
Fundamenta Informaticae ? (2011) 1–13 1

IOS Press

Hierarchies of Stateless Multicounter5′ → 3
′ Watson-Crick

Automata Languages
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Abstract. We consider stateless counter machines which mix the features of one-head counter ma-
chines and a special type of two-head Watson-Crick automata(WK-automata). Our Watson-Crick
counter machines are biologically motivated. They have twoheads that read the input starting from
the two extremes. The reading process is finished when there are no more symbols between the
heads, i.e., every letter of the input is processed by eitherhead. Depending on whether the heads are
required to advance at each move, we distinguish between realtime and non-realtime machines. If
every counter makes at mostk alternations between nondecreasing and decreasing modes in every
computation, then the machine isk-reversal. It is reversal bounded if it isk-reversal for somek.
In this paper we concentrate on the properties of both deterministic and nondeterministic stateless
WK-automata with reversal bounded counters.

1. Introduction

A well-investigated branch of DNA computing is the theory ofWatson-Crick automata ([3, 18]). These
are finite state machines equipped with two read-only heads.They operate on strings modeling DNA
molecules, i.e., double stranded sequences of bases. The strands of a DNA molecule have directions as
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a result of the underlying chemical bonds, determining the5′ and3′ ends of a strand. The two strands
have opposite biochemical directions. Between the two strands, there is a one-to-one correspondence
of the bases given by the so-called Watson-Crick complementarity relation. In this way a strand of the
molecule uniquely defines the other, and therefore the DNA molecules can be described by ordinary
strings (as, for instance, in [9, 10]). Our machines will operate on strings representing DNA molecules.
In biology several enzymes are known to act on a DNA strand in direction from5′ to 3′. Consequently,
in the case of5′ → 3′ Watson-Crick automata, at the beginning of a computation, the reading heads
start from opposite ends of the input and they move in the opposite direction from a computational point
of view (but the same direction biochemically). These automata have been used to characterize linear
context-free languages in [13]. In this paper we consider only 5′ → 3′ Watson-Crick automata, and
consequently use the terminologyWK-automataand omit the symbols5′ → 3′.

Stateless machines (i.e. machines with only one state) haverecently been connected to certain as-
pects of membrane computing andP systems, a subarea of molecular computing that was introduced
by Gheorghe Păun [16, 17]. A membrane in aP system consists of a multiset of objects drawn from
a given finite type set{a1, . . . , am}. The system has no global state and works on the evolution of ob-
jects in a massively parallel way. Thus, the membrane can be modeled as having countersc1, . . . , cm
to represent the multiplicities of objects of typesa1, . . . , am, respectively. AP system can then be
thought of as a counter machine in a nontraditional form: without states, and with parallel counter incre-
ments/decrements. It is therefore natural to consider the model of computation which has no states but
is equipped with counters. These are the two features that motivate the study of stateless multicounter
WK-automata. As the name indicates, a stateless machine (without additional storage) cannot store any
information by states. Thus other methods are used, e.g., the automaton is equipped with some number
of counters which store zero at the beginning and again zero at the end of a computation. Since there
are no final states, acceptance of an input string has to be defined in a different way. It is well known
that nondeterministic pushdown automata with states are equivalent to stateless nondeterministic push-
down automata (where acceptance is by “null” stack) although this is not true for the deterministic case
[4, 7]. In [6, 19] the computing power of stateless multiheadautomata with respect to decision problems
and head hierarchies were investigated. The machine can be deterministic, nondeterministic, one-way,
two-way, etc. In [8], various types of stateless restartingautomata and two-pushdown automata were
compared to the corresponding machines with states.

In two-way automata a head can move in both directions. Two-head automata is a special case of
multihead automata, but in our machine the heads move to opposite directions, which is the main feature
of 5′ → 3′ WK-automata. Even though there is a rich literature on various types of automata, it seems
that no models equivalent to multicounter5′ → 3′ WK-automata have been defined, i.e., automata where
the two heads run in opposite directions and, instead of states, the automata is equipped by counters.

If the machine is not allowed to make transitions without moving a head, then the model is called
realtime. Otherwise it isnon-realtime. The models also take into account the behavior of the counters.
Consider the numerical sequence of distinct values of a single counter during a computation of a counter
machineM . If this sequence hask local maxima, then we say that the counter makesk reversals. For
example a counter with distinct contents0, 1, 2, 3, 2, 3, 4, 3, 2, 1, 0 makes 2 reversals. If each counter
of M makes at mostk reversals on any computation (accepting or not), then the machine is calledk-
reversal. M is reversal boundedif it is k-reversal for somek.

