
Random Walks and Catalan Factorization�Omer E�gecio�gluDepartment of Computer ScienceUniversity of California Santa Barbara, CA 93106, U.S.A.omer@cs.ucsb.eduAlastair King,Abdus Salam I.C.T.P.,Strada Costiera 11, 34014 Trieste, Italy.a.king@ictp.trieste.itAbstractIn the theory of random walks, it is notable that the central bi-nomial coe�cients �2nn � count the number of walks of three di�erentspecial types, which may be described as `balanced', `non-negative'and `non-zero'. One of these coincidences is equivalent to the well-known convolution identityXp+q=n�2pp��2qq � = 22n:This article brings together several proofs of this `ubiquity of centralbinomial coe�cients' by presenting various relations between theseclasses of walks and combinatorial constructions that lead to theconvolution identity. In particular, new natural bijections for theconvolution identity based on the unifying idea of Catalan factoriza-tion are described.Keywords: Central binomial coe�cient, random walk, Dyck word,Catalan factorization, bijection, convolution.1 The ubiquity of central binomial coe�cientsA (random) walk of length N is a sequence w = ("n)Nn=1 of elementarysteps " 2 f+1;�1g, which we shall call, respectively, up-steps and down-steps. The lattice path corresponding to the walk is given by the partial1



sums Sn(w) = Pni=1 "i with diagonal steps as shown in Figure 1. Theusual convention is that the initial value/level is S0 = 0, although we shalloccasionally speak of walks starting at levels other than 0. It is notationallyconvenient to encode a walk as a binary word, i.e. a sequence w = (an)Nn=1of letters a 2 f1; 0g, by writing 1 for +1 and 0 for �1.
Figure 1: The lattice path of the walk w = 1100011011.For the purposes of this article, we introduce the following terminologyfor certain special types of walks.De�nition 1 A walk w of length N is(i) balanced if SN (w) = 0, i.e. it contains the same number of up-stepsas down-steps. Hence, a balanced walk has even length.(ii) non-negative if Sn(w) � 0, for 1 � n � N , i.e. the level of the walknever falls below its initial level.(iii) non-zero if Sn(w) 6= 0, for 1 � n � N , i.e. the walk never returnsto its initial level. A non-zero walk is either positive or negative de-pending on whether Sn(w) > 0 or Sn(w) < 0 for all n > 1. Reversingall the steps, i.e. re
ecting the graph in the horizontal axis, providesa natural bijection between the positive and negative walks.Figure 2 shows all the balanced, non-negative and non-zero walks oflength 4 as lattice paths and illustrates the following general result, well-known in the theory of random walks (cf. [1]).Theorem 1 The central binomial coe�cient �2nn � counts the number of(i) balanced walks of length 2n,(ii) non-negative walks of length 2n,(iii) non-zero walks of length 2n.Proof Put An = �2nn �. The number of balanced walks is clearly equal toAn, because we must choose precisely n of the 2n steps as up-steps. A com-mon way to prove the rest of the theorem is via the `ballot problem' setting2



Balanced walks:
Non-negative walks:
Non-zero walks:

Figure 2: Three special types of walks of length 4.([1]). By a standard re
ection argument, the number of non-negative walkswith m up-steps and k down-steps, where k � m, isB(m; k) = �m+ kk ���m+ kk � 1�: (1)We can then easily count all non-negative walks of length 2n, obtainingnXk=0B(2n� k; k) = An:Furthermore a positive walk of length 2n consists of an up-step followed byan arbitrary non-negative walk of length 2n� 1. Therefore the number ofpositive walks of length 2n is equal to the number of non-negative walks oflength 2n� 1, which isn�1Xk=0B(2n� 1� k; k) = �2n� 1n � = 12An:Hence the number of non-zero walks of length 2n is also An. 2The problem of counting non-negative walks also arises in the repre-sentation theory of the symmetric group. In this context, such walks are3



