Fundamenta Informaticae 116 (2012) 129-140 129
DOI 10.3233/FI-2012-674
10S Press

A Survey of Results on Stateless Multicounter Automata

Oscar H. Ibarra*f

Department of Computer Science, University of California
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Omer Egecidjlu

Department of Computer Science, University of California
Santa Barbara, CA 93106, USA

omer@cs.ucsb.edu

Abstract. A stateless multicounter machine hascounters operating on a one-way input delimited
by left and right end markers. A move of the machine depentisamnthe symbol under the input
head and the sign pattern of the counters. An input stringdsated if, when the input head is started
on the left end marker with all counters zero, the machine®:adly reaches the configuration where
the input head is on the right end marker with all the couragesn zero.

We bring together a number of results on stateless multisos@utomata of various different types:
deterministic, nondeterministic, realtime (the inputdhezoves right at every step), or non-realtime.
We investigate realtime and non-realtime machines in betérdhinistic and nondeterministic cases
with respect to the number of counters and reversals. Irntiaddd hierarchy results, we also con-
sider closure properties and the connections to statelahaad automata.

Keywords: Stateless multicounter machines, reversal-boundetfimea non-realtime, hierarchy,
stateless multihead automata, closure properties.

1. Introduction

There has been recent interest in studying stateless neschirhich is to say machines with only one
state), see e.g. [15], because of their connection to peaspects of membrane computing aRd
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systems, a subarea of molecular computing that was intestinca seminal paper by Gheorge Paun [13]
(see also [14]). A membrane infa system consists of a multiset of objects drawn from a giveitefin
type set{as,...,ar}. The system has no global state (i.e., it is stateless) amkisvem the evolution of
objects in a massively parallel way. Thus, the membrane eandxleled as having counters, . . ., z;

to represent the multiplicities of objects of types, ..., a;, respectively, and thé”® system can be
thought of as a counter machine in a nontraditional form:heut states, and with parallel counter
increments/decrements. However in this paper, we onlyidenstateless machines with sequential
counter increments/decrements.

Since stateless machines have no states, the move of suathmedepends only on the symbol(s)
scanned by the input head(s) and the local portion of the memut(s). Acceptance of an input string
has to be defined in a different way. For example, in the case mfshdown automaton (PDA), ac-
ceptance is by “null” stack. It is well known that nondeteniatic PDAs with states are equivalent to
stateless nondeterministic PDAs [6]. However, this is no for the deterministic case [10]. For Turing
Machines, where acceptance is when the machine entersrgt@infiguration, it can be shown that the
stateless version is less powerful than those with state§, 19, 15] the computing power of stateless
multihead automata were investigated with respect to iecgoblems and head hierarchies. For these
devices, the input is provided with left and right end maskeFhe move depends only on the symbols
scanned by the input heads. The machine can be determinigtideterministic, one-way, two-way. An
input is accepted if, when all heads are started on the |eftnearker, the machine eventually reaches
the configuration where all heads are on the right end mahkgL1], various types of stateless restart-
ing automata and two-pushdown automata were compared twothesponding machines with states.
Properties of a variant in which the machine is a stateledigounter Watson-Crick automaton [5] is
considered in [1, 2, 12].

In this paper, we consider the computing power of statelassicounter machines with reversal-
bounded counters, stating known properties of these meshincluding a subset of the proofs of the
results. Such a machine hascounters. It operates on a one-way input delimited by ledt aght end
markers. The move of the machine depends only on the symbet tine input head and the signs of the
counters, which indicate if the counter is zero or not. Aruingtring is accepted if, when the input head
is started on the left end marker with all counters zero, taehime eventually reaches the configuration
where the input head is on the right end marker with all thentens again zero. Moreover, in most
interesting cases, the machinekiseversal bounded7]: in other words for a specified, no counter
makes more that pairs of consecutive increase/decrease alternationsebatimcreasing mode and
decreasing mode (i.&. successive pairs of increase content/decrease contgaskta any computation,
accepting or not.

