
Brief Contributions__

Lower Bounds on Communication Loads and
Optimal Placements in Torus Networks

M. Cemil Azizoglu and OÈ mer Egecioglu

AbstractÐFully populated torus-connected networks, where every node has a

processor attached, do not scale well since load on edges increases superlinearly

with network size under heavy communication, resulting in a degradation in

network throughput. In a partially populated network, processors occupy a subset

of available nodes and a routing algorithm is specified among the processors

placed. Analogous to multistage networks, it is desirable to have the total number

of messages being routed through a particular edge in toroidal networks increase

at most linearly with the size of the placement. To this end, we consider

placements of processors which are described by a given placement algorithm

parameterized by k and d: We show formally, that to achieve linear communication

load in a d-dimensional k-torus, the number of processors in the placement must

be equal to ckdÿ1 for some constant c. Our approach also gives a tighter lower

bound than existing bounds for the maximum load of a placement for arbitrary

number of dimensions for placements with sufficient symmetries. Based on these

results, we give optimal placements and corresponding routing algorithms

achieving linear communication load in tori with arbitrary number of dimensions.

Index TermsÐTorus, routing, placement, load, bisection, interconnection

network, edge separator.

æ

1 INTRODUCTION

MESHES and torus based, interconnection networks have been
utilized extensively in the design of parallel computers in recent
years [6]. This is mainly due to the fact that these families of
networks have topologies which reflect the communication pattern
of a wide variety of natural problems. Furthermore, they are
scalable, as well as highly suitable for hardware implementation.

An important factor determining the efficiency of a parallel

algorithm on a network is the efficiency of communication itself

among processors. The network should be able to handle ªlargeº

number of messages without exhibiting degradation in perfor-

mance. Throughput, the maximum amount of traffic which can be

handled by the network, is an important measure of network

performance [4]. The throughput of an interconnection network is

in turn bounded by its bisection width, the minimum number of

edges that must be removed in order to split the network into two

parts, each with about equal number of processors [9].
In this paper, we consider the behavior of toroidal networks

with bidirectional links under heavy communication load. We

assume that the communication latency is kept minimum by

routing the messages through only shortest (minimal length) paths. In

particular, we are interested in the scenario where every processor

in the network is sending a message to every other processor (also

known as complete exchange or all-to-all personalized communication).

This type of communication pattern is central to numerous parallel

algorithms, such as matrix transposition, fast Fourier transform,

distributed table-lookup, etc. [7], and central to efficient imple-

mentation of high-level computing models, such as the PRAM and

Bulk-Synchronous Parallel (BSP). In Valiant's BSP-model for

parallel computation [15], for example, routing of h-relations, in
which every processor in the network is the source and destination
of at most h packets, forms the main communication primitive. The
complete-exchange scenario that we investigate in this paper has
been studied and shown to be useful for efficient routing of both
random and arbitrary h-relations [8], [13], [14].

The d-dimensional k-torus is modeled as a directed graph
where each node represents either a router or a processor-router
pair, depending on whether or not a processor is attached at the
node. Each edge represents a unidirectional communication link
between two adjacent nodes. Hence, every node in the network is
capable of message routing, i.e., directly receiving from and
sending to its neighboring nodes.

A fully populated d-dimensional k-torus, where each node has
a processor attached, contains kd processors. Its bisection width is
4kdÿ1 (k even), which gives 1

2 k
d processors for each component of

the bisection. Under the complete-exchange scenario, the number
of messages passing through the bisection in both directions is
2�kd=2��kd=2�. Dividing by the bisection bandwidth, we find that
there must exist an edge in the bisection with a load � kd�1=8. This
means that, unlike multistage networks, the maximum load on a
link is not linear in the number of processors injecting messages
into the network. To alleviate this problem, Blaum et al. [4], [5]
have proposed partially populated tori. In this model, the underlying
network is toroidal, but only the nodes with an attached processor
inject messages into the network. Only a (relatively small) subset of
nodes (called a placement) possess attached processors, while the
other nodes merely function as routing nodes. This is similar to the
case of a multistage network: A multistage network with k� k
switches (routing nodes) and logk n stages serves n injection points,
and utilizes n logk n routing nodes [4].

In partially populated tori, a routing algorithm which utilizes
shortest paths is specified together with the placement. The routing
algorithm dictates routing paths between every processor pair. An
optimal placement is a placement that achieves linear communica-
tion load on edges under the specified routing algorithm using the
maximum number of processors possible. Achieving linear load
would be irrelevant if we were to consider a specific placement in a
torus with fixed parameters k and d. Hence, the placements we are
interested in are actually descriptions of (or algorithms for)
assigning processors to nodes in the whole class of tori,
determined by varying values of k and d. We use the symbol P
for placement to refer to the placement Pd;k in the d-dimensional k-
torus when the context is clear.

The notion of resource placement in general has been investigated
by a number of researchers such as Bose et al. [6], Alverson et al.
[1], Pitteli and Smitley [12]. Our aim is to find placements and
routing algorithms which will enable efficient communication
between processors and, at the same time, reduce the susceptibility
of the network to link faults by reducing the number of messages
relying upon a particular edge [4]. This is achieved by providing
routing algorithms in which the number of minimal paths
specified between pairs of processors in the placement is kept
large, without compromising the linearity of load.

Let Emax denote the maximum load over all edges of placement
P . Blaum et al. give the lower bound

Emax � j P j ÿ1

2d
; �1�

which means that, for d � 2, Emax �j P j =4 and, for d � 3,
Emax �j P j =6. If j P j is constrained to be of the form ki, then
they also give placements of sizes k for d � 2 and k2 for d � 3,
along with corresponding routing algorithms. These placements

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000 259

. The authors are with the Department of Computer Science, University of
California at Santa Barbara, Santa Barbara, CA 93106.
E-mail: {azizoglu, omer}@cs.ucsb.edu.

