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Abstract. In search for “realistic” bio-inspired computing models, we
consider asynchronous spiking neural P systems, in the hope to get a
class of computing devices with decidable properties. However, although
the non-synchronization is known in general to decrease the computing
power, in the case of using extended rules (several spikes can be pro-
duced by a rule) we obtain again the equivalence with Turing machines
(interpreted as generators of sets of vectors of numbers). The problem
remains open for the case of restricted spiking neural P systems, whose
rules can only produce one spike. On the other hand, we prove that asyn-
chronous spiking neural P systems, with a specific way of halting, using
extended rules and where each neuron is either bounded or unbounded,
are equivalent to partially blind counter machines and, therefore, have
many decidable properties.

1 Spiking Neural P Systems – An Informal Presentation

In the present paper we continue the investigation of spiking neural P systems
(SN P systems, in short). A survey of results and the biological motivations for
these systems can be found in [5] and [2]. In the meantime, two main research
directions were particularly active in this area of membrane computing: looking
for classes of systems with tractable (for instance, decidable) properties, and
looking for the possibility of using SN P systems for efficiently solving compu-
tationally hard problems. Along the second research line are the investigations
related to the possibility of simulating an SN P system by a Turing machine with
a polynomial slowdown (preliminary results can be found in [3]) and those trying
to improve the efficiency of SN P systems, e.g., by enhancing the parallelism of
the system (see, for instance, [7]).

In this paper we report several recent results concerning the first topic men-
tioned above – specifically, removing the synchronization (common in many
membrane computing models), calling them asynchronous SN P systems. These
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systems were introduced in [6] with the aim of incorporating, into membrane
computing, specific ideas from spiking neurons, a field that is being heavily in-
vestigated in neural computing (see, e.g., [8]).

An SN P system consists of a set of neurons placed in the nodes of a directed
graph and sending signals (spikes) along the arcs of the graph (they are called
synapses). Thus, the architecture is that of a tissue-like P system, with only
one kind of object present in the cells (the reader is referred to [10,11] for an
introduction to membrane computing and to [12] for the up-to-date information
about this research area). The objects evolve by means of spiking rules placed in
the nodes and enabled when the (number of) spikes present in the nodes fulfill
specified regular expressions. When a spiking rule is executed in a neuron, spikes
are produced and sent to all neurons connected by an outgoing synapse from the
neuron where the rule was applied.

Two main types of results were obtained for synchronous (i.e, with obligatory
use of the rules) systems using standard rules (producing one spike): computa-
tional completeness ([6]) in the case when no bound was imposed on the number
of spikes present in the system, and a characterization of semilinear sets of num-
bers in the case when a bound was imposed. Improvements in the form of the
regular expressions and normal forms can be found in [4].

In the proofs of these results, the synchronization plays a crucial role, but
both from a mathematical point of view and from a neuro-biological point of
view it is rather natural to consider non-synchronized systems (even if a neuron
has a rule enabled in a given time unit, this rule is not necessarily used).

The synchronization is in general a powerful feature, useful in controlling the
work of a computing device. However, it turns out that the loss in power entailed
by removing the synchronization is compensated in the case of SN P systems
where extended rules (producing several spikes) are used: such systems are still
equivalent with Turing machines.

On the other hand, we also show that a restriction which looks, at first sight,
ratherminor, has a crucial influence on the power of the systems anddecreases their
computing power: in particular, we identify a class of asynchronous SN P systems
equivalent to partially blind countermachines (i.e., not computationally complete)
and for which the configuration reachability, membership (in terms of generated
vectors), emptiness, infiniteness, and disjointness problems can be decided.

2 SN P Systems – Formal Definitions

A spiking neural P system (in short, an SN P system), of degree m ≥ 1, is a
construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained by the neuron;
b) Ri is a finite set of extended rules of the form E/ac → ap; d, where E is

a regular expression with a the only symbol used, c ≥ 1, and p, d ≥ 0,
with c ≥ p; if p = 0, then d = 0, too.
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3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
4. out ∈ {1, 2, . . . , m} indicates the output neuron.

