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Abstract

In a multiple disk environment it is desirable to have
techniques for efficient parallel execution of similarity
queries. Usually many buckets that may have the query
result are needed to be retrieved from secondary stor-
age, which is a costly operation. To achieve efficiency,
there are two major factors that need to be consid-
ered. These are the number of buckets retrieved by
the query, and the degree of parallelism provided by
the disk allocation method. In this paper, we develop
efficient techniques for parallel similarity searching by
optimizing these two factors defined for data-sets that
are circular in nature, and similarity queries consisting
of query spheres centered at the query point. Our par-
titioning technique minimizes the expected number of
buckets retrieved by a random query among a spectrum
of partitioning schemes which have equi-area concentric
rings and equi-area central wedges as its two extremes.
A simple disk allocation technique for the proposed par-
titioning method that maximizes the degree of paral-
lelism obtained is also described.

Key Words: Circular partitioning, similarity query,
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1 Introduction

The volume of multidimensional data that need to be
processed has been increasing rapidly. Commercial data
warehouses are doubling their size every 9-12 months
and satellite data repositories will soon add one to two
terabytes of data in a day [1]. If the current trends con-
tinue, large organizations will have petabytes of stor-
age managed by thousands of processors [7]. Several
applications using this data require efficient support
for range and similarity searching. Example of these
applications include Geographical Information Systems
(GIS) [8], Multimedia Information Systems [11], CAD
[6], medical imaging [10]. General approach is to repre-
sent the data objects as multidimensional points and to
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measure similarity between objects by some notion of
distance between the corresponding multidimensional
points. Generally, it is assumed that the closer the
points, the more similar the data objects. Several index
structures have been proposed for retrieval of multidi-
mensional data. Examples of these include kdb-trees,
hB-tree, R-tree, R*-tree, SS-tree, TV-tree, X-tree, and
the Pyramid Technique [14, 2, 19, 5, 4]. However, tra-
ditional retrieval methods based on index structures
developed for single disk and single processor environ-
ments may be ineffective for the storage and retrieval of
multidimensional data in multiprocessor and multiple
disk environments. Therefore, it is essential to develop
techniques that are optimized for such environments.
Note that the buckets that may have the query result
are needed to be retrieved from secondary storage as a
result of the query. For efficient execution of queries in
these environments, there are two major factors that
need to be considered:

1. the number of buckets retrieved by the query,
2. the degree of parallelism provided.

In this paper, we focus on similarity queries. One of the
typical query types is the e-similarity which is specified
by a query point and a radius which defines the ac-
ceptable region of similarity. Another typical query is
the k-nearest neighbor query in which k most similar
objects to the query object need to be reported. Both
of these query types need to retrieve a spherical region
as a result whereas rectangular range queries retrieve a
rectangular region.

For range and e-similarity queries the buckets, i.e.
the subdivisions of the data-set, that intersect the query
region are needed to be retrieved. It is evident that the
number of buckets retrieved by a query is important
in the performance of a query and this number directly
depends on the underlying partitioning strategy [13, 4].
If we run the same query in two differently partitioned
data sets, we may end up retrieving different number of
buckets depending on the way the data-space is initially
organized. Hence, it is desirable to develop efficient
partitioning techniques to minimize the expected num-
ber of buckets retrieved as result of similarity queries.



Figure 1: Concentric hyper-cubes and hyper-pyramids

The first parameter is the result of this fact. These
buckets are retrieved from parallel disks in a multi-disk
environment. The degree of parallelism effects the per-
formance of the query result. The core problem in par-
allel search is to distribute the buckets among several
I/0 devices such that the data retrieved by any query is
evenly spread across all the I/O devices. For example,
if all the buckets retrieved as a result of a given query
are allocated to different devices then the query execu-
tion time is minimized. However, if they are allocated
to the same device, the buckets are retrieved from one
single disk sequentially. Therefore the degree of par-
allelism must be maximized by developing appropriate
allocation techniques for the underlying partitioning.

2 Problem statement

In this paper, we develop efficient techniques for par-
allel similarity searching in spherical data-sets by op-
timizing the two important factors defined above for
parallel searching. We develop and analyze appropriate
partitioning techniques which minimize the number of
buckets retrieved by any query. Then, we develop disk
(or I/O device) allocation techniques that maximize the
degree of parallelism.