2. Stateless Multicounter Machines

A deterministic stateless (one-way)-counter machine operates on an input of the fein$, where¢
and$ are the left and right end markers for the inputAt the start of the computation, the input head is
on the left end marker and allm counters are zero. The moves of the machine are describeddiyof
rules of the form: (z, s1, .., s;m) — (d,e1,...,em), Wherez € X U {¢, $}, X is the input alphabet; =
sign of countelC; (0 or 1 for positive)d = 0 or 1 (direction of the move of the input heatl= 0 means
don’'t move,d =1 means move the head one cell to the right), ang +, —, or 0 (increment counter
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by 1, decrement countetby 1, or do not change countgr with the restriction that; = — is applicable
only if s; = 1. For a deterministic machine, no two rules have the safhkdad sides.

The inputw is accepted if the machine reaches the configuration wherapiut head is on the right
end marke# and all counters are zero. The maching-i®versalif it has the property that each counter
makes at mosk “full” alternations between increasing mode and decrepsinode and vice-versa on
any computation (accepting or not). Thus, ekg= 2 means the counter can only go from increasing to
decreasing to increasing to decreasing. A machimevisrsal-boundedf it is k-reversal for somé.

In the general case, when the input head reaghdise machine can continue computing until all
counters eventually become zero for an input that is acdeptespecial case is when the machine is
realtime in this casai = 1 for each rule, i.e., the input head moves right at each sthjs mMeans that
when the input head reachgsall the counters must be zero for the input to be accepteterd@istic
realtime machines were investigated in [3], where hieii@sctvith respect to the number of counters and
number of reversals were studied.non-realtimemachines! can be 0 or 1. In particular, when the input
head reache$, the machine can continue computing until all counters becpero, and then accept. A
stateless multicounter machine is nondeterministic fiedént rules are allowed to have identical left
hand sides. Hierarchies and properties of deterministiltinee machines were studied in [8].

It can be shown that stateless realtime multicounter mashéme quite powerful, even in the unary
input alphabet case &f = {a}. We report the following basic characterization of the lzenges accepted
by realtime multicounter machines over a unary alphabetrodfpof this characterization result can be
found in [3].

Theorem 2.1. Every language over = {a} accepted by a stateless realtime multicounter machine
is of the forma” (a®)* for somer, s > 0.

3. 1-Reversal Machines

The simplest reversal-bounded machines are l-reversanyraccepting computation, the contents of
the counters may increase, followed by a decrease to zemmalehine can be realtime or non-realtime.

3.1. 1-Reversal Realtime Machines

For 1-reversal realtime machines accepting only a singlietoguage of the formh = {a™}. The precise
value of the maximum such can be determined. The program of the machine achievingtisisinique
(up to relabeling of the counter indices). Note that we caarpreta™ as the “maximum” number that
a 1-reversain-counter machine can count. In [3], an upper bound on how &idffreversalm-counter
machine can count is provided. The construction proves

Theorem 3.1. We can construct a 1-reversal realtime machifig with m counters which accepts the
singleton{a"} with

n=m-12"+m. (1)
The value ofn given in (1) is the maximal value that a single revensatounter machine can count.

Furthermore, the program of any machine that achieves thisid is unique up to relabeling of the
counters.
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For 1-reversal realtime machines+ 1 counters is better than counters. Here we no longer assume
that the language accepted is a singleton (or finite), noalipleabet is unary.

Theorem 3.2. SupposeL is accepted by a realtime 1-reversal machine witlcounters. TherL is
accepted by a realtime 1-reversal machine with- 1 counters. Furthermore the containment is strict.

Proof:

Given a realtime 1-reversal machiné with m counters that accepf&/, we can viewM as anm + 1
counter machine which behaves exactly likeon the firstn counters, and never touches the + 1)-st
counter. Since the acceptance of an input string is definesht®ring$ when all counters are zero, this
machine is also 1-reversal and acceptBy theorem 3.1, the singletofu” | n = m2™+! +m + 1} is
accepted by the 1-reversal machihg, , ;. Since(m — 1)2™ + m < m2™! +m + 1 for m > 0, this
language is not accepted by any 1-reversal realtime mag¥ithen-counters. O

3.2. 1-Reversal Non-realtime Machines

Clearly, any language accepted by a realtime machine cacdepi®d by a non-realtime machine. How-
ever the latter is strictly more powerful. Far € ¥* anda € X, we define|w|, as the number of
occurrences of in w.

