CS56—Midterm Exam 2—Question 1
EO02, Q01, W16, Phill Conrad, UC Santa Barbara 02/10/2016

HAND THIS IN WITH YOUR EXAM.
YOU MAY USE THIS FOR SCRATCH WORK, BUT ALL ANSWERS SHOULD BE ON YOUR EXAM PAPER.

Name:

Umail Address: @ umail.ucsb.edu

Code for class Foo, Bar, and Fum

/* 1 %/ public class Foo {

/x 2 %/

/* 3 %/ public int mysteryNumber;
/x4 %/

/* 5 %/ void doThing() {

/* 6 %/ System.out.println("x");
/x T %/ }

/* 8 x/

/* 9 x/ public static void main(String [] args) {
/* 10 */ Foo foo = new Foo();

/* 11 */ Bar bar = new Bar();

/* 12 %/ Fum fum = new Fum();

/* 13 */ System.out.println("Hello");
/* 14 */ /* this is line 14 */

/* 15 %/ }

/* 16 x/ }

/* 17 */

/* 18 */ class Bar extends Foo {

/* 19 x/

/* 20 */ public boolean mysteryBoolean;
/* 21 %/

/* 22 x/ void doThing() {

/* 23 %/ System.out.println("y");
/% 24 %/ }

/* 25 %/ }

/* 26 */

/* 27 */ class Fum extends Foo {

/* 28 x/ public String mysteryString;
/* 29 %/

/* 30 */ void doOtherThing() {

/* 31 x/ System.out.println("z");
/*x 32 %/ }

/% 32 %/}

Javadoc for java.util.ArrayList is on the other side

javaatil.ArrayList<E>

ool add(E e)
co-ean Appends the specified element to the end of this list.
add(int index,
void E element)

Inserts the specified element at the specified position in this list.

addAll (Collection<? extends E> c)
boolean Appends all of the elements in the specified collection to the end of this list, in the order that they are returned by the specified
collection's Iterator.

addAall (int index,
boolean Collection<? extends E> c)
Inserts all of the elements in the specified collection into this list, starting at the specified position.

void clear()
Removes all of the elements from this list.
oOb-ect clone()
secs Returns a shallow copy of this ArrayList instance.
bool. contains (Object o)
oolean

Returns true if this list contains the specified element.

ensureCapacity(int minCapacity)
void Increases the capacity of this ArrayList instance, if necessary, to ensure that it can hold at least the number of elements
specified by the minimum capacity argument.

get (int index)

= Returns the element at the specified position in this list.
int indexOf (Object o)
Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not contain the element.
isEmpty()
bool . P .
cotean Returns true if this list contains no elements.
Tt for<E> iterator()
erator
e Returns an iterator over the elements in this list in proper sequence.
int lastIndexOf (Object o)
Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain the element.
ListTterator<m> listIterator()
1
== 7 |Returns a list iterator over the elements in this list (in proper sequence).
ListIt for<E> listIterator(int index)
1S erator oy . .
== 7 |Returns a list iterator over the elements in this list (in proper sequence), starting at the specified position in the list.
E remove(int index)
= Removes the element at the specified position in this list.
boolean remove (Object o)
Removes the first occurrence of the specified element from this list, if it is present.
removeAll (Collection<?> c)
boolean

Removes from this list all of its elements that are contained in the specified collection.

removeRange (int fromIndex,
protected void int toIndex)
Removes from this list all of the elements whose index is between fromIndex, inclusive, and toIndex, exclusive.

retainAll (Collection<?> c)

bool . . 1.
cotean Retains only the elements in this list that are contained in the specified collection.
set(int index,
E E element)
Replaces the element at the specified position in this list with the specified element.
int size()

Returns the number of elements in this list.

subList (int fromIndex,
List<E> int toIndex)
Returns a view of the portion of this list between the specified £romIndex, inclusive, and toIndex, exclusive.

toArray()

Object(] Returns an array containing all of the elements in this list in proper sequence (from first to last element).

toArray (T[] a)
<T> T[] Returns an array containing all of the elements in this list in proper sequence (from first to last element); the runtime type of
the returned array is that of the specified array.

file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#add(E)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#add(int,%20E)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#addAll(java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#addAll(int,%20java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#clear()
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#clone()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#contains(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#ensureCapacity(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#get(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#indexOf(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#isEmpty()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Iterator.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#iterator()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#lastIndexOf(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ListIterator.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#listIterator()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ListIterator.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#listIterator(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#remove(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#remove(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#removeAll(java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#removeRange(int,%20int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#retainAll(java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#set(int,%20E)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#size()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/List.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#subList(int,%20int)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#toArray()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#toArray(T[])

CMPSC 56 EO02
I

TOTAL POINTS

70/70

QUESTION 1
Java Swing 30 pts
1.1(a) Purpose of FooPanel? (5/5)

+ 5 Correct: a widget that implements a GUI, or
contains an interactive widget (e.g. a button) that
needs a callback routine when it is clicked (or
activated in some way).

Alternative Correct Answer: to receive events and
perform the desired actions in response.

Partial Credit: Answer that is correct, but focuses
on what an "interface" is, missing the point that
ActionListener has a specific role in Java Swing. The
question was getting at the "purpose" of class
FooPanel in a specific sense, not an abstract sense.

Partial Credit: Answer focuses on what an "inner
class" is, missing the point that ActionListener has a
specific role in Java Swing. The question was getting
at the "purpose" of class FooPanel in a specific sense,

not an abstract sense.

1.2 (b) What Java keyword? (5/ 5)
+ 5 Correct: this
Incorrect: ActionEvent or ActionEvent object
Incorrect: inner class
Incorrect: Listener object
Incorrect: public class FooPanel implements
ActionListener
Incorrect: Listener or Listeners
Incorrect: Instance Variable
Partial Credit: *this (The prefix * is a C++ thing.)
incorrect: dot operator
Incorrect: ActionListener
Left Blank
Incorrect: protected
Incorrect: implements

Incorrect: ActionHandler

Incorrect: Event handler

Incorrect: static

Incorrect: widget

Incorrect: new

Not a rubric item, just a comment: see
http://stackoverflow.com/questions/3124126/java-
addactionlistenerthis for more information on this

topic.

1.3 (c) Disadvantage of making FooPanel be
object that implements ActionListener? (5/

+ 5 Correct: there can be only one actionPerformed
method in the class. (That's a problem if you have
more than two things you want to do---because
you'll have to have complex code to handle all the
different cases inside your one single
actionPerformed method.)

Left Blank

PARTIAL CREDIT correct answer: It may not
enforce separation of concerns or good object-
oriented practices. [Awarded 4/5 because this is a
good generic answer for why to make something a
separate object. In this case, there is a more specific
reason as well that is context dependent that we
discussed in lecture.]

Incorrect: Unable to reuse the code written in the
inner class. This is incorrect, because part c is not
discussing the use of an inner class at all.

Incorrect answer: "It only applies to events
contained within the FooPanel class. If we have
another class with the same event, it will not work."
OR "You are not allowed to use the ActionListener
outside of the FooPanel class". Neither of those is
true. We "could" use an instance of this class to be

an ActionListener for some other class' event. So itis

possible. But even if it were true that we couldn't
(and that's NOT true), it is very unlikely that we would
want to. An ActionListener in a GUI needs to make
changes to the state of elements of a particular GUI.
When you press a button, or scroll a scroller, or click a
mouse, something is supposed to "happen". And
making that thing happen likely requires access to the
internal state of the FooPanel. And that fact pretty
much negates the whole point you are trying to make,
i.e. that "reuse" is something desirable here.