A rule E/ac → ap; d with p ≥ 1 is called extended firing (we also say spiking)
rule; a rule E/ac → ap; d with p = d = 0 is written in the form E/ac → λ
and is called a forgetting rule. If L(E) = {ac}, then the rules are written in the
simplified form ac → ap; d and ac → λ. A rule of the type E/ac → a; d and
ac → λ is said to be restricted (or standard).

A rule is bounded if it is of the form ai/ac → ap; d, where 1 ≤ c ≤ i, p ≥ 0,
and d ≥ 0. A neuron is bounded if it contains only bounded rules. A rule is
called unbounded if is of the form ai(aj)∗/ac → ap; d, where i ≥ 0, j ≥ 1, c ≥
1, p ≥ 0, d ≥ 0. (In all cases, we also assume c ≥ p; this restriction rules out
the possibility of “producing more than consuming”, but it plays no role in
arguments below and can be omitted.) A neuron is unbounded if it contains only
unbounded rules. A neuron is general if it contains both bounded and unbounded
rules. An SN P system is bounded if all the neurons in the system are bounded. It
is unbounded if it has bounded and unbounded neurons. Finally, an SN P system
is general if it has general neurons (i.e., it contains at least one neuron which
has both bounded and unbounded rules).

If the neuron σi contains k spikes, ak ∈ L(E) and k ≥ c, then the rule
E/ac → ap; d ∈ Ri is enabled and it can be applied. This means that c spikes are
consumed, k−c spikes remain in the neuron, the neuron is fired, and it produces
p spikes after d time units. If d = 0, then the spikes are emitted immediately, if
d = 1, then the spikes are emitted in the next step, and so on. In the case d ≥ 1,
if the rule is used in step t, then in steps t, t+1, t+2, . . . , t+ d− 1 the neuron is
closed; this means that during these steps it uses no rule and it cannot receive
new spikes (if a neuron has a synapse to a closed neuron and sends spikes along
it, then the spikes are lost). In step t + d, the neuron spikes and becomes again
open, hence can receive spikes (which can be used in step t+d+1). The p spikes
emitted by a neuron σi are replicated and they go to all neurons σj such that
(i, j) ∈ syn (each σj receives p spikes). If the rule is a forgetting one of the form
E/ac → λ then, when it is applied, c ≥ 1 spikes are removed.

In an asynchronous SN P system in each time unit any neuron is free to use
a rule or not (a global clock, marking the time for all neurons, is considered).
Hence, in each time unit, each neuron can use either zero or one rule. Even if
enabled, a rule is not necessarily applied, the neuron can remain still not used
in spite of the fact that it contains rules which are enabled by its contents. If
the contents of the neuron is not changed, a rule which was enabled in a step t
can fire later. If new spikes are received, then it is possible that other rules will
be enabled – and applied or not.

It is important to point out that when a neuron spikes, its spikes immediately
leave the neuron and reach the target neurons simultaneously (i.e., there is no
time needed for passing along a synapse from one neuron to another neuron).

The initial configuration of the system is described by the numbers n1, . . . , nm

representing the initial number of spikes present in each neuron. Using the rules as
suggested above, we can define transitions among configurations. Any sequence of
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transitions starting in the initial configuration is called a computation. A compu-
tation is successful if it reaches a configuration where all bounded and unbounded
neurons are open but none is fireable (i.e., the SN P system has halted). The re-
sult of a computation is defined here as the total number of spikes sent into the
environment by the output neuron.

Successful computations which send no spike out can be considered as gener-
ating the number zero, but in what follows we adopt the convention to ignore
number zero when comparing the computing power of two devices.

