
Proceedings of the IASTED International ConferenceParallel and Distributed Computing and SystemsNovember 3-6, 1999 in Cambridge Massachusetts, USACircular Data-space Partitioning for Similarity Queries and Parallel Disk Allocation�Omer E�gecio�glu� Hakan Ferhatosmano�glufomer, hakang@cs.ucsb.eduDepartment of Computer ScienceUniversity of California at Santa Barbara,Santa Barbara, CA 93106AbstractIn a multiple disk environment it is desirable to havetechniques for e�cient parallel execution of similarityqueries. Usually many buckets that may have the queryresult are needed to be retrieved from secondary stor-age, which is a costly operation. To achieve e�ciency,there are two major factors that need to be consid-ered. These are the number of buckets retrieved bythe query, and the degree of parallelism provided bythe disk allocation method. In this paper, we develope�cient techniques for parallel similarity searching byoptimizing these two factors de�ned for data-sets thatare circular in nature, and similarity queries consistingof query spheres centered at the query point. Our par-titioning technique minimizes the expected number ofbuckets retrieved by a random query among a spectrumof partitioning schemes which have equi-area concentricrings and equi-area central wedges as its two extremes.A simple disk allocation technique for the proposed par-titioning method that maximizes the degree of paral-lelism obtained is also described.Key Words: Circular partitioning, similarity query,parallel search, multiple disks, disk allocation.1 IntroductionThe volume of multidimensional data that need to beprocessed has been increasing rapidly. Commercial datawarehouses are doubling their size every 9-12 monthsand satellite data repositories will soon add one to twoterabytes of data in a day [1]. If the current trends con-tinue, large organizations will have petabytes of stor-age managed by thousands of processors [7]. Severalapplications using this data require e�cient supportfor range and similarity searching. Example of theseapplications include Geographical Information Systems(GIS) [8], Multimedia Information Systems [11], CAD[6], medical imaging [10]. General approach is to repre-sent the data objects as multidimensional points and to�Supported in part by NSF Grant no. IIS-9817432.

measure similarity between objects by some notion ofdistance between the corresponding multidimensionalpoints. Generally, it is assumed that the closer thepoints, the more similar the data objects. Several indexstructures have been proposed for retrieval of multidi-mensional data. Examples of these include kdb-trees,hB-tree, R-tree, R*-tree, SS-tree, TV-tree, X-tree, andthe Pyramid Technique [14, 2, 19, 5, 4]. However, tra-ditional retrieval methods based on index structuresdeveloped for single disk and single processor environ-ments may be ine�ective for the storage and retrieval ofmultidimensional data in multiprocessor and multipledisk environments. Therefore, it is essential to developtechniques that are optimized for such environments.Note that the buckets that may have the query resultare needed to be retrieved from secondary storage as aresult of the query. For e�cient execution of queries inthese environments, there are two major factors thatneed to be considered:1. the number of buckets retrieved by the query,2. the degree of parallelism provided.In this paper, we focus on similarity queries. One of thetypical query types is the �-similarity which is speci�edby a query point and a radius which de�nes the ac-ceptable region of similarity. Another typical query isthe k-nearest neighbor query in which k most similarobjects to the query object need to be reported. Bothof these query types need to retrieve a spherical regionas a result whereas rectangular range queries retrieve arectangular region.For range and �-similarity queries the buckets, i.e.the subdivisions of the data-set, that intersect the queryregion are needed to be retrieved. It is evident that thenumber of buckets retrieved by a query is importantin the performance of a query and this number directlydepends on the underlying partitioning strategy [13, 4].If we run the same query in two di�erently partitioneddata sets, we may end up retrieving di�erent number ofbuckets depending on the way the data-space is initiallyorganized. Hence, it is desirable to develop e�cientpartitioning techniques to minimize the expected num-ber of buckets retrieved as result of similarity queries.302-260 -1-



