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Abstract

Fully-populated tori, where every node has a processor
attached, do not scale well since load on edges increases
superlinearly with network size under heavy communica-
tion, resulting in a degradation in network throughput. In
a partially-populated network, processors are placed on a
subset of available nodes, and a routing algorithm is speci-
fied among the processors.

Analogous to multistage networks, it is desirable to have
the total number of messages being routed through a par-
ticular edge increase at most linearly with the size of the
placement on torus networks. Recently, Blaum, Bruck, Pi-
farré, and Sanz investigated placements and provided both
a lower bound, and optimal placements in the cases of 2 and
3-dimensionalk-tori, consisting ofk andk2 processors, re-
spectively.

In this paper we show formally that to achieve linear
load in ad-dimensionalk-torus, the number of processors
in the placement must beO(kd�1). We use this to construct
a tighter lower bound for the maximum load of a placement
for 4 or more dimensions. Based on these results, we give
optimal placements and their corresponding routing algo-
rithms in tori with arbitrary number of dimensions.

1. Introduction

Meshes and torus based interconnection networks have
been utilized extensively in the design of parallel comput-
ers in recent years [6]. This is mainly due to the fact that
these families of networks have topologies which reflect the
communication pattern of a wide variety of natural prob-
lems. Throughput, the maximum amount of traffic which
can be handled by the network, is an important measure of
network performance [1]. The throughput of an intercon-
nection network is in turn bounded by itsbisection width,
the minimum number of edges that must be removed in or-

der to split the network into two parts each with about equal
number of processors [3].

We consider the behavior of torus networks with bidirec-
tional links under heavy communication load where rout-
ing is done through onlyshortest (minimal length) paths
between processors. In particular, we are interested in the
scenario where every processor in the network is sending a
message to every other processor (also known ascomplete
exchangeor all-to-all personalized communication). This
type of communication pattern is central to numerous par-
allel algorithms such as matrix transposition, fast Fourier
transform, distributed table-lookup, etc. [7].

The d-dimensionalk-torus is modeled as a directed
graph where each node represents either a router or a
processor-router pair, and each edge represent a communi-
cation link between two adjacent nodes. Hence, every node,
with or without a processor attached, is capable of handling
(sending, receiving, etc.) messages. A fully-populatedd-
dimensionalk-torus where each node has a processor at-
tached, containskd processors. Its bisection width is4kd�1
(k even), which giveskd=2 processors on each component
of the bisection. Since every processor is communicating
with every other processor, the number of messages passing
through the bisection in either direction is2(kd=2)(kd=2).
Dividing by the bisection bandwidth, there exists an edge in
the bisection with a load� kd+1=8. This means that un-
like multistage networks, the maximum load on a link is not
linear in the number of processors injecting messages into
the network. To alleviate this problem, Blaum et al. [1, 2]
have proposedpartially-populated tori. In this model, pro-
cessors are attached to a (relatively small) subset of nodes in
the network, called aplacement. A routing algorithm which
utilizes shortest paths is specified together with the place-
ment. Anoptimal placementis a placement that achieves
linear load on edges using maximum number of processors
possible.

Let Emax denote the maximum load over all the edges



for the placementP . Blaum et al. give the lower boundEmax � (jP j � 1)=(2d): (1)

If jP j is constrained to be of the formki, then they also give
placements of sizesk for d = 2 andk2 for d = 3, together
with routing algorithms. These placements areoptimal in
the sense that the two lower bounds are actually achieved
by the placements.

How do we justify that in general a maximal size place-
ment that can achieve linear load isO(kd�1)? If the place-
ment has sizeckd�1 for some constantc, then mimicking
the case of the fully-populatedd-dimensionalk-torus,2(ckd�1=2)(ckd�1=2)=(4kd�1) = O(kd�1) :
This seems to imply that linear load is at least possible forjP j = ckd�1. This is a faulty argument however, as we do
not know a priori that number of edges needed to splitP
into two equal size pieces is the same as the bisection width
of the whole torus. This may push the size of an optimal
placement above or belowkd�1.

In this paper, we introduce the concept of bisection width
with respect to a placementP , and use its properties to
prove that in ad-dimensionalk-torus, the size of an opti-
mal placement is�(kd�1). Given a placementP of max-
imal size, we also prove that there exists an edge separator
of size�(kd�1) which splits the torus into two components
with �(kd�1) processors ofP on each side. This gives a
lower bound of the formEmax � ckd�1 (2)

for maximum load. In (2)c is a constant independent ofd.
This is a tighter lower bound for the load for large parame-
ters than the lower bound (1).

