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Abstract. A stateless multicounter machine hasm-counters operating on a one-way input delimited
by left and right end markers. A move of the machine depends only on the symbol under the input
head and the sign pattern of the counters. An input string is accepted if, when the input head is started
on the left end marker with all counters zero, the machine eventually reaches the configuration where
the input head is on the right end marker with all the countersagain zero.

We bring together a number of results on stateless multicounter automata of various different types:
deterministic, nondeterministic, realtime (the input head moves right at every step), or non-realtime.
We investigate realtime and non-realtime machines in both deterministic and nondeterministic cases
with respect to the number of counters and reversals. In addition to hierarchy results, we also con-
sider closure properties and the connections to stateless multihead automata.

Keywords: Stateless multicounter machines, reversal-bounded, realtime, non-realtime, hierarchy,
stateless multihead automata, closure properties.

1. Introduction

There has been recent interest in studying stateless machines (which is to say machines with only one
state), see e.g. [15], because of their connection to certain aspects of membrane computing andP
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systems, a subarea of molecular computing that was introduced in a seminal paper by Gheorge Păun [13]
(see also [14]). A membrane in aP system consists of a multiset of objects drawn from a given finite
type set{a1, . . . , ak}. The system has no global state (i.e., it is stateless) and works on the evolution of
objects in a massively parallel way. Thus, the membrane can be modeled as having countersx1, . . . , xk
to represent the multiplicities of objects of typesa1, . . . , ak, respectively, and theP system can be
thought of as a counter machine in a nontraditional form: without states, and with parallel counter
increments/decrements. However in this paper, we only consider stateless machines with sequential
counter increments/decrements.

Since stateless machines have no states, the move of such a machine depends only on the symbol(s)
scanned by the input head(s) and the local portion of the memory unit(s). Acceptance of an input string
has to be defined in a different way. For example, in the case ofa pushdown automaton (PDA), ac-
ceptance is by “null” stack. It is well known that nondeterministic PDAs with states are equivalent to
stateless nondeterministic PDAs [6]. However, this is not true for the deterministic case [10]. For Turing
Machines, where acceptance is when the machine enters a halting configuration, it can be shown that the
stateless version is less powerful than those with states. In [4, 9, 15] the computing power of stateless
multihead automata were investigated with respect to decision problems and head hierarchies. For these
devices, the input is provided with left and right end markers. The move depends only on the symbols
scanned by the input heads. The machine can be deterministic, nondeterministic, one-way, two-way. An
input is accepted if, when all heads are started on the left end marker, the machine eventually reaches
the configuration where all heads are on the right end marker.In [11], various types of stateless restart-
ing automata and two-pushdown automata were compared to thecorresponding machines with states.
Properties of a variant in which the machine is a stateless multicounter Watson-Crick automaton [5] is
considered in [1, 2, 12].

In this paper, we consider the computing power of stateless multicounter machines with reversal-
bounded counters, stating known properties of these machines, including a subset of the proofs of the
results. Such a machine hasm-counters. It operates on a one-way input delimited by left and right end
markers. The move of the machine depends only on the symbol under the input head and the signs of the
counters, which indicate if the counter is zero or not. An input string is accepted if, when the input head
is started on the left end marker with all counters zero, the machine eventually reaches the configuration
where the input head is on the right end marker with all the counters again zero. Moreover, in most
interesting cases, the machine isk-reversal bounded[7]: in other words for a specifiedk, no counter
makes more thank pairs of consecutive increase/decrease alternations between increasing mode and
decreasing mode (i.e.k successive pairs of increase content/decrease content stages) in any computation,
accepting or not.

2. Stateless Multicounter Machines

A deterministic stateless (one-way)m-counter machine operates on an input of the formcw$, wherec
and$ are the left and right end markers for the inputw. At the start of the computation, the input head is
on the left end markerc and allm counters are zero. The moves of the machine are described by aset of
rules of the form: (x, s1, .., sm) → (d, e1, . . . , em), wherex ∈ Σ ∪ {c, $}, Σ is the input alphabet,si =
sign of counterCi (0 or 1 for positive),d = 0 or 1 (direction of the move of the input head:d = 0 means
don’t move,d =1 means move the head one cell to the right), andei = +,−, or 0 (increment counteri
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by 1, decrement counteri by 1, or do not change counteri), with the restriction thatei = − is applicable
only if si = 1. For a deterministic machine, no two rules have the same left hand sides.