known as (two-letter) Yamanouchi symbols ([3] Chap. 7), and (1) gives thedimensions of certain irreducible representations of the symmetric groupSn+m.A more combinatorial proof of Theorem 1, which constructs explicitbijections between the sets of walks, is sketched by Feller ([1] ProblemIII.10.7) and attributed to E. Nelson.1Proof [Nelson's combinatorial proof of Theorem 1]First, we describe a bijection between balanced walks and non-negativewalks. Take the `initial' segment of a balanced walk to be the part that endsat the �rst time it reaches its minimum value. Take the `�nal' segment of anon-negative walk to be the part that starts from the last time it takes halfits �nal value. The bijection takes the initial segment of a balanced walk,reverses the signs and order of the steps, and places it at the end of thewalk. The inverse bijection takes the �nal segment of a non-negative walk,reverses the signs and order of the steps, and places it at the beginning ofthe walk.Second, we describe a similar bijection between balanced walks and non-zero walks. Take the `initial' segment of a balanced walk to be up to the�rst time it reaches either its minimum value, for walks that start witha down-step, or its maximum value, for walks that start with an up-step.Take the `initial' segment of a non-zero walk to be up to the last time itreaches half its �nal value either with an up-step, for positive walks, or witha down-step, for negative walks. The bijection and its inverse reverse thesigns and order of the steps in the initial segments. 2The bijections described above are constructed by factorizing one walkinto two pieces and using the pieces to construct a new walk. In the process,signi�cant global changes are made to the walks. The main goal of thepresent article is to describe are more subtle factorization of a walk calledCatalan factorization, which may be used to construct bijections that onlymake local changes to the walks, i.e. only reverse the signs of certain criticalsteps.2 Factorization and convolution identitiesBefore describing Catalan factorization, we discuss some other aspects ofthe relationship between factorization and enumeration of walks.As a �rst example, observe that any walk w of length N has a uniquefactorization w = uv into a balanced walk u of length 2k followed by anon-zero walk v of length N � 2k. This is done by �nding the `last return1Strictly, only the �rst argument is sketched, but the two are su�ciently similar toreasonably attribute both to Nelson. 4



to 0', i.e. the last value of k for which S2k(w) = 0. For example, for thewalk w in Figure 1, we get u = 11000110 and v = 11. If N = 2n, we mayuse Theorem 1 to deduce the convolution identitynXk=0AkAn�k = 22n (2)as follows. In the sum, the �rst factor counts the number of balancedwalks of length 2k, while the second counts the number of non-zero walksof length 2n � 2k and the total 22n, of course, counts all walks of length2n. A moment's thought shows that (2) is actually equivalent to the factthat An�k counts the number of non-zero walks of length 2n� 2k, becausewhatever this number is, it is the unique correct second factor for thisconvolution identity.Now (2) has an entirely independent proof as follows. If we introducethe generating function A(t) for the central binomial coe�cientsA(t) = 1Xn=0Antn = 1 + 2t+ 6t2 + 20t3 + � � � ;then (2) is equivalent to the identity A(t)2 = (1� 4t)�1, orA(t) = (1� 4t)� 12 : (3)But now we may simply apply Newton's expansion formula, i.e. the bino-mial theorem with fractional powers, to the right-hand-side of (3) and seethat the coe�cient of tn is An.A second example is the use of factorization to count excursions.De�nition 2 An excursion is a walk which is non-negative and balanced.These are also known as Dyck paths. The corresponding binary words areDyck words.It is well-known, e.g. as a special case of (1), that the number of excursionsof length 2n is the n-th Catalan numberCn = 1n+1An: (4)We include here the standard derivation of the generating function for theCatalan numbers for completeness.Note that excursions may be counted recursively, starting from the ob-servation that every excursion w has a unique factorization w = 1s0t, wheres and t are excursions of shorter length. In this case, the point at which tstarts is the �rst time that the excursion returns to 0. An example of sucha factorization is illustrated in Figure 3.5



