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Abstract. We consider stateless counter machines which mix the esatfrone-head counter ma-
chines and a special type of two-head Watson-Crick autofdkaautomata). Our Watson-Crick
counter machines are biologically motivated. They haveheads that read the input starting from
the two extremes. The reading process is finished when tlieracamore symbols between the
heads, i.e., every letter of the input is processed by elitbad. Depending on whether the heads are
required to advance at each move, we distinguish betwedimreaand non-realtime machines. If
every counter makes at mastlternations between nondecreasing and decreasing nmodesry
computation, then the machinefsreversal. It is reversal bounded if it isreversal for somé:.

In this paper we concentrate on the properties of both détéstic and nondeterministic stateless
WK-automata with reversal bounded counters.

1. Introduction

A well-investigated branch of DNA computing is the theorywiétson-Crick automata ([3, 18]). These
are finite state machines equipped with two read-only hedtiey operate on strings modeling DNA
molecules, i.e., double stranded sequences of bases. rahdsbf a DNA molecule have directions as
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a result of the underlying chemical bonds, determiningsthend3’ ends of a strand. The two strands
have opposite biochemical directions. Between the twadtathere is a one-to-one correspondence
of the bases given by the so-called Watson-Crick compleanigntrelation. In this way a strand of the
molecule uniquely defines the other, and therefore the DNAeoutes can be described by ordinary
strings (as, for instance, in [9, 10]). Our machines will igpe on strings representing DNA molecules.
In biology several enzymes are known to act on a DNA strandréction from5’ to 3’. Consequently,

in the case of’ — 3’ Watson-Crick automata, at the beginning of a computatibe,reading heads
start from opposite ends of the input and they move in the sippdirection from a computational point
of view (but the same direction biochemically). These awtarhave been used to characterize linear
context-free languages in [13]. In this paper we considdy 6h — 3’ Watson-Crick automata, and
consequently use the terminologyK-automataand omit the symbols’ — 3'.

Stateless machines (i.e. machines with only one state) teeemtly been connected to certain as-
pects of membrane computing afdsystems, a subarea of molecular computing that was inteatluc
by Gheorghe Paun [16, 17]. A membrane iPaystem consists of a multiset of objects drawn from
a given finite type sefas, ..., a,}. The system has no global state and works on the evolutioi-of o
jects in a massively parallel way. Thus, the membrane candseled as having countees, . . ., ¢,
to represent the multiplicities of objects of types, ..., a.,, respectively. AP system can then be
thought of as a counter machine in a nontraditional formhaeuit states, and with parallel counter incre-
ments/decrements. It is therefore natural to consider théehof computation which has no states but
is equipped with counters. These are the two features thavat® the study of stateless multicounter
WK-automata. As the name indicates, a stateless machitieowviadditional storage) cannot store any
information by states. Thus other methods are used, eeggutomaton is equipped with some number
of counters which store zero at the beginning and again zZettteaend of a computation. Since there
are no final states, acceptance of an input string has to beedefi a different way. It is well known
that nondeterministic pushdown automata with states arwalgnt to stateless nondeterministic push-
down automata (where acceptance is by “null” stack) althatiis is not true for the deterministic case
[4, 7]. In [6, 19] the computing power of stateless multiheatbmata with respect to decision problems
and head hierarchies were investigated. The machine caatbamidnistic, nondeterministic, one-way,
two-way, etc. In [8], various types of stateless restarangpomata and two-pushdown automata were
compared to the corresponding machines with states.

In two-way automata a head can move in both directions. Teadhautomata is a special case of
multihead automata, but in our machine the heads move tositpdirections, which is the main feature
of ¥ — 3’ WK-automata. Even though there is a rich literature on waritypes of automata, it seems
that no models equivalent to multicountér— 3’ WK-automata have been defined, i.e., automata where
the two heads run in opposite directions and, instead adsstitie automata is equipped by counters.

