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Abstract

We consider computations suitable for systolic arrays, often called regular
array computations or systems of uniform recurrence relations. In such com-
putations, the tasks to be computed are viewed as the nodes of a directed
acyclic graph (dag), where the data dependencies are represented as arcs. A
processor-time-minimal schedule measures the minimum number of proces-
sors needed to extract the maximum parallelism from the dag. We present
a technique for finding a lower bound on the number of processors needed
to achieve a given schedule of an algorithm represented as a dag. The ap-
plication of this technique is illustrated with a tensor product computation.
We then consider the free schedule of algorithms for matrix product, Gaus-
sian elimination, and transitive closure. For each problem, we provide a
time-minimal processor schedule that meets the computed processor lower
bounds, including the one for tensor product.

1 Introduction

Systolic arrays are important for application-specific systems; they perform
well because they are highly concurrent. Their design cost is low because,
although they comprise a large number of processors, they are of only one
type (or a small fixed number of types). Interprocessor communication
is between nearest neighbors, hence has short latency. Nearest-neighbor
connections also imply that the VLSI circuit is devoted primarily to the



processors—very little to their interconnection. As a consequence, they are
ideally suited to VLSI technology. Minimizing the amount of time and num-
ber of processors needed to perform an application reduces the application’s
fabrication cost and operation costs. This can be important in applications
where minimizing the size and energy of the hardware is critical, such as
space applications and consumer electronics.

We consider computations suitable for systolic arrays, often called regu-
lar array computations or systems of uniform recurrence equations [27]. Par-
allel execution of uniform recurrence equations has been studied extensively,
from at least as far back as 1966 (e.g., [8, 10, 11, 14, 26, 30, 32, 38, 39, 40]).
In such computations, the tasks to be computed are viewed as the nodes of
a directed acyclic graph (dag), where the data dependencies are represented
as arcs. Given a dag G = (N, A), a multiprocessor schedule assigns node v
for processing during step 7(v) on processor mw(v). A valid multiprocessor
schedule is subject to two constraints:

Causality: A node can be computed only when its children have been
computed at previous steps:

(u,v) € A= 7(u) < 7(v).

Non-conflict: A processor cannot compute 2 different nodes during the
same time step.

7(v) = 7(u) = 7(v) # 7(u).

In what follows, we refer to a valid schedule simply as a schedule. A
time-minimal schedule for an algorithm completes in S steps, where S is
the number of nodes on a longest path in the dag. A time-minimal sched-
ule exposes an algorithm’s maximum parallelism. That is, it bounds the
number of time steps the algorithm needs, when infinitely many processors
may be used. A processor-time minimal schedule is a time-minimal sched-
ule that uses as few processors as any time-minimal schedule for the algo-
rithm. Although only one of many performance measures, processor-time-
minimality is useful because it measures the minimum number of processors
needed to extract the mazimum parallelism from a dag. Being machine-
independent, this measure is a more fundamental measure than those that
depend on a particular machine or architecture. This view prompted sev-
eral researchers to investigate processor-time-minimal schedules for families
of dags. Processor-time-minimal systolic arrays are easy to devise, in an
ad hoc manner, for 2D systolic algorithms. This apparently is not the case
for 3D systolic algorithms. There have been several publications regard-
ing processor-time-minimal systolic arrays for fundamental 3D algorithms.
Processor-time-minimal schedules for various fundamental problems have
been proposed in the literature: Scheiman and Cappello [5, 9, 45, 48] exam-
ine the dag family for matrix product; Louka and Tchuente [34] examine the
dag family for Gauss—Jordan elimination; Scheiman and Cappello [46, 47]



examine the dag family for transitive closure; Benaini and Robert [2, 3]
examine the dag families for the algebraic path problem and Gaussian elim-
ination. Each of the algorithms listed in Table 1 has the property that, in
its dag representation, every node is on a longest path. Therefore, for each
algorithm listed, its free schedule is its only time-minimal schedule. A pro-
cessor lower bound for achieving time-minimal schedule is thus a processor
lower bound for achieving maximum parallelism with the algorithm.

Table 1: Some 3D algorithms for which processor-time-minimal sys-
tolic arrays are known.

| Algorithm Citation Time  No. of processors |
Algebraic path problem [3] 5n—2 n?/3+0(n)
Gauss—Jordan elimination [34] dn 5n2/18 + O(n)
Gaussian elimination 3] 3n—1 n?/4+ O(n)
Matrix product [5, 9] 3n—2 [3n?/4]
Transitive closure [46] Sn—4 [n?/3]
Tensor product this article 4n—3 (2n?+n)/3

Clauss et al. [12] developed a set of mathematical tools to help find a
processor-time-minimal multiprocessor array for a given dag. Another ap-
proach to a general solution has been reported by Wong and Delosme [58,
59], and Shang and Fortes [49]. They present methods for obtaining opti-
mal linear schedules. That is, their processor arrays may be suboptimal,
but they get the best linear schedule possible. Darte et al. [14] show that
such schedules are close to optimal, even when the constraint of linearity
is relaxed. Geometric/combinatorial formulations of a dag’s task domain
have been used in various contexts in parallel algorithm design as well (e.g.,
[12, 18, 19, 26, 27, 32, 38, 39, 40, 49, 55, 59]; see Fortes et al. [17] for a
survey of systolic/array algorithm formulations.)

In Section 2, we present an algorithm for finding a lower bound on the
number of processors needed to achieve a given schedule of an algorithm.
The application of this technique is illustrated with a tensor product com-
putation. Then, in Section 3, we apply the technique to the free schedule
of algorithms for matrix product, Gaussian elimination, and transitive clo-
sure. For each, we provide a compatible processor schedule that meets these
processor lower bounds (i.e., a processor-time-minimal schedule) including
the one for tensor product. We finish with some general conclusions and
mention some open problems.