SN P systems can also be used for generating sets of vectors, by considering
several output neurons, σi1 , . . . , σik

. In this case, the system is called a k-output
SN P system. Here a vector of numbers, (n1, . . . , nk), is generated by counting the
number of spikes sent out by neurons σi1 , . . . , σik

respectively during a success-
ful computation. We denote by Nnsyn

gen (Π) [Psnsyn
gen (Π)] the set [the set of vectors,

resp.] of numbers generated in the non-synchronized way by a system Π , and by
NSpiktotEPnsyn

m (α, deld) [PsSpiktotEPnsyn
m (α, deld)], α ∈ {gen, unb, boun}, d ≥

0, the family of such sets of numbers [sets of vectors of numbers, resp.] generated by
systems of type α (gen stands for general, unb for unbounded, boun for bounded),
with at most m neurons and rules having delay at most d. (The subscript tot re-
minds us of the fact that we count all spikes sent to the environment.)

A 0-delay SN P system is one where the delay in all the rules of the neurons
is zero. Because in this paper we always deal with 0-delay systems, the delay
(d = 0) is never specified in the rules. Because there is no confusion, in this
paper, asynchronous SN P systems are often simply called SN P systems.

In the next section we present a module of the construction from the proof
of the universality theorem, and this can illustrate and clarify the above defini-
tions. On that occasion we also use the standard way to pictorially represent a
configuration of an SN P system. Specifically, each neuron is represented by a
“membrane”, marked with a label and having inside both the current number of
spikes (written explicitly, in the form an for n spikes present in a neuron) and
the evolution rules. The synapses linking the neurons are represented by directed
edges (arrows) between the membranes. The output neuron is identified by both
its label, out, and pictorially by a short arrow exiting the membrane and point-
ing to the environment. Examples of SN P systems working in an asynchronous
way can be found in the technical report [1].

3 Computational Completeness of General SN P Systems

We now show that the power of general neurons (with extended rules) can com-
pensate the loss of power entailed by removing the synchronization.

Theorem 1. NSpiktotEPnsyn
∗ (gen, del0) = NRE.

Proof. (sketch) We only prove that NRE ⊆ SpiktotEPnsyn
∗ (gen, del0) and to

this aim, we use the characterization of NRE (i.e., the family of sets of numbers
computed by Turing machines) by means of counter machines (abbreviated CM),
[9]. Let M = (m, H, l0, lh, I) be a counter machine with m counters, such that
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the result of a computation is the number stored in counter 1 and this counter
is never decremented during the computation. We construct a spiking neural P
system Π as follows.

For each counter r of M let tr be the number of instructions of the form
li : (SUB(r), lj , lk), i.e., all SUB instructions acting on counter r (of course, if
there is no such a SUB instruction, then tr = 0, which is the case for r = 1).
Denote by

T = 2 · max{tr | 1 ≤ i ≤ m} + 1.

For each counter r of M we consider a neuron σr in Π whose contents cor-
respond to the contents of the counter. Specifically, if the counter r holds the
number n ≥ 0, then the neuron σr will contain 3Tn spikes.

With each label l of an instruction in M we also associate a neuron σl. Initially,
all these neurons are empty, with the exception of the neuron σl0 associated with
the start label of M , which contains 3T spikes. This means that this neuron is
“activated”. During the computation, the neuron σl which receives 3T spikes
will become active. Thus, simulating an instruction li : (OP(r), lj , lk) of M means
starting with neuron σli activated, operating the counter r as requested by OP,
then introducing 3T spikes in one of the neurons σlj , σlk , which becomes in this
way active. When activating the neuron σlh , associated with the halting label
of M , the computation taking place in the counter machine M is completely
simulated in Π ; we will then send to the environment a number of spikes equal
to the number stored in the first counter of M . Neuron σ1 is the output neuron of
the system. Further neurons will be associated with the counters and the labels
of M ; all of them being initially empty.

The construction consists of modules simulating the ADD and SUB instruc-
tions of M , as well as a final module. We present here, in Figure 1, only the SUB
module.

Let us start with 3T spikes in neuron σli and no spike in other neurons,
except neurons associated with counters; assume that neuron σr holds a number
of spikes of the form 3Tn, n ≥ 0. Assume also that this is the sth instruction
of this type dealing with counter r, for 1 ≤ s ≤ tr, in a given enumeration of
instructions (because li precisely identifies the instruction, it also identifies s).