If the machine is not allowed to make transitions without ingva head, then the model is called
realtime Otherwise it isnon-realtime The models also take into account the behavior of the coainte
Consider the numerical sequence of distinct values of desoaunter during a computation of a counter
machineM . If this sequence hals local maxima, then we say that the counter makesversals. For
example a counter with distinct conterttsl, 2,3,2,3,4,3,2,1,0 makes 2 reversals. If each counter
of M makes at mosk reversals on any computation (accepting or not), then thehina is calledk-
reversal M is reversal bounded it is k-reversal for somé.

Deterministic stateless (one head, one-wayrounter machines were investigated in [1], where
hierarchies with respect to the number of counters and nuofhreversals were studied. Similar hier-
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archy results and characterizations are reported in [5{if@mon-realtime versions. Hierarchies of the
accepted language families by WK-automata are presentd@Jnincluding stateless versions without

counters. Some results about the deterministic case cabealfound in [2]. In this paper we concentrate
on nondeterministic stateless realtime WK-automata witlmeers. Here special variations, hamely the
strong realtime WK-automata are also introduced. In streadfime WK-automata both heads move in
every transition when they are not close to meet. We give sexamples and establish hierarchies of
WK-automata with respect to counters and reversals.

2. Stateless multicounter WK-automata

We first give a semi-informal explanation of the basic nddiofi stateless multicounter WK-automata to
help the readability. The input is of the forew$ with w € X* andc and$ are endmarkers that are not
in X. The machine has two read-only hedds, H,. HeadH; moves from left to right andZ, moves
from right to left. Originally, H; is onc and Hs is on $. The machine is equipped with counters, that
are initially all zero. A move of the machine depends on thatsgls under the heads and the signs of
the counters (the automata can distinguish two cases: zgrosdgive). It consists of moving the heads
and at the same time incrementing, decrementing, or leawmthanged each counter. The inpuis
accepted by if the counters are again zero when the haaégt as explained below.

The essence of when the heddlsand H» meet is captured best by making use of a funcitamhich
indicates whether the heads are close or far apart in priagas® input. This locality requirement can be
justified in part by biological properties that give rise td&vsdutomata. For the model it suffices to know
if there are zero, one, two, or more than two letters betwieréads. The letters that are not processed
yet are considered to be between the heads. The heads meethehe are zero letters between them.
(The heads are close to meet if one or two letters are betvineem. t We define

(M) { D if there arep € {0, 1,2} letters between the two heads/f,
SO =

00 if there are more than two letters between the headd of

We use the notatiop (M) althoughy is actually a function of the current positions of the heald3/o
i.e., function of the actual configuration.
For a deterministic stateless multicounter WK-automatbna transition (a move)

((‘T>yﬂ 51,82, .. 73m)7p) — (d17d2;613627 .. ->€m) (1)

has the following parameters;, y € ¥ U {c¢, $} are the symbols read by the hedds and H-, respec-
tively; s; is the sign of countef’;: s; = 0 if the i-th counter is zeras; = 1 ifitis positive. s1s3 - - - 8y, IS
referred to as aign vector p € {0, 1,2, 00} is the parameter described abode;ds € {0, 1} indicate

the direction of move of the heads with + d; < p. A value 0 signifies that the head stays where it
is, d; = 1 means that{; moves one cell to the right, anly = 1 means tha#{/, moves one cell to the
left; e; = 4, —, or 0, corresponding to the operations of increment, decnénoe leave unchanged the
contents of the-th counter. Here; = — applicable only ifs; = 1. A move (1) is possible if and only

if (M) = p. It should be noted that(M) is not part of the system, nor it is a counter, just a technical
parameter) is nondeterministigéf multiple choices are allowed for the right hand side of (1)
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The machine isealtimeif at least one ofi; andd, is not zero for any move of the machine. Other-
wise it isnon-realtime Thus in a realtime machine at least one of the heads must at@xery step of
the computation.

The machine ig-reversalif for a specifiedk, no counter makes more thamalternations between
increasing mode and decreasing mode (ikepairs of increase followed by decrease stages) in any
computation, accepting or not. The machinesigersal boundedf it is k-reversal for somé.