One strength of our approach centers around the word algorithm: we
are finding processor lower bounds not just for a particular dag, but for a
linearly parameterized family of dags, representing the infinitely many prob-
lem sizes for which the algorithm works. Thus, the processor lower bound is
not a number but a piecewise polynomial function in the parameter used to



express different problem sizes. The formula then can be used to optimize
the implementation of the algorithm, not just a particular execution of it.
The processor lower bounds are produced by:

e formulating the problem as finding, for a particular time step, the
number of processors needed by that time step as a formula for the
number of integer points in a convex polyhedron,

e representing this set of points as the set of solutions to a linearly
parameterized set of linear Diophantine equations,

e computing a generating function for the number of such solutions,
e deriving a formula from the generating function.

The ability to compute formulae for the number of solutions to a linearly
parameterized set of linear Diophantine equations has other applications for
nested loops [13], such as finding the number of instructions executed, the
number of memory locations touched, and the number of I/O operations.

The strength of our algorithm—its ability to produce formulae—comes,
of course, with a price: the computational complexity of the algorithm is
exponential in the size of the input (the number of bits in the coefficients of
the system of Diophantine equations). The algorithm’s complexity, however,
is quite reasonable given the complexity of the problem: Determining if
there are any integer solutions to the system of Diophantine equations is
NP-complete [20]; we produce a formula for the number of such solutions.

Clauss and Loechner independently developed an algorithm for the
problem based on Ehrhart polynomials. In [13], they sketch an algorithm
for the problem, using the “polyhedral library” of Wilde [57].

A journal version of the present paper appears in [7]. The details of
the lower bound technique described here can be found in [6].

2 Processor lower bounds

We present a general and uniform technique for deriving lower bounds:
Given a parametrized dag family and a correspondingly parametrized lin-
ear schedule, we compute a formula for a lower bound on the number of
processors required by the schedule. This is much more general than the
analysis of an optimal schedule for a given specific dag. The lower bounds
obtained are good; we know of no dag treatable by this method for which the
lower bounds are not also upper bounds. We believe this to be the first re-
ported algorithm and its implementation for automatically generating such
formulae.

The nodes of the dag typically can be viewed as lattice points in a con-
vex polyhedron. Adding to these constraints the linear constraint imposed
by the schedule itself results in a linear Diophantine system of the form

Az=nb+c, (1)



where the matrix A and the vectors b and c are integral, but not neces-
sarily non-negative. The number d,, of solutions in non-negative integers
z = [21,29,...,25]" to this linear system is a lower bound for the number
of processors required when the dag corresponds to parameter n. Our algo-
rithm produces (symbolically) the generating function for the sequence d,,
and from the generating function, a formula for the numbers d,,. We do not
make use of any special properties of the system that reflects the fact that it
comes from a dag. Thus, in eqn (1), A can be taken to be an arbitrary r X s
integral matrix, and b and ¢ arbitrary r-dimensional integral vectors. As
such we actually solve a more general combinatorial problem of constructing
the generating function ) -, d,t" , and a formula for d, given a matrix
A and vectors b and ¢, for which the lower bound computation is a special
case. There is a large body of literature concerning lattice points in convex
polytopes and numerous interesting results: see for example Stanley [51]
for Ehrhart polynomials (Clauss and Loechner [13] use these), and Sturm-
fels [52, 53] for vector partitions and other mathematical treatments. Our
results are based mainly on MacMahon [35, 37], and Stanley [50].

2.1 Example: tensor product

We examine the dag family for the 4D mesh: the n xn xn xn directed mesh.
This family is fundamental, representing a communication-localized version
of the standard algorithm for tensor product (also known as Kronecker
product). The tensor product is used in many mathematical computations,
including multivariable spline blending and image processing [21], multivari-
able approximation algorithms (used in graphics, optics, and topography)
[29], as well as many recursive algorithms [28].
The tensor product of an n X m matrix A and a matrix B is:

auB algB . almB
A® B = .
amB apB ... apmB

The 4D mesh also represents other algorithms, such as the least common
subsequence problem [23, 24] for 4 strings, and matrix comparison (an ex-
tension of tuple comparison [25]). An example dag is shown in Figure 1, for
n=3.

2.1.1 The dag
The 4D mesh can be defined as follows. G,, = (N, 4,,), where
L Nn:{(l,],k,l)|0§z,],k,l§n—1}

L An :{[(i’j7k7l)7(il7jl7kl7ll)] |(i’j7k7l) E Nn) (il7jl7kl7ll) ENTL and
exactly 1 of the following conditions holds:



=il =g,k =k =1
Jl=+1 i =i K=k =1
K =k+1, i =i j =4 ' =1
I'=1+1,i =i, j=j, K =k}

Ll

2.1.2 The parametric linear Diophantine system of equa-
tions

The computational nodes are defined by non-negative integral 4-tuples (i, j, k, 1)
satisfying

1 < n-—1
Jj <n-1
k < n-1
I < n-1.

Introducing non-negative integral slack variables si, ss,s3,54 > 0, we ob-
tain the equivalent linear Diophantine system describing the computational
nodes as

) + 51 =n-1
J + 59 =n-1

k + s3 =n-—1

l +s4 = n-—1.

