is a lower bound
for the number of processors needed to satisfy the schedule
for the dag family.

Such a geometric/combinatorial formulation for the
study of a dag's task domain has been used in various other
contexts in parallel algorithm design (see Fortes, Fu, and
Wah [3] for a survey of systolic/array algorithm formula-
tions). Here, we present a more general and uniform tech-
nique for deriving such lower bounds:

Given a parametrized dag family and a cor-
respondingly parametrized linear schedule, we
compute aformula for a lower bound on the
number of processors required by the schedule.

This is much more general than the analysis of an optimal
schedule for a givenspecificdag. The lower bounds ob-
tained are good; we know of no dag treatable by this method
for which the lower bounds are not also upper bounds. We
believe this to be the first reported algorithm and its imple-
mentation for automatically generating such formulae.



Augmenting the constraints defining the computational
domain of the dag, by the linear constraint imposed by the
schedule results in a linear Diophantine system of the formaz = nb+ c ; (1)

where the matrixa and the vectorsb andc are integral, but
not necessarily non-negative. The numberdn of solutions in
non-negative integersz = [z1; z2; : : : ; zs]t to this linear sys-
tem is a lower bound for the number of processors required
when the dag corresponds to parametern. Our algorithm
produces (symbolically) the generating function for the se-
quencedn, and from the generating function, a formula for
the numbersdn. We do not make use of any special proper-
ties of the system that reflects the fact that it comes from a
dag. Thus in (1),a can be taken to be an arbitraryr � s in-
tegral matrix, andb andc arbitraryr-dimensional integral
vectors. As such we actually solve a more general com-
binatorial problem of constructing the generating functionPn�0 dntn , and a formula fordn given a matrixa and
vectorsb andc, for which the lower bound computation is
a special case. There is a large body of literature concerning
lattice points in convex polytopes and numerous interesting
results: see for example Stanley [25] for Ehrhart polynomi-
als, and Sturmfels [26, 27] for vector partitions and other
mathematical treatments. Our results are based mainly on
MacMahon [20, 21], and Stanley [24]. In the full paper [9],
we describe the algorithm to construct the generating func-
tion and its proof, and remark on its implementation.

2. An Example: Gaussian Elimination

The algorithm for performing Gaussian elimination on
an n � n matrix M below is taken from Golub and Van
Loan [14].

for i = 0 to n� 1 do:
for j = i+ 1 to n� 1 do:wj  M [i; j];
endfor;
for j = i+ 1 to n� 1 do:�  M [j; i]=M [i; i];

for k = i+ 1 to n� 1 do:M [j; k] M [j; k]� � � wj ;
endfor;

endfor;
endfor;

We are interested in the triply-nestedfor loop, the heart of
the computation. The computational nodes are defined by
non-negative integral triplets(i; j; k) satisfyingi � n� 1i+ 1 � j � n� 1i+ 1 � k � n� 1

We eliminate the redundant constraint, yieldingi+ 1 � j � n� 1i+ 1 � k � n� 1
Our algorithm allows us to assume that the variables
are non-negative. Introducing integral slack variabless1; s2; s3; s4 � 0, we obtain the equivalent linear Diophan-
tine systemi � j + s1 = �1j + s2 = n �1i � k + s3 = �1k + s4 = n �1
A linear schedule for the corresponding dag is given by�(i; j; k) = i+ j + k+1. Since� ranges from1 to 3n� 2,
we can augment the system by adding the constraint at the
halfway point: � � 32n � 1. Whenn is an even number,
sayn = 2N , then we can take� to be3N � 1. Adding the
schedule constraint to system we already have, we obtain
the augmented Diophantine systemi + j + k = 3N �2i � j + s1 = �1j + s2 = 2N �1i � k + s3 = �1k + s4 = 2N �1

(2)

Hereb = [3; 0; 2; 0; 2]t andc = [�2;�1;�1;�1;�1]t.
The system for Gaussian elimination forn = 2N + 1 isi + j + k = 3N �1i � j + s1 = �1j + s2 = 2Ni � k + s3 = �1k + s4 = 2N

(3)
which differs from the even case only in the vectorc.

