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ABSTRACT

We give a bijective proof that the number of vertex labeled g-trees on n ver-

tices is given by
(MJtan—a?w1ym-e-
q

The bijection transforms each pair (S, f) where S is a g-element subset of
an n-set, and f is a function mapping an (n —g — 2)-settoa (gn — QN + 1)-set
into a labeled g-tree on n nodes by a cut-and-paste process. As a special case,
q =1 vyields a new bijective proof of Cayley’s formula for labeled trees. The gen-
eral bijection also provides for the enumeration of labeled g-trees in which a
specified subset of the vertices forms a clique.

1. INTRODUCTION

For each g > 1, the class of graphs called g-trees is defined recursively as
follows. The smallest g-tree is the complete graph K, on g vertices. A g-tree
with n > g vertices is obtained from a g-tree H on n-—1 vertices by introducing
a new vertex v, which is connected to all the vertices of a complete graph K, in
H.For g=1 this recursion defines the class of trees, and thus g-trees are gen-
eralizations of ordinary trees. We will denote by ﬁ:& the set of labeled g-trees on
n nodes. Cayley [S] was the first to enumerate ﬁm :

IcH =n"? . 1.1

In his honor, labeled 1-trees are sometimes referred to as Cayley trees. There are a
number of analytic proofs of this famous formula in the literature, and a collection
of these appears in Moon [13]. Prufer [15] was the first to provide a bijective proof
of 1.1, and in 1981, Joyal constructed an elegant encoding for bi-rooted Cayley
trees from which 1.1 follows [12]. More recently in 1986, a class of bijective proofs
that yields Cayley’s formula and the number of spanning trees of various other
graphs as well, was given by Egecioglu and Remmel [9].

1 Supported in part by NSF Grant No. DCR-8603722.
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In the general case, the number of labeled g-trees on n > g+1 nodes is given

by

_nu_nﬁ“f&:nafr::élm . 1.2

As an example, there are six labeled 2-trees on 4 vertices as depicted in Figure 1.
In this case there is only one underlying 2-tree.

3 4 2 4 2 3
2 3 4
2 2 3
1 4 1 3 1 2
3 4 4
Figure 1

Some of the approaches to the proof of Cayley's formula that appear in [13]
such as the Lagrange Inversion Formula have been applied to prove 1.2 for 2-trees.
Since the orjginal proofs involve rather complicated combinatorial analyses, the
computations are difficult to generalize to arbitrary dimensional case. In 1969,
Beineke and Pippert [3] extended Dziobek's proof [8] of Cayley’s formula to prove
1.2 for arbitrary g . This approach relies on an identity derived from one of Abel’s
formulas [1]. Later, using somewhat different methods, Moon in [14] generalized
Clarke’s inductive proof [7] for the g =1 case and gave another analytic proof of
1.2 . A summary of the various approaches for the proof of 1.2 for the case g =2
can be found in [2]. However, none of the known proofs for the number of labeled
g-trees in the general case is bijective, even though the right hand side of 1.2 has

an easy combinatorial interpretation:

Let |K,| and [K,,| denote the number of complete graphs K, and K,
contained in a g-tree on h nodes, respectively. It is easy to show by induction that
:Aaﬁ =gn— QN + 1 and :&IL =n — g .Hence 1.2 can be written in the form

_NTN
: iy H.w
Cu:ﬁ,
Thus the right hand side of 1.2 can be interpreted as enumerating the number of
pairs (S, f) where S is a g-element subset of an n-set, and f is a function
mapping an (1K, | —2)-settoa |K,I-set.

In this paper we present a bijective proof of 1.3 for the number of labeled
q-trees. Our method makes use of the Egecioglu-Remmel (ER) bijection for Cayley
trees to construct a bijection between the pairs (S, f) and ﬁu. In our bijection,
such functions f are further decomposed roughly in the following way: Each K,
which is a subgraph of a given g-tree G consists of g+1 "faces" which are K,'s.
One of these faces will be fixed for all but one of the K,i4's in G. As
K, =qlK, ;] +1, f will be interpreted as dictating how these n — a K,.'s
should be glued together along their faces to form G . The actual gluing process is
accomplished by resorting to the ER bijection for Cayley trees. It is interesting to
note that even though we start with a bijection for Cayley trees as the point of
departure, our proof for the general case specialized to g = 1 yields yet another
bijection for the number of Cayley trees different from the ER bijection.

As is the case with most bijective proofs, we gain extra information about the

underlying combinatorial objects by considering the special properties of the bijec-
tion. In this instance, we obtain enumerative results of the following kind:

m:,mnoww {i,j.kic{l1,2,..,n}. Then

()  the number of 2-trees on n nodes in which the vertices i and j are
adjacent is

:E;ﬁm.v.:sm|%Lu§|$?w _

(i) the number of 2-trees on n nodes in which the vertices i, j, and k
form a triangle is

32n-3)" "1

(iil) the number of Cayley trees on n nodes in which the vertices i and j
are adjacent is

2n" 73, 3.5

We give the general form of the above formulas for arbitrary g and a subset
of m labels (Corollary 4.1) as well:

The number of labeled g-trees on n > q + 1 nodes in which the vertices
Vi, Vo, v, €(1,2,...,n} form a cliqgue is

q+1-m

> S+T~.;:+~.|.a|w
i=0

1

n—q-—2

w x(nq—q°+1)

The outline of this paper is as follows. In section 2 we reproduce the ER
bijection (the 4, bijection in [9]) for the number of Cayley trees and present



requisite terminology concerning g-trees. In section 3, we construct our bijec-
tion for the cases of labeled 2-trees and Cayley trees. The description of the
bijection for arbitrary g is presented in Section 4.

2. PRELIMINARIES

2.1 ER bijection for Cayley trees

For completeness we reproduce here the ¢, bijection for Cayley trees
that appears in [9].