The inputw is accepted if the machine reaches the configuration where the input head is on the right
end marker$ and all counters are zero. The machine isk-reversalif it has the property that each counter
makes at mostk “full” alternations between increasing mode and decreasing mode and vice-versa on
any computation (accepting or not). Thus, e.g.,k = 2 means the counter can only go from increasing to
decreasing to increasing to decreasing. A machine isreversal-boundedif it is k-reversal for somek.

In the general case, when the input head reaches$, the machine can continue computing until all
counters eventually become zero for an input that is accepted. A special case is when the machine is
realtime: in this cased = 1 for each rule, i.e., the input head moves right at each step. This means that
when the input head reaches$, all the counters must be zero for the input to be accepted. Deterministic
realtime machines were investigated in [3], where hierarchies with respect to the number of counters and
number of reversals were studied. Innon-realtimemachinesd can be 0 or 1. In particular, when the input
head reaches$, the machine can continue computing until all counters become zero, and then accept. A
stateless multicounter machine is nondeterministic if different rules are allowed to have identical left
hand sides. Hierarchies and properties of deterministic realtime machines were studied in [8].

It can be shown that stateless realtime multicounter machines are quite powerful, even in the unary
input alphabet case ofΣ = {a}. We report the following basic characterization of the languages accepted
by realtime multicounter machines over a unary alphabet. A proof of this characterization result can be
found in [3].

Theorem 2.1. Every language overΣ = {a} accepted by a stateless realtime multicounter machineM
is of the formar(as)∗ for somer, s ≥ 0.

3. 1-Reversal Machines

The simplest reversal-bounded machines are 1-reversal. Inany accepting computation, the contents of
the counters may increase, followed by a decrease to zero. The machine can be realtime or non-realtime.

3.1. 1-Reversal Realtime Machines

For 1-reversal realtime machines accepting only a singleton language of the formL = {an}. The precise
value of the maximum suchn can be determined. The program of the machine achieving thisn is unique
(up to relabeling of the counter indices). Note that we can interpretan as the “maximum” number that
a 1-reversalm-counter machine can count. In [3], an upper bound on how higha 1-reversal,m-counter
machine can count is provided. The construction proves

Theorem 3.1. We can construct a 1-reversal realtime machineM∗
m with m counters which accepts the

singleton{an} with
n = (m− 1)2m +m . (1)

The value ofn given in (1) is the maximal value that a single reversalm counter machine can count.
Furthermore, the program of any machine that achieves this bound is unique up to relabeling of the
counters.



132 O. Ibarra andÖ. Eğecioğlu / Survey of Stateless Multicounter Automata

For 1-reversal realtime machinesm+1 counters is better thanm counters. Here we no longer assume
that the language accepted is a singleton (or finite), nor thealphabet is unary.

Theorem 3.2. SupposeL is accepted by a realtime 1-reversal machine withm counters. ThenL is
accepted by a realtime 1-reversal machine withm+ 1 counters. Furthermore the containment is strict.

Proof:
Given a realtime 1-reversal machineM with m counters that acceptsM , we can viewM as anm + 1
counter machine which behaves exactly likeM on the firstm counters, and never touches the(m+1)-st
counter. Since the acceptance of an input string is defined byentering$ when all counters are zero, this
machine is also 1-reversal and acceptsL. By theorem 3.1, the singleton{an | n = m2m+1 +m+ 1} is
accepted by the 1-reversal machineM∗

m+1. Since(m− 1)2m +m < m2m+1 +m+ 1 for m > 0, this
language is not accepted by any 1-reversal realtime machinewith m-counters. ⊓⊔

3.2. 1-Reversal Non-realtime Machines

Clearly, any language accepted by a realtime machine can be accepted by a non-realtime machine. How-
ever the latter is strictly more powerful. Forw ∈ Σ∗ anda ∈ Σ, we define|w|a as the number of
occurrences ofa in w.

Theorem 3.3. The languageL = {w | w ∈ {a, b}∗, |w|a = |w|b} can be accepted by a stateless non-
realtime 1-reversal 2-counter machineM but not by a stateless realtimek-reversalm-counter machine
for anyk,m ≥ 1.

Proof:
M has countersC1 andC2. On inputcw$, M reads the input and stores the number ofa’s (resp.,b’s)
it sees inC1 (resp.,C2). When the input head reaches$, the counters are decremented simultaneously
while the head remains on$. M accepts if and only if the counters become zero at the same time.