1 s 0 tFigure 3: Factorizing an excursion into two shorter excursions.Thus, if we chose to de�ne Cn to be the number of excursions of length2n, we would have the convolution identitynXk=0CkCn�k = Cn+1 () C(t)2 = C(t) � 1t (5)where C(t) =Pn�0 Cntn is the generating function. This equation for C(t)is easily solved to give C(t) = 1� (1� 4t) 122t (6)and Newton's expansion formula then recovers (4).It is worth noting in passing that the factorization w = 1s0t gives riserecursively to the well-known bijection between excursions of length 2n andbinary trees with n internal nodes (cf. [2] and [5] 2.3.1 Exercise 6).There are two other convolution identities which involve Cn and Anand which follow from factorizations. Before describing them, note thatre
ecting the whole walk gives a bijection between the number of balancedwalks that start with a down-step and those which start with an up-step.Hence the number of balanced walks of length 2n that start with a down-step is 12An. The trivial walk of length 0 may be treated as a degeneratecase, provided one is careful to interpret 12A0 as 1 and not 12 .First, observe that every balanced walk has a unique factorization intoan excursion followed by a balanced walk that starts with a down-step orhas length 0. ThusnXk=0Ck( 12An�k) = An () C(t)�A(t) + 12 � = A(t): (7)Second, observe that every balanced walk w of positive length that startswith a down-step has a unique factorization w = 0s1t, where s is an arbi-6



trary balanced walk and t is an excursion. Thus,nXk=0AkCn�k = 12An+1 () A(t)C(t) = A(t)� 12t : (8)Note that from (7) and (8) it is possible to deduce (3) and (6). On the otherhand, by repeatedly applying the two factorizations above, we may identifyin any balanced walk, certain distinguished or critical steps, arising as the 0and 1 in the second factorization, between which the walk is an excursion.It turns out that this equivalent to �nding the Catalan factorization, whichcan actually be de�ned for any walk and which we describe next.3 Catalan factorizationDe�nition 3 For any walk w de�ne a critical down-step to be the �rststep to each level less than the initial level, and a critical up-step tobe the last step from each level less than the �nal level. The Catalanfactorization of a walk is obtained by replacing the critical steps (up ordown) by a neutral symbol z.The remaining sequences of 0's and 1's that occur between two con-secutive z's are always excursions. An example of Catalan factorization isshown in Figure 4. Figuratively speaking, the critical steps are those illu-minated when light is shone from the left below the initial level and fromthe right below the �nal level; the intermediate excursions are the parts ofthe walk that remain occluded.
Figure 4: A walk with Catalan factorization zz101100z10z10zz1010.The key feature of the Catalan factorization is that all the z's thatrepresent down-steps in the original walk precede all the z's that representup-steps. Therefore, to recover the walk from its Catalan factorization, itis necessary to know just one additional piece of information, namely, anyone of the following quantities which we refer to as `characteristic numbers':(i) the number n0 of critical down-steps, i.e. the di�erence between theinitial and minimal levels, 7



(ii) the number n1 of critical up-steps, i.e. the di�erence between theminimal and �nal levels,(iii) the number n0 � n1, i.e. the di�erence between the initial and �nallevels.These numbers satisfy the following constraints(i) n0 � jwjz (the total number of z's in w),(ii) n1 � jwjz ,(iii) jn0 � n1j � jwjz and n0 � n1 � jwjz (mod 2).De�nition 4 A Catalan word is a word in the letters f0; 1; zg, for whicheach maximal segment in f0; 1g is a Dyck word.A Catalan word is precisely the sort of word that may occur as theCatalan factorization of a walk. We may summarize the above discussionas follows.Proposition 1 Given any Catalan word and any value of one of the char-acteristic numbers n0, n1 or n0 � n1, which satis�es the correspondingconstraint, there is a unique walk w with the given Catalan factorizationand the given value of that characteristic number.Using this we may immediately �nd bijections between sets of Catalanwords and sets of the various types of walks that we have considered earlier.Proposition 2 Catalan factorization provides natural bijections between(i) Catalan words of length 2n,(ii) balanced walks of length 2n,(iii) non-negative walks of length 2n.These restrict to natural bijections between(i') Catalan words of length 2n that start with z,(ii') balanced walks of length 2n that start with 0,(iii') positive walks of length 2n.Proof For the �rst part, note that a walk is balanced if and only ifn0 � n1 = 0, while a walk is non-negative if and only if n0 = 0. Hence inboth cases the Catalan factorization determines the walk by Proposition1. The composite bijection between non-negative and balanced walks wasdescribed by Viennot in [6]. 8



