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Abstract

Fully-populated tori, where every node has a processor

attached, do not scale well since load on edges increases

superlinearly with network size under heavy communica-
tion, resulting in a degradation in network throughput. In
a partially-populated netwotkprocessors are placed on a
subset of available nodes, and a routing algorithm is speci-
fied among the processors.

Analogous to multistage networks, it is desirable to have
the total number of messages being routed through a par-
ticular edge increase at most linearly with the size of the
placement on torus networks. Recently, Blaum, Bruck, Pi-
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der to split the network into two parts each with about equal
number of processors [3].

We consider the behavior of torus networks with bidirec-
tional links under heavy communication load where rout-
ing is done through onlghortest (minimal length) paths
between processors. In particular, we are interested in the
scenario where every processor in the network is sending a
message to every other processor (also knowroasplete
exchangeor all-to-all personalized communicatipn This

type of communication pattern is central to numerous par-
allel algorithms such as matrix transposition, fast Fourier
transform, distributed table-lookup, etc. [7].

farré, and Sanz investigated placements and provided both  The j-dimensionalk-torus is modeled as a directed
a lower bound, and optimal placements in the cases of2andgraph where each node represents either a router or a

3-dimensionak-tori, consisting ofc andk? processors, re-
spectively.

In this paper we show formally that to achieve linear
load in ad-dimensionak-torus, the number of processors
in the placement must i&(k?~1). We use this to construct
a tighter lower bound for the maximum load of a placement

processor-router pair, and each edge represent a communi-
cation link between two adjacent nodes. Hence, every node,
with or without a processor attached, is capable of handling
(sending, receiving, etc.) messages. A fully-populated
dimensionalk-torus where each node has a processor at-
tached, containg? processors. Its bisection width4g¢ !

for_4 or more dimensions. Based on thes.e result_s, we giveg(k; even), which gives:?/2 processors on each component
optimal placements and their corresponding routing algo- of the bisection. Since every processor is communicating

rithms in tori with arbitrary number of dimensions.

1. Introduction

with every other processor, the number of messages passing
through the bisection in either directiondgk?/2)(k?/2).
Dividing by the bisection bandwidth, there exists an edge in
the bisection with a load k9*+!/8. This means that un-

like multistage networks, the maximum load on a link is not
linear in the number of processors injecting messages into

Meshes and torus based interconnection networks havgne network. To alleviate this problem, Blaum et al. [1, 2]

been utilized extensively in the design of parallel comput-
ers in recent years [6]. This is mainly due to the fact that
these families of networks have topologies which reflect the
communication pattern of a wide variety of natural prob-
lems. Throughput the maximum amount of traffic which

have proposegartially-populated tori In this model, pro-
cessors are attached to a (relatively small) subset of nodes in
the network, called placementA routing algorithm which
utilizes shortest paths is specified together with the place-
ment. Anoptimal placemenis a placement that achieves

can be handled by the network, is an important measure Ofjinear load on edges using maximum number of processors

network performance [1]. The throughput of an intercon-
nection network is in turn bounded by itssection width
the minimum number of edges that must be removed in or-

possible.

Let &,,.. denote the maximum load over all the edges



for the placemenP. Blaum et al. give the lower bound

(1)

If | P| is constrained to be of the forki, then they also give
placements of sizels for d = 2 andk? for d = 3, together
with routing algorithms. These placements apgimalin

Emaz Z (|P| - 1)/(2d)

T* has a total ok? nodes. Each node has two neighbors
in each dimension, for a total & neighbors. Directed
edges ofl'¥ are also referred to diiks.

Definition 2 {Placemeng: A placementP of processors
inTh = (V, E) is a subset of/.

the sense that the two lower bounds are actually achieved/Ve use the termodefor a generic element of the vertex set

by the placements.

How do we justify that in general a maximal size place-
ment that can achieve linear load(gk?—1)? If the place-
ment has sizek?~! for some constant, then mimicking
the case of the fully-populateldimensionak-torus,

2(ck¥1/2)(ck?12) /(4K = Ok .

of T¥. A node with a processor attached is simply called a
processor

Definition 3 {Routing Algorithm }: Let P be a placement
in TX. Arouting algorithmA is a subseﬂgﬁi of the set of
all shortest paths betwegnandq for every pairg, § € P.