+ 0 Incorrect Ansswer: "If somewhere else in the
program you need the same ActionListener, your
code will not be DRY." That "seems" like a plausible
answer---in general, we try to avoid duplicate code to
make things DRY. But in this case, that's not the
problem.. An ActionListener in a GUI typically
needs to make changes to the state of elements of
that GUIL. When you press a button, or scroll a
scroller, or click a mouse, something is supposed to
"happen". And making that thing happen likely
requires access to the internal state of the FooPanel.
It is not likely that you are going to be able to reuse
that code anywhere else in your program.

+ 0 Incorrect Answer: "This will make the FooPanel
both extends JPanel and implements ActionListener,
which may cause writing method of same name." So,
I'm not sure what problem you are trying to describe
here--- "may cause writing method of same name"
isn't very precise. Same name as what? In any case
having a class that both. extends JPanel and
implements ActionListener is a perfectly legal thing to
do, and causes no naming conflicts.

+ 2 Partial credit answer: "You have to create an
instance of the FooPanel class itself within the
FooPanel class. It's more complicated and its' not
good for data encapsulation. There can only be one
implementation." That last sentence, i.e. "there can
only be one implementation" is what saved you from
a zero credit answer---because that is true, though
you didn't really explain why that's a problem. The
first part is just false---you don't need a separate

instance. The keyword "this" is a reference back to

the instance itself. So, there is only one instance,
and the data encapsulation is just fine---perfect, in a
sense, since we are dealing only with a single object.
+ 0 Incorrect Answer. "This limits what the FooPanel
class is able to do because each class is made so that
it specializes at one job." This is incorrect.
Implementing ActionListener doesn't "limit" what
FooPanel can do. On the contrary, the essence of
implementing an interface is that it provides a marker
of some additional capability that the class CAN do. It
expresses the idea "this class can do this thing,
because it has all the necessary methods to do it".
The second part of your sentence: "because each
class is made so that it specializes at one job",
describes an important design goal of a good object
oriented system. But it is not the correct answer to
THIS question.

+ 0 Incorrect answer: "There might not be a visual
indicator of what or where the ActionListener is for
the user". Incorrect because a "user" would never
need to have any visual indicator of an
ActionListener--its entirely an internal code construct,
not a user-facing thing. If you mean "programmer"
rather than "user", it's still incorrect. It will be visible
from the fact that FooPanel class will say
"implements ActionListener" right at the top, and the
fact that the addActionListener() method for any
widget with an ActionListener will take the parameter
"this". Both of those are visual indicators of what or
where the ActionListener is for the programmer.

+ 0 Not a rubric item, just a comment: see
http://stackoverflow.com/questions/3124126/java-
addactionlistenerthis for more information on this
topic.

+ 0 Incorrect: "The FooPanel class can ONLY do what
the ActionListener interface can do, no more, no less".
OR "FooPanel would not be able to make method
calls with a normal object functionality. FooPanel will
only be used for waiting until the user makes an
action. This means you cannot [illegible... have?
hide?] an ActionEvent in this class definition." That is

not correct. FooPanel can be a JPanel that has any

kind of functionality that a JPanel would normally
have, PLUS it can also be an ActionListener. All we
have to do is add an actionPerformed method to the
class.

+ 3 PARTIAL CREDIT: "If FooPanel implements
ActionListener, there can only ever be 1interactive
button/widget in the Panel..." That's not correct.
There can be several. The problem isn't that we can't
have more than one--its that we have to stuff all of
that code for handling, say, a Button, a TextArea and
a slider into a single method that has to complicated
logic (e.g. a series of if tests) to determine which kind
of event happened. Still, 3/5 because you are at least
on the right track with this line of thinking.

+ 0 Incorrect: "That will let FooPanel implement a lot
[sic] useless methods and in this case FooPanel
needs to implement all the methods in ActionListener
which are not what we want for FooPanel.". So,
ActionListener has only one method
(actionPerformed) and it really isn't a big deal to
implement it. If we only need one action for a single
widget, it may be less work to add this one method

than to create a separate class.

1.4 (d) Disadvantage of separate class? (5/5)
+ 5 Correct: the separate class does not have access
to the private members of FooPanel. (Which it will
likely need in order to make things happen in the
GUI).

+ 2 Partial credit: bulky code involved with separate
classes for separate ActionListeners...vague or fails to
mention idea that event handlers need access to
instance variables.

+ 0 Incorrect: fails to identify a disadvantage of
separate classes

+ 0 Left Blank

+ 3 Partial Credit: Correctly indicates that it is more

work, with this architecture, to make changes to

(5/5)

+ 5 Correct: Making an inner class that implements
ActionListener is the third approach.

+ 5 ALTERNATIVE correct answer--if "anonymous
inner class" used as answer to part (e). This lists
various advantages of an anonymous inner class.

+ 3 Partial credit: correctly identifies inner class, but
doesn't mention that the inner class will be the one
implementing ActionListener

+ 2 Partial credit: answer--"have a method in

FooPanel implement ActionListener..." incorrectly
says method instead of inner class, but interfaces
must be implemented by a class

+ 0 Incorrect: doesn't identify a third approach on how
to implement ActionListener

+ 0 blank

1.6 (f) Advantages of third approach (5/5)

+ 5 Correct: One or more inner class objects can be
used to implement one or more ActionListeners, and
each of those will have full access to the outer class'
instance variables.

+ 5 ALTERNATIVE correct answer--if "anonymous
inner class" used as answer to part (e). This lists
various advantages of an anonymous inner class.

+ 3 Partial credit: correctly includes access to instance
variables, but also should discuss how inner classes
allow you to have multiple ActionListeners to handle
multiple events

+ 3 Partial credit: correctly states that inner classes
allow you to have multiple ActionListeners to handle
multiple events, but doesn't say that inner classes
have access to instance variables

+ 1 Partial credit: vague or incomplete response that
fails to identify advantages of inner classes

+ 0 Incorrect: identifies disadvantages of inner
classes

+ 0 Incorrect: doesn't identify an advantage of inner

FooPanel from inside the ActionListener, but doesn't classes
clearly explain why. + 0 blank
1.5 (e) Briefly describe third approach to
QUESTION 2

ActionListener (not self, not separate class)

Foo, Bar, Fum (inheritance)
What methods can be invoked on foo?

+ 5 Correct: doThing() lines 5-7 (ok to say line 5 too).

What public data members can follow
bar.

+ 5 Correct: mysteryBoolean and mysteryNumber

Methods can be invoked on fum?

+ 5 [NOTE TYPO CORRECTION given to all students:

"object foo" should read "object fum".] Correct:
doThing, line 5 (or 5-7) and doOtherThing, line 30,
(or 30-32)

Data members for fum?

+ 5 Correct: mysteryNumber and mysteryString

Two main categories of exceptions in
Java. Names of two kinds, and reason
why.