Figure 1: Concentric hyper-cubes and hyper-pyramidsThe �rst parameter is the result of this fact. Thesebuckets are retrieved from parallel disks in a multi-diskenvironment. The degree of parallelism e�ects the per-formance of the query result. The core problem in par-allel search is to distribute the buckets among severalI/O devices such that the data retrieved by any query isevenly spread across all the I/O devices. For example,if all the buckets retrieved as a result of a given queryare allocated to di�erent devices then the query execu-tion time is minimized. However, if they are allocatedto the same device, the buckets are retrieved from onesingle disk sequentially. Therefore the degree of par-allelism must be maximized by developing appropriateallocation techniques for the underlying partitioning.2 Problem statementIn this paper, we develop e�cient techniques for par-allel similarity searching in spherical data-sets by op-timizing the two important factors de�ned above forparallel searching. We develop and analyze appropriatepartitioning techniques which minimize the number ofbuckets retrieved by any query. Then, we develop disk(or I/O device) allocation techniques that maximize thedegree of parallelism.Concentric partitioning is shown to be useful forparallel searching. The idea of using concentric parti-tioning for parallel searching is proposed in [13]. Twodi�erent partitioning strategies, concentric hyper-cubesand hyper-pyramids shown in Figure 1 are discussed inthe context of parallel execution of rectangular rangequeries. These techniques are useful for declusteringoptimized for rectangular range searching. In this pa-per, we focus on �-similarity queries. We �rst developtheoretical analysis to �nd the optimal way of circulardata-space partitioning which optimizes the �rst pa-rameter discussed in the previous section. For hyper-rectangular range queries, the hyper-pyramid partition-ing is obtained by dividing concentric hyper-cubes into2d more divisions from the center through the edges,where d is the number of dimensionality. For similaritysearching, we will consider spherical queries, and spher-ical partitions. The overall region of the data-space isalso taken to be a sphere. One extreme possibility is to

partition the data-space by concentric spheres (right-most partition in Figure 2). Other extreme way is topartition the data-space into wedges without using anyconcentric rings (leftmost partition in Figure 2). Thesetwo ways are similar to the concentric hyper-cubes andhyper-pyramids, respectively. Here, we will explore thepossibilities of having partitioning strategies in betweenof these extremes, as illustrated in Figure 2. Is it fea-sible and possible to build a partitioning technique op-timized for the �rst parameter for similarity querieswhich also achieves e�cient parallelism? After stat-ing the appropriate partitioning technique, we developan allocation method for the proposed partitioning toachieve e�cient degrees of parallelism.3 Theoretical considerationsFor the analysis of e�cient partitioning techniques forsimilarity searching, we �rst start with the observationthat there is a relation between the the expected num-ber of partitions (we also refer to these as buckets, sub-divisions, or regions) a spherical query intersects withthe total boundary of the partitions. We concentrate onthe two dimensional case and assume that the expectednumber of regions a small disc of radius � intersects isminimized when the total boundary of the regions form-ing the partition is minimized. This is not exactly rightif � is not small, since the number of regions meetingat a point is important in the calculation of the ex-pected value, whereas the length of the boundary doesnot directly take this into account (i.e. it treats thenumber of regions intersected as either 1 (one side ofa boundary line) or 2 (intersecting a boundary line)).However for small �, we argue that this assumption isvalid as follows: Consider a strip of width 2� aroundeach boundary line, with the boundary line running atthe center as shown in Figure 3. Any query circle ofradius � centered outside the region S in the unit circleformed by these strips is contained in a single region ofthe subdivision. If the total area of S is A, then theexpected number E of regions intersected by a randomquery circle of radius � satis�es1� (� �A) + 2A� � E � 1� (� �A) + nA� :-2-



Figure 2: Equi-area subdivision of a circular data-space into n = 2k regions consisting of 2r rings and 2k�r centralwedges: k = 3, r = 0; 1; 2; 3.This is because each query circle with center in S inter-sects at least 2 and at most n regions of the subdivision.Thus 1 + A� � E � 1 + (n� 1)A� ; (1)and for any �xed n, E approaches its minimum possi-ble value of 1 as A approaches 0. Therefore for smallenough �, the expected value E is minimized for a sub-division into equal parts with minimum boundary. Thisis a type of an isoperimetric problem. Note that in (1),it is possible to use planarity and reduce the quantityn � 1 for boundaries that are not pathological. Thisis because by Euler's formula the average degree of avertex in a planar graph is no larger than 6.