A linear schedule for the corresponding dag is given by 7(i, j, k,1) =i+ j +
k 4+ 1+ 1. For this problem, 7 ranges from 1 to 4n — 3. The computational
nodes about half-way through the completion of the schedule satisfy the
additional constraint

i+j+k+1=2n-2

Adding this constraint we obtain the augmented Diophantine system

i +j5 +k +1 = 2n-—2
) + s1 =n-1
J + s9 =n-1 (2)
k + s3 =n-—1
l +s4 = n-—1.

Therefore, a lower bound for the number of processors needed for the
tensor product problem is the number of solutions to eqn (2). The corre-
sponding Diophantine system is az = nb + ¢ where

11110000 2 -2
100071000 1 ~1
a=|[01000100]|, b=|1]|, e=|-1].@®
001000T10 1 ~1
00010001 1 ~1
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Figure 1: The 4-dimensional cubical mesh, for n = 3.



2.1.3 The Mathematica program input and output

The DiophantineGF run on this data gives

In[1]:= << DiophantineGF.m
Loaded. Type "help" for instructions, "example'" for examples.

In[2]:= a = {{1,1,1,1,0,0,0,0},
{1,0,0,0,1,0,0,0},
{0,1,0,0,0,1,0,03},
{0,0,1,0,0,0,1,0},
{0,0,0,1,0,0,0,1}};

In[3]:=b = {2,1,1,1,1}; ¢ = {-2,-1,-1,-1,-1};

In[4] := DiophantineGF[a,b,c]

2
t (1 +1t)
Qut[4]= ————————-
4
(-1 + t)
In[5] := formula

Binomial Formula : C[n, 3] + 2 C[1 + n, 3] + C[2 + n, 3]

Power Formula Do

Therefore
2n/3+n/3

is a processor lower bound for the tensor product problem.

2.2 General formulation

We now generalize this example and consider the problem of computing a
lower bound for the number of processors needed to satisfy a given linear
schedule. That is, we show how to automatically construct a formula for
the number of lattice points inside a linearly parameterized family of con-
vex polyhedra, by automatically constructing a formula for the number of



solutions to the corresponding linearly parameterized system of linear Dio-
phantine equations. The algorithm for doing this and its implementation
is, we believe, a significant contribution.

The use of linear Diophantine equations is well-motivated: the com-
putations of an inner loop are typically defined over a set of indices that
can be described as the lattice points in a convex polyhedron. Indeed, in
two languages, SDEF [15] and ALPHA [55], one expressly defines domains of
computation as the integer points contained in some programmer-specified
convex polyhedron.

The general setting exemplified by the tensor product problem is as
follows: Suppose a (also denoted by A) is an r x s integral matrix, and b
and c are r-dimensional integral vectors. Suppose further that, for every
n > 0, the linear Diophantine system az = nb + ¢, i.e.,

anzi + a2z + ... 4+ a15zs = bin+c
a2z + axz + ... 4+ axzs = bnte
(4)
ariz1 + apz + ...+ G2 = bndtc
in the non-negative integral variables zj, zo,...,2s has a finite number of

solutions. Let d, denote the number of solutions for n. The generating
function of the sequence d, is f(t) =, <, dnt". For a linear Diophantine
system of the form of eqn (4), f(¢) is always a rational function, and we
provide an algorithm to compute f(t) symbolically. The Mathematica pro-
gram implementing the algorithm also constructs a formula for the numbers
d,, from this generating function.

Given a nested for loop, the procedure to follow is informally as follows:

1. Write down the node space as a system of linear inequalities. The
loop bounds must be affine functions of the loop indices. The domain
of computation is represented by the set of lattice points inside the
convex polyhedron, described by this system of linear inequalities.

2. Eliminate unnecessary constraints by translating the loop indices (so
that 0 <7 < n—1 as opposed to 1 < i < n, for example). The reason
for this is that the inequality 0 < ¢ is implicit in our formulation,
whereas 1 < ¢ introduces an additional constraint.

3. Transform the system of inequalities to a system of equalities by in-
troducing non-negative slack variables, one for each inequality.

4. Augment the system with a linear schedule for the associated dag,
“frozen” in some intermediate time value: 7 = 7(n);

5. Run the program DiophantineGF.m on the resulting data. The
program calculates the rational generating function f(t) = Y d,t",
where dj, is the number of solutions to the resulting linear system of
Diophantine equations, and produces a formula for d,,.



2.3 The algorithm

We demonstrate the algorithm on a specific instance, and sketch its proof.
Consider the linear Diophantine system

zZ1 — 223 = n
21+ Zo = 2n

(5)

in which z; and 22 are non-negative integers. Let d,, denote the number of
solutions to eqn (5). Associate indeterminates A\; and A2 to the first and
the second equations, respectively, and also indeterminates #; and t5 to the
first and the second columns of the system. Consider the product of the
geometric series

1 1

R = =
DYDY I D P Y

> (A3 )™ DA |

05120 05220

where the exponents of A\; and A in the first factor are the coefficients in
the first column and the exponents of A\; and A; in the second factor are
the coefficients in the second column. Individual terms arising from this
product are of the form

AgrTRee \gutes yangee (6)

where a1, as are non-negative integers. Following Cayley, MacMahon [36]
makes use of the operator Q which picks out those terms in eqn (6) in the
power series expansion whose exponents of A\; and Ay are both equal to zero
(this is the A-free part of the expansion). Thus, the contribution of the term
in eqn (6) to Q(R) is non-zero if and only if the exponents of A; and A, are
equal to zero. If this is the case, the contribution is ¢7*¢5? if and only if
z1 = aq and 22 = ay is a solution to the homogeneous system

z1 - 222 = 0
z1 + Zy = 0. (7)

(Note that there is only a single solution to eqn (7) in this case, but this
does not effect the general nature of the demonstration of the algorithm on
this example.) This means, in particular, that what MacMahon calls the
“crude” generating function of the solutions to the homogeneous system
eqn (7) is
1 1
L= ANt 1= A 20t

and

1
Q =) e,
= ((1 — ML) (1 - Al—?A;tQ)) PILR

where the summation is over all solutions z; = a1 and 22 = as of eqn (7).
Let R, = )\1_")\2_2"R, where the exponents of A\; and A are the negatives of



the right-hand sides of first and the second equations of eqn (5), respectively.