Theorem 3.3. The languagd. = {w | w € {a,b}*, |w|, = |w|y} can be accepted by a stateless non-
realtime 1l-reversal 2-counter machifné but not by a stateless realtintereversalm-counter machine
for anyk,m > 1.

Proof:

M has counterg’; andC5. On inputew$, M reads the input and stores the numbet'sf(resp.,b’s)

it sees inCy (resp.,C2). When the input head reachgsthe counters are decremented simultaneously

while the head remains dh M accepts if and only if the counters become zero at the sange tim
Supposel is accepted by some realtintereversalm-counter machiné/’. Letx be a string with

|x|, = |z|p > 0. Thenx is accepted by, i.e., M’ on inputex$, starts with the input head enwith all

counters zero, computes, and accepts after reading theylasiol of 2 with all counters again at zero.

Consider now giving inputab to M’. After processing, all counters are zero. Clearly, after processing

symbola, at least one counter @/’ must increment; otherwise (i.e., if all counters remaineab}, M’

will accept all strings of the forma? for all i, a contradiction. Then after processimall counters must

again be zero, sinceab is in L. It follows that on inputzab, at least one counter made an additional

reversal than on input. Repeating the argument, we see that for soméab) will require at least one

counter to maké: + 1 reversals. Therefor&/’ cannot be:-reversal for any:. O

Theorem 3.3 can be made stronger. Call a non-realtime sMeosinded multicounter machine
restrictedif it can only accept an input when the input head first reathesight end marke$ and all
counters are zero. Hence, there is no applicable rule wieeimplut head is ofi. However, the machine
can be non-realtime (i.e., need not move at each step) widmetid is not o8. The machine can also
be nondeterministic. An argument similar to the proof of ifeen 3.3 can be used to prove the following
result:
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Corollary 3.4. L = {w | w € {a,b}*,|w|, = |w|p} cannot be accepted by any stateless restricted
nondeterministic non-realtime reversal-bounded muliiter machine.

Finally there is also an example of a unary singleton langubgt is accepted by a non-realtime 1-
reversal machine that does not seem to be acceptable byimeehtreversal machine. Our construction
uses a technique in [9] where it was shown that the languagbecaccepted by a statelé@s:+1)-head
machine.

Theorem 3.5. For everym > 1, the singleton language = {a*"~'} can be accepted by a stateless
non-realtime 1-reversa@l(m + 1)-counter machiné@/.

Proof:

Let the counters b@,1,...,2m + 1. Counters2,...,2m + 1 form m pairs (i, + m). Initially all
counters are zero and the input head is on the left end maverdescribe the computation 8f on
input ¢a™$ in two phases.

Loading phase:

In this phase, the input head is moved to the right while siamélously counters, ..., 2m + 1 are
incremented by 1 for every right move of the head. When thatihpad reache$, counter 0 has value
zero and counters, ..., 2m + 1 have valuen + 1. ThenM enters the next phase.

Computing phase:

When this phase is entered, the input head is on the right emkem counter O has value zero and
countersl, ..., 2m + 1 each have value + 1. We will refer to counter 1 as the head counter. The input
head remains on the right end marker during this phase.

First, counter 0 is incremented by 1, countérg,...,m + 1 (i.e., the main counter and the first
counter from each pair) are decremented by 1, while counter2, ..., 2m + 1 (second components of
all pairs) remain unchanged with valuet 1.

Then countergm + 1,2m + 1) (that is, the last pair), whose difference (in value) is @are,decre-
mented untilm + 1 becomes zero. From here, countér®,...,m (the main counter and the first
components of all unused pairs) are decremented simultahewith counter2m + 1, until counter
2m + 1 becomes zero. This will take only one step, and after thanteos, 2, ..., m will have value
n — 1, countersn + 2, ..., 2m will have valuen + 1, while countersn + 1 and2m + 1 will have value
zero.

Then the next paifm, 2m) is taken, and the same sequence of steps is repeated. Ndteethéfer-
ence in values between these counters is how 2. The reshltisduntersn and2m are decremented
to zero, while counters, 2, ..., m — 1 will have valuen — 3. This is continued with the rest of the pairs,
until the following configuration is reached: counter 0 hakie 1, counters 1 and 2 have val@gs !,
counterm + 2 has valuen + 1, and all other counters are zero.