Some time, neuron σli spikes and sends 3T − s spikes both to σr and to σi,0.
These spikes can be forgotten in this latter neuron, because 2T < 3T − s < 4T .
At a certain time, also neuron σr will fire, and will send 2T + s or 3T + s spikes
to neuron σi,0. If no spike is here, then no other action can be done, also these
spikes will eventually be removed, and no continuation is possible (in particular,
no spike is sent out of the system).

If neuron σi,0 does not forget the spikes received from σli (this is possible,
because of the non-synchronized mode of using the rules), then eventually neuron
σr will send here either 3T + s spikes – in the case where it contains more than
3T −s spikes (hence counter r is not empty), or 2T +s spikes – in the case where
its only spikes are those received from σli . In either case, σi,0 accumulates more
than 4T spikes, hence it cannot forget them.
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li

a3T → a3T−s

r

a3T−s(a3T )+/a6T−s → a3T+s

a3T−s → a2T+s

i, 0

aq → λ

for 2T < q < 4T

a5T → a2T

a6T → a3T

i, 1

a2T → λ

a3T → a3T

i, 2

a3T → λ

a2T → a2T

i, 3

a3T → λ

a2T → a2T

i, 4
a4T → a3T

lj
a3T → aδ(lj)

lk
a3T → aδ(lk)

Fig. 1. Module SUB (simulating li : (SUB(r), lj , lk))

Depending on the number of spikes accumulated, either 6T or 5T , neuron σi,0
eventually spikes, sending 3T or 2T spikes, respectively, to σi,1, σi,2, and σi,3.
The only possible continuation of neuron σi,1 is to activate neuron σlj (precisely
in the case where the first counter of M was not empty). Neurons σi,2 and σi,3
will eventually fire and either forget their spikes or send 4T spikes to neuron
σi,4, which activates σlk (in the case where the first counter of M was empty).

It is important to note that if any neuron σi,u, u = 1, 2, 3, skips using the rule
which is enabled and receives further spikes, then no rule can be applied there
anymore and the computation is blocked, without sending spikes out.

The simulation of the SUB instruction is correct in both cases, and no “wrong”
computation is possible inside the module from Figure 1. What remains to ex-
amine is the possible interferences between modules, for instance, between neu-
rons σr for which there are several SUB instructions, and this was the reason
of considering the number T in writing the contents of neurons and the rules.
Specifically, each σr for which there exist tr SUB instructions can send spikes to
all neurons σi,0 as in Figure 1. However, only one of these target neurons also
receives spikes from a neuron σli , the one identifying the instruction which we
want to simulate. By a careful analysis of the number of spikes a neuron can
receive, the reader can check that the only computations in Π which can reach
the neuron σlh associated with the halting instruction of M are the computa-
tions which correctly simulate the instructions of M and correspond to halting
computations in M .

In a similar way we construct the ADD and FIN modules of an SN P system
Π (the reader can find the detailed construction in the technical report [1]).
Hence Nnsyn

gen (Π) = N(M).
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Theorem 1 can be extended by allowing more output neurons and then simu-
lating a k-output CM, producing in this way sets of vectors of natural numbers.

4 Characterization of Unbounded SN P Systems by
Partially Blind Counter Machines

For the constructions in this section, we restrict the SN P systems syntactically to
make checking a valid computation easier. Specifically, for an SN P system with
unbounded neurons σ1, . . . , σk (one of which is the output neuron) we assume as
given non-negative integers m1, . . . , mk, and for the rules in each σi we impose
the following restriction: If mi > 0, then ami /∈ L(E) for any regular expression
E appearing in a rule of neuron σi. This restriction guarantees that if neuron
σi contains mi spikes, then the neuron is not fireable. It follows that when the
following conditions are met during a computation, the system has halted and
the computation is valid: (1) All bounded neurons are open, but none is fireable,
and (2) each σi contains exactly mi spikes (hence none is fireable, too). This way
of defining a successful computation, based on a vector (m1, . . . , mk), is called
μ-halting. In the notation of the generated families we add the subscript μ to N
or to Ps, in order to indicate the use of μ-halting.