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Figure 3: Crossing partition boundaries.Now we assume that the query radius � is small,and calculate the value of r which gives the optimalsubdivision into n regions. We assume that n = 2k forsome integer k � 0. We also assume that the query discis completely contained in the unit disc. In other words,its center lies in the disc with origin as center and ofradius 1��. Thus the boundary of the unit circle itselfneed not be taken into account in these calculations.The types of subdivisions of the unit disc into n =2k regions we choose to consider are parameterized byr, and corresponding to r, the unit disk is �rst dividedinto 2r equal-area concentric rings. Then each of theserings is further divided up by 2k�r central wedges ofequal angles for a total of 2k equal area regions. Whichvalue of r = 0; 1; : : : ; k minimizes the total boundary?The radius x1 of the innermost disc of the divisioninto 2r rings is found from �x21 = �=2r as x1 = 1=p2r.

Similarly, the radius of the i-th innermost disc is xi =pi=p2r with perimeter 2�pi=p2r. The sum of theperimeters of the 2r � 1 circles is then2�p2r (1 +p2 +p3 + � � �+p2r � 1 ):To this sum, we add the lengths of the 2k�r radii thatform the boundary of the wedges, to obtain an expres-sion for the total boundary in terms of r asn2r + 2�p2r (1 +p2 +p3 + � � �+p2r � 1 ): (2)To get an idea about the magnitude of r that minimizesthis expression, we approximate1 +p2 +p3 + � � �+px� 1 � Z x0 pt dt = 23x3=2and minimize the real-valued function of x given bynx + 4�3px x3=2on 1 � x � n . By calculus, we �nd that the minimumis achieved at x = 12r 3�pn � 0:489pn:This means that the optimal exponent r for n = 2k isroughly r � 12k � 1: (3)For small values of k and n = 2k, the optimal valuesof r that minimizes the expression in (2) can be cal-culated numerically. The corresponding value of 2r isthe number of rings, and n=2r is the number of wedgesthat the unit disc needs to be divided into to minimizethe boundary of the n equal-area regions. The values ofthe optimal exponent r calculated by brute force from(2) for k � 19 are given in the following table.k 1 2 3 4 5 7 8 9 10r 0 0 1 1 2 2 3 3 4k 11 12 13 14 15 16 17 18 19r 4 5 5 6 6 7 7 8 8-3-



These values are in perfect agreement with the for-mula for r given in (3). In particular when n is of theform n = 4k, then the optimal boundary subdivisionhas 2k�1 rings and 2k+1 wedges.4 ImplementationWhen we subdivide the unit disk in the plane into 2kregions by �rst dividing into 2r equi-area rings, andthen dividing each ring into 2k�r by means of equi-area central wedges, each region in the subdivision isdetermined by 4 parameters. A pair of angles �1; �2determines the wedge that the region is in, and a pairof radii r1; r2 determines which ring the region is in.The angles satisfy 0 � �1 < �2 � 2�. The boundarycase �1 = 0, and �2 = 2� is interpreted as the subdi-vision in which there are no wedges (i.e. r = k andthe regions consist only of rings). The two radii sat-isfy 0 � r1 < r2 � 1. The extreme cases r1 = 0 andr2 = 1 correspond to the subdivision in which thereare no rings (i.e. r = 0 and the regions consist only ofwedges).The regions are labeled from 0 to 2k� 1 as follows.First of all, label the 2r rings from 0 to 2r�1 by increas-ing radius as we go out from the origin to the boundaryof the unit circle. In each ring, label the 2k�r piecesdetermined by the wedges from 0 to 2k�r � 1 counter-clockwise, starting with the wedge that is incident tothe horizontal axis in the �rst quadrant. An