Finally, we give optimal placements achieving the lower
bound (2) and their corresponding routing algorithms in tori
with arbitrary number of dimensions.

2. Preliminaries and Problem Definition

In this section, we formalize the terminology used and
give necessary definitions.

Definition 1 fTorusg: Thed-dimensionalk-torus is a di-
rected graphT kd = (V;E), with vertex setV = f~a j ~a = (a1; a2; : : : ; ad); ai 2 ZZkg
whereZZk denotes the integers modulok, and edge setE = f(~a;~b) j 9j such thataj � bj� 1 (mod k), andai = bi for i 6= j; 1 � i � dg:

T kd has a total ofkd nodes. Each node has two neighbors
in each dimension, for a total of2d neighbors. Directed
edges ofT kd are also referred to aslinks.

Definition 2 fPlacementg: A placementP of processors
in T kd = (V;E) is a subset ofV .

We use the termnodefor a generic element of the vertex set
of T kd . A node with a processor attached is simply called a
processor.

Definition 3 fRouting Algorithm g: LetP be a placement
in T kd . A routing algorithmA is a subsetCA~p!~q of the set of
all shortest paths between~p and~q for every pair~p , ~q 2 P .

The routing algorithmA is used to deliver packets from~p to ~q : When~p needs to communicate with~q , a shortest
path inCA~p!~q is selected randomly with uniform probability.

For any linkl, we denote the set of paths inCA~p!~q going
throughl by CA~p!l!~q .
Definition 4 fLoadg: Given a placementP in a T kd along
with a routing algorithmA, theloadof an edgel is defined
as E(l) = X~p; ~q 2 P~p 6= ~q jCA~p!l!~q jjCA~p!~q j (3)

Definition 5 fMaximum Loadg: The maximum value ofE(l) for a network with placementP and a routing algo-
rithm A is called themaximum loadand denoted byEmax.
Thus Emax = maxl2E E(l):
Definition 6 fCyclic Distance, Lee Distanceg: Given in-
tegers,i, j andk, thecyclic distancebetweeni andj mod-
ulo k is minfi� j (mod k); j � i (mod k)g
where the equivalence classes modulok are taken to be0; 1; : : : ; k � 1.

TheLee distancebetween~p; ~q 2 T kd is the sum of the
cyclic distances between the coordinates of~p and~q [6].

Definition 7 fBisection Widthg: The Bisection widthof
a graph is the minimum number of edges which must be
removed in order to split the node set into two parts of equal
(within one) cardinality.

Definition 8 fBisection Width with respect to a Place-
mentg: Thebisection width with respect to a placementP
of T kd = (V;E) is the minimum number of edges which
must be removed fromE in order to splitV into two parts
each of which containing an equal (within one) number of
processors inP .



We denote the set of edges ofT kd which needs to be re-
moved to bisectP as described by@bP . Thusj@bP j is the
bisection width with respect to the placementP .

Definition 9 f�-separator Width with respect to a
Placementg: The�-separator width with respect to a place-
mentP in T kd is the minimum number of edges which must
be removed in order to split the graph into two parts con-
taining (approximately)�jP j and (1 � �)jP j processors,
for 0 < � < 1.

We denote the set of edges in an�-separator by@�P .
Thusj@�P j is the�-separator width ofT kd with respect toP . Note that when� = 1=2, @�P and@bP are equivalent.

2.1. Problem Definition

Our aim is to findplacementsand associatedrouting al-
gorithmsin thed-dimensionalk-torusT kd that havelinear
message load(in number of processors in the placement) on
edges under thecomplete exchangescenario.

Ford = 2; 3, Blaum et al. [1, 2] have investigated place-
ments withkd�1 processors. Evidently, placements with
provably maximum possible number of processors are de-
sirable. This raises another important question which we
shall address:what is the maximum number of processors a
placement could have onT kd without compromising linear
load on edges?

Another issue isfault tolerance. Specifically, the routing
algorithm should provide multiple routing paths between
each pair of processors. Consequently we also address the
following problem:is it possible to construct optimal place-
ments which are at the same time fault tolerant?

3. A General Lower Bound for Emax
The expression in (1) is the lower bound for maximum

load originally given by Blaum et al. [1]. The following
lemma gives a general lower bound for maximum load.