A partially blind k-output CM (k-output PBCM) is a k-output CM, where
the counters cannot be tested for zero. The counters can be incremented by 1
or decremented by 1, but if there is an attempt to decrement a zero counter,
the computation aborts (i.e., the computation becomes invalid). Note that, as
usual, the output counters are nondecreasing. Again, by definition, a successful
generation of a k-tuple requires that the machine enters an accepting state with
all non-output counters zero.

We denote by NPBCM the set of numbers generated by PBCMs and by
PsPBCM the family of sets of vectors of numbers generated by using k-output
PBCMs. It is known that k-output PBCMs can be simulated by Petri nets, and
vice-versa. Hence, PBCMs are not universal.
Basic Construction: Let C be a partially blind counter. It is operated by
a finite-state control. C can only store nonnegative integers. It can be incre-
mented/decremented but when it is decremented and the resulting value become
negative, the computation is aborted. Let i, j, d be given fixed nonnegative in-
tegers with i ≥ 0, j > 0, d > 0. Initially, C is incremented (from zero) to some
m ≥ 0. Depending on the finite-state control (which is non-deterministic), one of
the following operations is taken at each step: (1) C remains unchanged; (2) C is
incremented by 1; (3) If the contents of C is of the form i+ kj (for some k ≥ 0),
then C is decremented by d. Note that in (3) we may not know whether i+ jk is
greater than or equal to d, or what k is (the multiplicity of j), since we cannot
test for zero. But if we know that C is of the form i + jk, when we subtract d
from it and it becomes negative, it aborts and the computation is invalid, so we
are safe. Note that if C contains i + jk and is greater than or equal to d, then
C will contain the correct value after the decrement of d. We can implement the
computation using only C and the finite-state control as follows:
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Case: i < j. Define a modulo-j counter to be a counter that can count from 0 to
j−1. We can think of the modulo-j counter as an undirected circular graph with
nodes 0, 1, . . . , j−1, where node s is connected to node s+1 for 0 ≤ s ≤ j−2 and
j − 1 is connected to 0. Node s represents count s. We increment the modulo-j
counter by going through the nodes in a “clockwise” direction. So, e.g., if the
current node is s and we want to increment by 1, we go to s + 1, provided
s ≤ j − 2; if s = j − 1, we go to node 0. Similarly, decrementing the modulo-j
counter goes in the opposite direction, i.e., “counter-clockwise” – we go from s
to s − 1; if it is 0, we go to s − 1.

The parameters of the machine are the triple (i, j, d) with i ≥ 0, j > 0, d > 0.
We associate with counter C a modulo-j counter, J , which is initially in node
(count) 0. During the computation, we keep track of the current visited node
of J . Whenever we increment/decrement C, we also increment/decrement J .
Clearly, the requirement that the value of C has to be of the form i + kj for
some k ≥ 0 in order to decrement by d translates to the J being in node i, which
is easily checked.
Case: i ≥ j. Suppose i = r + sj where s > 0 and 0 ≤ r < j. There are two
subcases: d > i−j and d ≤ i−j. We can show (we omit the “tricky” consruction
here) that both subcases can also be implemented.

Using the above construction we get the following, rather surprising result.

Theorem 2. NμSpiktotEPnsyn
∗ (unb, del0) = NPBCM .

Proof. (sketch) We describe how a PBCM M simulates an unbounded 0-delay
SN P system Π . Let B be the set of bounded neurons; assume that there are
g ≥ 0 such neurons. The bounded neurons can easily be simulated by M in its
finite control. So we focus more on the simulation of the unbounded neurons.
Let σ1, . . . ., σk be the unbounded neurons (one of which is the output neuron).
M uses counters C1, . . . , Ck to simulate the unbounded neurons. M also uses a
nondecreasing counter C0 to keep track of the spikes sent by the output neuron
to the environment. Clearly, the operation of C0 can easily be implemented by
M . We introduce another counter, called ZERO (initially has value 0), whose
purpose will become clear later.