Concentric partitioning is shown to be useful for
parallel searching. The idea of using concentric parti-
tioning for parallel searching is proposed in [13]. Two
different partitioning strategies, concentric hyper-cubes
and hyper-pyramids shown in Figure 1 are discussed in
the context of parallel execution of rectangular range
queries. These techniques are useful for declustering
optimized for rectangular range searching. In this pa-
per, we focus on e-similarity queries. We first develop
theoretical analysis to find the optimal way of circular
data-space partitioning which optimizes the first pa-
rameter discussed in the previous section. For hyper-
rectangular range queries, the hyper-pyramid partition-
ing is obtained by dividing concentric hyper-cubes into
2d more divisions from the center through the edges,
where d is the number of dimensionality. For similarity
searching, we will consider spherical queries, and spher-
ical partitions. The overall region of the data-space is
also taken to be a sphere. One extreme possibility is to

partition the data-space by concentric spheres (right-
most partition in Figure 2). Other extreme way is to
partition the data-space into wedges without using any
concentric rings (leftmost partition in Figure 2). These
two ways are similar to the concentric hyper-cubes and
hyper-pyramids, respectively. Here, we will explore the
possibilities of having partitioning strategies in between
of these extremes, as illustrated in Figure 2. Is it fea-
sible and possible to build a partitioning technique op-
timized for the first parameter for similarity queries
which also achieves efficient parallelism? After stat-
ing the appropriate partitioning technique, we develop
an allocation method for the proposed partitioning to
achieve efficient degrees of parallelism.

3 Theoretical considerations

For the analysis of efficient partitioning techniques for
similarity searching, we first start with the observation
that there is a relation between the the expected num-
ber of partitions (we also refer to these as buckets, sub-
divisions, or regions) a spherical query intersects with
the total boundary of the partitions. We concentrate on
the two dimensional case and assume that the expected
number of regions a small disc of radius p intersects is
minimized when the total boundary of the regions form-
ing the partition is minimized. This is not exactly right
if p is not small, since the number of regions meeting
at a point is important in the calculation of the ex-
pected value, whereas the length of the boundary does
not directly take this into account (i.e. it treats the
number of regions intersected as either 1 (one side of
a boundary line) or 2 (intersecting a boundary line)).
However for small p, we argue that this assumption is
valid as follows: Consider a strip of width 2p around
each boundary line, with the boundary line running at
the center as shown in Figure 3. Any query circle of
radius p centered outside the region S in the unit circle
formed by these strips is contained in a single region of
the subdivision. If the total area of S is A, then the
expected number E of regions intersected by a random
query circle of radius p satisfies
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Figure 2: Equi-area subdivision of a circular data-space into n = 2* regions consisting of 2" rings and 2" central

wedges: k=3,r=0,1,2,3.

This is because each query circle with center in S inter-
sects at least 2 and at most n regions of the subdivision.

Thus
A

;7 (1)
and for any fixed n, E approaches its minimum possi-
ble value of 1 as A approaches 0. Therefore for small
enough p, the expected value E is minimized for a sub-
division into equal parts with minimum boundary. This
is a type of an isoperimetric problem. Note that in (1),
it is possible to use planarity and reduce the quantity
n — 1 for boundaries that are not pathological. This
is because by Euler’s formula the average degree of a
vertex in a planar graph is no larger than 6.
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Figure 3: Crossing partition boundaries.

Now we assume that the query radius p is small,
and calculate the value of r which gives the optimal
subdivision into n regions. We assume that n = 2* for
some integer k > 0. We also assume that the query disc
is completely contained in the unit disc. In other words,
its center lies in the disc with origin as center and of
radius 1 — p. Thus the boundary of the unit circle itself
need not be taken into account in these calculations.

The types of subdivisions of the unit disc into n =
2% regions we choose to consider are parameterized by
r, and corresponding to r, the unit disk is first divided
into 2" equal-area concentric rings. Then each of these
rings is further divided up by 2*~" central wedges of
equal angles for a total of 2% equal area regions. Which
value of r = 0,1,..., k minimizes the total boundary?