SupposeL is accepted by some realtimek-reversalm-counter machineM ′. Let x be a string with
|x|a = |x|b > 0. Thenx is accepted byM ′, i.e.,M ′ on inputcx$, starts with the input head onc with all
counters zero, computes, and accepts after reading the lastsymbol ofx with all counters again at zero.
Consider now giving inputxab toM ′. After processingx, all counters are zero. Clearly, after processing
symbola, at least one counter ofM ′ must increment; otherwise (i.e., if all counters remain at zero),M ′

will accept all strings of the formxai for all i, a contradiction. Then after processingb, all counters must
again be zero, sincexab is in L. It follows that on inputxab, at least one counter made an additional
reversal than on inputx. Repeating the argument, we see that for somei, x(ab)i will require at least one
counter to makek + 1 reversals. ThereforeM ′ cannot bek-reversal for anyk. ⊓⊔

Theorem 3.3 can be made stronger. Call a non-realtime reversal-bounded multicounter machine
restrictedif it can only accept an input when the input head first reachesthe right end marker$ and all
counters are zero. Hence, there is no applicable rule when the input head is on$. However, the machine
can be non-realtime (i.e., need not move at each step) when the head is not on$. The machine can also
be nondeterministic. An argument similar to the proof of Theorem 3.3 can be used to prove the following
result:
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Corollary 3.4. L = {w | w ∈ {a, b}∗, |w|a = |w|b} cannot be accepted by any stateless restricted
nondeterministic non-realtime reversal-bounded multicounter machine.

Finally there is also an example of a unary singleton language that is accepted by a non-realtime 1-
reversal machine that does not seem to be acceptable by a realtime 1-reversal machine. Our construction
uses a technique in [9] where it was shown that the language can be accepted by a stateless(2m+1)-head
machine.

Theorem 3.5. For everym ≥ 1, the singleton languageL = {a2
m−1} can be accepted by a stateless

non-realtime 1-reversal2(m+ 1)-counter machineM .

Proof:
Let the counters be0, 1, . . . , 2m + 1. Counters2, . . . , 2m + 1 form m pairs (i, i + m). Initially all
counters are zero and the input head is on the left end marker.We describe the computation ofM on
input can$ in two phases.

Loading phase:
In this phase, the input head is moved to the right while simultaneously counters1, . . . , 2m + 1 are

incremented by 1 for every right move of the head. When the input head reaches$, counter 0 has value
zero and counters1, . . . , 2m+ 1 have valuen+ 1. ThenM enters the next phase.

Computing phase:
When this phase is entered, the input head is on the right end marker, counter 0 has value zero and

counters1, . . . , 2m+ 1 each have valuen+ 1. We will refer to counter 1 as the head counter. The input
head remains on the right end marker during this phase.

First, counter 0 is incremented by 1, counters1, 2, . . . ,m + 1 (i.e., the main counter and the first
counter from each pair) are decremented by 1, while counterm+2, . . . , 2m+1 (second components of
all pairs) remain unchanged with valuen+ 1.

Then counters(m+ 1, 2m + 1) (that is, the last pair), whose difference (in value) is one,are decre-
mented untilm + 1 becomes zero. From here, counters1, 2, . . . ,m (the main counter and the first
components of all unused pairs) are decremented simultaneously with counter2m + 1, until counter
2m + 1 becomes zero. This will take only one step, and after that counters1, 2, . . . ,m will have value
n− 1, countersm+2, . . . , 2m will have valuen+1, while countersm+1 and2m+1 will have value
zero.

Then the next pair(m, 2m) is taken, and the same sequence of steps is repeated. Note that the differ-
ence in values between these counters is now 2. The result is that countersm and2m are decremented
to zero, while counters1, 2, . . . ,m− 1 will have valuen− 3. This is continued with the rest of the pairs,
until the following configuration is reached: counter 0 has value 1, counters 1 and 2 have values2m−1,
counterm+ 2 has valuen+ 1, and all other counters are zero.

From here, counters 2 andm + 2 are decremented until counter 2 becomes zero. At this point,
counters 1 andm+2 have same value if and only if the length of the string is2m−1. After that counters
1 andm + 2 are decremented and the input is accepted if and only if thesecounters become zero at the
same time. This happens if and only if the input has length2m − 1. ⊓⊔
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4. k-Reversal Machines

Now we consider the properties ofk-reversal machines,k ≥ 1. The next result gives an upper bound on
the maximaln that is countable by ak-reversalm-counter machine.