Lemma 1 Let P be a placement in aT kd = (V;E), also,
let S � P and@S be the set of all edges each connecting a
node inS with another node not inS. ThenEmax � 2jSj(jP j � jSj)j@Sj (4)

It is easy to see that (4) reduces to (1) if the setS is taken
to contain only one processor, i.e.,jSj = 1 andj@Sj = 4d.
The lower bound (4) is valid independent of the routing al-
gorithm used. Another interesting form of (4) that we shall
subsequently make use of is obtained when the setS con-
sists of half of the processors inP , i.e.,Emax � 2( jP j2 )2j@bP j (5)

Note that in this case@S becomes@bP , which is the bi-
section width ofT kd with respect to placementP . Next we
give an upper bound on the size of@bP , which we then use
to calculate the maximum number of processors an optimal
placement can contain.

Theorem 1 Any subgraphP of thed-dimensionalk-torusT kd has bisection widthO(kd�1).
The constant inO(kd�1) of Theorem 1 is no larger than6d when we consider directed edges. As a particular case of

the theorem we have

Corollary 1 Thed-dimensionalk-torus T kd has bisection
width of at most6dkd�1 with respect to any placementP .
I.e. j@bP j � 6dkd�1 for any placementP .

3.1. Maximum Placement Size

An upper bound for the maximum number of processors
an optimal placement can now be obtained by substituting
the bound forj@bP j given in corollary 1 into the inequality
(5), while at the same time insuring thatEmax = O(jP j),
i.e. the load remains linear in the number of processors in
the placement.Emax � 2( jP j2 )2j@bP j � 2( jP j2 )26dkd�1) c1jP j � 2( jP j2 )2c2kd�1 ) jP j � ckd�1
for c2 = 6d andc = 2c1c2 for some constantc1. That is,
the size of an optimal placement inT kd is O(kd�1). Thus,
we are justified in seeking placements which haveckd�1
processors, for some constantc.
4. An Improved Lower Bound for Emax

From corollary 1, we know that the bisection width ofT kd with respect to a placementP is no larger than6dkd�1.
The lower bound on maximum load that one can obtain us-
ing this result is a function of dimensiond, however. We can
show that given a placementP onT kd with jP j = �(kd�1),
it is possible to divide the network into two parts each hav-
ing �(jP j) processors by removingO(kd�1) edges, where
the constants involved in�(jP j) andO(kd�1) are indepen-
dent ofd.

Theorem 2 Relative to a placementP of size�(kd�1), T kd
has an edge separator@�P of sizeO(kd�1) which splitsT kd
into two parts each with�(kd�1) processors (specifically,�kd�1 and(1 � �)kd�1 processors, respectively, for some�, 0 < � < 1), where the constants are independent ofd.



Therefore given a placementP of sizec1kd�1, it is pos-
sible to splitT kd into two parts having�jP j and(1� �)jP j
processors by removing at mostc2kd�1 edges, for constantsc1, c2, and�, 0 < � < 1. We use this result to establish
a lower bound on load which shows that the lower boundEmax � (jP j � 1)=2d becomes too small as the parame-
ter d grows larger. TakingjP j = c1kd�1, jSj = �jP j andj@Sj = c2kd�1 in (4), we haveEmax � 2�jP j(1� �)jP jc2kd�1 � ckd�1
wherec = 2�(1��)c21=c2. Note that the constantc is inde-
pendent of parameterd. Hence, this lower bound comes to
characterize the quantityEmax more closely than (1) as the
parameterd grows. We will use this lower bound to gauge
the optimality of the placements and routing algorithms that
we give next.

5. Linear Placements

We have established that optimal placements have�(kd�1) processors. In this section, we introduce the no-
tion of a linear placement.

Definition 10 A placementP onT kd which satisfiesP = f~p j c1p1 + c2p2 + : : :+ cdpd � c (mod k)g (6)

wherec 2 ZZk, and at least one ofci 2 ZZk is relatively
prime tok is called alinear placement.

For simplicity, we will use placements wherec1 = c2 =: : : = cd = 1, even though our analyses apply to linear
placements in general form (i.e. (6)) provided thatc1 andcd are relatively prime tok. Note that there are exactlykd�1
processors satisfying the expressionp1 + p2 + : : : + pd �c (mod k) for any specificc 2 ZZk. Originally, linear place-
ments of this form were used in three dimensional tori by
Blaum et al. [1, 2], where they were calledshifted diagonal
placements.

We can also specify placements of sizetkd�1 wheret
is a fixed integer less thank. For instance, the placementP = P1 [ P2 [ : : : [ Pt whereP1 = f~p j p1 + p2 + : : :+ pd � 0 (mod k)gP2 = f~p j p1 + p2 + : : :+ pd � 1 (mod k)g

...Pt = f~p j p1 + p2 + : : :+ pd � t� 1 (mod k)g
hastkd�1 processors. We shall call such placementsmulti-
ple linear placements.