Denote by C, the set of Cayley trees on »n nodes rooted at the largest
labeled node n . Furthermore, we orient each edge {i, j} of a Cayley tree in
C, by directing it toward the root. Clearly, [|C,!= Icll . Next, let F,
denote the set of functions from {2,..,n-1} into {1,.., n}. The bijection
¢, between C, and F, is most easily described by referring to an explicit

hn
example. \

Suppose n =21 and f € F,, is given by the following table

i f) i f(D) i () i f()
2 5 7 12 20 ||17 16

~

3 4 12 13 19 18 6

o]

4 5 9 1 14 19 19 7

5 3 10 4 15 6 20 12

We can view [ as a directed graph with vertex set {1,..,21} by putting an
edge from i to j if f(i)=j.For example, the digraph for f given above is
pictured in Figure 2.

A moment’s thought will convince one that in general, the digraph correspond-
ingtoan f:{2,..,n-1}—>{1,.., n} will consist of two trees rooted at 1
and n , respectively, with all edges directed toward their roots plus a number
of directed cycles of length >1 where for each vertex v ona given cycle,
there is possibly a tree attached to v with v as the root and all edges
directed toward v . Note that there are trees rooted at 1 and n due to the
fact that 1 and n are not in the domain of f, so that there are no directed
edges out of 1 or n. Note also that cycles of length one or loops simply
correspond to fixed points of f.

1 4 3 20 12 21
f=
16 19
9 10 11 2 3 6
17 13 14 15 18
! 4 5 3 7 20 12 21
6, (f)= K" i I AR e
19
9 '8 10 11 2 § 6
17 13 14 15 18
Figure 2

As in Figure 2, we imagine the directed graph corresponding to f e F, is
drawn so that

(a) the trees rooted at 1 and n are drawn on the extreme left and extreme
right respectively with their edges directed upwards,

(b) . the cycles are drawn so that their vertices form a directed path on the line
between 1 and n with one backedge above the line and the tree
attached to any vertex on a cycle is drawn below the line between 1 and

n with edges directed upwards,

(c) each cycle is arranged so that its smallest element is on the right and the
cycles themselves are ordered from left to right by increasing smallest
elements.

Once the directed graph for f is drawn as above, let us refer to the
rightmost element in the ith cycle as #; and the leftmost element in the ith
cycle as [;. Thus for the f given above, I,=4, r =3, L=r,=7,
I3=20,and r;=12. Once an f ¢ F, is drawn in this manner, it is easy to
describe the bijection §,( f) . That is, if the directed graph of f has k cycles
where k >0, we simply eliminate the backedges », — I, for i=1, ..,k and
add the edges 1 —1,, ¥, —1,, v, — I, ..., r, — n . For example, in Figure 2,
we eliminate the backedges 3 —+4, 7 —=7, 12— 20 and add the edges

l1—+4, 3—7, 7—20, and 12 — 21 which are dotted for emphasis. If
there are no cycles in the directed graph of f,i.e, k=0, then we simply add
the edge 1 — n.



Note that it is immediate that 8, is a bijection between F, and C, since

given any Cayley tree T C,, we can easily recover the directed graph of
f € F, such that §,(f)= T. The key point here is that by our conventions
for the ordering of the cycles of f, it is easy to recover the sequence of
nodes ¥y, ¥,,.., ¥, since r, isthe smallest element on the path between 1
and n, r, is the smallest element on the path between r, and n, etc, and

clearly, knowing r,, ¥, , .., ¥ allows us to recover [ from T.

Now we have that 6, :F, — C, is a bijection so that we arrive at Cayley’s
formula n"? = |F,| = [C, 1.

2.2 Definitions and some properties of g-trees

The following definitions which are analogues of the notions of an ordi-
nary path, walk, etc. in a simple graph G are similar to but slightly different
from those introduced by Beineke and Pippert [4], Harary and Palmer [11] and
Wwinkler [16]. We will consider sequences of K,'s and K,,'s to go from one
NA&.:
define a g—walk = in a simple graph as an alternating sequence of R&t.m

and Na.m

subgraph of a g-tree to another K_,, subgraph. More precisely, we

T={(00)P1+01seees Op_ysPnsTp)

starting and ending with K,;’s ¢, and o, , such that each K., graph o;

contains p; ; and p; as distinct ka.m. n is the length of =. A g—path is a
g-walk where all the graphs in the sequence are distinct. In this case we say
that the two kﬁ;.m o, and o, are joined by a g-path. Figure 3 depicts a 2-
tree on 12 nodes. Denoting edges and triangles by the labels of their respec-
tive vertices, the sequence (679,69,369,36,356,35,358) isa 2-path of
length three joining the triangles 679 and 358.

Figure 3

A g-walk is a g—circuit if its length is at least three, ¢y =0, , and all other
elements in the sequence are distinct.

We shall make use of the following property of g-trees.

If G Is a q-tree, then every pair of K, ’s in G are joined by a unique
g-path. In particular G contains no g-circuits.

The proof of this follows from a similar result of Beineke and Pippert [4] and
will be omitted.

Next, we need the notion of a g-path connecting two vertices instead of
two K, .,'sina g-tree.In order to distinguish this type of a path between ver-
tices from a g-path which joins two xai.m. we will refer to them as g—trails .

Definition  Suppose v; and v; are two nonadjacent vertices of a g-tree. A
q-trail between v; and v; is a q-path 7=(0;,p1,0y, . 0%y, Px,9;) SUch
that v; belongs to o, v; belongs to oy, and neither v; nor v; belongs to
any other graph in the sequence.