Theorem 4.1. If the upper bound onn for a realtime 1-reversalm-counter machine isf(m), then
f((2k − 1)m) is an the upper bound onn for ak-reversalm-counter machine.

Proof:
We sketch the proof. LetL = {an} be a singleton language accepted by ak-reversalm-counter machine
M . We will show how we can construct fromM a 1-reversal(2k−1)m-counter machineM ′ that makes
at least as many steps asM and accepts a languageL′ = {an

′
} for somen′ ≥ n. The result then follows.

The construction ofM ′ fromM is based on the following ideas:

1. Consider first the casek = 2. Assume for now that the counters reverse from decreasing to
increasing at different times.

2. LetC be a counter inM that makes 2 reversals. We associate withC three countersC, T,C ′ in
M ′. Initially, T = C ′ = 0.

3. C in M ′ simulatesC in M as long asC does not decrement. WhenC decrements,T is set to 1
(i.e., it is incremented). Then as long asC does not increment the simulation continues.

4. WhenC in M increments,C in M ′ is decremented while simultaneously incrementingC ′ until
C becomes zero. During the decrementing process all other counters remain unchanged. But to
makeM ′ operate in realtime, its input head always reads ana during this process.

5. When the counterC of M ′ becomes zero,T is set to zero (i,e., it is decremented), andC ′ is
incremented by 1.

6. Then the simulation continues withC ′ taking the place ofC. CountersC andT remain at zero
and no longer used.

So if C in M makes 2 reversals, we will need three 1-reversal countersC, T,C ′ in M ′. If C makes
3 reversals, we will need five 1-reversal countersC, T,C ′, T ′, C ′′ in M ′. In general, ifC makesk
reversals, we will need(2k − 1) 1-reversal counters inM ′. It follows that if there arem counters where
each counter makesk reversals, we will need(2k − 1)m 1-reversal counters. If some of the counters
“reverse” (to increasing) at the same time, we handle them systematically one at a time, by indexing the
counters. ⊓⊔

From Theorem 4.1 and Theorem 3.1 we obtain:

Corollary 4.2. If L = {an} is accepted by a realtimek-reversalm-counter machine, then

n ≤ ((2k − 1)m− 1)2(2k−1)m + (2k − 1)m .

It is also true that the number of counters matters for realtimek-reversal machines. The following result
is proved in [3].
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Theorem 4.3. For any fixedk, there is a language accepted by a realtimek-reversal(m + 1)-counter
machine which is not accepted by anyk-reversalm-counter machine.

The next result, also shown in [3], gives a hierarchy with respect to the number of reversals for
any fixedm, but some assumption on the number of reversalsk is necessary for the hierarchy to be
guaranteed.

Theorem 4.4. For any fixedm andk < 2m−1/m, there is a language accepted by a realtime(k + 1)-
reversalm-counter machine which is not accepted by anyk-reversalm-counter machine.

5. Counter and Reversal Hierarchies

Fornon-realtimemachines, the following result proved in [3] relates the number of reversals to counters.

Theorem 5.1. If a languageL is accepted by a stateless non-realtimek-reversalm-counter machine then
it can be accepted by a stateless non-realtime 1-reversal(2k − 1)m-counter machine.

First we prove that there is a hierarchy with respect to the number of counters for stateless non-
realtime machines.

Lemma 5.2. Fork,m ≥ 1, there is a unique maximal numberf(k,m) such that the singleton language
L = {af(k,m)} is accepted by a stateless non-realtimek-reversalm-counter machine. (We refer toL as
“maximal”.)

Proof:
Follows from the fact that the singleton language{a} is accepted by a non-realtime 1-reversal 1-counter
machine and the fact that the number of non-realtimek-reversalm-counter machines is finite, depending
only onk andm. ⊓⊔

Theorem 5.3. For m ≥ 1, m + 1 counters can do more thanm counters for stateless non-realtime
k-reversal machines.

Proof:
Clearly, any language accepted by a non-realtimek-reversalm-counter machine can be accepted by a
k-reversal(m+ 1)-counter machine.