We denote the set of all nondeterministiceversaln counter non-realtime WK-automata by WKC
and the realtime versions by RWIﬁLC The reversal bounded versions are denoted by

o0 o0
WKC}, = | J WKCy,, RWKC;, = | J RWKCy;

m?

k=0 k=0

while WKC?® and RWKGy; are notations for the unbounded reversal versions. We ugeé jaréfix to
refer to the deterministic versions of these machines. SWKIR* denotes all deterministic realtime
k-reversalm-counter machines. This notation is also used for the cooreding language classes.

The formal definition of a nondeterministic stateless ngolinter WK-automaton is as follows.

Definition 2.1. A nondeterministic stateless multicounter WK-automasoa guintuple

M = (2,m,d,c,$) whereX is a nonempty alphabet; is the number of counters,is a mapping from
(ZU{c, $3)2x{1,0}"x{0,1,2, 00} to 2(0.13*x{0+=3") and¢, § ¢ ¥ are two special symbols called
endmarkers.

The signs| and | will be used to indicate the read heaHs and H, respectively. Thus, while an
automaton is reading some watgas . . . a,, overX*, the string

a1ay . ..ag_1|apagst ... ai_1a;]agq ... ap

with w = ajas - - - a,, signifies that the left head is reading the symigpland the right head is reading
the symbol;.

If there is only one symbol between the two heads, in any mbtreedorm(x, y; s1, s2,. .., Sm; 1) —
(d1,dg;eq,e9,...,en), x must be equal tg. This is because both heads would read the same symbol,
sox # y is not possible. In these cases only one of the heads is altovenove and finish the input.
Note that if one of the heads never moves, then the machirfehie ¢ype already considered in [1, 5].

An instantaneous description (ID) 8f with input cw$ is a tuple

(617627‘ . ,cm,x(yjz)

wherec; is the value of the-th counter andw$ = xyz with the left head reading the first letter of
y and the right head reading the last letteryofBoth x and z may be empty. The initial ID of\/ is
(0,0,...,0, [¢w$]). We usel D; = I D, to indicate the change in the ID after a single movébf As
usual,-* denotes the reflexive, transitive closure 6f The language accepted By is

{w e ¥*1(0,0,...,0,[cw$]) F* (0,0,...,0,¢ul[v$) with w = uv} .

In particular, if there is no transition corresponding te teading of the two heads during a computation,
then the input word is not accepted by the machine in that run.
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Example 2.1. We show that a well-known non-context-free language is @eckby a 1-reversal WK-
automaton with a single counter. L8t= {a, b, c}. Consider the stateless WK-automatbhwith one
counter whose moves are

(¢,$;0;00) — (1,1;0)
(a,c;0;00) — (1,1;4)
(a,c;1;00) — (1,1;4)
(b,b;1500) — (1,0;—)
(0,b;1;2) — (1,0;—)
(0,b;1;1)  — (1,0;—)

ThenM is 1-reversal and accepts the languég@b™c™ | n > 1}. About the accepted language: firstly,
since both the heads move in opposite directions, at eaghifstiee two heads read simultaneously either
a anda, ¢ andc, a andb or b andc, no move is defined (indeed, in all these cases such a wordndbes
belong to{a"b"c™ | n > 1}). The two heads read the blocks«$ andc’s simultaneously, starting from
the extremes, and moving in opposite directions. For eackenmothese blocks, when the heads are
sufficiently far one from each other, the counter is incrddsel. Further, the machine allows the heads
both to read. The second head never moves again. Until the two headsféioiesuly far (fourth move),
the second head does not move anymore, but the acceptahbe @wétermined by the advancement of
the first head, until it meets the second head. For each agwveent, the counter is decreased by 1. Then
if the number of thé’s were the same of th&s (and of thec's), which is represented by the counter, the
two heads will meet and the value of the counter will be O (ptanece). Otherwise, either the counter
will assume a negative value (mobils thana’s; and blocked computation without allowed movement
with counter value 0 whebis are read) or counter 1 will assume a positive number, greaan of zero
(lessb’s thana's). So the machine is clearly 1-reversal.