For example , the 2-path depicted in Figure 3 constitutes a 2-trail
between the vertices 7 and 8. Since a vertex may belong to more than one
K,,,, it is not evident from the definition above that a g-trail between two
vertices is unique. We next prove

Lemma 2.1 Suppose v; and v; are two nonadjacent vertices of a g-tree G.
Then there is a unique q-trail between v; and v;.

Proof

We proceed by contradiction. Suppose there are two distinct g-trails

1 1 1 1 1 1 1
T HAQN .BH,QN_:._Q»IH_EA_Q\.V

2 2 2 2 2 2 2
7 =(0] PO Ty s PL 40 )

between v; and v;. Since there is M unique g-path between any pair of

K,.1’s ina g-tree, we have that 3._ #o; oOr QW. # qw. Let Ng(v;) and Ng(v;)

denote the subgraphs induced by the neighborhoods of v, and v; respec-
tively. Let H; be the subgraph induced by Ng(v;)|Jv; and let H; be the
subgraph induced by Ng(v;){Jv;. Then both Ng(v;) and Ng(v;) are
(g—1)-trees [10], and therefore by Corollary 3 of [6], the subgraphs H; and
H; are themselves g-trees. As such, there is g-path 7' between the Ky's
w and n_.m that lies entirely in H; . Similarly, there is g-path 7 between the
Ko's qw and ¢ that lies entirely in H;. Since v; and v; are not adja-

J
i 2 1
cent, the sequence (7' ,7°,r ,x') (where !

o

and 7 are traversed in the

opposite direction), forms a g-circuit in G, which is a contradiction. @,



Note that the idea of a g-trail between two vertices v; and v; of a g-
tree can be modified slightly to define the notion of a g-path joining a vertex
v; and a K,,; subgraph o, . Here we require that v; belong only to the first

K,y =o; inthe g-path

(0112015 wee s Tkt s PR )

joining ¢; and o, . From our arguments above, it is not difficult to see that
there exists a unique g-path joining a vertex v; and any K, that does not
contain v;.As an example, the sequence (679,69,369, 36,356,35,358)
is the 2-path in the 2-tree pictured in Figure 3 which joins vertex 7 to trian-
gle 358.

In analogy with the notion of external nodes of an ordinary tree, a leaf
ina g-tree G is defined as a vertex of degree 4. It is not difficult to prove
that any g-tree G on n > g + 1 vertices contains at least two leaves [6] ,
[10]. From this fact it follows that any clique K in a g-tree T with n>g
nodes is contained in at least one clique of size g + 1.

An acyclic orientation of a simple loopless graph G is an assignment of a
direction to each of the edges of G in such a way that no directed cycles are
formed. By abuse of language, we will call a complete graph K, simply
oriented if it is equipped with an acyclic orientation. Clearly, this is equivalent
to putting a total order on the vertices of K, ;. We let the unique vertex with
no outgoing edges (i.e. a sink in digraph terminology) correspond to the smal-
lest element in this total order. Given an oriented K, ., this total order
defines g+1 faces where the ith face is the oriented K, subgraph of K,
induced by all the vertices except the ith smallest one. Given an oriented
Ko
words, the top face of an oriented K, is the K, induced by all the vertices
minus the unique source (i.e. no incoming edges) vertex in K, . Figure 4
illustrates these notions for g+1=4.

its Iargest face will be referred to as the top or the top face. In other

Top face

Figure 4
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As an extension of the above definition, a g-tree with an acyclic orienta-
tion will be referred to as an oriented g-tree. It will be useful to single out the
following types of oriented g-trees for our purposes: An oriented g-tree will
be referred to as well-oriented g-tree if it belongs to the class of graphs
defined by the following recursive definition

i)  The smallest well-oriented g-tree is an oriented K_ ;.

ii) An oriented g-tree on n > g + 1 vertices is well-oriented if all of its
leaves are sources and there exists a leaf vertex whose removal
results in a well-oriented g-tree,

Note that there is exactly one well-oriented g-tree on g+ 2 nodes. It is
obtained by attaching a source to all the vertices in the top face of K, .

An oriented 2-tree which is not well-oriented A wel-oriented 2-tree

Figure 5

3. BIJECTIONS FOR 2-TREES AND CAYLEY TREES

3.1 The 2-tree bijection

In this section we describe our bijection ®m for 1.3 for 2-trees. This
bijection is constructed in two phases. First we give a combinatorial interpre-
tation to functions f mapping an (n —4)-set to a (2n — 3)-set in terms of
triangle labeled g-trees. Then we show how to obtain labeled 2-trees from

this class if we are given a 2-subset of an n-set. We shall call the first inter-
mediate bijection Dm and the second one ﬁm . Thus the actual bijection @m
will be the composition Hm o DM .

Note that for the case g=2, ka.m become edges and Nat.m become tri-
angles. Suppose we-are considering 2-trees on n >3 nodes. As we have
remarked before, the right hand side of 1.3 can now be written in the form

1x,1 -2

HMHAN_NL+C IAM?NASINV+:=[» a1

Let F? denote the collection of all functions from the set {2,3,..,n — 3}
into the set of pairs {1,2,..,n~2}x{1,2} (y {(n-2,3)}. Clearly,

IF2| =[2(n-2)+11""*. 3.2

11



We shall interpret the numerals in the domain of such a function f as

oriented triangles 2,3,..,n — 3 contained in the collection pictured in Fig-
ure 6.
Figure 6

Note that in this case, the faces of the i th triangle have the following order

top face

Figure 7

Our first task will be to construct from f a well-oriented 2-tree which
we shall denote by Dm (f), in which each triangle is labeled instead of the
vertices. To this end, we first construct the weighted functional digraph of

fe MM on the triangles given in Figure 6 as vertices, in the following manner:
if f(i)=(Jj, k), then we put an edge from the i th triangle to the j th trian-
gle with weight k. As an example, suppose n =22 and f is given by the

following table

Ioofa) | i f) I f(i) I f

2 GO 7 Q2212 @onl|l17 16,2)
3 @28 (21|13 a9,1)|/18 (6,1)
4 (5,2)119  (1,2) ||14 (19,2) ||19 (20,3)

5 (3,1) |10 (4,2) ||15 (6,2)
6 (7,1) {11 (4,1) {[16 (1,1)