A lower bound for the number of processors needed to
implement the schedule of the algorithm for Gaussian elim-
ination without pivoting of ann � n matrix is the number
of solutions of (2) ifn = 2N , and the number of solutions
of (3) if n = 2N + 1.

The final problem to be solved is the determination of
the number of non-negative integral solutionsdn to a linear
parametric Diophantine system of the formaz = nb + c
wherea is ar�s integral matrix,b andc arer-dimensional
integral vectors.

3. The General Formulation

We now generalize this example and consider the prob-
lem of computing a lower bound for the number of proces-
sors needed to satisfy a given linear schedule. That is, we



show how to automatically construct a formula for the num-
ber of lattice points inside a linearly parameterized family of
convex polyhedra, by automatically constructing a formula
for the number of solutions to the corresponding linearly
parameterized system of linear Diophantine equations. The
algorithm for doing this and its implementation are our prin-
cipal contributions [9].

Our use of linear Diophantine equations, we believe, is
well-motivated: the computations of an inner loop are typ-
ically defined over a set of indices that can be described as
the lattice points in a convex polyhedron. Indeed, in two
languages, SDEF [12] and ALPHA [28], one defines do-
mains of computation explicitly as the integer points con-
tained in some programmer-specified convex polyhedron.

The general setting exemplified by theGaussian Elimi-
nationproblem is as follows: Supposea is anr � s inte-
gral matrix, andb andc arer-dimensional integral vectors.
Suppose further that, for everyn � 0, the linear Diophan-
tine systemaz = nb+ c, i.e.a11z1 + a12z2 + : : : + a1szs = b1n+ c1a21z1 + a22z2 + : : : + a2szs = b2n+ c2

...
...

... = ...ar1z1 + ar2z2 + : : : + arszs = brn+ cr
(4)

in the non-negative integral variablesz1; z2; : : : ; zs has a
finite number of solutions. Letdn denote the number of so-
lutions forn. The generating function of the sequencedn isf(t) =Pn�0 dntn. For a linear Diophantine system of the
form (4),f(t) is always a rational function, and we provide
an algorithm to computef(t) symbolically. The Mathemat-
ica program implementing the algorithm also constructs a
formula for the numbersdn from this generating function.
Given a nestedfor loop, the procedure to follow is infor-
mally as follows:

1. Write down the node space as a system of linear in-
equalities. The loop bounds must be affine functions
of the loop indices. The domain of computation is
represented by the set of lattice points inside the con-
vex polyhedron, described by this system of linear
inequalities.

2. Eliminate unnecessary constraints by translating the
loop indices (so that0 � i � n � 1 as opposed to1 � i � n, for example). The reason for this is that
the inequality0 � i is implicit in our formulation,
whereas1 � i introduces an additional constraint.

3. Transform the system of inequalities to a system
of equalities by introducing non-negative slack vari-
ables, one for each inequality.

4. Augment the system with a linear schedule for the
associated dag, “frozen” in some intermediate time

value:� = �(n).
5. Run the programDiophantineGF.m on the re-

sulting data. The program calculates the rational gen-
erating functionf(t) = P dntn, wheredn is the
number of solutions to the resulting linear system of
Diophantine equations, and produces a formula fordn.

4. Sample Mathematica Run

Once the programDiophantineGF.m we have writ-
ten for this computation1 has been loaded by the command
<< DiophantineGF.m, the user may request examples
and help in its usage. The program essentially requires
three argumentsa;b; c of the Diophantine system (1). The
main computation is performed by executing the command
DiophantineGF[a;b; c]. The output is the (rational)
generating functionf(t) = Pn�0 dntn, wheredn is the
number of solutionsz � 0 to (1). After the computation
of f(t) by the program, the user can execute the command
formula, which produces formulas fordn in terms of bi-
nomial coefficientsC[x; k] (whereC[x; k] = 0 if x is not
integral) and in terms of the ordinary power basis inn when
such a formula exists. The commandformulaN[c] eval-
uatesdn for n = c. If needed, the generating functionf(t)
computed by the program subsequently can be manipulated
by various Mathematica commands, such asSeries[].