Deterministic stateless (one head, one-way)m-counter machines were investigated in [1], where
hierarchies with respect to the number of counters and number of reversals were studied. Similar hier-
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archy results and characterizations are reported in [5] forthe non-realtime versions. Hierarchies of the
accepted language families by WK-automata are presented in[12], including stateless versions without
counters. Some results about the deterministic case can also be found in [2]. In this paper we concentrate
on nondeterministic stateless realtime WK-automata with counters. Here special variations, namely the
strong realtime WK-automata are also introduced. In strongrealtime WK-automata both heads move in
every transition when they are not close to meet. We give someexamples and establish hierarchies of
WK-automata with respect to counters and reversals.

2. Stateless multicounter WK-automata

We first give a semi-informal explanation of the basic notions of stateless multicounter WK-automata to
help the readability. The input is of the formcw$ with w ∈ Σ∗ andc and$ are endmarkers that are not
in Σ. The machine has two read-only headsH1,H2. HeadH1 moves from left to right andH2 moves
from right to left. Originally,H1 is onc andH2 is on $. The machine is equipped withm counters, that
are initially all zero. A move of the machine depends on the symbols under the heads and the signs of
the counters (the automata can distinguish two cases: zero or positive). It consists of moving the heads
and at the same time incrementing, decrementing, or leavingunchanged each counter. The inputw is
accepted byM if the counters are again zero when the headsmeet, as explained below.

The essence of when the headsH1 andH2 meet is captured best by making use of a functionϕ which
indicates whether the heads are close or far apart in processing the input. This locality requirement can be
justified in part by biological properties that give rise to WK-automata. For the model it suffices to know
if there are zero, one, two, or more than two letters between the heads. The letters that are not processed
yet are considered to be between the heads. The heads meet when there are zero letters between them.
(The heads are close to meet if one or two letters are between them.) We define

ϕ(M) =

{

p if there arep ∈ {0, 1, 2} letters between the two heads ofM ,

∞ if there are more than two letters between the heads ofM.

We use the notationϕ(M) althoughϕ is actually a function of the current positions of the heads of M ,
i.e., function of the actual configuration.

For a deterministic stateless multicounter WK-automatonM , a transition (a move)

((x, y; s1, s2, . . . , sm), p) → (d1, d2; e1, e2, . . . , em) (1)

has the following parameters:x, y ∈ Σ ∪ {c, $} are the symbols read by the headsH1 andH2, respec-
tively; si is the sign of counterCi: si = 0 if the i-th counter is zero,si = 1 if it is positive. s1s2 · · · sm is
referred to as asign vector; p ∈ {0, 1, 2,∞} is the parameter described above;d1, d2 ∈ {0, 1} indicate
the direction of move of the heads withd1 + d2 ≤ p. A value 0 signifies that the head stays where it
is, d1 = 1 means thatH1 moves one cell to the right, andd2 = 1 means thatH2 moves one cell to the
left; ei = +,−, or 0, corresponding to the operations of increment, decrement, or leave unchanged the
contents of thei-th counter. Hereei = − applicable only ifsi = 1. A move (1) is possible if and only
if ϕ(M) = p. It should be noted thatϕ(M) is not part of the system, nor it is a counter, just a technical
parameter.M is nondeterministicif multiple choices are allowed for the right hand side of (1).
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The machine isrealtimeif at least one ofd1 andd2 is not zero for any move of the machine. Other-
wise it isnon-realtime. Thus in a realtime machine at least one of the heads must moveat every step of
the computation.

The machine isk-reversalif for a specifiedk, no counter makes more thank alternations between
increasing mode and decreasing mode (i.e.k pairs of increase followed by decrease stages) in any
computation, accepting or not. The machine isreversal boundedif it is k-reversal for somek.

We denote the set of all nondeterministick-reversalm counter non-realtime WK-automata by WKCk
m,

and the realtime versions by RWKCkm. The reversal bounded versions are denoted by

WKC∗
m =

∞
⋃

k=0

WKCk
m, RWKC∗

m =

∞
⋃

k=0

RWKCk
m;

while WKC∞
m and RWKC∞m are notations for the unbounded reversal versions. We use a “d” prefix to

refer to the deterministic versions of these machines. So dRWKCk
m denotes all deterministic realtime

k-reversalm-counter machines. This notation is also used for the corresponding language classes.
The formal definition of a nondeterministic stateless multicounter WK-automaton is as follows.