From here, counters 2 and + 2 are decremented until counter 2 becomes zero. At this point,
counters 1 aneh + 2 have same value if and only if the length of the string'fs— 1. After that counters
1 andm + 2 are decremented and the input is accepted if and only if tbeseters become zero at the
same time. This happens if and only if the input has le2jth- 1. O
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4. k-Reversal Machines

Now we consider the properties bfreversal machineg;, > 1. The next result gives an upper bound on
the maximaln that is countable by &-reversalm-counter machine.

Theorem 4.1. If the upper bound om for a realtime 1-reversain-counter machine igf(m), then
f((2k — 1)m) is an the upper bound anfor a k-reversalmn-counter machine.

Proof:

We sketch the proof. Let = {a"} be a singleton language accepted iy r@versalm-counter machine
M. We will show how we can construct froM a 1-reversa(2k — 1)m-counter machind/’ that makes
at least as many steps Asand accepts a languadgé = {a”'} for somen’ > n. The result then follows.
The construction of\/’ from M is based on the following ideas:

1. Consider first the case = 2. Assume for now that the counters reverse from decreasing to
increasing at different times.

2. LetC be a counter inV/ that makes 2 reversals. We associate Witthree counter€’, 7', C’ in
M'. Initially, T = C" = 0.

3. C'in M’ simulatesC in M as long ag”' does not decrement. When decrements]' is set to 1
(i.e., itis incremented). Then as long@xoes not increment the simulation continues.

4. WhenC'in M increments(C in M’ is decremented while simultaneously incrementirfguntil
C becomes zero. During the decrementing process all othette@@uremain unchanged. But to
make M’ operate in realtime, its input head always reads daring this process.

5. When the counte€ of M’ becomes zerd] is set to zero (i,e., it is decremented), aftlis
incremented by 1.

6. Then the simulation continues witff taking the place of®. CountersC' andT' remain at zero
and no longer used.

So if C'in M makes 2 reversals, we will need three 1-reversal courdtes C’ in M'. If C makes

3 reversals, we will need five 1-reversal countétsl’,C’,T',C"” in M’. In general, ifC makesk
reversals, we will nee®k — 1) 1-reversal counters if/’. It follows that if there aren counters where
each counter makédsreversals, we will nee@2k — 1)m 1-reversal counters. If some of the counters
“reverse” (to increasing) at the same time, we handle thestesyatically one at a time, by indexing the
counters. O

From Theorem 4.1 and Theorem 3.1 we obtain:
Corollary 4.2. If L = {a™} is accepted by a realtimereversatlm-counter machine, then
n < ((2k —1)ym —1)2%F=D" 4 9k — 1)m .

It is also true that the number of counters matters for maalti-reversal machines. The following result
is proved in [3].
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Theorem 4.3. For any fixedk, there is a language accepted by a realtireversal(m + 1)-counter
machine which is not accepted by akwyeversalm-counter machine.

The next result, also shown in [3], gives a hierarchy withpees$ to the number of reversals for
any fixedm, but some assumption on the number of revergails necessary for the hierarchy to be
guaranteed.

Theorem 4.4. For any fixedm andk < 2™~!/m, there is a language accepted by a realtjifne- 1)-
reversaln-counter machine which is not accepted by aagversalm-counter machine.

5. Counter and Reversal Hierarchies
Fornon-realtimemachines, the following result proved in [3] relates the benof reversals to counters.

Theorem 5.1. If alanguagel is accepted by a stateless non-realtita@versaln-counter machine then
it can be accepted by a stateless non-realtime 1-rev@®at 1)m-counter machine.

First we prove that there is a hierarchy with respect to thmlyer of counters for stateless non-
realtime machines.

Lemma5.2. Fork, m > 1, there is a uniqgue maximal numbgtk, m) such that the singleton language
L = {af*™)} is accepted by a stateless non-realtitaeversalm-counter machine. (We refer b as
“maximal”.)