12

Figure 8

Similar to the construction involved in the ER bijection, the weighted functional
digraph of an f ¢ N..w will consist of two trees rooted at the triangle 1 and the tri-
angle n — 2, respectively, with all edges directed towards their roots plus a
number of directed cycles where for each vertex v on a given cycle, there may be a
tree attached to v with v as the root and the edges directed toward v . Following
the ER bijection, we imagine that the weighted functional digraph of f is drawn as
in Figure 8 so that

(a) the trees rooted at 1 and n — 2 are drawn on the extreme left and extreme
right respectively with their edges directed upwards,

(b) the cycles are drawn so that their vertices form a directed path on the line
between 1 and n — 2 with one backedge above the line and the tree attached
to any vertex on a cycle is drawn below the line between 1 and n — 2 with

edges directed upwards,

(c) each cycle is arranged so that its smallest element is on the right and the
cycles themselves are ordered from left to right by increasing smallest ele-
ments.

Once the weighted digraph of f ¢ mm is drawn as above, let us refer to the right-
most element in the ith cycle as #; and the leftmost element in the i th cycle as
I; . Thus for the f given above, we have only one cycle and thus I, =4, ri=3.
Now if the weighted functional digraph of f has k cycles where k >0, we sim-
ply eliminate the backedges r,— [, for i=1,..,k and add the edges 1 — I,
ri—1Ily, ¥ —13,..., r,— n—2.The weight of a backedge (r;, ;) is assigned to
the newly added edge preceding it. The last edge added between ¥e—n-—2

13



always has weight 3. For example, in Figure 8, we eliminate the backedge 3 — 4,
and add the edges 1 —+4 and 3 — 20, with weights 2 and 3, respectively. If
there are no cycles in the weighted functional digraph of f, i.e, k=0, then we
simply add the edge 1 — n — 2 with weight 3.

Now the weights on the edges are made use of as follows: if there is a directed
edge between the triangles | and j with weight k, then we identify the top face
of the i th triangle with the k th face of the j th triangle. For the example above,
this identification phase results in the oriented, triangle labeled 2-tree bww (f) pic-

tured in Figure 9.

Figure 9

By our construction, it is not difficult to see that in general, the resulting
oriented 2-tree Dm (f) is well-oriented. However, the triangles labeled 1 and
n — 2 are not arbitrary. In fact, again by our identification process, in the 2-path

7=(1,p,00 1 0r04 1 g N —2)

joining the triangles 1 and n -2 in bm (f),the edge p, is the top face of trian-
gle 1 and the edge p; is the top face of triangle n — 2. The edge p, in this path
x will play a special role later. We will refer to it as the base of D,N_A ).

14

1
fl:2—(1,1) @
2 3
D @
f, 12-(1,2) @\@ \QN/
_ > -
f3 :2—(2,1)
1 3
fo:12-(2,2) :
3 1
\.m“N.IVAw~Hv @ @@
1 2
fo 12— (3.2) @ @@ \AN/
2 1
\V o

Figure 10

Let us denote all well-oriented, triangle labeled 2-trees on n nodes in which the

2-path between the triangles 1 and n — 2 has the property above by S\m . Given a
Te S\m , we can easily recover the function f ¢ ﬁw such that Dm (f)=T. By our
conventions of ordering the cycles of f, it is easy to recover the sequence of ver-
tices ry,7,, ..., i which are the smallest elements on the directed cycles of f as
in the ER bijection. This is because ¥, is the smallest element on the 2-path
between triangle 1 and triangle n — 2, ¥, Is the smallest element on the 2-path
between r, and n -2, etc, and knowing r,, ¥3,.,, 1 allows us to recover the
structure of the functional digraph of f. The weights on the edges can then be
read off from the way the identifications are made since the tail of a directed edge
(i, j) always emanates from the top face of triangle i. Instead of reworking the

15



above example we gave backwards, we present in Figure 10, [2(5 —2) + 11°"*=7
elements of S\m and the corresponding functions f;,..., f; in mm under the
bijection DM , along with their weighted functional digraphs.

In the light of the construction described above , we have

2

. I 2 2
. Is a bijection between F, and W, .

Lemma 3.1 Q

Now let S? denote the collection of 2-subsets of {1,2,...,n}. Our next
task is to construct a bijection ﬂm between the space mw X S\m and labeled 2-trees
on n nodes, ﬁm . The definition of ﬁw_ depends on whether or not a given subset
Se mm contains the special elements 1 or n — 2. We first consider the straight-
forward case in which neither 1 nor n — 2 isin S={i, j}:

Casel: SNO{l,n-2}=0

Recall that the path between triangle 1 and triangle n — 2 meets the latter at
the base p, (which actually is the top face of triangle n — 2 since we are consider-
ing elements of S\m ). Now we assign the elements i< j of S to the vertices of
the base, according to the linear order that is dictated. In other words, the smaller
of the two m_mgm:nm i is assigned to the sink on p, and the larger element j is
assigned to the source. After this, we first change the label of the i th triangle to
n — 1, and the label of the j th triangle to n. Next, we "push” the labels on the
triangles away from the edge p, to their source vertices. For example, the source
vertex of the n — 2 triangle is labeled n — 2, then the vertices of the triangles
sharing an edge with the n — 2 triangle are labeled, etc. Note that this process can
be carried out because of the way that the elements of S\m have been constructed.
After all the vertices have been labeled, we may disregard the orientation on the
edges. Using the previous example QWNA f) we have constructed (Figure 9) together
with the subset {3,12}C ,wwN , this process results in the labeled 2-tree depicted
in Figure 11:

17 11

Figure 11

16

Note that in Case 1, the vertices labeled 1 and n — 2 in the resulting labeled 2-
tree are never adjacent. If 5 {1, n - 2} ¢, then the labeling process that we
shall describe momentarily will make sure that these two labels will be assigned to
adjacent vertices. We need only to change the relabeling process for the triangles.
The labeling of the vertices themselves will then be carried out as in Case 1.