+ 4 4 of the 10 points are earned for correctly

IDENTIFYING THE TWO CATEGORIES.. One

category is Unchecked exceptions (which inherit

from java.lang.RuntimeException) and the other is

Checked exceptions, which inherit from

java.lang.Exception. It is acceptable if the official

names of these categories aren't given but it is clear
that they are being referred to via the base class
such exceptions have in common (RuntimeException

/ RuntimeExceptions without a space, Exception

capitalized). "Thrown Exceptions" is not acceptable

as all exceptions are thrown.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

RUNTIME/UNCHECKED EXCEPTIONS. These

indicate a problem with code logic. try/catch blocks

for these are not required because they would
clutter the code logic.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

CHECKED EXCEPTIONS. These indicate a problem

that the programmer cannot prevent, should

anticipate, and should either handle with a try/catch
block, or report to the caller by declaring that the

method may throw the exception.

exceptions.

+ 0 No points for incorrect explanation of Unchecked
exceptions.

+ 0 Your explanation of the difference is that it is a
distinction between catching the problem at compile
time vs. run time, but that is not correct. Both of
these happen at run time. The name is a bit
misleading, | acknowledge---that's all the more reason
to be sure you learn the correct distinction.

+ 2 Partial credit for an identification of the two
categories that is incorrect, or only partially correct.
Here are some examples of incorrect pairs of names:
(1) IOExceptions vs. Exceptions (2) Runtime
Exceptions vs. User-Defined Exceptions (3) runtime
exceptions vs. undefined exceptions (4) RunTime
Exceptions vs. Compiler Exceptions, (5) the first type
is RuntimeExceptions, and the second type is the kind
that uses the try/catch block (6) RuntimeException vs.
CriticalException (7) RuntimeExceptoin and self-
declared exceptions. Examples of correctly
distinguishing are (1) checked vs. unchecked
exceptions (2) Runtime exceptions vs. Checked
Exceptions. (3) "RuntimeException" vs. "Regular
plain-old Exception". (This last one isn't the "best" way
to describe it, but | would accept as long as the
explanations are correct.)

+ 2 Partial Credit for identifying the dichotomy
between Runtime Exceptions and the other kind, but
not indicating how the latter kind have to be handled
in code (caught, or declared to be thrown.)

+ 0 Click here to replace this description.

QUESTION 4
4 Collection<? extends E> ... what does this
mean? (10 / 10)

+ 10 Correct: c is an object of a class that implements
the Collection interface, and it is a collection of
either objects of type E, or of objects from classes or
interfaces that extend (inherit from) type E. That
explanation is sufficient for full credit... but to explain

further with an example: if we have an instance of

ArrayList<Student> and Undergrad extends Student,
then c could be any of the following types:
ArrayList<Student>, ArraylList<Undergrad>,
PriorityQueue<Student>, PriorityQueue<Undergrad>,
etc. Subject to deductions below. Note that E
doesn't have to be a class. It could also be an
interface.

+ 5 Partial Credit: Answer that is correct but
incomplete--that says nothing wrong, but doesn't get
to the point about what the <? extends E> part means.
+ 5 Partial Credit: "c is a collection of elements of any
type... The reason that ¢ can contain any type is
because it is a collection of type E, which is a
template parameter, meaning E can be of any type.".
Yes, but no. E in this case is already bound. ltis a
specific type, the type that THIS ArrayList<E> instance
<? extends E> actually RESTRICTS

the type of what c can be a collection of. It restricts it

is a collection of.

to being only elements of type E, or any
class/interface that extends E.

+ 5 Partial Credit "c is an instance of a class that
implements an interface that extends the interface
Collection<E>." OR "any object of a class that
extends classes that implement the Collection
interface". NO.. If that were our intent, we might
write <T extends Collection<E>> boolean addAll(T c).
Or we could simply write: boolean
addAll(Collection<E> c¢). Your answer seems to
indicate that the ? extends is about extending
Collection, but that is NOT the case. The extending
is NOT of Collection, but of E itself.

- 2 -2 deduction from full credit answer for imprecise
language: "elements that are of class E or extends
class E as its parameter". What you mean to say is
"elements that are of class/interface E, or any
class/interface that extends E as its parameter”.
Those extra words are important to be precise in your
meaning.

+ 5 Imprecise answer: "Collection<? extends E> c
means that it could be a subclass of the given data
type".
does "it" refer to? Does itrefertoc or E? |can'ttell

This is too imprecise for full credit. What

And the given data type? What does that refer to?
Collection<? extends E>? E? Without knowing this, |
can't tell if your answer is correct or not. Therefore, it
cannot earn full credit.

+ 5 Partial credit: Any answer that indicates that
Collection<? extends E> c means that "c is any object
that implements Collection, where it can be a
collection of any type of object at all", i.e. there is no
restriction on what type of object can be in the
Collection. NO. E is already "bound" to whatever
this PARTICULAR ArrayList<E> is a collection of. So,
not ANY object. cis a Collection of objects of class
or interface E, or any class or interface that extends
E, where E is something *specific*, the SPECIFIC class
or interface that this ArrayList is an ArrayList of. For
example, if E is Animal, and Dog extends Animal then
<? extends E> means that c can be a
Collection<Animal> or a Collection<Dog>

+ 5 Partial Credit: E is of whatever type the ArrayList
is. cis an interface that extends whatever type the
ArrayListis. Ifitis an ArrayList<Integer>then c will be
a Collection that extends Integer. NO.

+ 5 Partial credit: c is a type of Collection that extends
E. NO. cis atype of Collection that contains inside it
instances of E, or any class/interface that extends E.
The Colection does NOT extend E. Not in any way.

+ 5 Partial credit: T"his means that the parameter c
must be compatible with the elements of the
ArrayList. By this, | mean that 'c' must be an instance
of a class tht is the supertype E, or a subtype of E."
Almost there, but NO. What you should have said is
"This means that the parameter c __is a Collection of

elements that___ must be compatible with ..." You
left out those crucial words "is a Collection of
elements that..."

+ 5 Partial credit: "c can be any class that extends E".
¢ could also be an interface, and it must implement
Collection interface

- 3 Collection is an interface so it must be
implemented, it is not a super class that can be
extended

+ 5 "The means that any object that extends

Collection can be put in as an argument and that
Collections ? will wrap around the object E so for
example if ArrayList<Dog> is put as an argument then
? will wrap around Dog and allow the function to
manipulate Dog objects." Incorrect. The "extends"
keyword here is NOT about extending Collection. If
ArrayList<Dog> were the context, than E is Dog, and
what we have for c is a Collection of Dog or a
collection of some object that extends Dog.

+9 9/10, for mostly correct answer. "This is a
polymorphic argument. Essentially a polymorphic
argument is when a super class is a parameter and
one can pass a subclass through this parameter." [So
far so good.] "In our case, addAll can take anything
that is a subclass of collections, such as Stack,
ArrayList, etc. [Ooops... not subclass. We noted that
Collection is an interface, so we should have said
anything that *implements* Collection. Continuing...]
"The <? extends E> ensures that the argument is the
same object or a subclass of the object that the
ArrayList holds. YES.

+ 0 No credit: "This means that c can be any class that
extends Object. In Java, primitives are not objects."
That is incorrect. The type expression constrains the
type of what ¢ can be far more narrowly than "any
class that extends Object", which is the same as
saying "anything except a primitive". The statement
"In Java, primitives are not objects" is correct, but
that's not relevant to the problem, so no partial credit
for that.

+ 5 Partial Credit: "It means that an ArrayList can add
any object E or any collection of object E, or a
subclass of E. The E object is any object or collection
of objects that user defines it to be." Not exactly.
We can't pass an object of type E or a subclass of E to
this addAll method. We can only pass a Collection of
objects of type E, or a Collection of a objects of some
type that is a subclass of E.