Manuscript received 13 May 1998; accepted 2 Dec. 1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106835.

0018-9340/00/$10.00 ß 2000 IEEE

are optimal in the sense that the two lower bounds are actually

achieved by the placements.
How do we justify that, in general, a maximal placement that

can achieve linear load has O�kdÿ1� processors, let alone exactly
kdÿ1? If the placement has size ckdÿ1 for some constant c, then,

mimicking the case of the fully populated d-dimensional k-torus,

the average load on an edge would be

2�ckdÿ1

2 ��ck
dÿ1

2 �
4kdÿ1

� O�kdÿ1�:

This seems to imply that linear load is at least possible for

j P j � ckdÿ1: �2�
This is a faulty argument, however, as we do not as yet know that

the number of edges needed to split P into two equal-size pieces is

the same as the bisection width of the whole torus. This

necessitates the concept of bisection width with respect to a placement

P , which we use to prove that the size of an optimal placement is

as given in (2). This results in a lower bound of the form

Emax � ckdÿ1 �3�
for maximum load. Unlike (1), in (3), c is a constant independent of

d. This is a tighter lower bound for the load for large d than the

lower bound (1). We give a simple proof of this result for uniform

placements in which the number of processors in each principal

subtorus is the same. Finally, we give optimal uniform placements

(called linear placements) achieving the lower bound (3) and

corresponding routing algorithms (Ordered Dimensional Routing

(ODR) and Unordered Dimensional Routing (UDR)) in tori with

arbitrary number of dimensions. Of the two routing algorithms,

ODR is simpler, but UDR provides fault tolerance by allowing

more routes. We also show how to extend these to more general

placements in tori that we refer to as multiple linear placements.

These are optimal placements of size tkdÿ1, where t is some
arbitrarily picked integral constant.

Since there are two parameters k and d to consider in the

analysis, it is worthwhile noting there are two distinct treatments

of linearity that arise. In the requirement of linearity on the

maximum load as a function of j P j and the particular form of the

size of an optimal placement that we prove, there are two constants

in the quantities c1 j P j and c2k
dÿ1. When either c1 or c2 depends

on d, then the linearity is in terms of k only. The desirable case is

the construction of placements in which neither constant depends

on d.
The outline of the paper is as follows: Section 2 gives necessary

definitions and the formal statement of the problem. In Section 3, a

lower bound on the maximum load on an edge is given, which is

also a generalization of the lower bound given by [4]. This bound,

along with the notion of bisection width with respect to a
placement, is used to get an upper bound on the number of

processors in an optimal placement. We show in Section 4 that a

torus can be split into two parts with respect to a placement which

assigns an equal number of processors to each subtorus along a

specific dimension by removing 4kdÿ1 edges. We use this to give a

new lower bound on the maximum load which is independent of

the dimension parameter. Finally, in Sections 5, 6, and 7, we define

and analyze an important class of placements, called linear

placements, which possess the property that, along any dimension,

the number of processors assigned to each subtorus is the same,

and give associated routing algorithms which achieve linear load

and fault tolerance. Section 8 includes conclusions and some
possible generalizations.

An extended abstract of some of the ideas in this paper can be

found in [2].

2 PRELIMINARIES AND PROBLEM DEFINITION

We start out with the problem definition and follow it with a
sequence of formal definitions and terminology that will be used in
the rest of the paper.

2.1 Problem Definition

Our aim is to find placements and associated routing algorithms in
the d-dimensional k-torus Tdk that have linear communication load (in
terms of the number of processors in the placement) on edges
under the complete exchange scenario. Specifically, we would like to
devise placements P � Pd;k and corresponding routing algorithms
A for the class of d-dimensional k-tori for which the maximum load
Emax � c j P j , for some constant c.

Definition 1 (d-Dimensional k-Torus). The d-dimensional k-torus is
a directed graph Tdk � �V ;E�, with vertex set

V � f~a j ~a � �a1; a2; . . . ; ad�; ai 2 ZZkg; �4�
where ZZk denotes the integers modulo k, and edge set

E � f�~a;~b� j 9j such that aj � bj � 1 �mod k� and

ai � bi for i 6� j; 1 � i � dg:

T dk has a total of kd nodes. Each node has two neighbors in each
dimension, for a total of 2d neighbors. Directed edges of Tdk are also
referred to as links. Any fixed value of an ai in (4) defines a
subgraph of Tdk isomorphic to a lower dimensional torus Tdÿ1

k .
These are called the principal subtori of Tdk .

Definition 2 (Placement). A placement P of processors in Tdk �
�V ;E� is a subset of V . A placement is assumed to be given by a
placement description (algorithm) which can generate it for any k

and d:

We use the term node for a generic element of the vertex set of Tdk .
A node with a processor attached is simply called a processor. A
placement P is called uniform if each principal subtorus of Tdk
contains the same number of processors of P .

Definition 3 (Routing Algorithm). Let P be a placement in Tdk . A
routing algorithm A is a subset CA~p!~q of the set of all shortest paths
between ~p and ~q for every pair ~p, ~q 2 P (See Fig. 1).

The routing algorithm A is used to deliver packets from ~p to ~q:
When ~p needs to communicate with ~q, a shortest path in CA~p!~q is
selected randomly with uniform probability.

For any link l, we denote the set of paths in CA~p!~q going through l
by CA~p!l!~q, and use the following definition of load as given in [4].