The routing algorithnd is used to deliver packets from

This seems to imply that linear load is at least possible for 710 ¢ : Whenj'needs to communicate wiii, a shortest

|P| = ck?~!. This is a faulty argument however, as we do
not know a priori that number of edges needed to split

into two equal size pieces is the same as the bisection widththroughi by C4
of the whole torus. This may push the size of an optimal

placement above or beloif~!.

path inC;;‘H 7 Is selected randomly with uniform probability.

For any linki, we denote the set of pathsd’r,?_)i going

p—l—q"

Definition 4 {Load}: Given a placemen® in a T} along

In this paper, we introduce the concept of bisection width with a routing algorithmA, theload of an edge is defined

with respect to a placemer, and use its properties to
prove that in ad-dimensionalk-torus, the size of an opti-
mal placement i®(k?~!). Given a placemenP of max-

imal size, we also prove that there exists an edge separator

of size®(k4~!) which splits the torus into two components
with ©(k?~!) processors of” on each side. This gives a
lower bound of the form

Emaz > k1 )
for maximum load. In (2} is a constant independent @f
This is a tighter lower bound for the load for large parame-
ters than the lower bound (1).

Finally, we give optimal placements achieving the lower
bound (2) and their corresponding routing algorithms in tori
with arbitrary number of dimensions.

2. Preliminaries and Problem Definition

In this section, we formalize the terminology used and
give necessary definitions.

Definition 1 {Torus}: Thed-dimensionak-torus is a di-
rected graphil’¥ = (V, E), with vertex set

V= {(_1:| a= (al,ag,...,ad), a; € Zk}
whereZ,;, denotes the integers modutpand edge set

E = {(@,b) | 3j such thaiz; = b;+ 1 (mod k), and

a; =b; fori #£j, 1<i<d}.

as
‘C;j‘alaq‘
=3 i 3)
pgepr 7
P#q

Definition 5 {Maximum Load }: The maximum value of
E(1) for a network with placemen® and a routing algo-
rithm A is called themaximum loacand denoted by, ...
Thus Emar = maxicg 5(1)

Definition 6 {Cyclic Distance, Lee Distancé: Given in-
tegers,i, j andk, thecyclic distanceébetween and; mod-
ulo kis

min{i — j (mod k), j —i (mod k)}

where the equivalence classes modulare taken to be
0,1,...,k—1.

The Lee distancéoetweeny, ¢ € T¥ is the sum of the
cyclic distances between the coordinateg ahd 7' [6].

Definition 7 {Bisection Width}: The Bisection widthof

a graph is the minimum number of edges which must be
removed in order to split the node set into two parts of equal
(within one) cardinality.

Definition 8 {Bisection Width with respect to a Place-
ment}: Thebisection width with respect to a placemdnt

of T¥ (V,E) is the minimum number of edges which
must be removed frotf in order to splitV into two parts
each of which containing an equal (within one) humber of
processors irP.



We denote the set of edgesBf which needs to be re-
moved to bisecP as described by, P. Thus|9,P| is the
bisection width with respect to the placeméht

Definition 9 {a-separator Width with respect to a
Placement: Thea-separator width with respect to a place-
mentP in T is the minimum number of edges which must
be removed in order to split the graph into two parts con-
taining (approximatelyyy|P| and (1 — «)|P| processors,
for0 < a< 1.

We denote the set of edges in arseparator by, P.
Thus|d, P| is thea-separator width of ¥ with respect to
P. Note that whemx = 1/2, 9, P andg, P are equivalent.

2.1. Problem Definition

Our aim is to findplacementsnd associategbuting al-
gorithmsin the d-dimensionak-torus T# that havelinear
message loafin number of processors in the placement) on
edges under theomplete exchangeeenario.

Ford = 2,3, Blaum et al. [1, 2] have investigated place-
ments withk?~! processors. Evidently, placements with

provably maximum possible number of processors are de-
sirable. This raises another important question which we

shall addresswhat is the maximum number of processors a
placement could have dif without compromising linear
load on edges?