Then
Q(Ry) =D #7152,

where now the summation is over all non-negative integral solutions z; = aq,
22 = ay of eqn (5), since generic terms arising from the expansion of R are

now of the form
/\?1—2a2—n /\gﬁ-az—?n t?ltg2 .

If we let t1 =t = 1, then Q(R,,) specializes to the number of solutions d,, to
eqn (5). Let £ denote the substitution operator that sets each t; equal to 1.
Then d, = £ Q(R,), and the operator Q commutes both with £ operation
and addition of series. Thus,

)y = Y LQRy) "

n>0

= Q> L(Ry) " (8)
n>0
= Q 1 SONTA (9)
Sl A=) - A7) S e
Since 1
AT = (10)
n%:o 1 N2 T- A 21

the generating function f(¢) can be obtained by applying the operator Q to
the crude generating function

F= ! (11)
A=A (A = A ) (L= AN )

Now, we make use of the identity that appears in Stanley [50] for the
computation of the homogeneous case above, namely

1 1 1 1
I-A)1-B)  (1-4B)(1-4) T T-4aB(1-B) 1-4B
(12)
We demonstrate the usage of this identity on the example at hand.
Taking the first two factors of eqn (11) as (1 — A)~! and (1 — B)™! (i.e.,
A= XXy, B=X?)\;), and using eqn (12),

1
F = 13
(T=XT"IAD (1 = M) (1 =A% 1) (13)

1

(T=AT"ADA = A7) (1= AN 1)

_|_



1
(T=A") =A%)

which we can write as F' = F| + F5 — F3, where Fi, F5, and F5 denote the
three summands above. By additivity,

f@) = QF) = QF) + Q(F) — Q(F) -

Continuing in this way by using the identity (12), this time on Fj with
(1—A)"! and (1 — B)™! as the two factors, we obtain the expansion

1 1
F; = +
’ A=AZHA =M =220 - A2
1
YR
= F31 + F35 — Fj33. (14)

Call a product of the form

+1
(1-A)(1-B)---(1-2)

(15)

that may arise during this process uniformly signed if the exponents of \;
that appear in A, B, ..., Z are either all non-negative, or all non-positive;
the exponents of Ay that appearin A, B, ..., Z are either all non-negative, or
all non-positive, etc. Clearly if U is such a uniformly signed product, then
Q(U) is obtained from U by discarding the factors which are not purely
functions of ¢, as there can be no “cross cancellation” of any of the terms
coming from different expansions into geometric series of the factors (1 —
AL 1-B) ..., 1-2Z)7of U.

The idea, then, is to use identity (12) repeatedly using pairs of appro-
priate factors in such a way that the resulting products of the form (15)
that arise are all uniformly signed. The contribution of a uniformly signed
product to f(t) is simply the product of the terms in it that are functions
of t only, and all other factors can be ignored. Each of the summands of F3
given in eqn (14) above, for example, are uniformly signed. Since neither
term contains a factor which is a pure function of ¢, the contribution of each
is zero.

The problem is to select the (1 — 4)~!, (1 — B)~! pairs at each step
appropriately to make sure that the process eventually ends with uniformly
signed products only. This cannot be done arbitrarily, however. For exam-
ple, in the application of the identity (12) to

1
(L= A=A A =AY

(16)



with1— A =1-X'A} and 1— B =1-A?\} (in which the \; exponents
have opposite sign), one of the three terms produced by the identity to be
further processed is
1
(L= A7) @ = AL = AN

Continuing with the choice 1 — A4 =1—- A} ,and 1 - B=1-A\;" (in
which the A2 exponents have opposite sign), one of the three terms produced

is
1

(=AM =MD = A1)
which is identical to (16). In particular, the weight argument in Stanley [50]
does not result in an algorithm unless the \; are processed to completion
in a fixed ordering of the indices i (e.g., first all exponents of A\; are made
same signed, then those of Aq, etc.).

Accordingly, we use the following criterion: Given a term of the form
(15), pick the \; with the smallest 7 for which a negative and a positive
exponent appears among A, B,...,Z. Use two extremes (i.e., maximum
positive and minimum negative exponents) of such opposite signed factors
(1—A)"! and (1 — B)™! of the current term in (15), and apply identity
(12) with this choice of A and B. This computational process results in a
ternary tree whose leaves are functions of ¢ only, after the application of
the operator Q. The generating function f(¢) can then be read off as the
(signed) sum of the functions that appear at the leaf nodes. The reader can
verify that the example at hand results in the generating function

1
1= (1—8)(1+t+1¢?)
after the functions of ¢ at the leaf nodes of the resulting ternary tree are
summed up and necessary algebraic simplifications are carried out.

In the case above, ¢ = 0. Now, we consider the more general case with
¢ # 0. These are the instances for which the description and the proof of the
algorithm is not much harder, but the extra computational effort required
justifies the use of a symbolic algebra package.