Definition 2.1. A nondeterministic stateless multicounter WK-automaton is a quintuple
M = (Σ,m, δ, c, $) whereΣ is a nonempty alphabet,m is the number of counters,δ is a mapping from
(Σ∪{c, $})2×{1, 0}m×{0, 1, 2,∞} to 2({0,1}

2×{0,+,−}m) andc, $ 6∈ Σ are two special symbols called
endmarkers.

The signs⌈ and⌋ will be used to indicate the read headsH1 andH2 respectively. Thus, while an
automaton is reading some worda1a2 . . . an overΣ∗, the string

a1a2 . . . ak−1⌈akak+1 . . . al−1al⌋al+1 . . . an

with w = a1a2 · · · an signifies that the left head is reading the symbolak and the right head is reading
the symbolal.

If there is only one symbol between the two heads, in any move of the form(x, y; s1, s2, . . . , sm; 1) →
(d1, d2; e1, e2, . . . , em), x must be equal toy. This is because both heads would read the same symbol,
sox 6= y is not possible. In these cases only one of the heads is allowed to move and finish the input.
Note that if one of the heads never moves, then the machine is of the type already considered in [1, 5].

An instantaneous description (ID) ofM with input cw$ is a tuple

(c1, c2, . . . , cm, x⌈y⌋z)

whereci is the value of thei-th counter andcw$ = xyz with the left head reading the first letter of
y and the right head reading the last letter ofy. Both x andz may be empty. The initial ID ofM is
(0, 0, . . . , 0, ⌈cw$⌋). We useID1 ⊢ ID2 to indicate the change in the ID after a single move ofM . As
usual,⊢∗ denotes the reflexive, transitive closure of⊢. The language accepted byM is

{w ∈ Σ∗ | (0, 0, . . . , 0, ⌈cw$⌋) ⊢∗ (0, 0, . . . , 0, cu⌋⌈v$) with w = uv} .

In particular, if there is no transition corresponding to the reading of the two heads during a computation,
then the input word is not accepted by the machine in that run.



Ö. Eğecioğlu, L. Hegedüs, B. Nagy / Hierarchies of Stateless Multicounter5′ → 3
′ WK-Automata Languages 5

Example 2.1. We show that a well-known non-context-free language is accepted by a 1-reversal WK-
automaton with a single counter. LetΣ = {a, b, c}. Consider the stateless WK-automatonM with one
counter whose moves are

(c, $; 0;∞) → (1, 1; 0)

(a, c; 0;∞) → (1, 1;+)

(a, c; 1;∞) → (1, 1;+)

(b, b; 1;∞) → (1, 0;−)

(b, b; 1; 2) → (1, 0;−)

(b, b; 1; 1) → (1, 0;−)

ThenM is 1-reversal and accepts the language{anbncn | n ≥ 1}. About the accepted language: firstly,
since both the heads move in opposite directions, at each step, if the two heads read simultaneously either
a anda, c andc, a andb or b andc, no move is defined (indeed, in all these cases such a word doesnot
belong to{anbncn | n ≥ 1}). The two heads read the blocks ofa’s andc’s simultaneously, starting from
the extremes, and moving in opposite directions. For each move in these blocks, when the heads are
sufficiently far one from each other, the counter is increased by 1. Further, the machine allows the heads
both to readb. The second head never moves again. Until the two heads are sufficiently far (fourth move),
the second head does not move anymore, but the acceptance will be determined by the advancement of
the first head, until it meets the second head. For each advancement, the counter is decreased by 1. Then
if the number of theb’s were the same of thea’s (and of thec’s), which is represented by the counter, the
two heads will meet and the value of the counter will be 0 (acceptance). Otherwise, either the counter
will assume a negative value (moreb’s thana’s; and blocked computation without allowed movement
with counter value 0 whenb’s are read) or counter 1 will assume a positive number, greater than of zero
(lessb’s thana’s). So the machine is clearly 1-reversal.

Let us see how it works on inputsabc andaabbcc:

(0, ⌈cabc$⌋) ⊢ (0, c⌈abc⌋$) ⊢ (1, ca⌈b⌋c$) ⊢ (0, cab⌈⌋c$).