+ 5 Incorrect/imprecise answer: "That this method
works for all the classes that implement the collection
interface. The type of collection must extend E..."

[Ooops. Not the type of collection (e.g. ArrayList,

HashSet, PriorityQueue, Stack) must extend E, but the
thing that c is a collection OF must be E or extend E.
You are getting 5/10 for the benefit of the doubt that
you meant to refer to the "thing that c is a Collection
of", but your answer isn't precise enough to get full
credit. Continuing...]" ... must be an element type
(object references) but cannot be of primitive type.
e.g. c cannot be of type ArrayList<int> but can be of
type ArrayList<Integer>." So that last part is true, but
"vacuously" true, since it is true of any parameterized
type in Java. That part has nothing to do with the
question asked, so you get no partial credit for it.

+ 5 Incorrect answer: "First, c is a specified collection,
and inside the brackets, it stands for iterating all
elements in this collection because addAll will
append all of the elements." So, while it is true that
addAll will append all of the elements, and cis a
Collection, it is NOT true that the part in brackets (i.e.

<? extends E> means to iterate over the collection.

Page 7 sl gradescope

CS56—Midterm Exam
E02, W16, Phill Conrad, UC Santa Barbara
Monday, 02/29/2016

« Please write your name above AND AT THE TOP OF EVERY PAGE
Please put your pages in order, facing the same way.
« All the odd pages have dots (e); these should be upper right, and facing up.
« All the even numbered pages have crosses (x) at upper right and should be facing
down. '
Be sure you turn in every page of this exam.
e Each of the pages is numbered (e.g. Page 1, Page 2, etc.) -
e The last page clearly says "End of Exam".
This exam is closed book, closed notes, closed mouth, cell phone off
You are permitted one sheet of paper (max size 8.5x11") on which to write notes
This sheet will be collected with the exam, and might not be returned
Please write your name on your notes sheet

Lo eThos®
The vlocked oA PM\‘ Shood pepredd

///_’—_‘————‘ﬁ\%\m
BERN o5 -~;—v, .

pends ol clonot bde

w b Ake %@ e s sk

2 X

1. In Java Swing applications, we sometimes need an object that implements the ActionListener interface.
Suppose that this situation arises in the context of a class called FooPanel. .
a. (5 pts) Given that we need an object that implements ActionListener inside of FooPanel, what is likely the
purpose of class FooPanel, and why do we need an object that implements ActionListener inside of it?

1L\l\€ 0S¢ will be | W e E iy g wdh Con A,,/ N 3;‘\{\)y

Page: 2 Name

o
‘ \] A 1o
= VN) / S e s .
“ {‘ﬁ\ 1'% a,'«ﬂ,@\ N AN /\ C J Qp b1 Srer & e 2 {{wa;.,»’,ki

0 vxd T a [N £ Ve f ¢ §PC §
b. (5 pts) There are three relationships that the object that implements ActlonLlstener can have w1th the class
FooBar. One of those, is that the object that implements ActionListener can be an instance of FooBar itself.

In this case, what Java keyword is used to refer to the object that implements ActionListener?

’}"{\! ~
c. (5 pts) What is the main disadvantage of making the FooPanel class itself be the object that implements
ActionListener?
Ow l\‘jji’ one Pl enration of e iom L)
i o i 1 w; f;: ‘{/ £
e

d. (5 pts) A second technique is to make a completely separate class, separate from FooPanel, that implementé
ActionListener. What is the main disadvantage of this approach?

] ¢ i i v Vi i f ~

\Q “/LL o?e f‘&(j o ?L\,@,@ Eve nt (’@,ng;{ OL, Clr +, 1.)
: 9 L, faet

P@L’) 37/.*, A | 9 { K N\ o

ane. ; ~) 1
{ Lf , 1 oy /)\ pe cCovwA b ev< o VWA ‘}"() P‘c‘/ "IKO'/V"\.\ ‘!“;/l‘f Cf!t' i; re d
el @ o fe, & nee e e clafs cawn e G Llw(l FL -) Tl - {;f
sl Y ane ¢ Vo T e, ¢

e. (5 pts) There is a third approach where the object that implements ActionListener has a different relatlonshlp
with FooPanel from the two already described. What is this third approach? Briefly describe it.

(Note: in Java 8, a fourth approach is to use Lambda Functions, but those are NOT covered on this exam, and it isn't what I'm looking for '
here. Those will be on the final exam.)

AGuivg o twner Qass wmpIie en T [Cmon i rey er”

f. (5 pts) What are the advantages of this third approach to making an ActionListener over the other two already

described?
,}\,\ : S alln S /- WAL [\.‘% w":){ ¢ i Yo . | .
L U LA/ VAN W VA (\ A 1 \yf\/\\ E gr‘/f}{f’[/‘ 3 u ‘f—i q (/\ 5 /,., L
| g
M Retron Lo, Lo ok .}[w0
’ N TRy NT Y Toce e outer olg S

13 3 ‘
‘Wj’rk(:, [y 04 0 -

~ S { {
& gro O 217 1 Y. A {{~ D¢
& Vil qH ”.6[/\/“?54’7{(1})(/ Wne Hno ds 5’%

3 @

Page: 3 Name:

2 Consider the code for classes Foo, Bar and Fum on the handout. Answer the questions below about this code. ; N \,\@“kd

a. (5 pts) Inside the main routine, locate the comment that says This is line 14.Suppose we Zere to
invoke a method on the object referred to by reference £oo. Disregarding methods that are i] from
class java.lang.Object,and considering only methods defined in the code here, list the methods we
could invoke on object £oo, and for each one, indicate the line number on which it is defined.

1)
AO | V) ﬁg (Y ‘1 (ine 5

b. (5 pts) On line 13, there is a System.out. println() statement, with argument "Hello". Suppose we
were to replace the argument with a reference bar, the dot operator, and then any of the public data members
that may be accessed through the reference bar. Disregarding any that might be inherited from class
java.lang.Object, whatis the complete list of data members that could follow bar . on this line? List

themadl. vy g§~@m§: Nuwmber v g

=3

: 1 [l
W\ T AV t o
¥ S Uy Voo llan

ahespd

c. (5 pts) Inside the main routine, locate the comment that says This is line 14.Suppose v‘évere to
invoke a method on the object referred to by reference fum. Disre garding methods that are imisemseted from
class java.lang.Object,and considering only methods defined in the code here, list the methods we
‘could invoke on object-;ﬁ@@, and for each one, indicate the line number on which it is defined.

VA

A ﬂ‘/‘i . rN \ A *
Johvng (), e &
E i

! 3 9:1"\ \ e
&}FQ wer T g, e 30

#

d. (5 pts) On line 13, there is a System.out. println() statement, with argument "Hello". Suppose we
were to replace the argument with a reference fum, the dot operator, and then any of the public data members
that may be accessed through the reference fum. Disregarding any that might be inherited from class
java.lang.Object, whatis the complete list of data members that could follow fum. on this line? List
them all.

Arog e\ 00t ﬂ‘j o T
{ 'fi‘\" | LA ,,.i U wp ‘f/f/, \ WA (7 !

o O Y ~F aa
kg S hrtmg

4

Page: 4 Name

X

3. (10 pts) Briefly describe the two main categories of exceptions in Java.

Be sure that your answcr includes not only the names of the two kinds of exceptions, but also the reason that there are two different

categories, and how they have to be treated differently.

rr

Dascnbe as if you were asked during a job interview. You should include enough detail so that the interviewer knows that you are very
familiar with exceptions in Java, but not so much that you are wasting the interviewer's time.