As an example, consider the Diophantine system

z1 — 22’2 = n—2

z1 + zo = 2n+3. (17)

As before, let d,, be the number of solutions to eqn (17) in non-negative
integers 21, 22, and let f(¢) be the generating function of the d,. As in the
derivation of the identity (9) for f(t), this time we obtain

1
t)=0Q A2 g | 18
f(t) =2 (1—>\1>\2)(1—>\;2/\2)§ 1 2 (18)




Since
AN

Afn+2>\72n73 tn — )
2N 2 1A%t

n>0

the generating function f(t) is obtained by applying the operator {2 to the
crude generating function
AP,

F= (L= A 2) (L= A ) (L= AN 2 ) (19)

Now, we proceed as before using the identity (12), ignoring the numer-
ator for the time being. It is no longer true that there can be no “cross
cancellation” of any of the terms coming from different expansions into geo-
metric series of the factors (1—A)~!, (1-B)~!,...,(1—Z)~! in a product
U of the form (15) even if the term is uniformly signed. It could be that the
exponents of all of the A; that appear in U are negative, and the exponents
of all of the Ay that appear in U are all positive, but there can be A-free
terms arising from the expansions of the products that involve A’s, since
the numerator A2\, ® can cancel terms of the form A, ?A3t* that may be
produced if we expand the factors into geometric series and multiply. The
application of 2 would then contribute t* from this term to the final result
coming from U, for example. The important observation is that the geo-
metric series expansion of the terms that involve A in U need not be carried
out past powers of A\; larger than 2, and past powers of Ay smaller than
—3. This means that we need to keep track of only a polynomial in A;, As
and t before the application of 2 to find the A-free part contributed by this
leaf node. In this case, this contribution may involve a polynomial in ¢ as
well. Therefore when ¢ # 0, we need to calculate with truncated Taylor
expansions at the leaf nodes of the computation tree. It is this aspect of
the algorithm that is handled most efficiently (in terms of coding effort) by
a symbolic algebra package such as Mathematica.

2.4 Complexity and remarks

Some detailed remarks concerning implementation are given in [6], which,
for reasons of space, we omit here.

The number of leaves in the generated ternary tree is exponential in
n =3 1, lai|, where {a;} is the set of coefficients describing the set of Dio-
phantine equations. The depth of recursion can be reduced somewhat, when
the columns to be used are picked carefully. It is also possible to prune the
tree when the input vector ¢ determines that there can be no A-free terms
resulting from the current matrix (e.g., some row is all strictly positive or
all negative with ¢ = 0, or the row elements are weakly negative but the
corresponding ¢; is positive, etc.). Furthermore, the set of coefficients de-
scribing the Diophantine system coming from an array computation is not
unique. Translating the polyhedron, and omitting superfluous constraints



(i.e., not in their transitive reduction) reduces the algorithm’s work. Addi-
tional preprocessing may be possible (e.g., via some unitary transform).

The fact that the algorithm has worst case exponential running time
is not surprising however; the simpler computation: “Are any processors
scheduled for a particular time step?”, which is equivalent to “Is a particu-
lar coefficient of the series expansion of the generating function non-zero?”
is already known to be an NP-complete problem [20, 43]. This compu-
tational complexity is further ameliorated by the observation that since a
formula can be automatically produced from the generating function, it
needs to be constructed only once for a given algorithm. In practice, array
algorithms typically have a description that is sufficiently succinct to make
this automated formula production feasible.

3 Processor upper bounds

Minimizing the amount of time and number of processors needed to per-
form an application reduces the application’s fabrication cost and operation
costs. This can be important in applications where minimizing the size and
energy of the hardware is critical, such as space applications and consumer
electronics. In this section, we present schedules that are processor-time-
minimal. They are exact, not just asymptotic.

Again, for each of the dags discussed below, the free schedule is its
only time-minimal schedule. A processor lower bound for achieving it is
thus a processor lower bound for achieving maximum parallelism with the
algorithm, not just one schedule for it, much less one instance of one schedule
for it (i.e., one value of n for one parameterized schedule).

3.1 Matrix product
3.1.1 Problem

Program fragment: The standard program fragment for computing the
matrix product C' = A - B, where A and B are given n X n matrices
is given below.

fort = 0ton —1 do:
forj = 0ton—1do:
Cli, j] + 0;
fork = 0ton—1 do:
Cli,j] & Cli, j] + Ali, K] - Blk, j];
endfor;
endfor;
endfor;



Dag: The cube-shaped 3D mesh (i.e., the n x n x n mesh) can be defined
as follows.

annxn = (N, A), where
o N={(i,j,k) | 1<i,j,k <n}.

o A={[(i,j,k), (@, j' k")) | where exactly 1 of the following con-
ditions holds

1. ' =i+1
2. 7' =j+1
3.kK=k+1

for 1 <i,j,k <n}.

3.1.2 Lower bound

Parameterized linear Diophantine system of equations: The compu-
tational nodes are defined by non-negative integral triplets (i, 7, k)

satisfying
1 < n—1
j <n-1
k < n-1.

Mathematica input/output: The DiophantineGF run for even n gives

In[1]:= << DiophantineGF.m
Loaded. Type "help" for instructions, "example" for examples.

In[2]:= a = {2,2,2,0,0,0},
{1,0,0,1,0,0%},
{0,1,0,0,1,0%},
{0,0,1,0,0,1}};
In(3]:= b= {3,1,1,1}; ¢ = {-2,-1,-1,-1};
In[4]:= DiophantineGF[a, b, c]
2 2
-3t (1+1t)
Qut [4]= -

(-1+t) (1+1t)

In[5]:= formula



Binomial Formula : (-3 (3 C[2 + --———- , 2]
2
-7 +n -5+ n
> - 7C[2 + ———- , 2] + 5 C[2 + —————- , 2]
2 2
-4 +n -3 +n
> - 8C[2 + —————- , 2] + 15 C[2 + —————- , 2]
2 2
-2 +n
> -8 Cl2 + —————- , 2] - 3C[-4 +n, 2]
2
> +9C[-3+mn, 2] - 11 C[-2 + n, 2]
> +9 C[-1 +n, 2] - 8 C[n, 21)) / 16

x!