Proof:

Follows from the fact that the singleton langudge is accepted by a non-realtime 1-reversal 1-counter
machine and the fact that the number of non-realtirreversaln-counter machines is finite, depending
only onk andm. O

Theorem 5.3. Form > 1, m + 1 counters can do more than counters for stateless non-realtime
k-reversal machines.

Proof:
Clearly, any language accepted by a non-realtiyreversalm-counter machine can be accepted by a
k-reversal(m + 1)-counter machine.

Now let M a non-realtime-reversalm-counter machine accepting the maximal languggé (for
somen). Such a languages exists by the above lemma. Let the cewftéf be C1, ..., C,,. We will
construct a non-realtime-reversalm + 1)-counter machiné/’ accepting{a™*'}. It would then follow
thatm + 1 counters are better than counters.

M’ will have counterg’y, . .., Cp,, Crir @nd its rules are defined as follows:

0,e1,...,en)isin M, then
0,e1,...,€m,0)isin M.

1. 1f(c,81,...,8m
(¢,$1,-+,8m,0

2. If (¢,s1,...,s

(C,Sl,...,Sm,

l,e1,...,ey,)Iisin M, then
le1,...,em,1)isin M’.

o 3
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3. If (a,81,...,8m) — (d,e1,...,en)isin M, then
(a,s1,...,8m,1) = (1,0,...,0,—1)isin M".

4. If (z,81,...,8m) = (d,e1,...,en)isin M, then
(,815.+8m,0) = (d,e1,...,em,0)isin M’ for z € {a, $}.

O

Note that the above result and proof hold for the realtime.césfact, in the construction, case 1 does
not apply; in case 251 = --- = s, = 0, and in case 4 = a andd = 1. As in the realtime case, the
following result can be shown [8]:

Theorem 5.4. For any fixedm andk < 2%*1/m, there is a language accepted by a stateless 1)-
reversalm-counter machine which is not accepted by any statdleesersalm-counter machine.

6. Closure Properties

Theorem 6.1. The class of languages accepted by stateless determmisticealtimek-reversal multi-
counter machines is closed under intersection, union, amgplementation.

Proof:
Let M7 and M5 be two such machines.

Intersection:

Let M, and M> havem andn counters, respectively. We construct a machiievhich simulates
these machines in parallel hasm + n counters to simulate the counters&f, and M, using the
following rules:

1 0f (z,81,...,8m) = (d,e1,...,en) in My and (z,s},...,s),) — (d,e},...,€e),) in M, then
(X, 815 eey Sy Shs ey i) = (Ty€1,. 0 em €l .. en)in M.

2. If (z,81,...,8m) = (0,e1,...,em) in M and(ac,s’ll,...,,s;l) — (1,€},...,€}) in My, then
(@) 815 eySmyShy-veySh) = (T,€1,. . €m,0,...,0)in M.

3.0 (z,81,...,8m) — (Le1,...,en)in My and(z,s],...,s)) — (0,€¢),...,€,) in My, then
(X, S15eey SmyShsevny8h) = (2,0,...,0,€],...,¢el,)in M.

Complementation and Union:

Given M7, we construct a machin&/ which accepts the complement of the language accepted by
M;. In the addition to then counters ofA/;, M uses a new countdr. Before the simulation)/ sets
T to 1. ThenM simulates)M;. If M, does not accept the input, either by getting stuck at sonrd pai
the input or reaching and not able to zero all the countefd, decrements all the counters to zero and
setsT" to 0. Closure under union follows, since the class of langaag closed under intersection. O

We believe a “pumping lemma” type result for stateless deit@stic non-realtime reversal-bounded
multicounter machines can be shown, but we have not quitiedeall the details. Such a lemma would
be of the form:
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Supposd. is the language accepted by a stateless deterministicaadtinne reversal-bounded-counter
machine over a unary alphabet. Iifis infinite, then there exists somg > 0 such that fom > ng,
a" € Limpliesa™t! € L.

It would then follow that the languagé = {a?" | n > 1} cannot be accepted by any stateless
deterministic non-realtime reversal-bounded multiceumachine.

7. Equivalence to Stateless Multihead Automata

It turns out that stateless non-realtime reversal-boumdeticounter machines over a unary alphabet are
equivalent to stateless multihead automata.