Another issue igault tolerance Specifically, the routing
algorithm should provide multiple routing paths between

each pair of processors. Consequently we also address the

following problem:is it possible to construct optimal place-
ments which are at the same time fault tolerant?

3. A General Lower Bound for &,,,,.

The expression in (1) is the lower bound for maximum
load originally given by Blaum et al. [1]. The following
lemma gives a general lower bound for maximum load.

Lemmal Let P be a placement in &% = (V, E), also,
let S C P anddS be the set of all edges each connecting a
node inS with another node not it$. Then

e ASIPL-1S)
C 0S|

It is easy to see that (4) reduces to (1) if the Sa$ taken

to contain only one processor, i.€S| = 1 and|9S| = 4d.
The lower bound (4) is valid independent of the routing al-
gorithm used. Another interesting form of (4) that we shall
subsequently make use of is obtained when thes'sain-
sists of half of the processors i, i.e.,

(4)

2(5)’

|0y P|

gmax Z

(5)

Note that in this cas&S becomes), P, which is the bi-
section width of7’% with respect to placemerit. Next we
give an upper bound on the size@fP, which we then use

to calculate the maximum number of processors an optimal
placement can contain.

Theorem 1 Any subgraphP of the d-dimensionak-torus
T* has bisection widtlO (k- 1).

The constant i) (k~!) of Theorem 1 is no larger than
6d when we consider directed edges. As a particular case of
the theorem we have

Corollary 1 The d-dimensionalk-torus T has bisection
width of at most6dk?—! with respect to any placememt
le. |0y P| < 6dk?~! for any placemenP.

3.1. Maximum Placement Size

An upper bound for the maximum number of processors
an optimal placement can now be obtained by substituting
the bound fold, P| given in corollary 1 into the inequality
(5), while at the same time insuring tht,.. = O(|P|),

i.e. the load remains linear in the number of processors in
the placement.

PG NG
"=y P| T 6dkI1
25)?
= ¢|P|> = = |P|<ck

for ¢ = 6d andc = 2¢;c¢r for some constant;. That is,
the size of an optimal placementif is O(k?~1). Thus,
we are justified in seeking placements which haké!
processors, for some constant

4. An Improved Lower Bound for &,,..

From corollary 1, we know that the bisection width of
T¥ with respect to a placemeftis no larger tharbdk? .
The lower bound on maximum load that one can obtain us-
ing this resultis a function of dimensiah however. We can
show that given a placemeRtonT¥ with | P| = (k9 1),
it is possible to divide the network into two parts each hav-
ing ©(|P|) processors by removing(k?~!) edges, where
the constants involved i@ (| P|) andO(k%~1) are indepen-
dent ofd.

Theorem 2 Relative to a placemeft of size® (k4 1), T'#
has an edge separatéy, P of sizeO(k?~1) which splitsT’¥
into two parts each witt® (k4~1) processors (specifically,
ak?=1! and(1 — a)k?~! processors, respectively, for some
a, 0 < a < 1), where the constants are independeni.of



Therefore given a placememtof sizec; k?~', it is pos- We still need to find routing algorithms which enable com-
sible to splitT’¥ into two parts havingy| P| and(1 — )| P| munication between pairs of processors in a way that yields
processors by removing at mest?~! edges, for constants  linear load. To this end, we consider two classes of routing
c1, ¢3, anda, 0 < a < 1. We use this result to establish algorithms and the analysis of the load in each case both
a lower bound on load which shows that the lower bound for linear and multiple linear placement®rdered Dimen-
Emaz > (|P| — 1)/2d becomes too small as the parame- sional Routing (ODRandUnordered Dimensional Routing
ter d grows larger. TakingP| = c¢1k%"!, |S| = a|P| and (UDR).
0S| = e2k? 1 in (4), we have

20| P|(1 - a)|P| . 6. The Ordered Dimensional Routing Algo-
Emaz > Y R > ck rithm (ODR)
wherec = 2a(1 - a)c?/c.. Note that the constants inde- Given a placemenf on T¥ to route a packet from

pendent Qf parametet Hence, this lower bound comesto 5 — () p,,.... ps)t0 G = (q1, @o,-.., q4), both in
characterize the quantity,,,, more closely than (1) as the p-

parameter! grows. We will use this lower bound to gauge

the optimality of the placements and routing algorithmsthat 51 i:= 1 to d do

we give next. Correctp; in the direction of shortest cyclic distance.
5. Linear Placements In other words, the routing path will include the nodes:
We have established that optimal placements have P (a1, P2y s pa) = (a1, 42, P3s- - Pa)