The radius z; of the innermost disc of the division
into 2" rings is found from 7z} = /2" as z; = 1/V/2".

Similarly, the radius of the i-th innermost disc is z; =

Vi/V/2" with perimeter 27v/i/+/27. The sum of the
perimeters of the 2" — 1 circles is then

27
ﬁ(1+ﬁ+\/§+"'+m)'

To this sum, we add the lengths of the 2¥~" radii that
form the boundary of the wedges, to obtain an expres-
sion for the total boundary in terms of r as
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To get an idea about the magnitude of r that minimizes
this expression, we approximate

1+ V24+ V34 + Vo1 z/ Vidt = 3%/
0

(2)

and minimize the real-valued function of z given by
n N 47
—+—x

on 1 <z <n . By calculus, we find that the minimum
is achieved at

1
T = —\/g\/_ ~ 0.489+/n.
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This means that the optimal exponent r for n = 2* is
roughly

3/2

rz%k—l.

(3)
For small values of k and n = 2F, the optimal values
of 7 that minimizes the expression in (2) can be cal-
culated numerically. The corresponding value of 27 is
the number of rings, and n/2" is the number of wedges
that the unit disc needs to be divided into to minimize
the boundary of the n equal-area regions. The values of
the optimal exponent r calculated by brute force from
(2) for k < 19 are given in the following table.
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These values are in perfect agreement with the for-
mula for r given in (3). In particular when 7 is of the
form n = 4%, then the optimal boundary subdivision
has 2F=1 rings and 2**! wedges.

4 Implementation

When we subdivide the unit disk in the plane into 2*
regions by first dividing into 2" equi-area rings, and
then dividing each ring into 2*~" by means of equi-
area central wedges, each region in the subdivision is
determined by 4 parameters. A pair of angles 6,6,
determines the wedge that the region is in, and a pair
of radii r1,rs determines which ring the region is in.
The angles satisfy 0 < 6; < 6, < 27w. The boundary
case #; = 0, and 6, = 27 is interpreted as the subdi-
vision in which there are no wedges (i.e. r = k and
the regions consist only of rings). The two radii sat-
isfy 0 < r;y < ry < 1. The extreme cases r; = 0 and
r9 = 1 correspond to the subdivision in which there
are no rings (i.e. 7 = 0 and the regions consist only of
wedges).

The regions are labeled from 0 to 28 — 1 as follows.
First of all, label the 2" rings from 0 to 2" —1 by increas-
ing radius as we go out from the origin to the boundary
of the unit circle. In each ring, label the 2¥~" pieces
determined by the wedges from 0 to 2¥~" — 1 counter-
clockwise, starting with the wedge that is incident to
the horizontal axis in the first quadrant. An integer m
with 0 < m < 2F can be written uniquely in the form
m=¢2"+swith 0 < g< 27, and 0 < s < 2". The
pair (g, s) uniquely corresponds to the region in the g-
th wedge of the s-th ring of the subdivision under this
numbering scheme. For example the region labeled 7 in
Figure 4 is encoded as the pair (3,1), since 7 = 3x2+1.
Aside from the extreme cases of r = 0 and r = k, the
boundary of the m-th region is described analytically
by the radii
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5 Experimental results

We have conducted experiments to calculate the ex-
pected number of regions intersected by a randomly
selected query circle of radius p in the unit circle for
varying values of p. The experiments for the calcula-
tion of the expected values were conducted with three
parameters: n = 2% r, and the radius p of the query
circle. The data-space is divided into 2* regions by first
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Figure 4: Labeling of the subdivisions: n = 2* and
r=1.

dividing into 2" equi-area rings, and then dividing each
ring into 2¥=" by means of equi-area central wedges,
r=0,1,...,k.

In the first set of experiments, we chose the num-
ber of partitions to be n = 2'2, i.e. k = 12. When
r = 0, then the partitioning is just the set of wedges
without any concentric rings, i.e., the leftmost partition
in Figure 2. When r = 12, the partitions are formed by
circles only, creating 2'2 concentric rings as partitions,
analogous to the rightmost partition in Figure 2. In
the experiments the query center is chosen randomly
in the data-space from the uniform distribution in such
a way that the query region lies entirely within the
data-space.