Casell: SN{l1,n-2}=Q

This case is split into three subcases depending on whether "or not
Snit,n=2}={1},{n-2},0r {1,n-2}.

Subcase1A: S={1,j},j=n-2

As in Case I, assign the elements of S as labels to the vertices of the
base. Relabel triangle j as n — 1, triangle 1 as t=max{{n -1, n}—{j}}.
Thus triangle 1 is relabeled n—-1 or n depending on whether or not

J=n or j<n,respectively. Now push the triangle labels to their respective
source vertices.

SubcasellIB: S={i,n-2},i%1

Assign the elements of S as labels to the vertices of the base. Relabel tri-

angle | as n—1, triangle 1 as t=max{{n -1, n}—{i}}, and triangle
n — 2 as 1. Now push the triangle labels to their respective source vertices.

Subcase I C: S={1,n-2}

Assign the elements of S as labels to the vertices of the base. Relabel tri-
angle 1 as n—1, triangle n —2 by n. Push the triangle labels to their
respective source vertices.

The effect of these relabelings arising from Case Il on the two special triangles 1
and n — 2 (omitting the relabelings of the rest of the triangles) before and after
the labels are assigned is described graphically in Figure 12,

17



Subcase lIA: S={1,j},j#n—2

P> - <P

SubcaseIB: S={i,n—2},i#1
i
A-:-iv - ¢ A--:vv_
n-2
Subcase I C: S={1,n—2}

<GP -

Figure 12

We shall now show that the correspondence ﬂm : w.wx S\ml ﬁm described
above is reversible.

Lemma 3.2 m.m is a bijection between mm X.S\m and ﬁm .

Proof

Consider a labeled 2-tree Teg ﬂm. From T we shall construct a pair
(§.T)e ,wm X S\m such that ﬂma. ,T')=T. The construction is carried out
according to whether or not the vertices labeled 1 and n -2 in T are adjacent.
As we have remarked before, the first case here will correspond to Case I of the

; 2
construction of T, .

Case 1l : 1 and n -2 arenotadjacentin T

We look at the 2-trail = joining vertex 1 to vertex n — 2.Suppose p, is the
last edge on = (this will be our base edge) and i < j are the labels on the end-
points of p, . Then we perform the following operations

(i) orient p, from j to i,

(i) “"bump" these two elements out and put S={i, j},
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(iii) reverse the process of "pushing" by sliding the labels of the vertices
incident to the endpoints of edges that have already been oriented to the
associated triangles while making these vertices sources,

(iv) relabel triangle n — 1 as i and triangle n as j.

If T’ is the oriented, triangle labeled 2-tree that results in after the steps (i) - (iv)
have been carried out, then it is not difficult to see that T'e S\M and
(S, T)=T.

The second case we have to consider is when 1 and n — 2 are adjacent ver-
tices in T . We will show that the pair (S, T') can be unambiguously reconstructed
from T . Since the orientation and m:&:m the labels to the triangles follows the
same pattern as Case 1 above, we shall ofily indicate the relabeling of the triangles
(and the extraction of the set S for clarity). Actually, in the following case, only
step (iv) above will be different.

Case 2 : I and n — 2 are adjacentin T
The subcases here are as follows:
Subcase 2A: {1,n—-2,n} isatrianglein T

Consider the 2-path from the vertex labeled n —1 to the triangle
formed by {1,n — 2, n}. By the correspondences in Figure 12, the labels of
the vertices on the last edge p, on this 2-path determine unambiguously one
of the three Subcases I A, II B or II C in the construction of ﬁm. As an

example, if the labels on the endpoints of p, are {n — 2, n}, then we see that
we have to reverse the transformation in Subcase Il B. To do this, we first apply
steps (i) - (iii) as in Case 1 above. This gives an orientation to T and yields
S={n-2,n}. But in the application of step (iv) we relabel triangle 1 as
n —2,and triangle n -1 as 1.

Subcase 2B: {1,n —2,n} isnotatrianglein T

Suppose at first that 1 and n are not adjacent. If one of the labels on
the last edge p; on the 2-trail from n to 1 is n — 2, then we reverse the
steps according to Subcase Il B. Thus S=1{i,n —2} where i is the other
label on p, . In step (iv) then, we relabel triangle n — 1 as i, triangle 1 as
n -2, and triangle n as 1.If n—2 is not a label on p,, then we are in
Subcase Il A, but to find the base edge we consider the 2-trail from n to
n — 2. Note that this is well-defined since now n and n — 2 cannot be adja-
cent. In this case, S ={1 , J} (where j is the label of the other vertex on the
base) and step (iv) results in the relabelings of the triangles n — 1 by j and
n byl.

If 1 and n are adjacent, then n —2 and n cannot be adjacent, and in

this case we reverse the transformation in Subcase 11 A. ®
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As a nontrivial example, Figure 13 depicts the pair QJWNVLA.J where T is the
2-tree on 12 nodes given in Figure 3.