For Gaussian elimination without Pivoting of ann � n
matrix the Diophantine system isaz = Nb+ c wherea = 266664 1 1 1 0 0 0 01 �1 0 1 0 0 00 1 0 0 1 0 01 0 �1 0 0 1 00 0 1 0 0 0 1 377775 :
Hereb = [3; 0; 2; 0; 2]t andc = [�2;�1;�1;�1;�1]t, forn = 2N . The generating function for the number of non-
negative integral solutions to (2) automatically computed by
the program is t2(3 + t)(1� t)3(1 + t) :

The actual formulaDiophantineGF.m produces for
the coefficient oftN in the expansion of this function is(3 � C[(N � 2)=2; 0]� C[(N � 4)=2; 0]� (5)2 � C[(N � 3)=2; 0])=8 +(C[N � 3; 2] + 3 � C[(N � 2)=2; 0]� C[N � 2; 2]�5 � C[N � 1; 2] + 21 � C[N; 2])=81http://www.cs.ucsb.edu/�omer/personal/abstracts/DiophantineGF.m



SinceC[x; 0] = 0 unlessx is an integer, this means that3 � C[(N � 2)=2; 0]� C[(N � 4)=2; 0]�2 � C[(N � 3)=2; 0] = � 2 N even;�2 N odd:
Simplifying the other binomial coefficients in (5), we get
the lower bound forn = 2N as2N2 �N2 if N is even; 2N2 �N � 12 if N is odd;
which can be combined intob 2N2�N2 c for n = 2N . The
system for Gaussian elimination forn = 2N + 1 is given
in (3). In this casec = [�1;�1; 0;�1; 0]t andA andb are
the same as above. The generating function computed by
the program is t(1 + 3t)(1� t)3(1 + t) :
Simplifying the automatically produced formula as before,
we obtain2N2 �N2 if N is even; 2N2 �N � 12 if N is odd:
Therefore the lower bound forn = 2N+1 is alsob 2N2�N2 c.
Combining with the previous case, we obtain the processor
lower bound bbn2 c(2bn2 c � 1)2 c
for Gaussian elimination without pivoting of ann�nmatrix
for arbitraryn.

5 Computational Complexity and Conclu-
sion

The algorithm we provide for the computation of the
generating function has a worst case exponential running
time. This is not surprising; the simpler computation: “Are
anyprocessors scheduled for a particular time step?”, which
is equivalent to “Is a particular coefficient of the generating
function non-zero?” is already known to be an NP-complete
problem [22, 13]. However, such a formula needs to be con-
structed only once for a given algorithm. In practice, array
algorithms typically have a description that is sufficiently
succinct to make this automated formula production feasi-
ble.

To summarize the main ideas of this paper: given a
nested loop program whose underlying computation dag
has nodes representable as lattice points in a convex poly-
hedron, and a multiprocessor schedule for these nodes that
is linear in the loop indices, we produce a formula for the
number of lattice points in the convex polyhedron that are
scheduled for a particular time step (which is a lower bound

on the number of processors needed to satisfy the schedule).
This is done by constructing a system of parametric linear
Diophantine equations whose solutions represent the lattice
points of interest. Our principal contribution is devising an
algorithm and its implementation for constructing the gen-
erating function from which a formula for the number of
these solutions is produced.

The example illustrated the relationship between nested
loop programs and Diophantine equations, and was anno-
tated with the output of a Mathematica program that imple-
ments the algorithm. The algorithm's exponential computa-
tional complexity should be seen in light of two facts:� Deciding if a time step hasanynodes associated with

it is NP-complete; we construct aformula for the
number of such nodes;� This formula is a processor lower bound, not just for
one instance of a scheduled computation but for a pa-
rameterized family of such computations.

In bounding the number of processors needed to satisfy
a linear multiprocessor schedule for a nested loop program,
we actually derived a solution to a more general linear Dio-
phantine problem of the type given by (4). This leaves open
some interesting combinatorial questions of rationality and
algorithm design for systems similar to (4) where the right
hand side consists of higher degree polynomials inn.
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