We started with the value of the query radius py =

L which gives the query circle the same areas as the

v’
area of each region. Figure 5 illustrates the results of

the experiments run with this initial value of p. The
horizontal axis gives the values of r ranging from 0 to
12, and the vertical axis is the average number of par-
titions intersected by a random query of query radius
p. This quantity is proportional to the cost of retrieval
from secondary storage, since the cost of a query de-
pends on the number of buckets retrieved as a result of
the query, and this is exactly the number of partitions
which intersect the query circle. Whenr =4 andr =5
the number of intersected partitions is found to be min-
imized with expected number E = 6.55 and E = 6.65,
respectively. This result is in agreement with the the-
oretical analysis. When r = 12, the average number
of partitions intersected by the queries is £ = 118.55,
about 18 times greater than the average number of re-
gions intersected when r = 5.

We vary the radius of the query. The initial value
of pg = ﬁ was reduced by a factor of % in in each sub-
sequent set of experiments. The corresponding radii
are p; = ﬁ7 P2 = ﬁ etc., until the smallest radius
value py = ﬁ For each radius value p, we generate
random queries and find the number of intersections
of the query circle of radius p centered at the query
point generated with the regions in the partition. In
Figure 6 the horizontal axis is p;, where 0 < i < 4, and
the vertical axis is the average number of partitions re-
trieved by the queries in the case of (1) optimal way
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Figure 5: Effect of the number
radius is pg = 1/4/n.

of partitioning, (2) partitioning based on our approx-
imation, (3) fully-wedged partitioning (leftmost parti-
tion in Figure 2), and (4) fully-concentric partitioning
(rightmost partition in Figure 2). Partitioning tech-
nique based on theoretical analysis gives optimal cost,
i.e optimal number of intersected partitions, for most of
the queries. Our theoretical analysis is in perfect agree-
ment with the experiments. The number of partitions
retrieved by the queries in concentric and fully-wedged
partitioning is much more than the hybrid approach
with the appropriate parameters developed in the pre-
vious sections.

6 Disk allocation methods

In order to obtain a good degree of parallelism careful
distribution of buckets to multiple disks is necessary.
There have been several disk allocation techniques for
regular grid partitioning. The partitioning technique
described here is different from the current techniques
used for declustering, therefore we can not use them
directly. However, it is possible to apply the intuitions
behind the current approaches here. As in the general
case, we concentrate on the neighboring buckets and
distribute them to different disks. The direct neigh-
bors are defined as the partitions that have a common
boundary, e.g. in Figure 4 the direct neighbors of the
partition 2 are 0, 3, and 4. The indirect neighbors are
defined as the partitions that share a point, e.g. the
indirect neighbors of partition 3 are partitions 0 and 4.

Our data-space is partitioned into 2* equi-area re-
gions determined by 2" concentric rings and 2¥~" cen-

4 6 8
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of wedges versus rings on the expected number of of intersected partitions. Query

tral wedges where r = [3k] — 1. As mentioned before,
each partition corresponds to an ordered pair of integers
(g, s), where s is the rank of the ring (0 < ¢ < 2"), and ¢
is the rank of the wedge inside that ring (0 < s < 2k=7).
For example, in Figure 4 (0,0) corresponds to the par-
tition labeled 0, the pair (2,1) corresponds to the par-
tition labeled 5, and (5, 0) corresponds to the partition
10. In general, the pair (g, s) represents the partition
labeled ¢2" + s. The allocation technique we propose is
as follows. Given the number M of available disks, we
use a generic allocation technique parametrized by a
skip value H. The partition (0, 0) is assigned to device
0. Next, the partitions along this ring (with rank s = 0)
is assigned to consecutive devices, i.e. partition (g, 0)
is assigned to device ¢ mod M. Each partition labeled
(¢,1) in ring 1 is assigned to device (H + ¢) mod M,
which is H devices away from the device on which the
partition from the same wedge level in ring 0 was as-
signed. In general, a partition (g, s) on ring s is assigned
to device (Hq + s) mod M. This assignment is an ex-
tension of the Cyclic Allocation Technique applied to
our partitioning. Cyclic allocation was originally pro-
posed for regular grid partitioning and its performance
depends on the H value that is used. The techniques
discussed in [17] to determine appropriate H values
can also be used here.