We would like to point out that linear placements them-
selves do not guarantee the linearity of the load on edges.

We still need to find routing algorithms which enable com-
munication between pairs of processors in a way that yields
linear load. To this end, we consider two classes of routing
algorithms and the analysis of the load in each case both
for linear and multiple linear placements:Ordered Dimen-
sional Routing (ODR)andUnordered Dimensional Routing
(UDR).

6. The Ordered Dimensional Routing Algo-
rithm (ODR)

Given a placementP on T kd to route a packet from~p = (p1; p2; : : : ; pd) to ~q = (q1; q2; : : : ; qd), both inP :

for i := 1 to d do
Correctpi in the direction of shortest cyclic distance.

In other words, the routing path will include the nodes:~p! (q1; p2; : : : ; pd)! (q1; q2; p3; : : : ; pd)! : : :! (q1; q2; : : : ; qd�1; pd)! ~q:
Note that if k is odd, jCODR~p!~q j = 1, i.e. there is only 1
path specified by the ODR algorithm for any given~p and~q 2 P . However, whenk is even the ODR algorithm may
result in multiple paths between some pairs of processors in
the placement. To aid in the analysis, we use the following
(restricted) version which ensures the existence of only one
canonical routing path between any given pair of processors
regardless of the parity ofk.

for i := 1 to d do
begin
if there is more than one way of correctingpi then
Pick the path correctingpi in the (+) direction(modk);

Correctpi in the direction of shortest cyclic distance
end

Thus if there are two choices for somepi; qi coordinate
pair, the algorithm routes throughpi + 1 (mod k), pi +2 (mod k), . . . ,qi.
Theorem 3 Given a linear placementP = f~p j p1 + p2 +: : : + pd � 0 (mod k)g in T kd = (V;E), Ordered Dimen-
sional Routing Algorithmresults in linear load on edges.

The proof of this theorem actually gives that regardless of
the parity ofk, for a linear placementP with ODR, jP j =kd�1 and Emax = kd�18 + o(kd�1) :
For multiple linear placements with ODR we have



Theorem 4 Multiple linear placements along with ODR al-
gorithm onT kd results in linear load on edges.

For multiple linear placements withtkd�1 processors, the
proof of the theorem givesEmax � t2kd�1
which is linear injP j for constantt.

The shortcoming of having only one path between a pair
of processors of ODR results in limited fault-tolerance of
the network. We remedy this by the UDR algorithm in the
next section.

7. Unordered Dimensional Routing (UDR)

Unordered Dimensional Routing (UDR), provides mul-
tiple paths between each pair of processors. The algorithm
is as follows: To route a packet from~p = to ~q =), both inP
for i := 1 to d do
begin
Select a numberj from the setf1; 2; : : : ; dg that has not
been used before;
Correctpj in the direction of shortest cyclic distance

end

As in ODR, a dimension is corrected completely before
another is selected. Unlike ODR, however, the order in
which the dimension to be corrected next is picked is arbi-
trary. This algorithm thus provides multiple paths for each
pair of processors and improves the fault-tolerance of the
system. If~p and~q are two processors differing ins dimen-
sions, then there will bes! different paths from~p to ~q in
UDR, i.e. jCUDR~p!~q j = s!. We can show that UDR algorithm
results in linear load in edges.

Theorem 5 Given a linear placementP = f~p j p1 + p2 +: : :+pd � 0 (mod k)g in T kd = (V;E), Unordered Dimen-
sional Routing Algorithmresults in linear load on edges.

The maximum load for UDR satisfiesEmax � 2d�1kd�1
which is linear injP j = kd�1 for any fixedd.

Similarly, for multiple linear placements with UDR we
have

Theorem 6 Multiple linear placements along with UDR al-
gorithm onT kd results in linear load on edges.

8. Conclusion

Following the work of Blaum, Bruck, Pifarré, and Sanz
[1, 2], we have considered communication in partially-
populated torus networks in terms of placements of pro-
cessors and associated routing algorithms. We have pro-
vided lower bounds for the maximum load under the all-
to-all communication scenario, and found bounds on the
size of an optimal placement. We have shown that arbi-
trary placements can be bisected by removing a set of edges
of the same order as the bisection width of the torus. We
then provided optimal placements of size�(kd�1) on thed-dimensionalk-torus using what we call linear and multi-
ple linear placements, and gave load analyses of each under
two different routing algorithms.

There are some interesting properties of placements still
to be resolved. Among these are the characterization of op-
timal placements in terms of restrictions to subtori and an
extensive analysis of the properties of edge separators of
tori relative to optimal placements.
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