Recall that Clz,k] denotes the binomial coefficient () = gy
when z is a non-negative integer, and zero otherwise. This means
that in the above formula C[2 + (n — 9)/2, 2] vanishes for even n, for
example. In this way, the formula simplifies to

3
Zn2, (n even).

For odd n we obtain the generating function and the formula below:

(-1+t) (1+1t)

and a similar formula, which simplifies to

3, 3
yUaE (n odd).

These cases can be combined to obtain the processor lower bound

[3n?].



3.1.3 Upper bound

Schedule: The map m : N — Z? (i.e., from nodes to processor-time) can
be defined formally as follows.

time t(i, 4, k)
spacey | = | s1(i,j,k) | ,where
spaces s2(i, J, k)

t(i,j,k)=i+j+k—2
s1(6,5) = (+j—[n/2] —1) mod n
i—7, if nisevenor [n/2]+1<i+j < [3n/2]
so(i,j) =< i—j+1, ifnisoddand [n/2]+1>i+j
i—j—1, ifnisoddandi+j>[3n/2].

Proof of optimality: [5].

3.2 Gaussian elimination
3.2.1 Problem

We examine the dag family for the Gaussian elimination algorithm. One
use of this algorithm is to transform a linear system Az = b into an upper-
triangular system Uz = ¢. In this algorithm, there is no pivoting and the
vector b is transformed as well as the matrix A. This dag is a subgraph of
an n X (n + 1) X n rectilinear mesh. An example dag is shown in Figure 2,
for n = 5.

The Gaussian elimination dag can be defined as follows. G, = (N, A),
where

o N=A{(i,5,k) |0<i<n—1,0<j<n, 0<k<min(i,j)}

o A={[(i,4,k), (@, 5", k"] |(4,5,k) € N, (i',j',k') € N and exactly 1
of the following conditions holds:
l.i'=i+1, /=4, k =k
2. ' =j+1,i' =4, kK =k
3.k =k+1,i =14 j =3}

3.2.2 Lower bound

The longest directed path in the dag clearly has (n+1)+ (n—1)+(n—1) =
3n — 1 nodes. Any time-minimal schedule of the Gaussian elimination dag
G, requires at least [n?/4 + n/2] processors.
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Figure 2: The Gaussian elimination dag, for n = 5.



For Gaussian elimination without pivoting of an n x n matrix the
Diophantine system is az = Nb + ¢ where

1 1 10000
1 -1 01000

a=[0 1 00 100 (20)
1 0 -10010
0 0 10001

Here b = [3,0,2,0,2]" and ¢ = [-2,-1,—1,-1,—1]%, for n = 2N. The
generating function computed is
t2(3+1)
(1—t)3(1+1t)"

The actual formula DiophantineGF.m produces for the coefficient of
tV in the expansion of this function is

(BCIN —2)/2,0] = C[(N —4)/2,0] - 2C[(N - 3)/2,0])/8 + (21)
(CIN —3,2] 4+ 3C[(N —2)/2,0] = C[N —2,2] — 5C[N — 1,2] + 21C[N, 2])/8

However, note that C[z,0] = 0 unless z is an integer. This means that

2 N even,

3C[(N-2)/2,0]—C[(N—4)/2,0]—2C[(N-3)/2,0] = { 9 N odd.

Simplifying the other binomial coefficients in (21), we obtain the lower
bound for n = 2N as

2N2 - N 2N?2 - N -1

5 if N is even, 5 if N is odd,

which can be combined into LWT_NJ for n = 2N. When n = 2N + 1,
c=[-1,-1,0,—1,0]" and a and b are the same as above. The generating
function computed by the program is
t(1 + 3t)
(1—-8)31+1)

Simplifying the automatically produced formula as before,
(CIIN =1)/2,0] = 3C[(N = 3)/2,0] + 2C[(N —2)/2,0])/8 +
(3C[N —2,2] — 11C[N —1,2] + 17C[N,2] + 7C[N + 1,2])/8,
we obtain

2N2 - N 2N?2 - N -1

5 if N is even, 5 if N is odd.



Therefore, the lower bound for n = 2N + 1 is also LWT_NJ Combining
with the previous case, we obtain the processor lower bound

EACIETER)
[

for n x n Gaussian elimination without pivoting for arbitrary n.

3.2.3 Upper bound

Benaini and Robert [2, 3] presented a processor-time-minimal solution for
Gaussian elimination via an example solution for n = 9, which is gener-
alizable for odd n. The mapping below is a formal generalization of their
approach, and is valid for all n € N.

We map the 3D mesh onto a 2D mesh of processors with map m :
N,, — N3. Given a mesh node (i, j, k) € N,,, m(i, j, k) produces a time step
(its first component), and a processor location (its last 2 components). The
map m can be defined as follows.

i time (1,4, k)
m| j | = m = | m(,j) , where
k 2 2 (Z) .7)

7(i,5,k) =i4+j+k,

[n/2] —i+k ifi<][n/2]-1

m(i, k) =< i—[n/2] if i>[n/2] —1and k > [n/2] and n even
i—[n/2]+1 ifi>[n/2] —1and (k< [n/2] or n odd)
i+1 if i < [n/2] -1

ma(i, k) = { kmod [n/2] ifi>[n/2]-1.