N
ORI 7AVZ:N
VAVAL

Figure 13

Combining Lemma 3.1 and Lemma 3.2, we have

I 2, g2 2
Theorem 3.1 The map om = SM Odm is a bijection between S, X F, and C,.
Thus

2= (5 )1zn—31""

Note that by the construction of the bijection @w_ , the vertices labeled 1 and
n —2 are adjacent in a 2-tree on n nodes if and only if SN{l1.n-2}=Q.
Similarly, the vertices 1,n — 2, n form a triangle in T exactly in the cases where
S={1,n} (Subcase MM A), S={n-—2,n} (Subcase Il B ), and S={1,n-2}
(Subcase n C ). Since we could have wused any three Ilabels
{i,j,k}c{l1,2,...,n} toplay theroleof 1, n—2,and n in the construction

of ®.N. , we immediately have

Corollary 3.1 Suppose {i,j, k}c{l,2,..,n}. Then

i) the number of 2-trees on n nodes in which the vertices i and j are
adjacent Is
n n-2 n-4 n-3 .
- - = -3 , 3.3
:L m 2 :_ms 31 (2n-3)
iiy the number of 2-trees on n nodes in which the vertices i, J, and k
form a triangle is

32n-3)""*% . 3.4
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3.2 The Cayley tree bijection

After defining the bijection @m for labeled 2-trees, we now show how to use a
similar construction to arrive at a bijective proof of 1.1. Note that we are forced to
interpret 1.1 in the form

1 -3
IC,! =nn" ,

n
1
the set {1,2,..., n}, and the second factor enumerates S\h . Clearly, the bijection

®“ will be rather more complicated than the ER bijection, since it uses the ER bijec-
tion as a subprocedure. As we shall indicate in the next section, both of these con-

where the first factor n = ﬁ H corresponds to the selection of an element from

structions for g =2 and g =1 are special cases of the bijection ©] for g-trees,
but the elegant bijective proofs that exist for the proof of 1.1 do not seem to gen-
eralize to arbitrary g . Hence even though bijection ®“ is natural in the setting of
g-trees, it probably is not the easiest bijection if we are only interested in Cayley
trees.

Let now ﬂ denote the collection of all functions from the set
{2,3,..,n -2} into the set of pairs {1,2,..,n—1}x{1} Uln-1,2)}.
Clearly,

|EM = n" 3

Since the construction of ®“ is quite similar to the construction of ®w_ , we shall
simply outline the bijections bw_ and ﬁ__ without going into too much detail, and
illustrate these bijections on an example. First, however, we interpret the numerals
2,3,..,n-2 in the domain of ﬂ as oriented edges as in Figure 14, since in
this case K,,,'s are simply edges.

Figure 14

Here the faces of the ith edge have the following order

Figure 15
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The weighted functional digraph of an f ¢ ﬂ has the oriented edges in Fig-
ure 14 as its vertex set. We again put an arc from edge numbered i to edge num-
bered j with weight k if f(i)=(j. k). In this case the only arcs with weight 2
point to the edge n -~ 1 and all the other weights are 1 . We draw the weighted
functional digraph of f as in the ER bijection. Thus the tree with root 1 appears
at the extreme left, the one with root n — 1 appears at the extreme right, and the
remaining components are drawn with the smallest element on each cycle on the
right. The cycles themselves are ordered with increasing smallest elements. Break-
ing the backedges, adding the necessary edges between the cycles as in the ER
bijection, and then performing the identifications results in a well-oriented, edge
labeled 1-tree T'=a}(f).

The construction of ﬁ“ is similar to the construction of ﬁw. Given a pair

(§, Te .wh X S\h , with § = {i}, we distinguish between the special cases where
i«l,n—1,i=1,and i=n-1.

Casea : i=1l,n-1

In this case, we consider the path from edge 1 to edge n —1.Here the base
is simply the top of the edge n — 1. At this point this vertex is assigned the label
i, and the edge i is relabeled as n. Then we push the labels on the edges to the
source vertices on the edges. Now discarding the orientations on the arcs results in
a Cayley tree T. Note that in this case the vertices 1 and n -~ 1 can never be

adjacentin T .

Caseb : i=1 ;

We proceed as in Case a up to the point where the edges are relabeled. Here
we relabel edge 1 as n.Note that in the resulting Cayley tree T, vertices 1 and
n — 1 are adjacent and 1 lies on the path from n to n—1.

Casec : i=n-1

Again we proceed as in Case a up to the point where the edges are relabeled.
In this case, edge 1 is relabeled as n, and edge n —1 is relabeled as 1 . Note
that in the resulting Cayley tree T, 1 and n —1 are adjacent and that vertex
n — 1 lies on the path from n to 1.

The three cases above define the correspondence ﬂw. . Because of the distin-
guishing features of each of these cases, it is not difficult to verify that ﬁw_ is a
bijection. Thus ®w_ = D“ Oﬁ“ is a bijection between m“ X ~..:~ and Cayley trees and
we have arrived at Cayley’s formula in an alternate way.

We illustrate the above construction on an example. Consider the following
function f € mmﬂ .
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Ffa ) f I f) I f()
(5.1) || 7 (12,1) {12 (20,1) |17 (16,1)
(4.1) || 8 (12,1) |[13 (19,1) ||18  (6,1)
(5.1) [} 9 (L,1) ||14 (19,1) ||19 (20,2)
(3.1) |10 (4,1) |[15 (6,1)

S| wN

(7.1) |[|11  (4,1) ||16 (1,1)

The corresponding weighted functional digraph of f and 0;,(f) € W, are pic-
tured in Figure 16. For §={7}, the resulting Cayley tree @WQJ , f) is identical
to the Cayley tree depicted in Figure 2.