(0, ⌈caabbcc$⌋) ⊢ (0, c⌈aabbcc⌋$) ⊢ (1, ca⌈abbc⌋c$) ⊢ (2, caa⌈bb⌋cc$) ⊢

(1, caab⌈b⌋cc$) ⊢ (0, caabb⌈⌋cc$).

Now we define a subclass of realtime WK-automata.

Definition 2.2. A realtime WK-automata isstrong realtimeiff each of the two heads moves at every
move of the machine withϕ(M) ∈ {∞, 2} and only the first head moves otherwise.

By definition the strong realtime machines are special realtime machines. One can consider WKC0
0

machines also, these are without any counters. Their computing power is exactly the same as the stateless
(typeN) 5′ → 3′ WK-automata of [12]. This language class is incomparable with the regular languages
with respect to set theoretical inclusion: the languagea∗b∗c∗ cannot be accepted, but the language of
palindromes{w | w ∈ {a, b}∗, w = wR} is in WKC0

0 as shown in [12]. In addition this language
is accepted by a strong realtime automata. Now we give another example to demonstrate the power of
strong realtime machines.
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Example 2.2. Let Σ = {a, b, c, d}. Consider the stateless WK-automatonM with five counters whose
moves are

(c, $; 0, 0, 0, 0, 0;∞) → (1, 1; 0,+, 0, 0, 0)

(a, d; 0, 1, 0, 0, 0;∞) → (1, 1;+, 0, 0, 0, 0)

(a, d; 1, 1, 0, 0, 0;∞) → (1, 1;+, 0, 0, 0, 0)

(b, c; 1, 1, 0, 0, 0;∞) → (1, 1;−,−, 0,+, 0)

(b, c; 1, 1, 0, 0, 0; 2) → (1, 1;−,−, 0, 0, 0)

(a, c; 1, 1, 0, 0, 0;∞) → (1, 1; 0,−,+, 0, 0)

(a, c; 1, 0, 1, 0, 0;∞) → (1, 1; 0, 0, 0, 0, 0)

(b, c; 1, 0, 1, 0, 0;∞) → (1, 1;−, 0,−,+, 0)

(b, c; 1, 0, 1, 0, 0; 2) → (1, 1;−, 0,−, 0, 0)

(b, c; 1, 0, 0, 1, 0;∞) → (1, 1;−, 0, 0, 0, 0)

(b, c; 1, 0, 0, 1, 0; 2) → (1, 1;−, 0, 0,−, 0)

(b, d; 1, 1, 0, 0, 0;∞) → (1, 1; 0,−, 0, 0,+)

(b, d; 1, 0, 0, 0, 1;∞) → (1, 1; 0, 0, 0, 0, 0)

(b, c; 1, 0, 0, 0, 1;∞) → (1, 1;−, 0, 0,+,−)

(b, c; 1, 0, 0, 0, 1; 2) → (1, 1;−, 0, 0, 0,−)

ThenM is 1-reversal and accepts the language{anbmcndm | n,m ≥ 1}. The first counter is counting up
tomin{m,n}, while the other counters show the ‘state’ of the machine, i.e., the phase of the computation:
counter 2 is positive in the initial phase (the heads read theblocks ofa’s andd’s simultaneously). If
m = n, then counter 4 represents the case: the same number ofb’s andc’s should be read while counter
1 should be emptied. Ifn > m, then counter 3 is used,a’s and c’s are read simultaneously without
changing the value of counter 1, then by finishingb’s and c’s counter 4 is used to finish the process.
Similarly counter 5 indicates the case whenm > n andb’s andd’s are read by the heads, respectively.
We give some examples that show how the machine accepts some short inputs.

(0, 0, 0, 0, 0, ⌈cabcd$⌋) ⊢ (0, 1, 0, 0, 0, c⌈abcd⌋$) ⊢ (1, 1, 0, 0, 0, ca⌈bc⌋d$) ⊢ (0, 0, 0, 0, 0, cab⌈⌋cd$).

(0, 0, 0, 0, 0, ⌈cabbcdd$⌋) ⊢ (0, 1, 0, 0, 0, c⌈abbcdd⌋$) ⊢ (1, 1, 0, 0, 0, ca⌈bbcd⌋d$) ⊢

(1, 0, 0, 0, 1, cab⌈bc⌋dd$) ⊢ (0, 0, 0, 0, 0, cabb⌈⌋cdd$).