O(k9-1) processors. In this section, we introduce the no- .

tion of alinear placement = (@ g a1 pa) 2 0

Note that ifk is odd, [C$Df| = 1, i.e. there is only 1

path specified by the ODR algorithm for any givgrand

P ={F|cipi +csps+ ...+ caps = c (mod k)}  (6) qd € P. However, wherk is even the ODR algorithm may
result in multiple paths between some pairs of processors in

wherec € Z,, and at least one of; € Z; is relatively the placement. To aid in the analysis, we use the following

Definition 10 A placemenf” onT¥ which satisfies

prime tok is called alinear placement (restricted) version which ensures the existence of only one
o _ canonical routing path between any given pair of processors

For simplicity, we will use placements whete = ¢, = regardless of the parity df.
... = ¢q = 1, even though our analyses apply to linear
placements in general form (i.e. (6)) provided thatand fori=1toddo
cq are relatively prime td. Note that there are exactly begin
processors satisfying 'Fhe expressj@tps + ... + pa = if there is more than one way of correctipgthen
¢ (mod k) for any specifia: € Z;.. Originally, linear place- Pick the path correcting; in the (+) direction(modk);
ments of this form were used in three dimensional tori by correcty; in the direction of shortest cyclic distance
Blaum et al. [1, 2], where they were callsHifted diagonal end
placements
~ We can also specify placements of siaé ! wheret Thus if there are two choices for sompg g; coordinate
is a fixed integer less thal For instance, the placement pair, the algorithm routes through + 1 (mod k), p; +
P=P UP,U...UP; where 2 (mod k), ... qi. ’ ’

P = {Flp+p2+...+ps=0(modk)} Theorem 3 Given a linear placemen® = {7 | p; + p» +

Py = {P|pi+p+...+ps=1(modk)} oo+ pa =0 (mod k)} inT¥ = (V, E), Ordered Dimen-

sional Routing Algorithnresults in linear load on edges.

Po= {Flpi+pmt...+pa=t—1(modk)} The proof of this theorem actually gives that regardless of

the parity ofk, for a linear placemen® with ODR, |P| =
hastk?! processors. We shall call such placementsti- k*~! and i
ple linear placements Epnn = k_ + O(kdfl) _
We would like to point out that linear placements them- / 8

selves do not guarantee the linearity of the load on edgesFor multiple linear placements with ODR we have



Theorem 4 Multiple linear placements alongwith ODR al- 8. Conclusion
gorithm onT# results in linear load on edges.

Following the work of Blaum, Bruck, Pifarré, and Sanz
For multiple linear placements wittk?~! processors, the [1, 2], we have considered communication in partially-

proof of the theorem gives populated torus networks in terms of placements of pro-
cessors and associated routing algorithms. We have pro-
Emar < 2ET vided lower bounds for the maximum load under the all-
to-all communication scenario, and found bounds on the
which is linear in| P| for constant. size of an optimal placement. We have shown that arbi-

The shortcoming of having only one path between a pair trary placements can be bisgcteq by rt_amoving a set of edges
of processors of ODR results in limited fault-tolerance of ©f the same order as the bisection width of the torus. We

the network. We remedy this by the UDR algorithm in the then provided optimal placements of Si@?’“dil) on the
next section. d-dimensionak-torus using what we call linear and multi-

ple linear placements, and gave load analyses of each under
two different routing algorithms.

7. Unordered Dimensional Routing (UDR) There are some interesting properties of placements still
to be resolved. Among these are the characterization of op-
timal placements in terms of restrictions to subtori and an
extensive analysis of the properties of edge separators of

Mori relative to optimal placements.

Unordered Dimensional Routing (UDR)rovides mul-
tiple paths between each pair of processors. The algorith
is as follows: To route a packet frof= to ¢ =), both in P
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