Let us see how it works on inputsc andaabbcc:

(0, [cabe$]) F (0, c[abe|$) F (1, ¢alb]c$) F (0, cab[]c$).

(0, [caabbee$)) F (0, ¢[aabbee$) (1, ¢calabbe|cl) F (2, caa[bb]cc$)
(1, ¢caab[b|cc) F (0, caabb[ | cc$).

Now we define a subclass of realtime WK-automata.

Definition 2.2. A realtime WK-automata istrong realtimeiff each of the two heads moves at every
move of the machine witly(M) € {co, 2} and only the first head moves otherwise.

By definition the strong realtime machines are specialirealtmachines. One can consider WKC
machines also, these are without any counters. Their caongppower is exactly the same as the stateless
(typeN) 5 — 3’ WK-automata of [12]. This language class is incomparabté thie regular languages
with respect to set theoretical inclusion: the languagec* cannot be accepted, but the language of
palindromes{w | w € {a,b}*, w = wf} is in WKC§ as shown in [12]. In addition this language
is accepted by a strong realtime automata. Now we give anet@nple to demonstrate the power of
strong realtime machines.
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Example 2.2. Let ¥ = {a,b,c,d}. Consider the stateless WK-automathwith five counters whose

maoves are
(¢,%;0,0,0,0,0;00)
(a,d;0,1,0,0,0;00)
(a,d;1,1,0,0,0;00)
(b,¢;1,1,0,0,0; 00)
(b,¢;1,1,0,0,0;2)
(a,c;1,1,0,0,0; 00)
(a,c;1,0,1,0,0;00)
(b,¢;1,0,1,0,0; 00)
(b,¢;1,0,1,0,0;2)
(b,¢;1,0,0,1,0; 00)
(b,¢;1,0,0,1,0;2)
(b,d;1,1,0,0,0; 00)
(b,d;1,0,0,0,1;00)
(b,¢;1,0,0,0,1;00)
(b,¢;1,0,0,0,1;2)

(1,1;0,4,0,0,0)
(1,1;4,0,0,0,0)
(1,1,+0000)
(1, —,0,+,0)
(1, —,0,0,0)
(110 ,+,0,0)
(1100000)
(1, —+,0)
(1, —0,0)
(1, 0000)
(1, —0)
(1,1,0 00+)
(1,1;0,0,0,0,0)
(1,1;—,0,0,+, —)
— (1,1;—,0,0,0,—)

N e

ThenM is 1-reversal and accepts the languégéb™c"d™ | n,m > 1}. The first counter is counting up
tomin{m, n}, while the other counters show the ‘state’ of the machime, the phase of the computation:
counter 2 is positive in the initial phase (the heads readtbeks ofa’s andd's simultaneously). If
m = n, then counter 4 represents the case: the same numberasfdc's should be read while counter
1 should be emptied. lf > m, then counter 3 is used,s andc’s are read simultaneously without
changing the value of counter 1, then by finishti'g and ¢'s counter 4 is used to finish the process.
Similarly counter 5 indicates the case when> n andb’s andd’s are read by the heads, respectively.
We give some examples that show how the machine accepts $mmiénputs.

(0,0,0,0,0, [¢abed$]) F (0,1,0,0,0,¢[abed|$)

(1,1,0,0,0, ¢a[bc|d$) F (0,0,0,0,0, ¢abl | cd$).

(0,0,0,0,0, [¢abbedd$ |) F (0,1,0,0,0, ¢[abbedd|$) + (1,1,0,0,0, ¢a[bbed|d$)

(1,0,0,0,1, cab[bc|dd$)

F(0,0,0,0,0, ¢abb] |cdd$).

(0,0,0,0,0, [¢caabeed$)) = (0,1,0,0,0, cl[aabeed]$) F (1,1,0,0,0, calabee|d$) F

(1,0,1,0,0, caalbc|cd$)

F(0,0,0,0,0, ¢caab[ | ccd$).

Note that with these more restricted machines we still caepicimportant non-context-free lan-

guages.