(0, 0, 0, 0, 0, ⌈caabccd$⌋) ⊢ (0, 1, 0, 0, 0, c⌈aabccd⌋$) ⊢ (1, 1, 0, 0, 0, ca⌈abcc⌋d$) ⊢

(1, 0, 1, 0, 0, caa⌈bc⌋cd$) ⊢ (0, 0, 0, 0, 0, caab⌈⌋ccd$).

Note that with these more restricted machines we still can accept important non-context-free lan-
guages.

The families of nondeterministic/deterministick-reversalm counter strong realtime WK-automata
(and the language classes defined by them) are denoted by SRWKCk

m and dSRWKCkm, respectively. The
symbols∞ and∗ can similarly be used as for realtime/non-realtime machines.
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3. Closure properties of stateless multicounter WK-automata languages

A number of closure properties of languages accepted by deterministic and nondeterministic stateless
multicounter WK-automata follow.

Proposition 3.1. The language families accepted by deterministic and nondeterministic stateless strong
realtime multicounter WK-automata are closed under intersection.

Proof:
Let M1 andM2 be two strong realtime multicounter WK-automata. Strong realtime machines read
the input in a similar manner, therefore their heads are located exactly the same place after the same
number of steps on any input (that could be processed by both machines). Therefore, ifM1 is a k1-
reversalm1-counter machine andM2 is a k2-reversalm2-counter machine, then we can construct a
max{k1, k2}-reversal,(m1+m2)-counter machine which can simultaneously simulateM1 andM2: the
first m1 counters work exactly in the same way as atM1, while the lastm2 counters work exactly in the
same way as the counters ofM2. In this way, only those input will be accepted for which bothM1 and
M2 has an accepting run. Clearly the new machine ismax{k1, k2} reversal; and when bothM1 andM2

are deterministic, then so is the constructed machine. ⊓⊔

Proposition 3.2. The language family accepted by nondeterministic stateless realtime multicounter WK-
automata is closed under the union operation.

Proof:
If M1 is ak1-reversalm1-counter machine andM2 is ak2-reversalm2-counter machine, then we can
construct amax{k1, k2}-reversal,(max{m1,m2} + 2)-counter machine which can simulate eitherM1

or M2 determined by a nondeterministic choice of the first step when exactly one of the two additional
counters is set to 1 indicating which of the machinesM1 andM2 is being simulated in this run. At the
first step the machine may move asM1 and set the first additional counter to 1. IfM2 is chosen to be
simulated, then additionally to one of its initial move the second additional counter is set to 1. Then
these last two counters do not change during the computation, only in accepting steps (with parameter
p ∈ {1, 2}) are decreased. In this way, during the whole computation they keep track of which machine
is being simulated. Thus, the moves simulatingM1 (except the initial ones) have the condition that the
last counters are positive and zero, respectively. And similarly for M2 they must be zero and positive,
respectively. It is clear that the machine accept the union,i.e., it accepts the words that are accepted by
at least one of the machinesM1 andM2. Furthermore, the new machine ismax{k1, k2}-reversal since
the additional counters make at most one reversal. Note thatin case ofm1 6= m2 some of the counters
never changed in some computations. ⊓⊔

Proposition 3.3. The language families WKCxm, RWKCx
m, SRWKCxm, dWKCx

m, dRWKCx
m, dSRWKCxm

(m ∈ N, x ∈ N ∪ {∗,∞}) are closed under reversal (taking mirror image) of words.

Proof:
Suppose a machine acceptsw with k-counters andm-reversals. ThenwR can also be accepted with the
same parameters, just the behavior of the heads have to be interchanged. ⊓⊔
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Proposition 3.4. For |Σ| ≥ 2, language families accepted by deterministic or nondeterministic stateless
realtime or strong realtime multicounter WK-automata are not closed under the concatenation operation.

Proof:
Consider the language of even palindromesL = {wwR | w ∈ {a, b}∗}. It can be accepted by a strong
realtime deterministic WK-automaton without counters as shown in [12]. Its concatenation with itself
is L · L = {wwRuuR | w, u ∈ {a, b}∗}. The first head can readw and/or the second head can read
uR. The read part must be stored. Since an RWKC∞

m (and so an SRWKC∞m ) machine has only memory
by counters and it is realtime, it is not possible to store a word of arbitrary length asw or uR could be.
Without storing any (or both) of these words our stateless machine is unable to check their reverse.⊓⊔

Corollary 3.1. The language family of deterministic/nondeterministic realtime stateless multicounter
WK-automata is not closed under Kleene-closure.