Assume for the moment that each bounded neuron in B has only one rule,
and each unbounded neuron σt (1 ≤ t ≤ k) has only one rule of the form
ait(ajt)∗/adt → aet . M incorporates in its finite control a modulo-jt counter, Jt,
associated with counter Ct, implemented by using the above basic construction.
One step of Π is simulated in five steps by M as follows:

1. Non-deterministically choose a number 1 ≤ p ≤ g + k.
2. Non-deterministically select a subset of sizepof theneurons inB∪{σ1, . . . , σk}.
3. Check if the chosen neurons are fireable. The neurons in B are easy to

check, and the unbounded neurons can be checked using their associated
Jt’s (modulo-jt counters). If at least one is not fireable, abort the computa-
tion by decrementing counter ZERO by 1.
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4. Decrement the chosen unbounded counter by their dt’s and update their
associated Jt’s. The chosen bounded counters are also easily decremented by
the amounts specified in their rules (in the finite control).

5. Increment the chosen bounded counters and unbounded counters by the total
number of spikes sent to the corresponding neurons by their neighbors (again
updating the associated Jt’s of the chosen unbounded counters). Also, incre-
ment C0 by the number of spikes the output neuron sends to the environment.

At some point, M non-deterministically guesses that Π has halted: It checks
that all bounded neurons are open and none is fireable, and the unbounded neu-
rons have their specified values of spikes. M can easily check the bounded neurons,
since they are stored in the finite control. For the unbounded neurons, M decre-
ments the corresponding counter by the specified number of spikes in that neuron.
Clearly, C0 = x (for some number x) with all other counters zero if and only if the
SN P system outputs x with all the neurons open and non-fireable (i.e., the system
has halted) and the unbounded neurons containing their specified values.

It is straightforward to verify that the described construction generalizes to
when the neurons have more than one rule. An unbounded neuron with m rules
will have associated with it m modulo-jtm counters, one for each rule and during
the computation, and these counters are operated in parallel to determine which
rule can be fired. A bounded neuron with multiple rules is easily handled by the
finite control. We then have to modify item 3 above to:
3’. Non-deterministically select a rule in each chosen neuron. Check if the cho-
sen neurons with selected rules are fireable. The neurons in B are easy to check,
and the unbounded neurons can be checked using the associated Jt’s (modulo-jt

counters) for the chosen rules. If at least one is not fireable, abort the computa-
tion by decrementing counter ZERO by 1.

The proof of the converse, which we omit (for lack of space), is an intricate
modification of the simulation in the proof of Theorem 1. Because each neuron
can only have either bounded rules or unbounded rules (but not both), the
simulation by PBCM is possible.

Theorem 2 can be generalized to the case with multiple outputs:

Theorem 3. PsμSpiktotEPnsyn
∗ (unb, del0) = PsPBCM .

This is the best possible result we can obtain, since if we allow bounded rules and
unbounded rules in the neurons, SN P systems become universal (Theorem 1).

It is known that PBCMs with only one output counter can only generate
semilinear sets of numbers. Hence:

Corollary 1. Unbounded 0-delay SN P systems with μ-halting can only generate
semilinear sets of numbers.
The results in the following corollary can be obtained using Theorem 3 and the
fact that they hold for k-output PBCMs.

Corollary 2. 1. The sets of k-tuples generated by k-output unbounded 0-delay
SN P systems with μ-halting is closed under union and intersection, but not
under complementation.
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2. The membership, emptiness, infiniteness, disjointness, and reachability prob-
lems are decidable for k-output unbounded 0-delay SN P systems with μ-
halting (for reachability, we do not need to define what is a halting configura-
tion as we are not interested in tuples the system generates); but containment
and equivalence are undecidable.

5 Final Remarks

Many issues remain to be investigated for asynchronous SN P systems. We only
mention two of them: whether or not asynchronous SN P systems with standard
rules (i.e., that can only produce one spike) are Turing complete and whether or
not the decidability results proved in Section 4 can be proved by using the usual
halting (i.e., by removing the μ-halting).
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4. Ibarra, O.H., Păun, A., Păun, Gh., Rodŕıguez-Patón, A., Sosik, P., Woodworth, S.:
Normal forms for spiking neural P systems. Theoretical Computer Sci. (to appear)
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