.« ® f'\
-, A ~ens
z Tewasmiso Wi s ¢ 5
\ \ N
N N f' 7]
I \{\»\ Ad O Cren Ly -
€ D+ C
sy : f
v A £ x i)
o e) 7 4
Pl e a1
~ YN g r
TVERE g Lepn ’
. ‘ 4]
Ly
4 ! [l i
/
S Y {
|
A |
\‘U;“ YT PX
Yy -
A &
«f: . -
L & 4 ;
- {1 Y. ¢
Ok i .
A 2 % ” p i

o) ¥)
/ Cé LMEeC D \ AHl'unm &
W2 o 4 i .
|) g@/\/\g (Tl T OV f/\,/\OiL(wld P Vera, Y
\ I/
Fhe ?m 9 e mey Can no b ao PY IS
OME Coge WMl pork g
0 , -l
-) (o} Cem ‘_
0{6[\G\‘QC} y ' ek Ceh 70, oo
rad vy 4 "~ - -
e Ca \M"“(T 1'{«\‘
SITUGE | s " "
> s Ay L EER fole s, e
20 /) o £ 9 ¢ . i \‘
< s UL g C 41y ’, (e o
6 th_(.v . 7 2 e
YAay oV vy ep |
i P X ~ A
ke o€t Lle

4.(10 pts) On the reverse side of the handout, you will find the javadoc for the class ArrayList<E>. The third and
. fourth rows in this table contain the description of this method:

&

=t 4
o o"‘ 'P\ .,

boolean addAll (Collection<? extends E> c)

-1
I wall tell you two additional pieces of information:
e that Collection<E> is an interface

* that a number of classes implement this interface, including ArrayList<E>, HashSet<E>,

PriorityQueue<E>, and Stack<E>.
With that information, answer the following question.
The type of parameter c is given as Collection<? extends E>

What does this mean? Explain briefly.

{ a5 | b Fa) . X | : "
L o [N) - A 1N
; Lowre] 1N ,,,\z,f“ {] i ,!/\d 1 ‘6/{%: + . ’,ﬂ
v
A \ |
X : |
Q gls, Puvr ool ; I "
‘ G E€+\ne R RN
1) >
Loy b
A - A 7 4 ! R
o A AL (- 'S
\ \
1 \ Fad
=¥ ¢ { , p !
=\ ~\Q - R) \‘;] {/"; g‘ A 1‘ Vel Wy ¢
. \ i ¥, i i - {
i

CMPSC 56 EO2
I

TOTAL POINTS

60/70

QUESTION 1
Java Swing 30 pts
1.1(a) Purpose of FooPanel? (5/5)

+ 5 Correct: a widget that implements a GUI, or
contains an interactive widget (e.g. a button) that
needs a callback routine when it is clicked (or
activated in some way).

Alternative Correct Answer: to receive events and
perform the desired actions in response.

Partial Credit: Answer that is correct, but focuses
on what an "interface" is, missing the point that
ActionListener has a specific role in Java Swing. The
question was getting at the "purpose" of class
FooPanel in a specific sense, not an abstract sense.

Partial Credit: Answer focuses on what an "inner
class" is, missing the point that ActionListener has a
specific role in Java Swing. The question was getting
at the "purpose" of class FooPanel in a specific sense,

not an abstract sense.

1.2 (b) What Java keyword? (0/5)
Correct: this
Incorrect: ActionEvent or ActionEvent object
Incorrect: inner class
Incorrect: Listener object
Incorrect: public class FooPanel implements
ActionListener
+ 0 Incorrect: Listener or Listeners
Incorrect: Instance Variable
Partial Credit: *this (The prefix * is a C++ thing.)
incorrect: dot operator
Incorrect: ActionListener
Left Blank
Incorrect: protected
Incorrect: implements

Incorrect: ActionHandler

Incorrect: Event handler

Incorrect: static

Incorrect: widget

Incorrect: new

Not a rubric item, just a comment: see
http://stackoverflow.com/questions/3124126/java-
addactionlistenerthis for more information on this

topic.

1.3 (c) Disadvantage of making FooPanel be
object that implements ActionListener? (5/

+ 5 Correct: there can be only one actionPerformed
method in the class. (That's a problem if you have
more than two things you want to do---because
you'll have to have complex code to handle all the
different cases inside your one single
actionPerformed method.)

Left Blank

PARTIAL CREDIT correct answer: It may not
enforce separation of concerns or good object-
oriented practices. [Awarded 4/5 because this is a
good generic answer for why to make something a
separate object. In this case, there is a more specific
reason as well that is context dependent that we
discussed in lecture.]

Incorrect: Unable to reuse the code written in the
inner class. This is incorrect, because part c is not
discussing the use of an inner class at all.

Incorrect answer: "It only applies to events
contained within the FooPanel class. If we have
another class with the same event, it will not work."
OR "You are not allowed to use the ActionListener
outside of the FooPanel class". Neither of those is
true. We "could" use an instance of this class to be

an ActionListener for some other class' event. So itis

possible. But even if it were true that we couldn't
(and that's NOT true), it is very unlikely that we would
want to. An ActionListener in a GUI needs to make
changes to the state of elements of a particular GUI.
When you press a button, or scroll a scroller, or click a
mouse, something is supposed to "happen". And
making that thing happen likely requires access to the
internal state of the FooPanel. And that fact pretty
much negates the whole point you are trying to make,
i.e. that "reuse" is something desirable here.

+ 0 Incorrect Ansswer: "If somewhere else in the
program you need the same ActionListener, your
code will not be DRY." That "seems" like a plausible
answer---in general, we try to avoid duplicate code to
make things DRY. But in this case, that's not the
problem.. An ActionListener in a GUI typically
needs to make changes to the state of elements of
that GUIL. When you press a button, or scroll a
scroller, or click a mouse, something is supposed to
"happen". And making that thing happen likely
requires access to the internal state of the FooPanel.
It is not likely that you are going to be able to reuse
that code anywhere else in your program.

+ 0 Incorrect Answer: "This will make the FooPanel
both extends JPanel and implements ActionListener,
which may cause writing method of same name." So,
I'm not sure what problem you are trying to describe
here--- "may cause writing method of same name"
isn't very precise. Same name as what? In any case
having a class that both. extends JPanel and
implements ActionListener is a perfectly legal thing to
do, and causes no naming conflicts.

+ 2 Partial credit answer: "You have to create an
instance of the FooPanel class itself within the
FooPanel class. It's more complicated and its' not
good for data encapsulation. There can only be one
implementation." That last sentence, i.e. "there can
only be one implementation" is what saved you from
a zero credit answer---because that is true, though
you didn't really explain why that's a problem. The
first part is just false---you don't need a separate

instance. The keyword "this" is a reference back to

the instance itself. So, there is only one instance,
and the data encapsulation is just fine---perfect, in a
sense, since we are dealing only with a single object.
+ 0 Incorrect Answer. "This limits what the FooPanel
class is able to do because each class is made so that
it specializes at one job." This is incorrect.
Implementing ActionListener doesn't "limit" what
FooPanel can do. On the contrary, the essence of
implementing an interface is that it provides a marker
of some additional capability that the class CAN do. It
expresses the idea "this class can do this thing,
because it has all the necessary methods to do it".
The second part of your sentence: "because each
class is made so that it specializes at one job",
describes an important design goal of a good object
oriented system. But it is not the correct answer to
THIS question.