4. Hierarchies for nondeterministic stateless multicounter WK-automata

In this section we start by proving that for stateless realtime multicounter WK-automata, nondetermin-
istic and deterministic machines are not equivalent; the nondeterministic variations are more powerful,
i.e.

Theorem 4.1. Nondeterministic stateless realtime multicounter WK-automata withk reversals andm
counters accept more languages than deterministic stateless realtime multicounter WK-automata with
the same parameters.

Proof:
Clearly all deterministic machines withm counters andk reversals are a special case of nondeterministic
machines with the same number of counters and reversals. Forn ≥ 0 we define the language

Ln = {aibj1abj2 · · · abjn | i, jk ≥ 0 , k = 1, 2, . . . , n, andi = jℓ whereℓ = 1, or ℓ = 2, or . . . , ℓ = n}.

ThenL′ =
⋃∞

n=1 Ln cannot be accepted by a deterministic stateless realtime WK-automata with any
number of reversals and any number of counters. The machine needs to test the valuesℓ ∈ {1, 2, . . . , n}
to determine the value for which the equality holds. It is clear that for any numbersk,m ∈ N: w ∈
L2(k+1)(m+1)+1 cannot be accepted by a machine in WKCk

m. To check which of the2(k+1)(m+1)+1
values matches toi cannot be done withm k-reversal counters in realtime.

Furthermore, in the nondeterministic case, only one counter is enough to accept the language. If
i = jk for ak ∈ {1, 2, . . . , n}, then the right head can read the end of the input till the end of the subword
bjk without changing the counter, then at the beginning of that block (i.e., at the previous symbola or $
in case ofk = n, i.e., at the last block) the counter is changed to 1. If the counter is positive, both heads
move while reading symbols. The left head reads the prefixai while the right head readsbjk . Thus they
are reading the same number of symbols. At the end of the blocks the counter set to be zero again only
if both blocks ended at the same move. Then the remainder of the input can be read by the first head to
finish the input. ⊓⊔
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The following fact is a known result regarding to deterministic WK-automata (the details can be found
in [2]).

Proposition 4.1. For fixedi ≥ 3, languages in the formL = {ain | n ≥ 0}, cannot be accepted by any
stateless deterministic realtime reversal bounded WK-automaton.

These languages are clearly accepted by nondeterministic stateless WK-automata withk-reversals
andm-counters, wherek,m depend on the value ofi. If the machine is1-reversal,m = ⌈ i

2⌉ − 1
counters are needed to acceptL (for i = 1, 2, 5, 6, 7 . . . ), and 2 counters fori = 3 andi = 4. It is clear
that in thei = 1, 2 cases,m = 0 counters are needed. In the former (latter) case, the machine just reads
the input with just one head (with both heads simultaneously), checking if the input is of the forma∗ (or
(aa)∗). Moreover this can be done by a deterministic machine.

If i > 2, then nondeterministic machines are used: they guess the value of n in the following way.
If i = 3 or i = 4, then two counters are needed for a non-deterministic machine: First the machine uses
the first counter: both head reada’s and the counter is incremented. There is a nondeterministic choice
to continue the work in this way, or jump to the other phase: set the second counter to 1 and decrease
the first one. In case ofi = 3 only the first head read the remained input, while in case ofi = 4 both
heads continue their work. In this phase of computation (thesecond counter is positive) the first counter
is decremented in each movement. When the value ofϕ(M) is 1 (ati = 3) or 2 (ati = 4), then this is
the end the computation and both counters are decreased. Thesecond counter becomes zero, the first one
becomes zero only if the valuen was correctly guessed and so the input word is in the language. (It could
happen that the first counter is emptied before the heads met and therefore this run was not successful.)

If i > 4, thenm = ⌈ i
2⌉ − 1 ≥ 2. We could distinct the first and the last counters (they will

have special roles: starting and accepting). The machine works in the following manner. At the first
phase, the first counter is used and incremented in each step,while both heads reada’s. Then, by a non-
deterministic choice, the machine may continue its work by decrementing the first counter and at the
same time incrementing the second one. This phase goes till the first counter is emptied (or the input is
processed and the machine gets stuck). When the first counteris empty, the machine starts to decrement
the second counter in each step and incrementing the third one (if any). And so on, the new phase of
the computation will start after the same number of steps that was guessed by the machine at the first
phase (i.e. the maximal value of the first counter in this run). Finally, when the last counter is started
to decrement only the first head reads the input ifi is odd and both heads ifi is even. The input gets
accepted only if it was the desired form with the guessed number.