5

A
D
3

94 10 11 2 19 g 6
/16
17
13 i4 15 18

Figure 16

W . . .
m leave it to .Sm reader to verify that if we take §={20} (Case c above), then
©,, ({20}, f) is the Cayley tree in Figure 17.
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13 14 15 18

Figure 17

Note that the argument given for the proof of Corollary 3.1 is valid for the
bijection ®“ as well. In other words, only when i=1 (Case b) and i=n-1

(Case c ) the labels 1 and n -1 turnoutto be adjacent in the resulting tree. Since
any two labels i and j can play the role of 1 and n — 1 in the definition of ®= ,
we have the following version of Corollary 3.1 for Cayley trees:

Corollary 3.2 Suppose {i, jic{l.2,.., n} . Then the number of Cayley trees

on n nodes in which the vertices i and j are adjacentis
Nsx-w. w.m

Note that by the ER bijection, 3.5 also counts the number of cycle-free func-
tions mapping {2,3.,..,n-1} into {1,2,.. nj.

4. THE q-TREE BIJECTION

Now we .are in a position to describe our bijection &) for arbitrary 4. _\mﬂ

mn denote the collection of all functions f mapping {2,3,..,mn—q—1} into
the set of pairs :.N.:..:liX:.m.:._ﬂCx:lQ.Q+§.<<mrm<m
n-gq-—-2

lEH =lg(n—a)+ 1]

Let S7 and W, denote the family of g- _subsets of the set {1,2,...,n} and
the collection of well-oriented, K, labeled g-trees on n nodes, respectively. As
in the special cases we have nosﬂamnma before, ma will be constructed as the com-
position of two bijections 0} and ]

MMXW:& e S W - C)

where 0 @ Ff - W, .

The construction of the bijection @] is similar to the g = 2 case. Thus, we
first interpret the numerals in the domain of wmﬂ as contained in n—g
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oriented K, .;'s 01,05, ..,0, 4. Using these os as the vertex set, the weighted
functional digraph of f is constructed by putting an edge between o; and o
with weight k if f(i) = (j, k). The resulting digraph is then drawn in the manner
of the ER bijection. In this way a tree with root 1 appears at the extreme left, the
one with root n — g appears at the extreme right, and the remaining components
are drawn with the smallest element #; on each cycle on the right. The cycles them-
selves are ordered with increasing order of the #;’s. After the backedges are broken
and the necessary edges between the cycles added exactly as in the case of the con-
struction of Dw_ bijection, the identification of faces are made as dictated by the
weights. This results in an element T’ € W,/ .

Conversely, given a T’ € W7, we consider the g-path from ¢, to ¢, , in
T'.The last K, on this g-path, say p, is then the base and this gives us the top
face of ¢,_,. Furthermore, from the ¢,'s on this path, it is easy to recover the
sequence ¥y, ¥,, ..., ;p which will form the smallest elements on the cycles of f.
Also note that the orientation of T' produces the weight between ¢; and o; shar-
ing a common face. Hence we can recover f € F, such that Q7(f)=T'.Thus 0
is a bijection.

The construction of the ﬂn bijection also follows closely the g =2 case.
Suppose (S, T') e S7x W] is given. Put A ={n—g+1,n—g+2, ..., n}. Note that
the elements of A are exactly those among {1,2,..,n} that do not appear as
labels of K, ,’'sin T'.

Consider the g-path joining o, to o,_, in T'. Recall that p, , which is the
last K, on this g-path is the base, and it forms the top face of o,_, . At this point,
the construction of ﬂna , T') will consist of roughly the following steps:

(1) Assign the labels in the set S to the vertices of the base, according to the
linear order dictated by its orientation.

(2) Now possibly some of the labels that appear on the base also appear as
labels of Nmt_m in T’. Thus we need to incorporate the missing labels
A — S by relabeling the Rai_m whose labels already appear in S . Having
done this, we push the labels on the kai_m to their source vertices. Note
that this process is well-defined because of the way elements of S\n have
been constructed. The resulting labeled g-tree (after the orientation is
ignored)is T=TXS,T").

The difficult part in the above procedure is the relabeling phase in (2) above.
We have to make sure that it will be possible to distinguish the base of a given
Te (] in order to recover unambiguously the corresponding pair (S, T') that
gives rise to T .
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As in the special cases g=1 and g =2, we need to consider the situations in
which S{l,n-g}= and SN{1,n—g}=@. In each case, we shall indi-
cate how the relabeling is to be carried out. The following notation will be con-
venient for our description : By an assignment symbol of the form X = Y where
X.Yc{1,2,...n} and |X!=1|Y|, we shall mean that all of the ¢;s for 1€ X
are to be relabeled by the elements of the set Y, following the original order. In

other words, if X={x;,%,, %]} and Y={yy,Vasee ¥i} with
X <Xy < o0 <X, Yy <Yp< - <Y then after the relabeling T+ Oxy v e 0 T,y
will become o), .0y .. 0y - The two different cases are treated as follows:

1

Casel: SNO{l1,n—-¢g}=Q
S-A=A-5.
Note that if T e C? is obtained as a result of Case I, then the vertices 1 and

n — q cannot be adjacent in T. Our construction will guarantee that in Case Il
below, these two vertices will always end up adjacent in the resulting g-tree.

Case Il : mDC.:Iﬁ%@
This case is split into three subcases depending on whether or not
sn{l,n—g}={1},{n-gq},or {1,n—q}.

Subcase1A: SN {1,n—q}={1}
STEP1 : {1} = {1},
STEP2 : S—A—-{1} = A-S—-{t},

where t = max (A-S).

Subcase 11 B : wD:.xlﬁn*:Ii
STEP1 : {1} = {t},
STEP?2 : {n—gqg} = {1},
STEP3 : S—A—-{n—-qg} = A-S—-{t},

where t =max (A —-S).

Subcase 1C: SN{1,n—a}={1.n~4q}

STEP1 : {1} = {max (A - S)},

STEP 2 : {n-—q} = (t},

STEP3 : S—-A—{1,n—gqg} = A—S—{t,max (A - S)},
where t=max (A — S —max (A~ S)).