Now letM a non-realtimek-reversalm-counter machine accepting the maximal language{an} (for
somen). Such a languages exists by the above lemma. Let the counters ofM beC1, . . . , Cm. We will
construct a non-realtimek-reversal(m+1)-counter machineM ′ accepting{an+1}. It would then follow
thatm+ 1 counters are better thanm counters.

M ′ will have countersC1, . . . , Cm, Cm+1 and its rules are defined as follows:

1. If (c, s1, . . . , sm) → (0, e1, . . . , em) is inM , then
(c, s1, . . . , sm, 0) → (0, e1, . . . , em, 0) is inM ′.

2. If (c, s1, . . . , sm) → (1, e1, . . . , em) is inM , then
(c, s1, . . . , sm, 0) → (1, e1, . . . , em, 1) is inM ′.
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3. If (a, s1, . . . , sm) → (d, e1, . . . , em) is inM , then
(a, s1, . . . , sm, 1) → (1, 0, . . . , 0,−1) is inM ′.

4. If (x, s1, . . . , sm) → (d, e1, . . . , em) is inM , then
(x, s1, . . . , sm, 0) → (d, e1, . . . , em, 0) is inM ′ for x ∈ {a, $}.

⊓⊔

Note that the above result and proof hold for the realtime case. In fact, in the construction, case 1 does
not apply; in case 2,s1 = · · · = sm = 0, and in case 4,x = a andd = 1. As in the realtime case, the
following result can be shown [8]:

Theorem 5.4. For any fixedm andk < 2
m

2
−1/m, there is a language accepted by a stateless(k + 1)-

reversalm-counter machine which is not accepted by any statelessk-reversalm-counter machine.

6. Closure Properties

Theorem 6.1. The class of languages accepted by stateless deterministicnon-realtimek-reversal multi-
counter machines is closed under intersection, union, and complementation.

Proof:
LetM1 andM2 be two such machines.

Intersection:
Let M1 andM2 havem andn counters, respectively. We construct a machineM which simulates

these machines in parallel.M hasm + n counters to simulate the counters ofM1 andM2, using the
following rules:

1. If (x, s1, . . . , sm) → (d, e1, . . . , em) in M1 and (x, s′1, . . . , s
′
n) → (d, e′1, . . . , e

′
n) in M2, then

(x, s1, . . . , sm, s
′
1, . . . , s

′
n) → (x, e1, . . . , em, e

′
1, . . . , e

′
n) in M .

2. If (x, s1, . . . , sm) → (0, e1, . . . , em) in M1 and (x, s′1, . . . , s
′
n) → (1, e′1, . . . , e

′
n) in M2, then

(x, s1, . . . , sm, s
′
1, . . . , s

′
n) → (x, e1, . . . , em, 0, . . . , 0) in M .

3. If (x, s1, . . . , sm) → (1, e1, . . . , em) in M1 and (x, s′1, . . . , s
′
n) → (0, e′1, . . . , e

′
n) in M2, then

(x, s1, . . . , sm, s
′
1, . . . , s

′
n) → (x, 0, . . . , 0, e′1, . . . , e

′
n) in M .

Complementation and Union:
GivenM1, we construct a machineM which accepts the complement of the language accepted by

M1. In the addition to them counters ofM1, M uses a new counterT . Before the simulation,M sets
T to 1. ThenM simulatesM1. If M1 does not accept the input, either by getting stuck at some point on
the input or reaching$ and not able to zero all the counters,M decrements all the counters to zero and
setsT to 0. Closure under union follows, since the class of languages is closed under intersection. ⊓⊔

We believe a “pumping lemma” type result for stateless deterministic non-realtime reversal-bounded
multicounter machines can be shown, but we have not quite verified all the details. Such a lemma would
be of the form:
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SupposeL is the language accepted by a stateless deterministic non-realtime reversal-boundedm-counter
machine over a unary alphabet. IfL is infinite, then there exists somen0 ≥ 0 such that forn ≥ n0,
an ∈ L impliesan+1 ∈ L.

It would then follow that the languageL = {a2n | n ≥ 1} cannot be accepted by any stateless
deterministic non-realtime reversal-bounded multicounter machine.

7. Equivalence to Stateless Multihead Automata

It turns out that stateless non-realtime reversal-boundedmulticounter machines over a unary alphabet are
equivalent to stateless multihead automata.