+ 0 Incorrect answer: "There might not be a visual
indicator of what or where the ActionListener is for
the user". Incorrect because a "user" would never
need to have any visual indicator of an
ActionListener--its entirely an internal code construct,
not a user-facing thing. If you mean "programmer"
rather than "user", it's still incorrect. It will be visible
from the fact that FooPanel class will say
"implements ActionListener" right at the top, and the
fact that the addActionListener() method for any
widget with an ActionListener will take the parameter
"this". Both of those are visual indicators of what or
where the ActionListener is for the programmer.

+ 0 Not a rubric item, just a comment: see
http://stackoverflow.com/questions/3124126/java-
addactionlistenerthis for more information on this
topic.

+ 0 Incorrect: "The FooPanel class can ONLY do what
the ActionListener interface can do, no more, no less".
OR "FooPanel would not be able to make method
calls with a normal object functionality. FooPanel will
only be used for waiting until the user makes an
action. This means you cannot [illegible... have?
hide?] an ActionEvent in this class definition." That is

not correct. FooPanel can be a JPanel that has any

kind of functionality that a JPanel would normally
have, PLUS it can also be an ActionListener. All we
have to do is add an actionPerformed method to the
class.

+ 3 PARTIAL CREDIT: "If FooPanel implements
ActionListener, there can only ever be 1interactive
button/widget in the Panel..." That's not correct.
There can be several. The problem isn't that we can't
have more than one--its that we have to stuff all of
that code for handling, say, a Button, a TextArea and
a slider into a single method that has to complicated
logic (e.g. a series of if tests) to determine which kind
of event happened. Still, 3/5 because you are at least
on the right track with this line of thinking.

+ 0 Incorrect: "That will let FooPanel implement a lot
[sic] useless methods and in this case FooPanel
needs to implement all the methods in ActionListener
which are not what we want for FooPanel.". So,
ActionListener has only one method
(actionPerformed) and it really isn't a big deal to
implement it. If we only need one action for a single
widget, it may be less work to add this one method

than to create a separate class.

1.4 (d) Disadvantage of separate class? (5/5)
+ 5 Correct: the separate class does not have access
to the private members of FooPanel. (Which it will
likely need in order to make things happen in the
GUI).

+ 2 Partial credit: bulky code involved with separate
classes for separate ActionListeners...vague or fails to
mention idea that event handlers need access to
instance variables.

+ 0 Incorrect: fails to identify a disadvantage of
separate classes

+ 0 Left Blank

+ 3 Partial Credit: Correctly indicates that it is more

work, with this architecture, to make changes to

(5/5)

+ 5 Correct: Making an inner class that implements
ActionListener is the third approach.

+ 5 ALTERNATIVE correct answer--if "anonymous
inner class" used as answer to part (e). This lists
various advantages of an anonymous inner class.

+ 3 Partial credit: correctly identifies inner class, but
doesn't mention that the inner class will be the one
implementing ActionListener

+ 2 Partial credit: answer--"have a method in

FooPanel implement ActionListener..." incorrectly
says method instead of inner class, but interfaces
must be implemented by a class

+ 0 Incorrect: doesn't identify a third approach on how
to implement ActionListener

+ 0 blank

1.6 (f) Advantages of third approach (5/5)

+ 5 Correct: One or more inner class objects can be
used to implement one or more ActionListeners, and
each of those will have full access to the outer class'
instance variables.

+ 5 ALTERNATIVE correct answer--if "anonymous
inner class" used as answer to part (e). This lists
various advantages of an anonymous inner class.

+ 3 Partial credit: correctly includes access to instance
variables, but also should discuss how inner classes
allow you to have multiple ActionListeners to handle
multiple events

+ 3 Partial credit: correctly states that inner classes
allow you to have multiple ActionListeners to handle
multiple events, but doesn't say that inner classes
have access to instance variables

+ 1 Partial credit: vague or incomplete response that
fails to identify advantages of inner classes

+ 0 Incorrect: identifies disadvantages of inner
classes

+ 0 Incorrect: doesn't identify an advantage of inner

FooPanel from inside the ActionListener, but doesn't classes
clearly explain why. + 0 blank
1.5 (e) Briefly describe third approach to
QUESTION 2

ActionListener (not self, not separate class)

Foo, Bar, Fum (inheritance)
What methods can be invoked on foo?

+ 5 Correct: doThing() lines 5-7 (ok to say line 5 too).

What public data members can follow
bar.

+ 5 Correct: mysteryBoolean and mysteryNumber

Methods can be invoked on fum?

+ 5 [NOTE TYPO CORRECTION given to all students:

"object foo" should read "object fum".] Correct:
doThing, line 5 (or 5-7) and doOtherThing, line 30,
(or 30-32)

Data members for fum?

+ 5 Correct: mysteryNumber and mysteryString

Two main categories of exceptions in
Java. Names of two kinds, and reason
why.

+ 4 4 of the 10 points are earned for correctly

IDENTIFYING THE TWO CATEGORIES.. One

category is Unchecked exceptions (which inherit

from java.lang.RuntimeException) and the other is

Checked exceptions, which inherit from

java.lang.Exception. It is acceptable if the official

names of these categories aren't given but it is clear
that they are being referred to via the base class
such exceptions have in common (RuntimeException

/ RuntimeExceptions without a space, Exception

capitalized). "Thrown Exceptions" is not acceptable

as all exceptions are thrown.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

RUNTIME/UNCHECKED EXCEPTIONS. These

indicate a problem with code logic. try/catch blocks

for these are not required because they would
clutter the code logic.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

CHECKED EXCEPTIONS. These indicate a problem

that the programmer cannot prevent, should

anticipate, and should either handle with a try/catch
block, or report to the caller by declaring that the

method may throw the exception.

exceptions.

+ 0 No points for incorrect explanation of Unchecked
exceptions.

+ 0 Your explanation of the difference is thatitis a
distinction between catching the problem at compile
time vs. run time, but that is not correct. Both of
these happen at run time. The name is a bit
misleading, | acknowledge---that's all the more reason
to be sure you learn the correct distinction.

+ 2 Partial credit for an identification of the two
categories that is incorrect, or only partially correct.
Here are some examples of incorrect pairs of names:
(1) IOExceptions vs. Exceptions (2) Runtime
Exceptions vs. User-Defined Exceptions (3) runtime
exceptions vs. undefined exceptions (4) RunTime
Exceptions vs. Compiler Exceptions, (5) the first type
is RuntimeExceptions, and the second type is the kind
that uses the try/catch block (6) RuntimeException vs.
CriticalException (7) RuntimeExceptoin and self-
declared exceptions. Examples of correctly
distinguishing are (1) checked vs. unchecked
exceptions (2) Runtime exceptions vs. Checked
Exceptions. (3) "RuntimeException" vs. "Regular
plain-old Exception". (This last one isn't the "best" way
to describe it, but | would accept as long as the
explanations are correct.)

+ 2 Partial Credit for identifying the dichotomy
between Runtime Exceptions and the other kind, but
not indicating how the latter kind have to be handled
in code (caught, or declared to be thrown.)

+ 0 Click here to replace this description.