In this way, ifi is even, then the machine reads with both heads simultaneously for the whole accept-
ing process, usingm counters. Then, fori+ 1, one additional counter is needed. For every odd value of
i, there is ani+1 even value, which needs the same number of counters. Thus, the equalitym = ⌈ i

2⌉−1
can be proven by induction.

Linear grammars and languages are closely connected to5′ → 3′ WK-automata [12, 13]. A lin-
ear grammarG = (N,T, P, S) is in normal form if every rule has one of the following formsA →
aBb,A → aB,A → Ba,A → a with A,B ∈ N and a, b ∈ T . This can be achieved by basic
transformations of the rules.

Theorem 4.2. LetG = (N,T, P, S) be a linear grammar in normal form. ThenL(G) can be accepted by
a nondeterministic stateless realtime WK-automaton with unbounded number of reversals andm = |N |
counters so that

∑m
i=1 ci ≤ 1 at any time of the computation (whereci is the value of thei-th counter).
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Proof:
We give the construction of the machine which acceptsL(G). Each counter represents a nonterminal.
Initially both heads make a step from the boundary markers and set the counter ofS to 1 (cS = 1). For
every ruleX → aY b ∈ P the move

((a, b; 0, 0, . . . , 0, sX = 1, 0, . . . , 0),∞) → (1, 1; 0, 0, . . . , 0, eX = −, 0, eY = +, 0, . . . , 0)

is added. The order ofcX andcY in the sequence may be different depending on how the counters were
assigned to the nonterminals. IfX = Y , then the counters are not changed. For a ruleX → aY ∈ P

similar moves are added (forϕ(M) > 1). This time the second head does not move:b can be any
terminal symbol, so the moves should be constructed for allb ∈ T , and only the left head moves:

((a, b; 0, 0, . . . , 0, sX = 1, 0, . . . , 0),∞) → (1, 0; 0, 0, . . . , 0, eX = −, 0, eY = +, 0, . . . , 0).

The case ofX → Y a ∈ P is similar andX → a ∈ P can be handled withϕ(M) = 1 by reading an
a with the left input head and decreasing the value of countercX setting all counters to zero.

It is obvious that every successful derivation inG has an accepting run of the constructed WK-
automaton, and vice-versa, therefore the machine acceptsL(G). ⊓⊔

Actually, fewer number of counters are sufficient; with a binary coding of non-terminal symbols a
WK-automaton with⌈log2 |N |⌉ counters works.

A language is calledeven-linearif it can be generated by a grammar having rules only of the forms
A → aBb,A → a,A → λ, whereA,B are nonterminals anda, b are terminals. (We refer to [13, 14] to a
characterization of this language class by WK-automata.) Strong realtime machines are related to even-
linear languages in a similar way as realtime machines are related to linear languages. The construction
of the proof of the previous theorem leads to a strong realtime machine in case of even-linear grammar.

Remark 4.1. It is known that counter machines with a finite control and twocounters accept all recur-
sively enumerable languages [11]. Therefore we can add two additional counters to the automaton in
Theorem 4.2 and obtain a machine equivalent to the Turing-machine. Consequently, by restricting their
power, reversal boundedness plays a key role in the hierarchy of stateless multicounter WK-automata.

Let us define the following languages overΣ = {a, b, c} for j ≥ 1:

Lj = {an1can2c · · · anjcbn1cnjbn2cnj−1 · · · bnj−1cn2bnjcn1 | ni ≥ 0 for all i = 1, . . . , j}.

Theorem 4.3. For anyj ≥ 1, Lj is in dRWKC1
j , but not in RWKCkj−1 for anyk ≥ 1.

Proof:
First we remark that without the delimitersc between the subwordsani , only one counter is enough to
acceptLj. The valuen1 + n2 + ... + nj can be stored in the counter by reading all thea’s by the left
head. Then the lengths of the blocks ofb’s andc’s can be checked by decrementing the counter (either
head reads ab, the other must read ac at the same move).