integer mwith 0 � m < 2k can be written uniquely in the formm = q2r + s with 0 � q < 2k�r, and 0 � s < 2r. Thepair (q; s) uniquely corresponds to the region in the q-th wedge of the s-th ring of the subdivision under thisnumbering scheme. For example the region labeled 7 inFigure 4 is encoded as the pair (3; 1), since 7 = 3�2+1.Aside from the extreme cases of r = 0 and r = k, theboundary of the m-th region is described analyticallyby the radii r1 = psp2r ; r2 = ps+ 1p2r ;and the two angles�1 = 2�q2k�r ; �2 = 2�(q + 1)2k�r :5 Experimental resultsWe have conducted experiments to calculate the ex-pected number of regions intersected by a randomlyselected query circle of radius � in the unit circle forvarying values of �. The experiments for the calcula-tion of the expected values were conducted with threeparameters: n = 2k, r, and the radius � of the querycircle. The data-space is divided into 2k regions by �rst
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15Figure 4: Labeling of the subdivisions: n = 24 andr = 1.dividing into 2r equi-area rings, and then dividing eachring into 2k�r by means of equi-area central wedges,r = 0; 1; : : : ; k.In the �rst set of experiments, we chose the num-ber of partitions to be n = 212, i.e. k = 12. Whenr = 0, then the partitioning is just the set of wedgeswithout any concentric rings, i.e., the leftmost partitionin Figure 2. When r = 12, the partitions are formed bycircles only, creating 212 concentric rings as partitions,analogous to the rightmost partition in Figure 2. Inthe experiments the query center is chosen randomlyin the data-space from the uniform distribution in sucha way that the query region lies entirely within thedata-space.We started with the value of the query radius �0 =1pn , which gives the query circle the same areas as thearea of each region. Figure 5 illustrates the results ofthe experiments run with this initial value of �. Thehorizontal axis gives the values of r ranging from 0 to12, and the vertical axis is the average number of par-titions intersected by a random query of query radius�. This quantity is proportional to the cost of retrievalfrom secondary storage, since the cost of a query de-pends on the number of buckets retrieved as a result ofthe query, and this is exactly the number of partitionswhich intersect the query circle. When r = 4 and r = 5the number of intersected partitions is found to be min-imized with expected number E = 6:55 and E = 6:65,respectively. This result is in agreement with the the-oretical analysis. When r = 12, the average numberof partitions intersected by the queries is E = 118:55,about 18 times greater than the average number of re-gions intersected when r = 5.We vary the radius of the query. The initial valueof �0 = 1pn was reduced by a factor of 12 in in each sub-sequent set of experiments. The corresponding radiiare �1 = 12pn , �2 = 122pn etc., until the smallest radiusvalue �4 = 124pn . For each radius value �, we generaterandom queries and �nd the number of intersectionsof the query circle of radius � centered at the querypoint generated with the regions in the partition. InFigure 6 the horizontal axis is �i, where 0 � i � 4, andthe vertical axis is the average number of partitions re-trieved by the queries in the case of (1) optimal way-4-