A statelessn-head machine (over unary inputj operates on an inputz”$, where¢ and$ are the
left and right end markers. The initial configuration is wradhm heads are on the left end marker
and the accepting configuration is whenralheads reach the right end maremwhich we assume is a
halting configuration. The moves are defined by a set of rdflésecform: (¢4, ..,4,,) — (d1,...,dn)
where/; is the symbol under head(can bec, a, $), d; = 0 or 1 (direction of move of head: no move
or move right one cell). Note that since the machine is detestic, no two rules can have the same left
hand sides. Also there is no rule with left hand sile .. , $).

Lemma 7.1. Any stateless multihead automatdd can be converted to an equivalent stateless non-
realtime 1-reversal multicounter maching'.

Proof:

Letthe heads of/ be H1, ..., H,,. M’ will have an input head artin counters’, ..., C,,, T, ..., Ty,
which are initially zero. When givena"$, M’ reads the input while simultaneously incrementing the
m countersCt, ..., C,,. When the input head reaches the right end matkeachC; will have value

n + 1. ThenM’ simulatesM. The input head ofi/’ remains orf during the simulation. Counte;
simulates the actions of hedd;;,. Moving headH; one cell to the right is simulated by decrementing
C;. Note that at the start of the simulatidf,, ..., T,, are zero. This corresponds to the configuration
when all the heads aff are on the left end market WhenC; is first decremented (corresponding to
H; moving right of¢), T; is set to 1. When the countefs, .. ., C,, become zero (corresponding to all
headsH., ..., H,, reaching$), theT;’s are decremented and the input is accepted. O

Lemma 7.2. Any stateless non-realtime 1-reversal multicounter maelsan be converted to an equiv-
alent stateless multihead automatiafi.

Proof:

(Sketch.) First consider a stateless non-realtime 1-savércounter machin&/ with input headHd and
counterC. We construct a stateless multihead automatfinequivalent toM/. M’ will have 6 heads
Hy, Hy,Cq,Cy, Ty, Ty. Initially, all heads ofM’ are one. M’ simulatesM as follows:

1. HeadsH; andC; simulate headd and counteiC' of M, respectively, where “incrementing”
corresponds to “movingC to the right on the input.

2. WhenC' decrements)/’ movesT; right to the next symbol (indicating a new situation).
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3. M’ restarts the simulation o¥/ (from the beginning) but now using, andC5 (to simulate /
andC) and at same timé'; is moved along wittCy when the latter is incrementing.

4. WhenC; decrements)’ movesTs; right to the next symbol (indicating yet again another situa
tion) and suspend the simulation, i.&l; andCs are not moved. At this time, if’; is in position
d, then(1 is in position2d, i.e., the “distance” between these heads. is

5. C; and(C5y are moved to the right in parallel until; reachesf. Note that the “distance” between
C1 (which is now on$) andC; is still d.

6. ThenM’ usesH; and (5 to resume the simulation df/, but C, now simulates the decreasing
phase of countef’ of M by moving right on the inputC, reaching$ indicates that countet’ of
M has value 0.

M’ accepts the language acceptedMdy When M has several 1-reversal counters, the construction of
M’ above can be generalized. We omit the details. O

From Theorem 5.1 and the above lemmas, we have the folloviatacterization:

Theorem 7.3. A languageL over a unary alphabet is accepted by a stateless non-realéuaersal-
bounded multicounter machine if and only if it can be acog |y a stateless multihead automaton.

8. Nondeterministic Machines and Semilinear Sets

Recall that in a nondeterministic machine some rules caa the/same left hand sides. In this section, we
characterize bounded languages accepted by statelesstaamihistic reversal-bounded non-realtime
multicounter machines in terms of semilinear sets.

A languagelL is boundedf there are distinct symbols, , . .., a, such thatL C aj - - - a;. The Parikh
map ofL, 4)(L), is defined to be the set oftuples of nonnegative integeféis, . . ., i) |a’ ---a'r € L}.

Let IN be the set of nonnegative integers artok a positive integer. A subsétof IN" is alinear set
if there exist vectorsy, v1,...,v; INnIN" such thal) = {v | v = vg + a1v1 + - - - + ayvy, a; € N} A
set) C IN" is semilinearif it is a finite union of linear sets.