QUESTION 4
4 Collection<? extends E> ... what does this
mean? (5/10)

+10 Correct: c is an object of a class that implements
the Collection interface, and it is a collection of either
objects of type E, or of objects from classes or
interfaces that extend (inherit from) type E. That
explanation is sufficient for full credit... but to explain

further with an example: if we have an instance of

ArrayList<Student> and Undergrad extends Student,
then ¢ could be any of the following types:
ArrayList<Student>, ArrayList<Undergrad>,
PriorityQueue<Student>, PriorityQueue<Undergrad>,
etc. Subject to deductions below. Note that E
doesn't have to be a class. It could also be an
interface.

+ 5 Partial Credit: Answer that is correct but
incomplete--that says nothing wrong, but doesn't get
to the point about what the <? extends E> part
means.

+ 5 Partial Credit: "c is a collection of elements of any
type... The reason that c can contain any type is
because it is a collection of type E, which is a
template parameter, meaning E can be of any type.".
Yes, but no. Ein this case is already bound. Itis a
specific type, the type that THIS ArrayList<E> instance
<? extends E> actually RESTRICTS

the type of what ¢ can be a collection of. It restricts it

is a collection of.

to being only elements of type E, or any
class/interface that extends E.

+ 5 Partial Credit "c is an instance of a class that
implements an interface that extends the interface
Collection<E>." OR "any object of a class that
extends classes that implement the Collection
interface". NO.. If that were our intent, we might
write <T extends Collection<E>> boolean addAll(T c).
Or we could simply write: boolean
addAll(Collection<E>c). Your answer seems to
indicate that the ? extends is about extending
Collection, but that is NOT the case. The extending
is NOT of Collection, but of E itself.

- 2 -2 deduction from full credit answer for imprecise
language: "elements that are of class E or extends
class E as its parameter". What you mean to say is
"elements that are of class/interface E, or any
class/interface that extends E as its parameter".
Those extra words are important to be precise in your
meaning.

+ 5 Imprecise answer: "Collection<? extends E> ¢
means that it could be a subclass of the given data

type". This is too imprecise for full credit. What

does "it" refer to? Does it refertoc or E? |can'ttell
And the given data type? What does that refer to?
Collection<? extends E>? E? Without knowing this, |
can't tell if your answer is correct or not. Therefore, it
cannot earn full credit.

+ 5 Partial credit: Any answer that indicates that
Collection<? extends E> ¢ means that "c is any object
that implements Collection, where it can be a
collection of any type of object at all", i.e. there is no
restriction on what type of object can be in the
Collection. NO. E is already "bound" to whatever
this PARTICULAR ArrayList<E> is a collection of. So,
not ANY object. cis a Collection of objects of class
or interface E, or any class or interface that extends
E, where E is something *specific*, the SPECIFIC class
or interface that this ArrayList is an ArrayList of. For
example, if E is Animal, and Dog extends Animal then
<? extends E> means that c can be a
Collection<Animal> or a Collection<Dog>

+ 5 Partial Credit: E is of whatever type the ArrayList
is. cis an interface that extends whatever type the
ArraylList is. If it is an ArrayList<Integer>then c will be
a Collection that extends Integer. NO.

+ 5 Partial credit: c is a type of Collection that extends
E. NO. cis atype of Collection that contains inside it
instances of E, or any class/interface that extends E.
The Colection does NOT extend E. Not in any way.

+ 5 Partial credit: T"his means that the parameter c
must be compatible with the elements of the
ArrayList. By this, | mean that 'c' must be an instance
of a class tht is the supertype E, or a subtype of E."
Almost there, but NO. What you should have said is
"This means that the parameter ¢ __is a Collection of
elements that____ must be compatible with ..." You
left out those crucial words "is a Collection of
elements that..."

+ 5 Partial credit: "c can be any class that extends E".
c could also be an interface, and it must implement
Collection interface

- 3 Collection is an interface so it must be
implemented, it is not a super class that can be

extended

+ 5 "The means that any object that extends
Collection can be put in as an argument and that
Collections ? will wrap around the object E so for
example if ArrayList<Dog> is put as an argument then
? will wrap around Dog and allow the function to
manipulate Dog objects." Incorrect. The "extends"
keyword here is NOT about extending Collection. If
ArrayList<Dog> were the context, than E is Dog, and
what we have for c is a Collection of Dog or a
collection of some object that extends Dog.

+ 9 9/10, for mostly correct answer. "This is a
polymorphic argument. Essentially a polymorphic
argument is when a super class is a parameter and
one can pass a subclass through this parameter." [So
far so good.] "In our case, addAll can take anything
that is a subclass of collections, such as Stack,
ArraylList, etc. [Ooops... not subclass. We noted that
Collection is an interface, so we should have said
anything that *implements* Collection. Continuing...]
"The <? extends E> ensures that the argument is the
same object or a subclass of the object that the
ArrayList holds. YES.

+ 0 No credit: "This means that ¢ can be any class that
extends Object. In Java, primitives are not objects."
That is incorrect. The type expression constrains the
type of what c can be far more narrowly than "any
class that extends Object", which is the same as
saying "anything except a primitive". The statement
"In Java, primitives are not objects" is correct, but
that's not relevant to the problem, so no partial credit
for that.

+ 5 Partial Credit: "It means that an ArrayList can add
any object E or any collection of object E, or a
subclass of E. The E object is any object or collection
of objects that user defines it to be." Not exactly.
We can't pass an object of type E or a subclass of E to
this addAll method. We can only pass a Collection of
objects of type E, or a Collection of a objects of some
type that is a subclass of E.

+ 5 Incorrect/imprecise answer: "That this method
works for all the classes that implement the collection

interface. The type of collection must extend E..."

[Ooops. Not the type of collection (e.g. ArrayList,
HashSet, PriorityQueue, Stack) must extend E, but the
thing that c is a collection OF must be E or extend E.
You are getting 5/10 for the benefit of the doubt that
you meant to refer to the "thing that c is a Collection
of", but your answer isn't precise enough to get full
credit. Continuing...]" ... must be an element type
(object references) but cannot be of primitive type.
e.g. ¢ cannot be of type ArrayList<int> but can be of
type ArraylList<Integer>." So that last part is true, but
"vacuously" true, since it is true of any parameterized
type in Java. That part has nothing to do with the
question asked, so you get no partial credit for it.

+ 5 Incorrect answer: "First, c is a specified collection,
and inside the brackets, it stands for iterating all
elements in this collection because addAll will
append all of the elements." So, while it is true that
addAll will append all of the elements, and c is a
Collection, it is NOT true that the part in brackets (i.e.

<? extends E> means to iterate over the collection.

Page 7 sl gradescope

CS56—Midterm Exam
EO02, W16, Phill Conrad, UC Santa Barbara
Monday, 02/29/2016

Umail A umail.ucsb.edu

HE TOP OF EVERY PAGE
Please put your pages in order, facing the same way.