For the second part, note �rst that if a balanced (or any) walk startswith 0, then this will certainly be a critical down-step, while conversely inthe Catalan factorization of a balanced walk the �rst z will always representa down-step. On the other hand, a non-negative walk is positive, if andonly if the �rst step is a critical up-step. 2One other feature of Catalan words is that we may add a z at thebeginning (or end) of the word and it remains a Catalan word. Conversely,given a Catalan word that begins (or ends) with z, we may remove this zand be left with a Catalan word. Thus we have the following.Proposition 3 The number of Catalan words of length N that begin (orend) with z is equal to the number of Catalan words of length N � 1.Corollary 1 The number of Catalan words of length 2n is An, while thenumber of length 2n� 1 is 12An.Proof The �rst part is immediate from the �rst part of Proposition 2,while the second follows from Proposition 3 and the second part of Propo-sition 2, since the number of balanced walks that start with 0 is preciselyhalf the total number of balanced walks, by re
ection. 2Proposition 2 essentially provides the promised combinatorial proof ofTheorem 1 via Catalan factorization, because we may easily extend thebijection between positive walks and balanced walks that start with 0 to abijection between non-zero walks and all balanced walks as follows. Startingwith a negative walk, �rst re
ect it, then take its Catalan factorization; afterreinterpreting it as a balanced walk, re
ect again to obtain a balanced walkthat starts with 1. For example, the ordering of the walks in Figure 2precisely re
ects the bijections constructed via Catalan factorization.An alternative strategy, which may be used to construct the same bijec-tion between non-zero and balanced walks in a seemingly more symmetricway, was given by Kleitman [4].2 This strategy compares two copies of anon-zero walk, the �rst with initial value zero and the second translatedvertically so that the �nal value becomes zero. Working backwards fromthe end, �nd the �rst step that takes the second walk further away fromzero than the �rst walk is at the same time. De�ne a new second walk byreversing the sign of this step and repeat the process. The process stopswhen the new second walk is balanced. An example is shown in Figure 5;the bold line marks the step to be reversed at each stage.2Strictly, Kleitman constructs a slightly di�erent bijection using the same strategy.
9



Figure 5: Kleitman's strategy applied to w = 1101101101.4 Further uses of Catalan factorizationFollowing Viennot [6], we may prove (4) itself combinatorially using Cata-lan factorization, by constructing a bijection between Catalan words oflength 2n and pairs consisting of a Dyck word of length 2n and an integerr, 0 � r � n. Suppose we start with a Catalan word w of length 2n. Ifthere are 2k occurrences of z, we split w immediately after the k-th z toobtain two Catalan words. Replace the z in the �rst one of these words by 1to obtain u, and replace the z's in the the second one by 0 to obtain a wordv. Then uv is a Dyck word. We let r denote the number of occurrences of1 in u. This is a bijection, as r identi�es where the split has to be madein the Dyck word to go back to the original Catalan word by means of thejuxtaposition of the Catalan factorizations of u and v.We conclude with three direct combinatorial proofs of the convolutionidentity (2), all based roughly on the idea of dividing the Catalan factor-ization of a walk into initial and �nal segments for which the z's are to beinterpreted as, respectively, all down-steps and all up-steps.Proof [Proof 1] Consider the Catalan factorization of a walk of length 2nand suppose that it has the form w = uzv, where the given z is the last zwhich represents a down-step. Then u and v are both Catalan words, andall the z's in u are down-steps, while all the z's in v are up-steps. Henceknowing u and v determines w. Such a factorization is possible unless allthe z's in w represent up-steps, in which case w itself determines the walk.Writing ak for the number of Catalan words of length k, this countingprocedure yields the formula2N = aN + NXk=1 ak�1aN�k (9)When N = 2n, Corollary 1 can be used to convert this to (2). The caseN = 2n � 1 yields a slightly more complicated formula, which proves (2)10