Definition 4 (Load). Given a placement P in a Tdk along with a routing
algorithm A, the load of an edge l is defined as

E�l� �
X
~p;~q2P
~p6�~q

j CA~p!l!~q j
j CA~p!~q j

: �5�

Definition 5 (Maximum Load). The maximum value of E�l� for a
network with placement P and a routing algorithm A is called the
maximum load and denoted by Emax. Thus,

Emax � max
l2E
E�l�:

Considering (5) for E�l�, the more paths the routing algorithm
provides between any two processors, the smaller the load on any
edge that is used to route messages between these processors. In
addition, availability of a large number of choices means better
fault tolerance.

260 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

We shall consider algorithms which use minimal (shortest)

paths. Minimal paths on a toroidal network are associated with the

notion of cyclic distance and Lee distance which we define next.

Definition 6 (Cyclic Distance, Lee Distance). Given three integers,

i, j, and k, the cyclic distance between i and j modulo k is given by

minfiÿ j�mod k�; jÿ i�mod k�g;
where the equivalence classes modulo k are taken to be 0; 1; . . . ; kÿ 1.

The Lee distance between two nodes~p;~q 2 Tdk is the sum of the cyclic

distances between the coordinates of ~p and ~q.

The Lee distance between ~p;~q 2 Tdk , is the length of a shortest

path between ~p and ~q on the torus [6], [10].

Definition 7 (Bisection Width). The bisection width of a graph is the

minimum number of edges which must be removed in order to split the

node set into two parts of equal (within one) cardinality.

Definition 8 (Bisection Width with respect to a Placement). The

bisection width with respect to a placement P of Tdk � �V ;E� is

the minimum number of edges which must be removed from E in

order to split V into two parts, each of which contains an equal

(within one) number of processors in P .

We denote by @bP a minimal cardinality set of edges of Tdk
which needs to be removed to bisect P . Thus, j @bP j is the

bisection width with respect to the placement P .

Definition 9 (O;
). We use the notation f�k� � O�g�k�� to mean

f�k� � cg�k� for some constant c > 0 whenever k � k0: f�k� �

�g�k�� if, for some constant c > 0; f�k� � cg�k� for infinitely many

values of k:

For d � 2; 3, Blaum et al. [4], [5] have investigated placements

with kdÿ1 processors. Evidently, placements with provably max-

imum possible number of processors are desirable. This raises

another important question which we shall address: What is the

maximum number of processors a placement could have on Tdk (for

varying k and d) without compromising linear load on edges?
Another important issue is fault tolerance. Specifically, the

routing algorithm should provide multiple routing paths between

each pair of processors so that, if any of the links fails, the network

will remain functional by routing the messages through paths

which do not include the defective link. Consequently, we also

address the following problem: Is it possible to construct optimal

placements which are, at the same time, fault- tolerant?
In the following sections, we analyze lower bounds for

maximum load and study the questions posed above.

3 A GENERAL LOWER BOUND FOR MAXIMUM LOAD

We start out with an important lemma which will prove to be a

useful tool in the subsequent sections. The lower bound for

maximum load originally given by Blaum et al. [4] is

Emax � j P j ÿ1

2d
: �6�

The following lemma gives a more general form of (6).

Lemma 1. Let P be a placement in a Tdk � �V ;E�. Let S � P and
denote by @S the set of all edges each connecting a node in S with

another node not in S. Then,

Emax � 2 j S j �j P j ÿ j S j�
j @S j : �7�

Proof. The total number of messages exchanged between proces-

sors in S and processors in P ÿ S, in either direction, is 2 j S j
�j P j ÿ j S j� under all-to-all personalized communication

scenario. Also, these messages must go through one of the

edges in @S. The average number of messages going through an

edge in @S is 2 j S j �j P j ÿ j S j�= j @S j and the lemma

follows. tu

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000 261

Fig.1. A placement of three processors on T 2
3 . Among the links, the ones on specified shortest paths between the processors are highlighted.

It is easy to see that (7) reduces to (6) if the set S is taken to contain

only one processor, i.e., j S j� 1 and j @S j� 4d. The lower bound

(7) is valid independent of the routing algorithm used. Another

interesting form of (7) that we shall subsequently make use of is

obtained when the set S consists of half of the processors in P , i.e.,

Emax �
2�jP j2 �2
j @bP j : �8�

Note that, in this case, @S becomes @bP , which is the bisection

width of Tdk with respect to placement P . Next, we give an upper

bound on the size of @bP , which we then use to calculate the

maximum number of processors an optimal placement can

contain.

Proposition 1. Any subset P of nodes of the d-dimensional k-torus can

be bisected by removing O�kdÿ1� edges of Tdk . In particular, any

subgraph of Tdk has bisection width O�kdÿ1�.
Proof. See the Appendix. tu

The constant in O�kdÿ1� of Proposition 1 is no larger than 6d

when we consider directed edges. Thus, we have the following

corollary.

Corollary 1. The d-dimensional k-torus Tdk has bisection width of at most

6dkdÿ1 with respect to any placement P , i.e., j @bP j� 6dkdÿ1.

Remark. Although the assertion of Proposition 1 appears intuitive

because of its geometric nature for d � 2 and d � 3, it is easy to

come up with examples of general graphs for which the

bisection width with respect to a given subgraph can become

arbitrarily far from that of the original graph. As an example,

two copies of the complete graph K2n on 2n nodes joined by a

single edge has bisection width 1. Its subgraphs with 2n nodes

have bisection widths ranging from 1 to
�n2�, depending on

how evenly the 2n nodes are distributed among the two copies

of K2n.

3.1 Maximum Placement Size

An upper bound for the maximum number of processors an

optimal placement can contain can now be obtained by substitut-

ing the bound for j @bP j given in Corollary 1 into inequality (8),

while, at the same time, insuring that Emax � c1 j P j for some

constant c1, i.e., the load remains linear in the number of

processors in the placement.