The families of nondeterministic/deterministiereversahn counter strong realtime WK-automata
(and the language classes defined by them) are denoted by S%WKOI dSRWKQ‘En, respectively. The
symbolsoo andx can similarly be used as for realtime/non-realtime machine
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3. Closure properties of stateless multicounter WK-automé#a languages

A number of closure properties of languages accepted byrdetistic and nondeterministic stateless
multicounter WK-automata follow.

Proposition 3.1. The language families accepted by deterministic and nenahnistic stateless strong
realtime multicounter WK-automata are closed under ietgign.

Proof:

Let M; and M> be two strong realtime multicounter WK-automata. Strongjtime machines read
the input in a similar manner, therefore their heads aretéocaxactly the same place after the same
number of steps on any input (that could be processed by batthimes). Therefore, i/, is a k-
reversalmi-counter machine and/, is a ko-reversalms-counter machine, then we can construct a
max{k, ks }-reversal(m, + mgy)-counter machine which can simultaneously simulefteand M: the
first m; counters work exactly in the same way ad/ét, while the lastn, counters work exactly in the
same way as the counters ;. In this way, only those input will be accepted for which badth and

M, has an accepting run. Clearly the new machineas{k;, k2 } reversal; and when both/; and M,

are deterministic, then so is the constructed machine. O

Proposition 3.2. The language family accepted by nondeterministic stagetzdtime multicounter WK-
automata is closed under the union operation.

Proof:

If M; is akj-reversalmi-counter machine andl/s is a ky-reversalms-counter machine, then we can
construct anax{ky, ko }-reversal,(max{mi, ms} + 2)-counter machine which can simulate eittiéy

or M, determined by a nondeterministic choice of the first stepnadaactly one of the two additional
counters is set to 1 indicating which of the machidés and M, is being simulated in this run. At the
first step the machine may move &§ and set the first additional counter to 1. M, is chosen to be
simulated, then additionally to one of its initial move trecend additional counter is set to 1. Then
these last two counters do not change during the computadidy in accepting steps (with parameter
p € {1,2}) are decreased. In this way, during the whole computatiey kieep track of which machine
is being simulated. Thus, the moves simulatiig (except the initial ones) have the condition that the
last counters are positive and zero, respectively. Andlaitpifor M, they must be zero and positive,
respectively. Itis clear that the machine accept the unien,it accepts the words that are accepted by
at least one of the machindg; and M,. Furthermore, the new machinerisix{k;, k2 }-reversal since
the additional counters make at most one reversal. Notdrttese ofm; # mo some of the counters
never changed in some computations. O

Proposition 3.3. The language families WK{, RWKC?, , SRWKC,, dWKC},, dRWKC},, ASRWKG;,
(m € N,z € NU {*,00}) are closed under reversal (taking mirror image) of words.

Proof:
Suppose a machine acceptsvith k-counters andn-reversals. Them® can also be accepted with the
same parameters, just the behavior of the heads have toebehabhged. O
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Proposition 3.4. For |X| > 2, language families accepted by deterministic or nondetestic stateless
realtime or strong realtime multicounter WK-automata areatosed under the concatenation operation.

Proof:

Consider the language of even palindronfes- {ww® | w € {a,b}*}. It can be accepted by a strong
realtime deterministic WK-automaton without counters lagwa in [12]. Its concatenation with itself
is L- L = {wwluwu® | w,u € {a,b}*}. The first head can read and/or the second head can read
uft. The read part must be stored. Since an RWK@nd so an SRWKE) machine has only memory
by counters and it is realtime, it is not possible to store advad arbitrary length asv or « could be.
Without storing any (or both) of these words our statelesshime is unable to check their reverse.0

Corollary 3.1. The language family of deterministic/nondeterministialtine stateless multicounter
WK-automata is not closed under Kleene-closure.

4. Hierarchies for nondeterministic stateless multicounér WK-automata

In this section we start by proving that for stateless needtmulticounter WK-automata, nondetermin-
istic and deterministic machines are not equivalent; thedeterministic variations are more powerful,
i.e.