The geometrical interpretation of this mapping is as follows:

Each j-column of nodes is computed by the same processor. Each
processor computes 1 to 3 columns of nodes.

We divide the columns into three regions: two triangles and a rect-
angle as shown in Figure 3. The rectangular region defines the processor
space: That is, every column of nodes in the rectangle will be computed
by a distinct processor. We then map the remaining columns onto these
processors.

The top triangle is mapped using a simple mod function, shown in the
term 7y (4, k) = k mod [n/2]. The other triangle, labeled ABC' in Figure 3,
is fitted into the top right portion of the rectangle after linearly transforming
it. In Figure 3, triangle abc is the transformed triangle, with column A
mapping to the same processor as column a, etc.



h5*2d he*23 21-28| C

19-27

b7+ 24

b5+ 25

7* 18 a
-17 7x1d  B*2d ho*22] hi*23

Figure 3: The Gaussian elimination dag for n = 12, projected along
the j-axis. The rectangular region defines the processor space. The
remaining columns, which form two triangles, are mapped into the
rectangular region to complete the processor allocation.



3.3 Transitive closure
3.3.1 Problem
Aho et al. [1] define transitive closure as follows:

“Suppose our cost matriz C is just the adjacency matriz for the
given digraph. That is, C[i, j] = 1 if there is an arc from i to j,
and 0 otherwise. We wish to compute the matriz A such that
Ali, j] = 1 if there is a path of length one or more from i to j,
and 0 otherwise. A is often called the transitive closure of the
adjacency matriz.”

Perhaps the best known parallel algorithm for transitive closure is by
Guibas et al. [22, 54], operating on a toroidally connected mesh. This
problem has seen progress in the research of Rote [42], Robert and Trystram
[41], Benaini et al. [4], and Kung et al. [31]. This last algorithm (the KLL
algorithm) is a clever reindexing of the Floyd-Warshall [16, 56] algorithm
(see also [33]). It is the KLL algorithm which is analyzed below.

The KLL dependence dag [31] for computing the transitive closure,
illustrated in Fig. 4, can be defined as follows.

Gtc(n) = (N, A), where

o N=A{(,j,k) | 1<i,5,k <n}.

[ ) A:
{[(i,4,k), (',4',k)] | where i' = i + 1 exclusive-or j' = j + 1, for
1<i4,j,k<n}
U {l(5,k),@ 5" k)] i =i-1,j'=j-1Lk =k+1for1 <i,j <
n,1<k<n}
U A6, 4,k),0@, 7, EN) i =i-1,7=j=n,k' =k+1forl <i<mn,
1<k<n}
U {lG5,k), @5 k)] " =i=n,j" =j-1,k' =k+1lforl <j <n,
1<k<n}.

3.3.2 Lower bound
The longest directed path in this dag has 5n — 4 nodes (see [31]). Any

time-minimal schedule of the G¢.(n) dag requires at least {%2] Processors.

3.3.3 Upper bound

Schedule: The schedule depends on n mod 3. We show the schedule for
the case where n mod 3 = 0. The remaining cases, as well as the proofs of
optimality are found in [47].
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Figure 4: The dag G(6). Each node is labeled with its time step in
a time minimal schedule. Maximal concurrent sets (with 12 nodes)
are associated with time steps 9-18. Such time steps are referred
to as processor mazimal. The black nodes comprise the maximal

concurrent set for processor maximal time step 12.




The map mg : N — Z3 (i.e., from nodes to spacetime) can be defined
formally as follows.

time 7(1,4, k)
spacey = w1 (J, k) , where
spaces 72 (j)

m(i,5, k) =3k =1) +i+j—1 |
w3 k) = ' = [0/2] = [42]+ (k = ([n/2] = |552])) mod
m(j) =4 =Jj-

For this mapping, 7(i, j, k) is found by examining the dag of Fig. 4. It
is the earliest time a particular node can be processed. m (j, k) is the mod
n/3 function, with an offset to assure that the first processor of the top row
is located in the middle k£ column.

The mapping is done with a simple mod % function applied along the
k axis. There are n/3 real processors for each k-row. For a particular
row, the remaining 2n/3 columns map to the n/3 real processors such that
kreaumod n/3 = kremainingmod n/3. Thus, each real processor handles 3
columns: its first column finishes execution just before its second column
begins execution, and its second column finishes execution just before its
third column begins execution (i.e., scheduling constraints are met). For
the example in Fig. 5, we use a (mod12/3) function so that each of the
remaining 2 - 12/3 columns per row are mapped to a processor. The con-
nectivity implied by this mapping requires, for example, that the processor
assigned to column A must communicate directly to the processor assigned
to column D. To realize these boundary connections, we map the array of
Fig. 5 onto the surface of a cylinder.

Proof of optimality: [44].
Processor layout: The processor layout is shown in Figure 5, as described
above.

3.4 Tensor product
3.4.1 Upper bound

The processor lower bound for any time-minimal schedule for this compu-
tation was presented in Section 2: directed mesh clearly has 4n — 3 nodes.
Any time-minimal schedule of the 4D mesh requires at least (2/3)n® + n/3
processors.

We now show that there is a systolic array that achieves this lower
bound for processor-time-minimal multiprocessor schedules.

We map the 4D mesh onto a 3D mesh of processors with map m :
N, — N*. Given a mesh node (i, j,k,1) € N,, m(i, j, k,1) produces a time
step (its first component), and a processor location (its last 3 components).
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The map m is defined as follows.

i time 7(i,J, k1)

m J _ ™ _ S (iaja k) where
k T2 F?(iajak) ’
l T3 Wg(i,j,k)

(i, 4,k 0) =i+j+k+1,
m(i,5,k) =i+j+k—1modn
2+k—n+2 ifitjtrk<n—1

m(i,j,k) =< i—j ifn-1<i4+j+k<2n-2
24 k—2m+1 if2m—2<i+j+k
i+j ifitj+hk<n—1
w3(i,j, k) =< k ifn-1<i+j+k<2n-2

i+j—n+1 if2n—2<i+j+k.