Emax �
2 jP j

2

� �2

j @bP j �
2 jP j

2

� �2

6dkdÿ1
) c1 j P j �

2 jP j
2

� �2

6dkdÿ1
) j P j � c2k

dÿ1

�9�
for c2 � 12dc1. That is, the size of an optimal placement in Tdk is

ckdÿ1, where c � c2 is a constant of our choice. However, using this

analysis, we are not able to have both c1 and c2 independent of

dimension d, as c1 and c2 are related by c2 � 12dc1. Therefore, one

of the linearity conditions imposed by Emax � c1 j P j and j P j�
c2k

dÿ1 can be in terms of the parameter k only. For a fixed

dimension d, this may be satisfactory, but we are interested in

varying the parameter d as well as k.

4 AN IMPROVED LOWER BOUND FOR MAXIMUM LOAD

From Corollary 1, we know that the bisection width of Tdk with

respect to a placement P is no larger than 6dkdÿ1. The lower bound

on maximum load that one can obtain using inequality (7) is a

function of dimension d, however. This means as d gets larger, the

lower bound on the maximum load gets smaller.

We can establish a tighter lower bound for the maximum load
by eliminating the dependence of the multiplicative constant on d.
The proof of this is particularly simple for uniform placements.
Intuitively, uniform placements are among the class of placements
that distribute the processors rather evenly throughout the torus.
We shall describe a number of such placements in Section 5.

Specifically, we show that, given a uniform placement P on Tdk
with j P j� ckdÿ1, it is possible to divide the torus into two parts,
each having 1

2 j P j processors, by removing 4kdÿ1 edges.

Theorem 1. With respect to a uniform placement P of size ckdÿ1, Tdk has
a bisection width @bP of size 4kdÿ1.

Proof. We give the proof for k even. Pick an arbitrary dimension.
Each of the k copies of �dÿ 1�-dimensional k-subtori along this
dimension has ckdÿ2 processors. Number the subtori along this
dimension consecutively from 0 to kÿ 1. We remove the 2kdÿ1

links between subtori labeled 0 and 1 and the additional 2kdÿ1

links between subtori labeled 1
2 k and 1� 1

2 k. This bisects Tdk into
two parts each with 1

2 ck
dÿ1 processors. tu

It is possible to generalize Theorem 1 to a larger class of
placements than uniform placements by imposing weaker restric-
tions on the families Pd;k. For example, it suffices to assume only a
single dimension along which an equal number of processors are
assigned to each principal subtorus. We do not address possible
generalizations of this problem here.

By Theorem 1, given a uniform placement P of size ckdÿ1, it is
possible to split Tdk into two parts having 1

2 j P j processors each by
removing at most 4kdÿ1 edges. We can use this result to establish a
lower bound on load which shows that the lower bounds given by
inequalities (6) and (9) for Emax become too small as the parameter
d grows larger.

Taking j P j � ckdÿ1, j S j� 1
2 j P j , and j @S j� 4kdÿ1 in (7), we

have

Emax �
2 ckdÿ1

2

� �2

4kdÿ1
� c2kdÿ1

8
;

where the constant c is independent of parameter d. Hence, this
lower bound comes to characterize the quantity Emax more closely
than (6) or (9) as the parameter d grows. We will use this lower
bound to gauge the optimality of the placements and routing
algorithms that we give next.

5 LINEAR PLACEMENTS

We have established in Section 3 that optimal placements have
ckdÿ1 processors. In this section, we introduce the notion of a linear
placement in which the coordinates of each processor in the
placement satisfy a particular type of linear equation over ZZk.

Definition 10. A placement P on Tdk which satisfies

P � f~p j c1p1 � c2p2 � � � � � cdpd � c �mod k�g; �10�
where c 2 ZZk and at least one of ci 2 ZZk is relatively prime to k, is
called a linear placement.

F o r s i m p l i c i t y , w e w i l l u s e p l a c e m e n t s w h e r e
c1 � c2 � . . . � cd � 1. Note that there are exactly kdÿ1 processors
satisfying the expression p1 � p2 � � � � � pd � c �mod k� for any
specific c 2 ZZk. A special case of linear placements is the shifted
diagonal placement used by Blaum et al. [4], [5] for the case d � 3.

We can also specify placements of size tkdÿ1, where t is a fixed
integer less than k. For instance, the placement

P � P1 [P2 [. . . [Pt;
where

262 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

P1 � f~p j p1 � p2 � � � � � pd � 0 �mod k�g
P2 � f~p j p1 � p2 � � � � � pd � 1 �mod k�g

..

.

Pt � f~p j p1 � p2 � � � � � pd � tÿ 1 �mod k�g;
has tkdÿ1 processors. We shall call such placements multiple linear

placements.
Note that both linear placements and multiple linear place-

ments where all coefficients ci are relatively prime to k (e.g., all

ci � 1) are uniform placements, i.e., they assign an equal number of

processors to each principal subtorus. This is because the equation

c1p1 � c2p2 � � � � � cdpd � c �mod k�
that we use to define such placements has exactly kdÿ2 solutions for

any fixed value of pl, 1 � l � d.

Remark. We would like to point out that linear (and multiple

linear) placements themselves do not guarantee the linearity of

the load on edges. Linear, only refers to the fact that the

coordinates of the processors in the placement satisfy a linear

equation over ZZk. We still need to construct routing algorithms

which enable communication between pairs of processors in a

way that yields load that is linear in j P j .