The effect of these relabelings arising from Case II above on the two special
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K,,1's labeled 1 and n — g (omitting the relabelings of the rest of the K,u's
before and after the labels are assigned is described symbolically in Figure 18.

: represent a _Anz labeled i where the bigger half
is a K, subgraph of i

SubcaselIA: SA{l,n — g} ={1}
@'@ $H©|ll@ﬂl

Subcase II B : Sn{l,n—-gl={n—-g}

O-O~Ob

m:wnnwm:ﬁ SAll,n—gq}={1,n—q} Max(A-S)
. \. .
1
®|1||V® i A@ Mar(A-S)
Figuve 18

We note that after the relabeling is carried out in Case II, the labels

L={l,n—-qg}ylt+l,t4+2,..,n} 4.1

are assigned to the vertices of a K,,1 In T. Thus they form a clique of size
n—1t+2 in the resulting g-tree. Furthermore L {J{t} does not form a clique
Thus for Case Il we have the characterization

t=min{il{l,n—-qg}yli+l,i+2,.., n} formsacliquein T} . 4.7

We now show that the map T, defined above is reversible. Given T e CF, we
can immediately distinguish between Case I and Case II by checking whether ot
not the vertices 1 and n — g are adjacent in T . If they are, then we have tc
reverse the labeling assigned in Case I. To this end, first consider the g-trail join-
ing vertex 1 to vertex n—gq. Let p, be the last K, on this g-trail. We now
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perform the following operations as in the g = 2 case:

(i) orient the edges of p, as indicated by the vertices. Thus each edge
{i, j} with i< j in p; is oriented from j to i.
(ii) "bump” the labels on p, out. These form the set S.

(ili) reverse the process of "pushing" by sliding the labels of the nodes
incident to the vertices of ka_m that have already been oriented to the
associated K,,,’s while making these vertices sources,

(iv) perform the relabeling of K ,, indicatedby A—S5 = S—-A.

Now we assume that the vertices 1 and n — g are adjacent in T . Define t
as in 4.2 and L asin 4.1 . To reconstruct the pair (S, T') with I,)(S,T) =T,
we first have to identify the K, that will function as the base. This can be accom-
plished as follows: Among all of the g-trails joining vertex t to a vertex in L,
there exists a unique one joining t to some V€L, say (0y, 1011 Prr0y) s
such that all of the vertices L — {v} are contained in p, . The uniqueness of such a
g-trail (and such a vertex v ) is an easy consequence of Lemma 2.1. Note that this
vertex v immediately tells us which one of the three Subcases I A, II B, or I C
needs to be reversed. If v =n — g then we are in Subcase Il A, if v=1 then we
are in Subcase II B, otherwise we are in Subcase Il C . At this point, the steps (i) -
(iii) above are performed verbatim. It is tedious but straightforward to show that
the relabelings given in each one of the three Subcases can then be reversed to
obtain (S, T') = (H™(T). .

Composing these two bijections we have
Theorem 4.1  The map 6] =Ql o1 is a bijection between S} x F} and C].
Thus

il = (0 )tan—a® 7o

We now consider the generalizations of Corollaries 3.1 and 3.2 . The main
observation is that instead of the special labels 1 and n — g, we could have used
any two labels {i, jlc{l,2,..,n} in the construction of Qu. Furthermore, in
the definition of the special vertex t that is involved, the numerical values of the
labels are not required. All that is needed is a total order on the labels.

Since under our bijection the vertices 1 and n — g are adjacent if and only if
SN{l,n-gql=g, we immediately obtain that the number of labeled g-trees on

n nodes in which vertices labeled i and j are adjacent is given by

[(2)- (752 Jan- o
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Actually our bijection tells us more. Suppose at first that we are interested in
counting the number of g-trees on n vertices where for a given
te{n-g+1,n—-g+2, .., n}, the vertices in the set L in 4.1 form a clique of size
n—t+2 but L{J{t} does not form a clique. This count depends solely on the
nature of the set § and not on f ¢ F, that is involved in the construction. More
precisely, we need the count of the number of subsets S ¢ mu such that

() SN{t,n—g}={1} and max(A—-S) =1,
2 SN{l,n—g}={n-g} and max(A-S)=1t,
3 SNil,n-qgl={1,n-q} and max(A—-S-max(A—-S))=t.

corresponding to the three Subcases involved in the construction of T, respec-
tively. Here A = {n—-g+1, n—q+2,..., n} as before. It is not difficult to verify that
the number of S ¢ Mh satisfying the properties (1), (2), and (3) above are

malﬂml.rwlw H ’ HQIH:U.wIH H o (- Gﬁalﬁsw_.wlﬂ g !

respectively. Thus the total number of such subsets is

t-3
u. 4.4

e
(n +2) q—n+t—1

If we are interested in counting the number of subsets satisfying (1), (2), and (3)
above where the equality in the conditions max(A-S)=t, and
max (A - S - max (A — §)) =t is replaced by <, we obtain the sum

n

5 (n-t+2)

f=n—q+1

t-3 w 4.5

q-n+t-1

Note that for a given f e F,, 4.5 enumerates the number of subsets S e S, for
which the labels

{1,n—-g}ylt+l,t+2, .., n}

form a clique of size n —t+ 2 in mna. f). By our remarks above, the selection
of names for the vertices is immaterial as long as they are totally ordered. Letting
m=n—~t+ 2,we thus have

Corollary 4.1 The number of labeled g-trees on n >q + 1 nodes in which the
vertices V|, Vy, .,V €1{1,2,.., n} forma clique is

+1- .
e n+i—qg-2

PN 3+_a~.L .
i=0

: x(ng—q*+1)" "7
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Note that Corollaries 3.1 and 3.2, as well as the formula given in 4.3 for
m =2 are special cases of Corollary 4.1 modulo routine application of binomial
identities.
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