It is easy to see thatLj can be accepted by a1-reversal machine withj counters. The machine first
counts the number ofa’s in the prefixan1 subword with counter1, then, if ac is read, the second counter
is increased by1 to indicate that thean2 subword is going to be read. After readingan2 and increasing
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counter2 in each step, anotherc comes. This time, while reading it, the second counter is decreased
by 1 (it containedn2 + 1, because of the firstc) and the third counter is increased to indicate, that now
an3 is to be read and counted. In this way, the machine counts all theseani subwords and after thejth
one, while reading ac with the left head, it also reads the right end marker,$ with the right head, while
decreasing thejth counter by1 (this is also because of the previously readc). At this point, the value
of counteri (i = 1, . . . , j) is ni. After these steps, the subwordbn1cnjbn2cnj−1 · · · bnj−1cn2bnjcn1 is
processed while decrementing the corresponding counters.

We use induction onj to show thatLj cannot be accepted byj − 1 counters with any number of
reversals. Forj = 1, it is obvious that the languageL1 = ancbncn cannot be accepted without counters.
Note, that the expression ofLk+1 can be constructed from the expression ofLk in the following way:

1. letw andx be the sequencesbn1cnk · · · bnkcn1 andan1can2c · · · ankc respectively

2. Lk+1 = aℓcxbℓh(w)cℓ, whereh is a morphism such thath(b) = c andh(c) = b.

Suppose, that for somek ≥ 1, Lk cannot be accepted withk − 1 counters with any number of
reversals. ForLk+1, we have an additional counter. In this counter, we should store the numberℓ to test
whether the first block ofb’s have the same number of symbols. So, the additional counter is needed
to storeℓ. Then, after readingaℓ, or cℓ (or both) we havek − 1 counters and the remaining part of the
input to be processed (without thebℓ subword) is inLk, except that the correspondingb’s and thec’s in
the suffix are exchanged. But this is not sufficient to acceptLk. Furthermore we know thatLk cannot
be accepted withk − 1 counters. Thus it is impossible to get tobℓ without loss of information, soLk+1

cannot be accepted withk counters.
⊓⊔

Corollary 4.1. The language classes dRWKC1
m and RWKCkm−1 are incomparable (fork ≥ 1,m ≥ 2)

under set theoretical inclusion.

Proof:
As we have shown in the proof of the previous theorem,Lm can be accepted by a1-reversalm-counter
machine, but cannot be accepted by ak-reversalm − 1 counter machine for anyk ≥ 1. On the other
hand, the languageL′ that was in the proof of Theorem 4.1 is in RWKCk

m−1 for k ≥ 1,m ≥ 2, since,
as we have shown 1-reversal one counter is enough to accept itby a nondeterministic machine. ButL′ is
not in dRWKC1m by the proof of Theorem 4.1. ⊓⊔

It is easy to prove that the following result holds.

Proposition 4.2. Stateless strong realtime multicounter WK-automata are less powerful than stateless
realtime multicounter WK-automata with the same parameters.

To see this we consider that the language that is the concatenation of the language of palindromes
over{a, b} and the regular languagec∗. This language needs only 1 counter to represent the phase when
c∗ is being read by the second head, so it is deterministic realtime 1-reversal 1-counter WK-automata
language.
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Figure 1. Hierarchy of stateless multicounter5′ → 3
′ WK automaton languages.

5. Conclusions

We have considered multicounter5′ → 3′ WK-automata are considered. With arbitrary number of coun-
ters and without limiting the number of reversals the non-realtime versions are universal. We proved
that nondeterministic variations are more powerful than deterministic variants with the same parame-
ters. As expected, the restricted variants are usually lesspowerful than their not restricted variants.
Reversal bounded machines accept a proper subset of the languages accepted by than unbounded rever-
sal machines. Also, realtime machines are less powerful than non-realtime ones.k-reversalm counter
machines can be simulated by1-reversal automata with(2k − 1)m counters ([2]).

Figure 1 contains some of the hierarchy results about WK-automata. Arrows stand for proper inclu-
sion. RE stands for the class of recursively enumerable languages.

Some open problems are represented by dotted arrows. Also minimal universal counter-machines
can be considered analogously to minimal universal Turing-machines. Another further direction of re-
search is to investigate such multicounter WK-automata where the heads do not sense when they meet,
and therefore both heads read the full input in an accepting computation. Other extension can also be
considered: multicounter WK-automata which may read strings and not just letters in a single transition,
for example.
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