In Sections 6 and 7, we specify different routing algorithms and

analyze their maximum communication load on edges. As we have

mentioned earlier, the routing algorithms will use minimal

(shortest) paths between processors. To deliver a message from

processor ~p to ~q, the value of ~p in each dimension is ªcorrectedº

toward the corresponding value in ~q by the amount and direction

(�) dictated by the shortest cyclic distance between the values in

that dimension. The exact way of correcting the dimensions to

route the packets is specified by the routing algorithm.
We consider two classes of routing algorithms and the analysis

of the load in each case both for linear and multiple linear

placements: Ordered Dimensional Routing (ODR) and Unordered

Dimensional Routing (UDR).

6 ORDERED DIMENSIONAL ROUTING (ODR)

The algorithm is simple. Given a placement P on Tdk to route a

packet from ~p � �p1; p2; . . . ; pd� to ~q � �q1; q2; . . . ; qd�, both in P :

for i :� 1 to d do

Correct pi in the direction of shortest cyclic distance

That is, the routing path will include the following nodes:

~p! �q1; p2; . . . ; pd� ! �q1; q2; p3; . . . ; pd� ! � � �
! �q1; q2; . . . ; qdÿ1; pd� !~q:

Note that if k is odd, j CODR~p!~q j� 1, i.e., there is only one path

specified by the ODR algorithm for any given ~p and ~q 2 P .

However, when k is even, the ODR algorithm may result in

multiple paths between some pairs of processors in the placement.

To aid in the analysis, we will use the following (restricted) version

which ensures the existence of only one canonical routing path

between any given pair of processors regardless of the parity of k.

for i :� 1 to d do

begin

if there is more than one way of correcting pi then

Pick the path that corrects pi in the (�) direction (mod k);

Correct pi in the direction of shortest cyclic distance

end

Thus, if there are two choices for some pi; qi coordinate pair, the

algorithm routes through pi � 1 �mod k�, pi � 2 �mod k�, . . . , qi. The

shortcoming of having only one path between a pair of processors

is the lack of fault tolerance in the network. Specifically, if an edge

over which a pair of processors communicate fails, then the pair

will no longer be able to exchange messages. In Section 7, we look

at another routing algorithm which does not suffer from this

limitation.

6.1 Load Analysis for Linear Placements with ODR

Theorem 2. Given a linear placement P � f~p j p1 � p2 � � � � � pd �
0 �mod k�g in Tdk � �V ;E�, ODR Algorithm results in linear load on

edges.

Proof . Since ODR algorithm ensures one path between each pair of

processors, each denominator in (5) for E�l� is 1. Thus, in order

to compute Emax, we need only count the (maximum) number

of pairs of processors that communicate through a specific

edge. Without loss of generality, consider an edge l 2 E, where

l � < �i1; . . . ; is; . . . ; id�; �i1; . . . ; is � 1; . . . ; id� > :

We will count pairs of processors which communicate using l.

Let ~p and~q 2 P be two processors, where ~p sends messages to~q

through l. Since ODR algorithm is used, we must have

~p � �p1; . . . ; ps; is�1; . . . ; id�
and

~q � �i1; . . . ; isÿ1; qs; qs�1; . . . ; qd�
with ps � is �mod k� and qs � is � 1 �mod k�. Since ~p and ~q are

both in P and P is linear, the coordinates satisfy

p1 � � � � � ps � is�1 � � � � � id � 0 �mod k�
and

i1 � � � � � isÿ1 � qs � � � � � qd � 0 �mod k�:
Therefore,

p1 � � � � � ps � c1 �mod k� �11�

qs � � � � � qd � c2 �mod k�: �12�
Note that if~p and~q are to use the edge l, then, in order to ensure

that messages follow shortest paths, we must also have,

qs ÿ ps �mod k� � ps ÿ qs �mod k�
by the property of cyclic distance. The number of processors

satisfying (11) is less than or equal to ksÿ1, while those

satisfying (12) is less than or equal to kdÿs. Thus, the total

number of processor pairs cannot be more than

ksÿ1kdÿs � kdÿ1. Therefore, Emax � kdÿ1 and the maximum

load is linear in j P j� kdÿ1.
Note that we are actually overcounting since we have not

taken the restrictions ps � is �mod k�, qs � is � 1 �mod k�, and
qs ÿ ps �mod k� � ps ÿ qs �mod k� on the sth dimension into
account when we count the solutions of (11) and (12). These
conditions affect the choices of ps and qs. A more accurate
expression (though of the same order) can be obtained by
paying closer attention to these parameters: To determine the
number of different ways ps and qs may be chosen, consider the
one-dimensional k-subtorus (ring) on which the edge l lies.
Assume first that k is even. Without loss of generality, also
assume that the nodes in the ring are enumerated from 0 to
kÿ 1 such that is � 1

2 kÿ 1. Then, the ODR algorithm will use l
to deliver messages from node 0 to only node 1

2 k on this ring.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000 263

Similarly, it will use edge l for messages from node 1 to node 1
2 k

and from node 1 to node 1
2 k� 1 and so on. Messages from node

1
2 kÿ 1 �� is� can be sent using l to any node indexed 1

2 k to kÿ 1.
The total number of choices for ps and qs will therefore be:

k
2

k
2� 1
ÿ �

2
� k

2

8
� k

4
:

Now, assume that k is odd and, also, that is � 1
2 �kÿ 1�. In

this case, messages from node 1 can be delivered to only node
1
2 �k� 1� through l, while messages from node 2 can be routed to
nodes 1

2 �k� 1� and 1
2 �k� 1� � 1, and so on. Thus there are a

total of

kÿ1
2

kÿ1
2 � 1

ÿ �
2

choices for ps and qs when k is odd. Therefore, the number of
solutions to (11) and (12) which satisfy the conditions
ps � is �mod k�, qs � is � 1 �mod k�, and qs ÿ ps �mod k� � ps ÿ
qs �mod k� is

Emax � k
dÿ1

8
� k

dÿ2

4

when k is even and

Emax � k
dÿ1

8
ÿ k

dÿ3

8

when k is odd. tu
To summarize, regardless of the parity of k, for a linear placement

P with ODR, j P j� kdÿ1 and

Emax � k
dÿ1

8
� �lower order terms�:

6.2 Multiple Linear Placements with ODR

Theorem 3. Multiple linear placements along with ODR algorithm on

Tdk results in linear load on edges.