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Figure 5: E�ect of the number of wedges versus rings on the expected number of of intersected partitions. Queryradius is �0 = 1=pn.of partitioning, (2) partitioning based on our approx-imation, (3) fully-wedged partitioning (leftmost parti-tion in Figure 2), and (4) fully-concentric partitioning(rightmost partition in Figure 2). Partitioning tech-nique based on theoretical analysis gives optimal cost,i.e optimal number of intersected partitions, for most ofthe queries. Our theoretical analysis is in perfect agree-ment with the experiments. The number of partitionsretrieved by the queries in concentric and fully-wedgedpartitioning is much more than the hybrid approachwith the appropriate parameters developed in the pre-vious sections.6 Disk allocation methodsIn order to obtain a good degree of parallelism carefuldistribution of buckets to multiple disks is necessary.There have been several disk allocation techniques forregular grid partitioning. The partitioning techniquedescribed here is di�erent from the current techniquesused for declustering, therefore we can not use themdirectly. However, it is possible to apply the intuitionsbehind the current approaches here. As in the generalcase, we concentrate on the neighboring buckets anddistribute them to di�erent disks. The direct neigh-bors are de�ned as the partitions that have a commonboundary, e.g. in Figure 4 the direct neighbors of thepartition 2 are 0, 3, and 4. The indirect neighbors arede�ned as the partitions that share a point, e.g. theindirect neighbors of partition 3 are partitions 0 and 4.Our data-space is partitioned into 2k equi-area re-gions determined by 2r concentric rings and 2k�r cen-

tral wedges where r = b 12kc � 1. As mentioned before,each partition corresponds to an ordered pair of integers(q; s), where s is the rank of the ring (0 � q < 2r), and qis the rank of the wedge inside that ring (0 � s < 2k�r).For example, in Figure 4 (0; 0) corresponds to the par-tition labeled 0, the pair (2; 1) corresponds to the par-tition labeled 5, and (5; 0) corresponds to the partition10. In general, the pair (q; s) represents the partitionlabeled q2r+ s. The allocation technique we propose isas follows. Given the number M of available disks, weuse a generic allocation technique parametrized by askip value H . The partition (0; 0) is assigned to device0. Next, the partitions along this ring (with rank s = 0)is assigned to consecutive devices, i.e. partition (q; 0)is assigned to device q modM . Each partition labeled(q; 1) in ring 1 is assigned to device (H + q) modM ,which is H devices away from the device on which thepartition from the same wedge level in ring 0 was as-signed. In general, a partition (q; s) on ring s is assignedto device (Hq + s) modM . This assignment is an ex-tension of the Cyclic Allocation Technique applied toour partitioning. Cyclic allocation was originally pro-posed for regular grid partitioning and its performancedepends on the H value that is used. The techniquesdiscussed in [17] to determine appropriate H valuescan also be used here.In addition to cyclic allocation, there have beena number of other disk allocation techniques proposedfor regular grid partitioning, especially in the contextof relational data and partial match and range queries.Disk Modulo (DM) [9], Fieldwise Exclusive (FX) [16],Hilbert (HCAM) [12], Near Optimal Declustering (NoD)-5-
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Figure 6: The performance of di�erent partitioning techniques with varying query radius. The point i on thehorizontal axis denotes query radius �i = 12ipn .[3], General Multidimensional Data Allocation (GMDA)[15], Cyclic Allocation Schemes [17, 18] are well-knowntechniques. All of these can be applied to our partition-ing scheme.