Theorem 4.1. Nondeterministic stateless realtime multicounter WKeaudta withk reversals andn
counters accept more languages than deterministic "atetaltime multicounter WK-automata with
the same parameters.

Proof:
Clearly all deterministic machines with counters and reversals are a special case of nondeterministic
machines with the same number of counters and reversals. Bay we define the language

L, = {a'¥'ab’ ---ab’ |i,5, >0, k=1,2,...,n, andi = j, wherel =1, or{ =2, or ...l = n}.

ThenL’ = |2, L, cannot be accepted by a deterministic stateless realtimeaWémata with any
number of reversals and any number of counters. The mackewsrto test the valués= {1,2,...,n}
to determine the value for which the equality holds. It isacléhat for any numberk, m € N: w €
Ly (k+1)(m+1)+1 Cannot be accepted by a machine in WK o check which of the(k +1)(m+1)+1
values matches tocannot be done with k-reversal counters in realtime.

Furthermore, in the nondeterministic case, only one coustenough to accept the language. If
i = jiforak € {1,2,...,n}, then the right head can read the end of the input till the éitlieosubword
b without changing the counter, then at the beginning of thatk(i.e., at the previous symbalor $
in case ofk = n, i.e., at the last block) the counter is changed to 1. If thenter is positive, both heads
move while reading symbols. The left head reads the préfixhile the right head reads*. Thus they
are reading the same number of symbols. At the end of the $libekcounter set to be zero again only
if both blocks ended at the same move. Then the remaindeeahput can be read by the first head to
finish the input. O
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The following fact is a known result regarding to determtici$VK-automata (the details can be found

in [2]).

Proposition 4.1. For fixedi > 3, languages in the formh = {a™® | n > 0}, cannot be accepted by any
stateless deterministic realtime reversal bounded Widraaton.

These languages are clearly accepted by nondeterminiateless WK-automata with-reversals
and m-counters, where:, m depend on the value df If the machine isl-reversal,m = [4] — 1
counters are needed to accépffor i = 1,2,5,6,7...), and 2 counters for = 3 andi = 4. Itis clear
that in thei = 1,2 casesm = 0 counters are needed. In the former (latter) case, the magéhreads
the input with just one head (with both heads simultanequshecking if the input is of the form* (or
(aa)*). Moreover this can be done by a deterministic machine.

If ¢ > 2, then nondeterministic machines are used: they guess lhe o8 in the following way.

If : = 3 ori = 4, then two counters are needed for a non-deterministic maclirst the machine uses
the first counter: both head reat and the counter is incremented. There is a hondeterrairukbice

to continue the work in this way, or jump to the other phasé:tts® second counter to 1 and decrease
the first one. In case af = 3 only the first head read the remained input, while in case-6f4 both
heads continue their work. In this phase of computationgt®nd counter is positive) the first counter
is decremented in each movement. When the valug(8f) is 1 (ati = 3) or 2 (ati = 4), then this is
the end the computation and both counters are decreasededted counter becomes zero, the first one
becomes zero only if the valuewas correctly guessed and so the input word is in the langy&gmuld
happen that the first counter is emptied before the headsnmdeharefore this run was not successful.)

If 7 > 4, thenm = (%1 — 1 > 2. We could distinct the first and the last counters (they will
have special roles: starting and accepting). The machirr&sain the following manner. At the first
phase, the first counter is used and incremented in eachvgtép,both heads reads. Then, by a non-
deterministic choice, the machine may continue its work bgrdmenting the first counter and at the
same time incrementing the second one. This phase godtetiiirst counter is emptied (or the input is
processed and the machine gets stuck). When the first casmmpty, the machine starts to decrement
the second counter in each step and incrementing the theedibany). And so on, the new phase of
the computation will start after the same number of stepswiaa guessed by the machine at the first
phase (i.e. the maximal value of the first counter in this .rdfipally, when the last counter is started
to decrement only the first head reads the inputig odd and both heads ifis even. The input gets
accepted only if it was the desired form with the guessed rumb

In this way, ifi is even, then the machine reads with both heads simultalygfoushe whole accept-
ing process, using: counters. Then, for+ 1, one additional counter is needed. For every odd value of
1, there is ani + 1 even value, which needs the same number of counters. Thusqthalitym = [%1 -1
can be proven by induction.