It is known thatL C aj---a; is accepted by a nondeterministic non-realtime reversahted
multicounter machine with states if and onlyif L) is semilinear. This result also holds for stateless
machines. To avoid introducing additional notation, wasttate the ideas with an example below.

Consider the linear s&p = {(2,1) + z(2,3) + y(1,0) | ,y > 0}. The bounded language corre-
sponding to this set i& = {a?*t¥T2p32+1 | 1y > 0}. We will construct a stateless nondeterministic
non-realtime 1-reversal multicounter machiheacceptingL. In the construction, we use some special
types of counters, which we calvitches A switch starts at zero at the beginning of the computation
(when the input head is o), then it is incremented to 1 at some point during the contfmtaand
finally set back to zero before acceptance.

M has countersiy, As, As, By, By, B3 and other counters used as switches. Given inpd; we
may assume that = b for somem, n; otherwise, we can use a switch counter to confirm that a
cannot be followed by aan.
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On inputca™b™$, M operates as follows: while the input is onM incrementsA;, As, By, By, B3
simultaneously,x times, wherer is chosen nondeterministically, after which (using soméches)
increments counteds, y times, wherey is chosen nondeterministically. Then it checks that=
A1 + Ay + A3 + 2. This is done by first reading &s (again using some switches). Then it reads the
rest of thea-segment while decrementing; until it becomes zero, then decrementidg until it too
becomes zero, and decrementifguntil it becomes zeroM’s head will be on the firsk if and only if
m = A1+ As + A3z + 2. Similarly, by reading thé-segmentM can check thatn = B, + By + B3 + 1,
and this holds if and only if the head reacl¥eshen counte33 becomes zero.

If Q is a semilinear set we can construct a machine for each lisetaand then combine these
machines into one machine that nondeterministically $&lese of the machines to simulate. (We will
need to use additional switches for this.)

One can formalize the discussion above to prove the “if” pathe next result. The “only if” part
follows from the fact that it holds for machines with stat@k [

Theorem 8.1. L C a7 ---a; can be accepted by a stateless nondeterministic nonmneatteversal-
bounded multicounter machine if and only/ifL) is semilinear.

Corollary 8.2. L C aj ---a; is accepted by a stateless nondeterministic non-realéversal-bounded
multicounter machine with states if and only if it can be gqted by a stateless nondeterministic non-
realtime reversal-bounded multicounter machine.

9. Examples for the Unbounded Reversal Case

The examples in this section are from [8], although the tetditheir construction are not provided. We
begin with a stateless non-realtime counter machine tiepas the language = {a® | i > 0}. What
is interesting is that this can be accepted by a machine withdbcounters.

Here the input igaas - - - a,,$ with the read head initially on the left end markeand allm counters
zero. The head moves to the right at each step. Dependingeaythbol under the head and the signs
of the counters, a counter is decremented (if positiveyeimented, or left the same. Once the head
reaches th& sign, further moves are possible, depending on the sigrieeafdunters only. The machine
accepts if the counters all become zero. Since further maneeallowed after the head reaches3hthe
machine is non-realtime.

Let us consider the unary alphabet. The inputs are of the fafth. We can show the following:

Proposition 9.1. The languagel, = {a?i | i > 0} is accepted by a stateless non-realtime 4-counter
machine.

It can also be proved that by adding a fifth counter, the caottm for the proof of the above
proposition can be modified to accept the language

L ={da" | nisatowerof 2§ .

Furthermore the singleton language= {a" | n = m levels of 2's} can be accepted by a machine with
log m + 5 counters. In these examples, the counter machines aresatinme. Interestingly, one can
show that similar results can be obtained for realtime nrashi
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The descriptions of these machines make use o$idpevectorgntroduced in [3] to construct their
explicit moves. They also make use of typesmafdulesthat are constructed by using the patterns of the
sign-vectors. These modules aadledrepeatedly with different counter values ameturn other counter
values. Calls and returns are controlled by the patterniseo$ign-vectors of the counters.

The constructions for the examples given here are not peaviidthis survey due to space limitations.
They can be obtained from the authors.
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