A statelessm-head machine (over unary input)M operates on an inputcan$, wherec and$ are the
left and right end markers. The initial configuration is whenall m heads are on the left end markerc,
and the accepting configuration is when allm heads reach the right end marker$, which we assume is a
halting configuration. The moves are defined by a set of rules of the form: (ℓ1, .., ℓm) → (d1, . . . , dm)
whereℓi is the symbol under headi (can bec, a, $), di = 0 or 1 (direction of move of headi : no move
or move right one cell). Note that since the machine is deterministic, no two rules can have the same left
hand sides. Also there is no rule with left hand side($, . . . , $).

Lemma 7.1. Any stateless multihead automatonM can be converted to an equivalent stateless non-
realtime 1-reversal multicounter machineM ′.

Proof:
Let the heads ofM beH1, . . . ,Hm. M ′ will have an input head and2m countersC1, . . . , Cm, T1, . . . , Tm,
which are initially zero. When givencan$, M ′ reads the input while simultaneously incrementing the
m countersC1, . . . , Cm. When the input head reaches the right end marker$, eachCi will have value
n + 1. ThenM ′ simulatesM . The input head ofM ′ remains on$ during the simulation. CounterCi

simulates the actions of headHi. Moving headHi one cell to the right is simulated by decrementing
Ci. Note that at the start of the simulation,T1, . . . , Tm are zero. This corresponds to the configuration
when all the heads ofM are on the left end markerc. WhenCi is first decremented (corresponding to
Hi moving right ofc), Ti is set to 1. When the countersC1, . . . , Cm become zero (corresponding to all
headsH1, . . . ,Hm reaching$), theTi’s are decremented and the input is accepted. ⊓⊔

Lemma 7.2. Any stateless non-realtime 1-reversal multicounter machine can be converted to an equiv-
alent stateless multihead automatonM ′.

Proof:
(Sketch.) First consider a stateless non-realtime 1-reversal 1-counter machineM with input headH and
counterC. We construct a stateless multihead automatonM ′ equivalent toM . M ′ will have 6 heads
H1,H2, C1, C2, T1, T2. Initially, all heads ofM ′ are onc. M ′ simulatesM as follows:

1. HeadsH1 andC1 simulate headH and counterC of M , respectively, where “incrementing”C
corresponds to “moving”C1 to the right on the input.

2. WhenC decrements,M ′ movesT1 right to the next symbol (indicating a new situation).
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3. M ′ restarts the simulation ofM (from the beginning) but now usingH2 andC2 (to simulateH
andC) and at same timeC1 is moved along withC2 when the latter is incrementing.

4. WhenC2 decrements,M ′ movesT2 right to the next symbol (indicating yet again another situa-
tion) and suspend the simulation, i.e.,H2 andC2 are not moved. At this time, ifC2 is in position
d, thenC1 is in position2d, i.e., the “distance” between these heads isd.

5. C1 andC2 are moved to the right in parallel untilC1 reaches$. Note that the “distance” between
C1 (which is now on$) andC2 is still d.

6. ThenM ′ usesH2 andC2 to resume the simulation ofM , butC2 now simulates the decreasing
phase of counterC of M by moving right on the input.C2 reaching$ indicates that counterC of
M has value 0.

M ′ accepts the language accepted byM . WhenM has several 1-reversal counters, the construction of
M ′ above can be generalized. We omit the details. ⊓⊔

From Theorem 5.1 and the above lemmas, we have the following characterization:

Theorem 7.3. A languageL over a unary alphabet is accepted by a stateless non-realtime reversal-
bounded multicounter machine if and only if it can be accepted by a stateless multihead automaton.

8. Nondeterministic Machines and Semilinear Sets

Recall that in a nondeterministic machine some rules can have the same left hand sides. In this section, we
characterize bounded languages accepted by stateless nondeterministic reversal-bounded non-realtime
multicounter machines in terms of semilinear sets.

A languageL is boundedif there are distinct symbolsa1, . . . , ar such thatL ⊆ a∗1 · · · a
∗
r. The Parikh

map ofL,ψ(L), is defined to be the set ofr-tuples of nonnegative integers{(i1, . . . , ir) | ai1 · · · air ∈ L}.
Let IN be the set of nonnegative integers andr be a positive integer. A subsetQ of INr is a linear set

if there exist vectorsv0, v1, . . . , vt in INr such thatQ = {v | v = v0 + a1v1 + · · · + atvt, ai ∈ IN}. A
setQ ⊆ INr is semilinearif it is a finite union of linear sets.