recursively. 2This proof has the disadvantage that the counting method does not wellre
ect the convolution identity (2).Proof [Proof 2] Consider again the Catalan factorization w of a walk oflength 2n. If the number of critical down-steps is even, then write w = u1u2,where the last letter of u1 is the z representing the last critical down-step,or u1 is trivial if there are no critical down-steps. In this case, (u1; u2) isa pair of Catalan words of even length and u1, if non-trivial, ends withz. The original walk can be recovered from (u1; u2) because all z's in u1represent down-steps, while all z's in u2 represent up-steps.On the other hand, if the number of critical down-steps is odd, thenwrite w = v1v2, where the last letter of v1 is the z representing the �rstcritical up-step. In this case, v1 represents a walk �s0t1, where s and tare excursions and � is either empty, or has even length and ends with acritical down-step. If we replace v1 by the Catalan word v01 that representsthe rearranged walk �1s0t, then (v01; v2) is a pair of Catalan words of evenlength and v01 ends with the non-trivial excursion 1s0t. Thus we obtainprecisely the pairs of even Catalan words that were not obtained in the�rst case. Note that the pair (v01; v2) determines the original walk, becausethe factorization 1s0t of the �nal excursion in v01 is uniquely determined, asobserved in Section 2. An example of this second case is shown in Figure 6;the additional modi�cation takes place within the box, and is obtained byapplying a single circular rotation to this portion of the path.

Figure 6: 0100100101110101 7! (z10z110010; z1010z).Thus we have constructed a one-one correspondence between arbitrary11



walks of length 2n and pairs of even Catalan words whose lengths sum to2n, thereby giving a very natural combinatorial proof of (2). 2Proof [Proof 3] Consider a walk of length 2n + 1 containing an even (orodd) number of down-steps. Note that the number of such walks is 22n.The Catalan factorization of such a walk has an odd number of z's andthere is therefore a unique z = ẑ with the property that there are an evennumber of z's before ẑ which all represent 0, and there are an even numberof z's after ẑ which all represent 1. Marking the position of ẑ in the Catalanfactorization determines the original walk, because the parity of the numberof down-steps determines whether ẑ represents 0 or 1. Thus, the originalwalk of length 2n + 1 is determined by two Catalan words of even lengthwith ẑ between them, thereby providing yet another combinatorial proof of(2). 2AcknowledgementThe �rst author gratefully acknowledges the lectures of X. Viennot on bi-jective combinatorics given at UCSD in 1981 which contained a wealth ofmaterial on Catalan numbers, Dyck paths, and Catalan factorization.References[1] W. Feller, An Introduction to Probability Theory and its Applications,3rd Edition, Wiley, New York, 1957.[2] M. Gardner, Catalan numbers: an integer sequence that materializesin unexpected places, Scienti�c American 34 (1976) No. 6, 120-125.[3] M. Hamermesh, Group Theory and Its Applications to Physical Prob-lems, Dover Publications reprint, 1990.[4] D.J. Kleitman, A note on some subset identities, Studies in AppliedMath. 54 (1975) 289-293.[5] D.E. Knuth, The Art of Computer Programming, Volume 1 (Funda-mental Algorithms), 2nd Edition, Addison-Wesley, 1973.[6] X. Viennot, Combinatorics Lectures Seminar Notes , (unpublished),University of California at San Diego, Spring 1981.
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