In addition to cyclic allocation, there have been
a number of other disk allocation techniques proposed
for regular grid partitioning, especially in the context
of relational data and partial match and range queries.
Disk Modulo (DM) [9], Fieldwise Exclusive (FX) [16],
Hilbert (HCAM) [12], Near Optimal Declustering (NoD)
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[3], General Multidimensional Data Allocation (GMDA)
[15], Cyclic Allocation Schemes [17, 18] are well-known
techniques. All of these can be applied to our partition-

ing scheme.

Figure 7: Additional partition in the center

There are two different metrics to evaluate the de-
gree of parallelism for similarity searching. In [3], the
goal of allocation technique is defined to ensure that
any two buckets that are direct or indirect neighbors
of each other are allocated to different disks. Such an
allocation is defined to be near-optimal. The second
metric is defined in [18] as follows. The maximum de-
gree of parallelism is achieved when buckets that are
retrieved together are spread among all available disks
as uniformly as possible. The cyclic technique is shown
to be efficient in terms of these two different metrics. In
fact, it has been shown that by using cyclic allocation
it is possible to find appropriate skip values such that
no two direct or indirect neighbors are allocated to the
same disk if the data-space is d—dimensional space and
2d disks are available. Except for the border and in-
side most partitions, e.g. 0,2,4,..., 14, the direct and

3 3

indirect neighboring bucket pairs remain same in reg-
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Query Radius
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The point ¢ on the

ular grid partitioning and in the partitioning proposed
here. Since cyclic technique guarantees the distribu-
tion of the direct and indirect neighbors to different
disks in regular grid partitioning, our allocation tech-
nique on the new partitioning scheme also guarantees
this. Therefore, disk allocation technique described in
this section is also near-optimal. Similarly, we expect
the same good performance of cyclic allocation in this
context. To avoid the neighboring problem for the in-
nermost partitions, we can just add one more partition
in the center of the data-space. This additional parti-
tion will add two advantages. First, we eliminate the
case that a single point, i.e. the center, is contained in
all 277" central wedges. This eliminates the retrieval of
all 2"~ 7" innermost partitions for a a query point involv-
ing the center. Second, the innermost partitions other
than the adjacent ones are no longer direct neighbors.
Figure 7 illustrates this possible extension.

7 Conclusions

There are two major factors that determine the effi-
ciency of e-similarity queries in a multiple disk envi-
ronment: the number of buckets retrieved by the query
circle, and the the degree of parallelism provided by the
disk allocation method. The idea is to minimize the ex-
pected number of buckets retrieved by a random query
and at the same time devise an efficient disk allocation
scheme for the resulting partitioning that maximizes
the degree of parallelism obtained.

We have described techniques for parallel similar-



ity searching in circular data-sets in the plane meeting
these two conditions: the number of buckets retrieved
by the query is minimized by an appropriate selection of
partitioning, and the degree of parallelism is maximized
by applying disk (or I/O device) allocation techniques
suitable for the partitioning selected. The partitions
considered form a spectrum in which the equi-area con-
centric rings and equi-area central wedges form extreme
cases. We showed that the optimal partitioning into n
buckets uses a mixture of about /n of each of these
types of regions, and conducted experiments with ran-
dom queries without boundary effects. The findings ob-
tained by varying the query-radii for different partitions
and query points generated from the uniform distribu-
tion and calculating the average number of buckets in-
tersected support the theoretical findings. For the gen-
eral case, the construction of spherical shells by means
of concentric spheres in high dimensions is straightfor-
ward, whereas the the analogue of the wedge-shaped
regions requires more care. A wedge is determined by
a pair of angles in the plane, but the analogous region
in three dimensions requires two pairs of angles, and in
d dimensions, d — 1 pairs of angles. Therefore for the
d- dimensional spherical/wedge partitions, each bucket
will have a description consisting of d pairs of numbers.
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