It is known thatL ⊆ a∗1 · · · a
∗
r is accepted by a nondeterministic non-realtime reversal-bounded

multicounter machine with states if and only ifψ(L) is semilinear. This result also holds for stateless
machines. To avoid introducing additional notation, we illustrate the ideas with an example below.

Consider the linear setQ = {(2, 1) + x(2, 3) + y(1, 0) | x, y ≥ 0}. The bounded language corre-
sponding to this set isL = {a2x+y+2b3x+1 | x, y ≥ 0}. We will construct a stateless nondeterministic
non-realtime 1-reversal multicounter machineM acceptingL. In the construction, we use some special
types of counters, which we callswitches. A switch starts at zero at the beginning of the computation
(when the input head is onc), then it is incremented to 1 at some point during the computation, and
finally set back to zero before acceptance.

M has countersA1, A2, A3, B1, B2, B3 and other counters used as switches. Given inputcw$, we
may assume thatw = ambn for somem,n; otherwise, we can use a switch counter to confirm that ab
cannot be followed by ana.
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On inputcambn$,M operates as follows: while the input is onc,M incrementsA1, A2, B1, B2, B3

simultaneously,x times, wherex is chosen nondeterministically, after which (using some switches)
increments counterA3, y times, wherey is chosen nondeterministically. Then it checks thatm =
A1 + A2 + A3 + 2. This is done by first reading 2a’s (again using some switches). Then it reads the
rest of thea-segment while decrementingA1 until it becomes zero, then decrementingA2 until it too
becomes zero, and decrementingA3 until it becomes zero.M ’s head will be on the firstb if and only if
m = A1+A2+A3+2. Similarly, by reading theb-segment,M can check thatm = B1+B2+B3+1,
and this holds if and only if the head reaches$ when counterB3 becomes zero.

If Q is a semilinear set we can construct a machine for each linearset and then combine these
machines into one machine that nondeterministically selects one of the machines to simulate. (We will
need to use additional switches for this.)

One can formalize the discussion above to prove the “if” partof the next result. The “only if” part
follows from the fact that it holds for machines with states [7].

Theorem 8.1. L ⊆ a∗1 · · · a
∗
r can be accepted by a stateless nondeterministic non-realtime reversal-

bounded multicounter machine if and only ifψ(L) is semilinear.

Corollary 8.2. L ⊆ a∗1 · · · a
∗
r is accepted by a stateless nondeterministic non-realtime reversal-bounded

multicounter machine with states if and only if it can be accepted by a stateless nondeterministic non-
realtime reversal-bounded multicounter machine.

9. Examples for the Unbounded Reversal Case

The examples in this section are from [8], although the details of their construction are not provided. We
begin with a stateless non-realtime counter machine that accepts the languageL = {a2

i

| i ≥ 0}. What
is interesting is that this can be accepted by a machine with only 4 counters.

Here the input isca1a2 · · · an$ with the read head initially on the left end markerc and allm counters
zero. The head moves to the right at each step. Depending on the symbol under the head and the signs
of the counters, a counter is decremented (if positive), incremented, or left the same. Once the head
reaches the$ sign, further moves are possible, depending on the signs of the counters only. The machine
accepts if the counters all become zero. Since further movesare allowed after the head reaches the$, the
machine is non-realtime.

Let us consider the unary alphabet. The inputs are of the formcan$. We can show the following:

Proposition 9.1. The languageL = {a2
i

| i ≥ 0} is accepted by a stateless non-realtime 4-counter
machine.

It can also be proved that by adding a fifth counter, the construction for the proof of the above
proposition can be modified to accept the language

L = {an | n is a tower of 2’s} .

Furthermore the singleton languageL = {an | n = m levels of 2’s} can be accepted by a machine with
logm + 5 counters. In these examples, the counter machines are non-realtime. Interestingly, one can
show that similar results can be obtained for realtime machines.
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The descriptions of these machines make use of thesign-vectorsintroduced in [3] to construct their
explicit moves. They also make use of types ofmodules, that are constructed by using the patterns of the
sign-vectors. These modules arecalledrepeatedly with different counter values andreturnother counter
values. Calls and returns are controlled by the patterns of the sign-vectors of the counters.

The constructions for the examples given here are not provided in this survey due to space limitations.
They can be obtained from the authors.
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