Linear grammars and languages are closely connectétl t0 3’ WK-automata [12, 13]. A lin-
ear grammaiG = (N, T, P,S) is in normal form if every rule has one of the following formis —
aBbA — aB,A — Ba,A — a with A)B € N anda,b € T. This can be achieved by basic
transformations of the rules.

Theorem 4.2. LetG = (N, T, P, S) be alinear grammar in normal form. Thé(G) can be accepted by
a nondeterministic stateless realtime WK-automaton withownded number of reversals and= | V|
counters so that ;" , ¢; < 1 at any time of the computation (whetgis the value of the-th counter).
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Proof:

We give the construction of the machine which accdpt§’). Each counter represents a nonterminal.
Initially both heads make a step from the boundary marketissahthe counter of to 1 (cs = 1). For
every ruleX — aY'b € P the move

((a,b;0,0,...,0,sx =1,0,...,0),00) — (1,1;0,0,...,0,ex = —,0,ey = +,0,...,0)

is added. The order afy andcy in the sequence may be different depending on how the cauwene
assigned to the nonterminals. Xf = Y/, then the counters are not changed. For a Mle» aY € P
similar moves are added (far(A/) > 1). This time the second head does not movean be any
terminal symbol, so the moves should be constructed fdr@lll’, and only the left head moves:

((a,b;0,0,...,0,5x =1,0,...,0),00) — (1,0;0,0,...,0,ex = —,0,ey = +,0,...,0).

The case ofX — Ya € P is similar andX — a € P can be handled witl»(M') = 1 by reading an
a with the left input head and decreasing the value of courgesetting all counters to zero.

It is obvious that every successful derivationGhhas an accepting run of the constructed WK-
automaton, and vice-versa, therefore the machine acé¢pis O

Actually, fewer number of counters are sufficient; with adsincoding of non-terminal symbols a
WK-automaton with[log, | N || counters works.

A language is calle@ven-linearif it can be generated by a grammar having rules only of thegor
A — aBb,A — a, A — )\, whereA, B are nonterminals and b are terminals. (We referto [13, 14]to a
characterization of this language class by WK-automatagn§ realtime machines are related to even-
linear languages in a similar way as realtime machines #ateeto linear languages. The construction
of the proof of the previous theorem leads to a strong realtimchine in case of even-linear grammar.

Remark 4.1. It is known that counter machines with a finite control and twanters accept all recur-
sively enumerable languages [11]. Therefore we can add tddienal counters to the automaton in
Theorem 4.2 and obtain a machine equivalent to the Turinghima. Consequently, by restricting their
power, reversal boundedness plays a key role in the higrafcstateless multicounter WK-automata.

Let us define the following languages over= {a, b, c} for j > 1:
Lj={a""ca™c---a"icb™ b2 - p " M | ny > O0foralli =1,..., 5}
Theorem 4.3. Foranyj > 1, L; isin dRWKC!, but not in RWK('j’C_1 foranyk > 1.

Proof:
First we remark that without the delimitersbetween the subwords':, only one counter is enough to
acceptL;. The valuen; + ny + ... + n; can be stored in the counter by reading all tfeby the left
head. Then the lengths of the blocksihsf andc’s can be checked by decrementing the counter (either
head reads &, the other must read@at the same move).

It is easy to see that; can be accepted bylareversal machine with counters. The machine first
counts the number af's in the prefixa™ subword with countet, then, if ac is read, the second counter
is increased by to indicate that the™2 subword is going to be read. After readiat and increasing
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counter2 in each step, anothercomes. This time, while reading it, the second counter isedsed
by 1 (it containedns + 1, because of the firgf) and the third counter is increased to indicate, that now
a™ is to be read and counted. In this way, the machine counthesket.™: subwords and after thgh
one, while reading a with the left head, it also reads the right end markerith the right head, while
decreasing thgth counter byl (this is also because of the previously read At this point, the value
of counteri (i = 1,...,7) is n;. After these steps, the subwobt ¢"ip"2¢™i-1 - .. pi-1c"2p" ™ is
processed while decrementing the corresponding counters.