Proof. The analysis is conceptually similar to that of the
previous section. Consider a multiple linear placement P �
P1 [P2 [. . . [Pt in Tdk � �V ;E� with ODR where, for some
fixed constant t,

P1 � f~p j p1 � p2 � � � � � pd � 0 �mod k�g
P2 � f~p j p1 � p2 � � � � � pd � 1 �mod k�g

..

.

Pt � f~p j p1 � p2 � � � � � pd � tÿ 1 �mod k�g:
Note that j P j� tkdÿ1. As before, consider an edge l 2 E of the

form

l � < �i1; . . . ; is; . . . ; id�; �i1; . . . ; is � 1; . . . ; id� >
and a pair of processors ~p , ~q 2 P , which communicate using l.
Since ODR algorithm is used, we must have

~p � �p1; . . . ; ps; is�1; . . . ; id�
and

~q � �i1; . . . ; isÿ1; qs; qs�1; . . . ; qd�
with ps � is �mod k� and qs � is � 1 �mod k�, as well as
qs ÿ ps �mod k� � ps ÿ qs �mod k�. Since ~p and ~q are both in P ,
each must satisfy an equation among P1; P2; . . . ; Pt. Thus,

p1 � � � � � ps � is�1 � � � � � id � 0 or 1 or . . . or tÿ 1 �mod k� �13�
and

i1 � � � � � isÿ1 � qs � � � � � qd � 0 or 1 or . . . or tÿ 1 �mod k�: �14�
The number of solutions to (13) is no more than tksÿ1.

Similarly, the number of solutions to (14) is no more than tkdÿs.
Therefore, the total number of processor pairs communicating
through l is bounded by t2kdÿ1, which is linear in j P j for any
constant t. tu

7 UNORDERED DIMENSIONAL ROUTING (UDR)

We mentioned in Section 6 that ODR algorithm suffers from lack of
fault tolerance since there is only one path between each pair of
processors. In this section, we introduce Unordered Dimensional
Routing (UDR), which eliminates this problem. The algorithm is as
follows: To route a packet from ~p � �p1; p2; . . . ; pd� to
~q � �q1; q2; . . . ; qd�, both in P

for i :� 1 to d do

begin

Select a number j from the set f1; 2; . . . ; dg that has not been

used before;

Correct pj in the direction of shortest cyclic distance

end

As was the case in ODR, a dimension is corrected completely

before another is selected. Unlike ODR, however, the order in

which the dimension to be corrected next is picked is arbitrary.

This algorithm thus provides multiple paths for each pair of

processors and improves the fault tolerance of the system. If ~p and

~q are two processors differing in s dimensions, then there will be s!

different paths from ~p to ~q in UDR, i.e., j CUDR~p!~q j � s!. Next, we

show that UDR algorithm also results in linear load in edges.

7.1 Load Analysis for Linear Placements with UDR

For a linear placement P which uses UDR algorithm, the load on
an edge l is

E�l� �
X

~p2P;~q2P

j CUDR~p!l!~q j
j CUDR~p!~q j

:

Since there exist some pairs of processors for which j CUDR~p!~q j > 1,
we have,

E�l� <
X

~p2P;~q2P
j CUDR~p!l!~q j :

The upper bound on the righthand side of this inequality specifies

the number of messages sent between pairs of processors which

could ªpotentiallyº route their messages through l. Such proces-

sors can also use other paths that do not include l, since UDR

algorithm provides multiple routing paths.

Theorem 4. Given a linear placement

P � f~p j p1 � p2 � � � � � pd � 0 �mod k�g
in Tdk � �V ;E�, Unordered Dimensional Routing Algorithm
results in linear load on edges.

Proof. Without loss of generality, l 2 E is of the form

l � < �i1; . . . ; is; . . . ; id�; �i1; . . . ; is � 1; . . . ; id� > :

Suppose ~p and ~q 2 P are two processors communicating
through l. Our aim is to find an upper bound on the number
of pairs of processors communicating through l. A moment of
thought reveals that ~p and ~q must have either pj � ij and qj
arbitrary or qj � ij and pj arbitrary, for j 6� s. This means the
number of possible choices in dimension j is less than 2k.

264 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

Hence, the total number of choices for all of the coordinates of~p

and~q excluding s is less than 2dÿ1kdÿ1. Since ~p and~q are both in
P , they satisfy

p1 � � � � � pd � 0 �mod k�
and

q1 � � � � � qd � 0 �mod k�:
There are at most one solution pair for each one of 2dÿ1kdÿ1

choices (as before, the coordinates in the sth dimension are

restricted by the conditions ps � is �mod k�, qs � is � 1 �mod k�,
and qs ÿ ps �mod k� � ps ÿ qs �mod k�). Therefore, the total

number of processor pairs communicating through l is

bounded by 2dÿ1kdÿ1, i.e.,

Emax < max
l2E

X
~p2P;~q2P

j CUDR~p!l!~q j
()

< 2dÿ1kdÿ1;

which is linear in j P j� kdÿ1 for any fixed d. tu

7.2 Multiple Linear Placements with UDR

Theorem 5. Multiple linear placements along with UDR algorithm on

Tdk results in linear load on edges.