Figure 7: Additional partition in the centerThere are two di�erent metrics to evaluate the de-gree of parallelism for similarity searching. In [3], thegoal of allocation technique is de�ned to ensure thatany two buckets that are direct or indirect neighborsof each other are allocated to di�erent disks. Such anallocation is de�ned to be near-optimal. The secondmetric is de�ned in [18] as follows. The maximum de-gree of parallelism is achieved when buckets that areretrieved together are spread among all available disksas uniformly as possible. The cyclic technique is shownto be e�cient in terms of these two di�erent metrics. Infact, it has been shown that by using cyclic allocationit is possible to �nd appropriate skip values such thatno two direct or indirect neighbors are allocated to thesame disk if the data-space is d�dimensional space and2d disks are available. Except for the border and in-side most partitions, e.g. 0; 2; 4; : : : ; 14, the direct andindirect neighboring bucket pairs remain same in reg-

ular grid partitioning and in the partitioning proposedhere. Since cyclic technique guarantees the distribu-tion of the direct and indirect neighbors to di�erentdisks in regular grid partitioning, our allocation tech-nique on the new partitioning scheme also guaranteesthis. Therefore, disk allocation technique described inthis section is also near-optimal. Similarly, we expectthe same good performance of cyclic allocation in thiscontext. To avoid the neighboring problem for the in-nermost partitions, we can just add one more partitionin the center of the data-space. This additional parti-tion will add two advantages. First, we eliminate thecase that a single point, i.e. the center, is contained inall 2n�r central wedges. This eliminates the retrieval ofall 2n�r innermost partitions for a a query point involv-ing the center. Second, the innermost partitions otherthan the adjacent ones are no longer direct neighbors.Figure 7 illustrates this possible extension.7 ConclusionsThere are two major factors that determine the e�-ciency of �-similarity queries in a multiple disk envi-ronment: the number of buckets retrieved by the querycircle, and the the degree of parallelism provided by thedisk allocation method. The idea is to minimize the ex-pected number of buckets retrieved by a random queryand at the same time devise an e�cient disk allocationscheme for the resulting partitioning that maximizesthe degree of parallelism obtained.We have described techniques for parallel similar--6-



ity searching in circular data-sets in the plane meetingthese two conditions: the number of buckets retrievedby the query is minimized by an appropriate selection ofpartitioning, and the degree of parallelism is maximizedby applying disk (or I/O device) allocation techniquessuitable for the partitioning selected. The partitionsconsidered form a spectrum in which the equi-area con-centric rings and equi-area central wedges form extremecases. We showed that the optimal partitioning into nbuckets uses a mixture of about pn of each of thesetypes of regions, and conducted experiments with ran-dom queries without boundary e�ects. The �ndings ob-tained by varying the query-radii for di�erent partitionsand query points generated from the uniform distribu-tion and calculating the average number of buckets in-tersected support the theoretical �ndings. For the gen-eral case, the construction of spherical shells by meansof concentric spheres in high dimensions is straightfor-ward, whereas the the analogue of the wedge-shapedregions requires more care. A wedge is determined bya pair of angles in the plane, but the analogous regionin three dimensions requires two pairs of angles, and ind dimensions, d � 1 pairs of angles. Therefore for thed- dimensional spherical/wedge partitions, each bucketwill have a description consisting of d pairs of numbers.References[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:Programming model, algorithms and evaluation.In ASPLOS-VIII, pages 81{91, Sept. 1998.[2] N. Beckmann, H. Kriegel, R. Schneider, andB. Seeger. The R* tree: An e�cient and ro-bust access method for points and rectangles. InProc. ACM SIGMOD Int. Conf. on Managementof Data, pages 322{331, May 23-25 1990.[3] S. Berchtold, C. Bohm, B. Braunmuller, D. A.Keim, and H.-P. Kriegel. Fast parallel similaritysearch in multimedia databases. In Proc. ACMSIGMOD Int. Conf. on Management of Data,pages 1{12, Arizona, U.S.A., 1997.[4] S. Berchtold, C. Bohm, and H.-P. Kriegel. ThePyramid-Technique: Towards breaking the curseof dimensionality. In Proc. ACM SIGMOD Int.Conf. on Management of Data, pages 142{153,Seattle, Washington, USA, June 1998.[5] S. Berchtold, D. A. Keim, and H. P. Kreigel. TheX-tree: An index structure for high-dimensionaldata. In 22nd. Conference on Very LargeDatabases, pages 28{39, Bombay, India, 1996.[6] K. H.-P. Berchtold S. S3: Similarity search incad database systems. In Proc. ACM SIGMODInt. Conf. on Management of Data, pages 564{567,Tuscon, Arizona, 1997.[7] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt,M. Franklin, H. Garcia-Molina, J. Gray, J. Held,J. Hellerstein, H. Jagadish, M. Lesk, D. Maier,
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