We use induction o to show thatl; cannot be accepted hy— 1 counters with any number of
reversals. Foj = 1, it is obvious that the languadge, = a™cb™c™ cannot be accepted without counters.
Note, that the expression &f;, ; can be constructed from the expressior.gfin the following way:

1. letw andx be the sequenceéstc™ - - - "¢ anda™ ca™c- - - a"* c respectively

2. L1 = a‘cab®h(w)ct, whereh is a morphism such that(b) = c andh(c) = b.

Suppose, that for some > 1, L, cannot be accepted with — 1 counters with any number of
reversals. ForL; 1, we have an additional counter. In this counter, we showiteghe numbef to test
whether the first block ob's have the same number of symbols. So, the additional coismteeeded
to storel. Then, after reading’, or ¢! (or both) we have: — 1 counters and the remaining part of the
input to be processed (without thesubword) is inL;, except that the correspondihlg and thec’s in
the suffix are exchanged. But this is not sufficient to acdgptFurthermore we know that; cannot
be accepted witlt — 1 counters. Thus it is impossible to getitowithout loss of information, sd;,. |
cannot be accepted withcounters.

O

Corollary 4.1. The language classes dRWKGnd RWKC:, , are incomparable (fot > 1,m > 2)
under set theoretical inclusion.

Proof:

As we have shown in the proof of the previous theorém,can be accepted bylareversalm-counter
machine, but cannot be accepted by-eeversalm — 1 counter machine for any > 1. On the other
hand, the languag®’ that was in the proof of Theorem 4.1 is in RW&(;1 fork > 1,m > 2, since,
as we have shown 1-reversal one counter is enough to actsph ihondeterministic machine. Bt is

not in dRWKC, by the proof of Theorem 4.1. O

It is easy to prove that the following result holds.

Proposition 4.2. Stateless strong realtime multicounter WK-automata ae p®werful than stateless
realtime multicounter WK-automata with the same pararseter

To see this we consider that the language that is the corataierof the language of palindromes
over{a, b} and the regular languagg. This language needs only 1 counter to represent the phase wh
c* is being read by the second head, so it is deterministicimeall-reversal 1-counter WK-automata
language.



12 O. Egecioglu, L. Hegedils, B. Nagy / Hierarchies of SeseMulticountes’ — 3’ WK-Automata Languages
dWKC® =WKC® = RE

dWKC® . »WKC®
v

m m
.

S -RWKCE

dRWKC®

m

WKCF

m

AWKCly_y)

b

dWKCF

m

RWKCy_y,,

m

ARWKC ;1) RWKCE

dRWKC?

‘m

Figure 1. Hierarchy of stateless multicount&t — 3' WK automaton languages.

5. Conclusions

We have considered multicount&r— 3’ WK-automata are considered. With arbitrary number of coun-
ters and without limiting the number of reversals the naaitime versions are universal. We proved
that nondeterministic variations are more powerful thatewginistic variants with the same parame-
ters. As expected, the restricted variants are usually gesgerful than their not restricted variants.
Reversal bounded machines accept a proper subset of theagggyaccepted by than unbounded rever-
sal machines. Also, realtime machines are less powerful tloa-realtime onesk-reversalm counter
machines can be simulated byeversal automata witf2k — 1)m counters ([2]).

Figure 1 contains some of the hierarchy results about Wiiraata. Arrows stand for proper inclu-
sion. RE stands for the class of recursively enumerableukzges.

Some open problems are represented by dotted arrows. Almaliuniversal counter-machines
can be considered analogously to minimal universal Tunraghines. Another further direction of re-
search is to investigate such multicounter WK-automatargvtfee heads do not sense when they meet,
and therefore both heads read the full input in an acceptimgpatation. Other extension can also be
considered: multicounter WK-automata which may read g&risnd not just letters in a single transition,
for example.
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