Proof. We have jP j � tkdÿ1. As before, consider a processor pair, ~p,

~q 2 P , which communicate using l where

l � < �i1; . . . ; is; . . . ; id�; �i1; . . . ; is � 1; . . . ; id� > :

The number of choices for processor pairs using l is strictly less

than 2dÿ1kdÿ1, as in the case of linear placements with UDR.

Since there are t equations for each of ~p and ~q, there are t2

solutions for every one of 2dÿ1kdÿ1 choices of pairs. Therefore,

the number of pairs of processors communicating through l is

less than t22dÿ1kdÿ1, which is linear in j P j for any fixed d and

any constant t. tu

8 CONCLUSION

We have considered communication in partially populated torus

networks in terms of placements of processors and associated

routing algorithms introduced by Blaum et al. [4], [5]. We have

provided lower bounds for the maximum load under the all-to-all

communication scenario and found bounds on the size of an

optimal placement. We have shown that placements with enough

symmetries can be bisected by removing a set of edges of the same

order as the bisection width of the torus. We then provided optimal

placements of size tkdÿ1 on the d-dimensional k-torus, using what

we call linear and multiple linear placements, and gave load

analyses of each under two different routing algorithms.
There are some interesting combinatorial properties of place-

ments still to be resolved. Among these are the characterization of

optimal placements in terms of restrictions to subtori and an

extensive analysis of the properties of edge separators of tori

relative to optimal placements. A related question is on how much

the uniformity condition on the placements can be relaxed and still

have enough structure to be able to eliminate the dependence of

the constant on d in Theorem 1.

APPENDIX

In the following proposition, we treat Tdk as an undirected graph,

rather than a directed one. Thus, each edge below translates into a

pair of edges of the directed case.

Proposition 1. Any subset P of nodes of the d-dimensional k-torus can

be bisected by removing O�kdÿ1� edges of Tdk . In particular, any

subgraph of Tdk has bisection width O�kdÿ1�.
Proof. Since Tdk has only O�kdÿ1��� dkdÿ1� more edges than the d-

dimensional k-ary array Ad
k, we can instead work with Ad

k.
Let ZZd denote the collection of all lattice points in the d-

dimensional Euclidean space IRd. The length of ~x 2 IRd is
denoted by k ~x k . A hyperplaneHt � Ht�~�� in IRd is defined by a
unit vector ~� � ~=k ~ k and a real number t, as the set of points
~x � �x1; x2; . . . ; xd� 2 IRd satisfying

~� �~x � �1x1 � �2x2 � � � � � �dxd � t :
As t ranges over IR, Ht sweeps IRd in the direction ��� of ~�.

Suppose we pick to be a transcendental number (such as � or

e) and define Ht by the unit vector ~� in the direction of

�1; ; 2; . . . ; dÿ1�. Then, there can be no two distinct points

~a;~b 2 ZZd which lie on Ht for a fixed t. For, otherwise,

�a1 ÿ b1� � �a2 ÿ b2� � � � � � �ad ÿ bd�dÿ1 � 0;

with not all ai ÿ bi � 0, and this would contradict the fact that

is transcendental.
The standard embedding of Ad

k in IRd is obtained by
mapping each vertex �a1; a2; . . . ; ad� of Ad

k, where 0 � ai < k
for each i, to the point ~a � �a1; a2; . . . ; ad� 2 ZZd. An edge in Ad

k

between two ver t i ces ~a � �a1; . . . ; ai; . . . ; ad� a nd ~b �
�a1; . . . ; ai � 1; . . . ; ad� is represented by the unit line segment
in IRd parallel to the ith axis, having ~a and ~b as its endpoints.
We identify P (nodes + edges) with its geometric embedding in
IRd as a subgraph of Ad

k.
Consider the collection of hyperplanes Ht defined as above

using a transcendental number in the range 1 < <
���
2dÿ1
p

and
0 � t � �kÿ 1�. For t in this range, Ht sweeps Ad

k from the point
�0; 0; . . . ; 0� to the farthest point �kÿ 1; kÿ 1; . . . ; kÿ 1� in the
direction of ~�. Note that, by our choice of ,

1. 1 < < � � � < dÿ1 < 2 ,
2. 0 < �1 < �2 < � � � < �d < 1 ,
3. For any r � 2 and i � 1; 2; . . . ; d, riÿ1 � 2 > dÿ1 and,

consequently, r�i > �d.

For a fixed value t � t0, Ht crosses an edge between ~a and ~b of

Ad
k if these two endpoints lie on opposite sides of the

hyperplane:

~a �~� < t0 < ~b �~� � ~a �~� � �i :
Without any loss of generality, assume that there is no vertex of

Ad
k on Ht0 . Since an edge in the embedding has unit length, the

distance from~a toHt0 (and also from~b toHt0) is strictly less than

1. The distance between ~x and the hyperplane Ht0 is given by

j ~x �~� ÿ t0 j :
Therefore, the number S of edges crossed by Ht0 is no larger

than the number of solutions ~a 2 Ad
k of

t0 ÿ 1 < ~a �~� < t0 and t0 < ~a �~� � �i < t0 � 1 ; �15�
summed over i � 1; 2; . . . ; d. The two sets of inequalities in (15)

are in turn equivalent to

t0 ÿ �i < ~a �~� < t0 : �16�
Let

Si � f~a 2 Ad
k j t0 ÿ �i < ~a �~� < t0 g :