We now discuss how this mapping was derived, and also give a geomet-
rical interpretation.

One way to find a processor-time-minimal schedule for a 4-dimensional
cubical mesh is as follows:

e First, we assume that the n points (i,7,%,0) to (i,7,k,n — 1) (for
every fixed 1, j, k) are mapped to the same processor. This gives us
n3 columns of nodes to be mapped.

e As shown previously, there are at least (2/3)n® + n/3 nodes which
must be computed at the same time step, in a time-minimal schedule.
Therefore, there are (2/3)n® + n/3 columns containing these nodes
(since the time steps corresponding to each node in a column are
unique.)

We choose these (2/3)n® 4+ n/3 columns as our processor space. This
accomplishes 2 things: (1) It assigns each of these columns of nodes
to the processor that computes it, and (2) It determines the shape of
the 3-dimensional processor array (before any topological changes).

e We then map all of the remaining n® — (2/3)n® + n/3 columns to the
processors, without violating the scheduling constraints.

The mapping m was derived by following the 3 steps above. The last
step has many valid solutions. We have chosen one that is convenient.

The mapping m has the following geometrical interpretation:

As previously mentioned, we collapse the 4-dimensional space to 3 di-
mensions, by only concerning ourselves with (4, j, k) columns, where each of
the n points in these columns is mapped to the same processor. For that
reason, [ is not a factor in the space mapping.

We divide this 3-dimensional cube of columns into 3 regions: the tetra-
hedron formed by [the convex full of] the columns below the hyperplane



Y |
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Figure 6: The 3 regions of the 4D-mesh (after 1 dimension has been
collapsed). The middle region, shaded here, is also the processor
space. It is inclusively bounded by the hyperplanes ¢+ j+k =n—1
and ¢ + 7 + k = 2n — 2. The nodes outside of the shaded region are
mapped into it.

i1+ j+k =mn—1, the tetrahedron formed by the columns above the hy-
perplane i + j + k = 2n — 2, and the remaining middle region. The middle
region is the processor space. These 3 regions are shown in Figure 6.

The middle region has 2 triangular faces, along the planes i + j + k =
n—1andi+j+k = 2n—2. These 2 faces become the bottom and top layers
of processors. The planes between these, defined by i + 7+ k=¢, n — 1<
¢ < 2n — 2, make up the remaining layers of processors, for a total of n
layers. Columns are mapped to the correct layer by the mapping function
™ (Z) Js k) :

We map the lower tetrahedron into the processor space by first trans-
lating it along the vector (1,1, 1) until its upper face, defined by the plane
i+ 7+ k =n — 2, lies in the same plane as the middle region’s upper face,
defined by the plane i + j + k = 2n — 2. We then rotate the tetrahedron 180
degrees about the line ¢ = j = k, and translate it again so that the integer
points of the tetrahedron lie on integer points of the middle region. This



second translation is actually done on a plane-by-plane basis for the planes
i+ 7+ k = c to assure a convenient mapping. These transformations are
done by the mapping functions (%, j, k) and m3(7, j, k).

The upper tetrahedron is mapped to the processor space similarly, ex-
cept that it is translated down to the lower part of the middle region.
Proof of optimality: [44].

Processor layout: The processor layout is shown in Figure 6, as described
above.

4 Conclusion

Given a nested loop program whose underlying computation dag has nodes
representable as lattice points in a convex polyhedron, and a multiprocessor
schedule for these nodes that is linear in the loop indices, we produce a
formula for the number of lattice points in the convex polyhedron that are
scheduled for a particular time step (which is a lower bound on the number
of processors needed to satisfy the schedule). This is done by constructing a
system of parametric linear Diophantine equations whose solutions represent
the lattice points of interest. Our principal contribution to lower bounds
is the algorithm and its implementation for constructing the generating
function from which a formula for the number of these solutions is produced.

Several examples illustrate the relationship between nested loop pro-
grams and Diophantine equations, and are annotated with the output of a
Mathematica program that implements the algorithm. The algorithmic re-
lationship between the Diophantine equations and the generating function
is illustrated with a simple example. Proof of the algorithm’s correctness
is sketched, while illustrating its steps. The algorithm’s time complexity is
exponential. However, this computational complexity should be seen in the
light of two facts:

e Deciding if a time step has any nodes associated with it is NP-
complete; we construct a formula for the number of such nodes;

e This formula is a processor lower bound, not just for one instance
of a scheduled computation but for a parameterized family of such
computations.

In bounding the number of processors needed to satisfy a linear multi-
processor schedule for a nested loop program, we actually derived a solution
to a more general linear Diophantine problem. This leads to some interest-
ing combinatorial questions of rationality and algorithm design based on
more general system of Diophantine equations.

Another direction of research concerns optimizing processor-time-minimal
schedules: finding a processor-time-minimal schedule with the highest through-
put: a period-processor-time-minimal schedule. While such a schedule has
been found and proven optimal in the case of square matrix product [48],



this area is otherwise open. Another area concerns k-dimensional meshes.
We have generalized the square mesh lower bounds, yielding a bound for a
square mesh of any fixed dimension, k. We have not, however, generalized
our upper bound: We have no generalized square mesh schedule that is
processor-time-minimal for every k (i.e., for meshes of the form n*, where
both n and k are parameters).
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