Then,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000 265

1. S1 � S2 � � � � � Sd , (since �1 < �2 < � � � < �d);
2. S �j S1 j � j S2 j � � � � � j Sd j .

We claim that j Sd j� 2kdÿ1 and, therefore, S � 2dkdÿ1.
LetW be a subset of nodes ofAd

k. Define the discrepancyD�W�
� dÿ number of indices j such that the jth coordinate of each
e l e m e n t i n W i s i d e n t i c a l . F o r e x a m p l e , w h e n
W � f�0; 0; 0�; �0; 0; 2�; �1; 0; 0�; �1; 0; 2�g, D�W� � 2. Let N �d; k�
be the maximum cardinality collectionN of~a 2 Ad

k such that any
subsetW of three elements hasD�W� � 2. Grouping the elements
inN according to their first coordinates, we obtain the bound

N �d; k� � kN �dÿ 1; k�
for d > 2. Also, by the pigeonhole principle, N �2; k� � 2k. There-
fore, N �d; k� � 2kdÿ1. Now, by way of contradiction, assume that
j Sd j> 2kdÿ1. We have just shown with our count of N that Sd
must contain a set W consisting of three vectors such that
D�W� � 1, i.e., three vectors which differ only in a single
coordinate i. In particular, Sd has two solutions ~a �
�a1; . . . ; ai; . . . ; ad� and �a1; . . . ; ai � r; . . . ; ad� with r � 2 (this is
guaranteed since we have three distinct numbers in the ith
coordinates in W). Using (16), this implies

t0 ÿ �d < ~a �~� < t0 and t0 ÿ �d < ~a �~� � r�i < t0;

which combine to give t0 ÿ �d < t0 ÿ r�i or, equivalently,
r�i < �d. However, by our choice of , r�i � �d. This contradiction
proves that j S j� 2dkdÿ1. Therefore, for any value of t,
0 < t < kÿ 1, the hyperplane Ht crosses no more than 2dkdÿ1

edges of Ak
d.

Now, we can prove that P (or P minus an element if j P j is
odd) can be divided into two equal size subsets by removing no
more than 2dkdÿ1 edges of Ak

d. This division is obtained by using
the fact thatHt contains at most one element ofAk

d and, therefore,
ofP for any t. Thus, the number of elements ofP which are on the
origin side ofHt goes up by units of one with increasing t and is
equal to 1

2 j P j for some t � t0. tu

ACKNOWLEDGEMENT

We would like to thank the referee who made valuable suggestions
on simplifying our earlier asymptotic notation. The first author
was supported in part by a fellowship from Izmir Institute of
Technology, Izmir, Turkey.

REFERENCES

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B.
Smith, ªThe Tera Computer System,º ACM Supercomputing, 1990.

[2] M.C. Azizoglu and OÈ . Egecioglu, ªLower Bounds on Communication
Loads and Optimal Placements in Torus Networks,º Proc. IEEE 1998 Int'l
Parallel Processing Symp./Symp. Parallel and Distributed Processing Symp., pp.
460±464, Mar. 1998.

[3] M.M. Bae and B. Bose, ªResource Placement in Torus-Based Networks,º
IEEE Trans. Computers, vol. 46, no. 10, pp. 1,083±1,092, 1997.

[4] M. Blaum, J. Bruck, G.D. PifarreÂ, and J.L. Sanz., ªOn Optimal Placements of
Processors in Tori Networks,º Proc. Eighth IEEE Symp. Parallel and
Distributed Processing, pp. 552±555, Oct. 1996.

[5] M. Blaum, J. Bruck, G.D. PifarreÂ, and J.L. Sanz., ªOn Optimal Placements of
Processors in Fault-Tolerant Tori Networks,º preprint, 1997.

[6] B. Bose, R. Broeg, Y. Kwon, and Y. Ashir, ªLee Distance and Topological
Properties of k-ary n-cubes,º IEEE Trans. on Computers, vol. 44, no. 8,
pp. 1,021±1,030, Aug. 1995.

[7] Y-C. Tseng, T-H. Lin, S.K.S. Gupta, and D.K. Panda, ªBandwidth-optimal
Complete Exchange on Wormhole-routed 2D/3D Torus Networks: A
Diagonal-Propagation Approach,º IEEE Trans. Parallel and Distributed
Systems, vol. 8, no. 4, pp. 380±396, Apr. 1997.

[8] A. Gerbessiotis and L.G. Valiant, ªDirect Bulk-Synchronous Parallel
Algorithms,º J. Parallel and Distributed Computing, vol. 22, pp. 251±267, 1994.

[9] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays�
Trees� Hypercubes. San Mateo, Calif.: Morgan Kaufmann, 1992.

[10] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes.
Amsterdam: North Holland, 1977.

[11] L.M. Ni and P.K. McKinley, ªA Survey of Wormhole Routing Techniques in
Direct Networks,º Computer, vol. 26, no. 2, pp. 62±76, Feb. 1993.

[12] F. Pitteli and D. Smitley, ªAnalysis of a 3D Toroidal Network for a Shared
Memory architecture,º Proc. Supercomputing '88, pp. 35±41, Nov. 1988.

[13] S. Rao, T. Suel, T. Tsantilas, and M. Goudreau, ªEfficient Communication
Using Total Exchange,º Proc. Int'l Parallel Processing Symp.'95, pp. 544±550,
1995.

[14] J.F. Sibeyn, ªRouting on Triangles, Tori and Honeycombs,º Int'l J.
Foundations of Computer Science, vol. 8, no. 3, pp. 269±287, 1997.

[15] L.G. Valiant, ªA Bridging Model for Parallel Computation,º Comm. ACM,
vol. 33, no. 8, pp. 103±111, 1990.

266 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 3, MARCH 2000