« All the odd pages have dots (¢); these should be upper right, and facing up.
e All the even numbered pages have crosses (x) at upper right and should be facing

down.
e Be sure you turn in every page of this exam.
e Each of the pages is numbered (e.g. Page 1, Page 2, etc.)
« The last page clearly says "End of Exam".
This exam is closed book, closed notes, closed mouth, cell phone off

This sheet will be collected with the exam, and might not be returned
Please write your name on your notes sheet

You are permitted one sheet of paper (max size 8.5x11") on which to write notes

, | ‘ y
Oc ot 2\ 24 J oy 0N The ‘DJL(,L/
; ¢

A ~€;’H\@ 4%

ﬂ

Lt

0K podt Shoid repds

A\

lish

Ll Ae spesfed clemed b
Fppens e T(}eéf\iwoﬁﬂi‘é

-

F

x //’,f’—lﬁ——-x‘\;"" ——

)

2

Page: 2 N

X

1. In Java Swing applications, we sometimes need an object that implements the ActionListener interface.
Suppose that this situation arises in the context of a class called FooPanel.

a. (5 pts) Given that we need an object that implements ActionListener inside of FooPanel, what is likely the
purpose of class FooPanel, and why do we n

eed an object that implements ActionListener inside of it?
‘11 is ‘%‘ndy e i FPos+ W "C\‘)”’] ‘ Frow~ e NNl € e e
\x \ v " s oy
,”\L\’ TN L 14 ve L N € (N o4 g " ALY L

-

b. (5 pts) There are three relationships that the object that im

plements ActionListener can have with the class
Joc . & . 5 . . Ll y
FooBar. One of those, is that the object that implements ActionListener can be an instance of FooBar itself.
In this case, what Java keyword is used to refer to the object that implements ActionListener?
v 63,) ~ ‘

FaR \ foir
I~ (s

[USe

H o \‘Lt' 3 k\
c. (5 pts) What is the main disadvantage of making the FooPanel class itself be the obj
ActionListener?

ect that implements

05 ¢ |

i 4
Ve & iy

d. (5 pts) A second technique is to make a completely separate class, separate from FooPanel, that implementé
ActionListener. What is the main disadvantage of this approach?

YIO v é\ 0

FOQ P ("*¥’\t/\.

\ !
\’\o\ \\M/(L« Coee sy '\“é {\l \

. ‘ IR
s ey IR

e. (5 pts) There is a third approach where the object that implements ActionListener has a different relationship
with FooPanel from the two already described. What is this third approach? Briefly describe it.

(Note: in Java 8, a fourth approach is to use Lambda Functions, but those are NOT ¢
here. Those will be on the final exam.)

overed on this exam, and it isn't what I'm looking for
i 'ir € an b i /) l ; [
Ay (FLS G N N) Fool” ane 5 e
\ 14 X
'%\\\1‘\«‘\ T4 jt Ly C (/ ¢ . \

f. (5 pts) What are the advantages of this third approach to makin
described?

g an ActionListener over the other two already

. | i . y W \ 3 ¢ g o voar{ \\, \q Y o)
K¢ ot NS U ool b =7
LN SN P Thple beb

Q (\)"E r\\" L‘, C\j => O b {w‘\t , ey > A P “) il \f; [e N . o g '»ﬂ L v v ¢ %‘w")
! N (: v i \ {

o - T g N i { £y oy o | v oo s bt N 3
S | \T\\ }.\\K How N Uk AR s 7 h + f e L e R oS e
Q\ INERS) roy e A Rl L (v ‘

Page: 3 Name:

2. Consider the code for classes Foo, Bar and Fum on the handout. Answer the questions below about this code. ‘ N \‘@.‘kd

a. (5 pts) Inside the main routine, locate the comment that says This is line 14.Suppose we zere to

invoke a method on the object referred to by reference foo. Disregarding methods that are i y from
class java.lang.Object,and considering only methods defined in the code here, list the methods we
could invoke on object £oo, and for each one, indicate the line number on which it is defined.

]

(‘ g \‘ \Vll) (E / “*‘ { (;

. (5 pts) On line 13, there is a System. out.println() statement, with argument "He 1lo". Suppose we
were to replace the argument with a reference bar, the dot operator, and then any of the public data members
that may be accessed through the reference bar. Disregarding any that might be inherited from class
java.lang.Object, what is the complete list of data members that could follow bar . on this line? List

them all. s BN [N N oA \ e 70

gJ YO beot

Vi J
[¥

1

~3

h\\\\h‘k({

. (5 pts) Inside the main routine, locate the comment that says This is line 14.Suppose v‘évere to
invoke a method on the object referred to by reference fum. Disregarding methods that are misewreted from
class java.lang.Object,and considering only methods defined in the code here, list the methods we
could invoke on object £oo, and for each one, indicate the line number on which it is defined.

S A\

void dalhingl) | e

{

74 b

\ /,“‘g\‘* (" Uttey }) }, ! S 5(’

. (5 pts) On line 13, there is a System. out.println() statement, with argument " Hello". Suppose we
were to replace the argument with a reference fum, the dot operator, and then any of the public data members
that may be accessed through the reference fum. Disregarding any that might be inherited from class
java.lang.Object, what is the complete list of data members that could follow fum. on this line? List

them all. ‘ o ,‘ 1

pconrad
Sticky Note
None set by pconrad

pconrad
Sticky Note
MigrationNone set by pconrad

pconrad
Sticky Note
Unmarked set by pconrad

4 X

Page: 4

3. (10 pts) Briefly describe the two main categories of exceptions in Java.

Be sure that your answer includes not only the names of the two kinds of exceptions, but also the reason that there are two different
categories, and how they have to be treated differently.

P ar ‘I’)eécgibe as if you were asked during a job interview. You should include enough detail so that the interviewer knows that you are very

familiar with exceptions in Java, but not so much that you are wasting the interviewer's time.

& I § e Feo o { a6 emoy 1 ¢S { { § L | i TyISg s renETUN d g
o vt it Lere Are [ud \ N | . ‘ o J { §

4.(10 pts) On the reverse side of the handout, you will find the Javadoc for the class ArrayList<E>. The third and
. fourth rows in this table contain the description of this method:

Sl I ¥ E
T R R

B boolean addall (Collection<? extends E> c)

-1
I wall tell you two additional pieces of information:
» that Collection<E> is an interface
= that a number of classes implement this interface, including ArrayList<E>, HashSet<E>,
PriorityQueue<E>, and Stack<E>.

With that information, answer the following question.
The type of parameter c is given as Collection<? extends E>

What does this mean? Explain briefly.

V) | (b ug 4 ‘ ¢t
) }\ 15 YA e el §2 AN @ R u TP Fhnl

N

|
. | Y (. 3 _ Y p T e ol € \ 5 W - 1 e , 1
PO eh-un g } L& ¢ ”LL‘*P{w Cr [t - e ‘ : e i AP

pconrad
Sticky Note
None set by pconrad

pconrad
Sticky Note
MigrationNone set by pconrad

pconrad
Sticky Note
Unmarked set by pconrad

CMPSC 56 EO2
I

TOTAL POINTS

35/70

QUESTION1
Java Swing 30 pts
1.1(a) Purpose of FooPanel? (5/5)

+ 5 Correct: a widget that implements a GUI, or
contains an interactive widget (e.g. a button) that
needs a callback routine when it is clicked (or
activated in some way).

+ 5 Alternative Correct Answer: to receive events
and perform the desired actions in response.

+ 3 Partial Credit: Answer that is correct, but focuses
on what an "interface" is, missing the point that
ActionListener has a specific role in Java Swing. The
question was getting at the "purpose" of class
FooPanel in a specific sense, not an abstract sense.

+ 3 Partial Credit: Answer focuses on what an "inner
class" is, missing the point that ActionListener has a
specific role in Java Swing. The question was getting
at the "purpose" of class FooPanel in a specific sense,

not an abstract sense.

1.2 (b) What Java keyword? (0/5)
+ 5 Correct: this
+ 0 Incorrect: ActionEvent or ActionEvent object
+ 0 Incorrect: inner class
+ 0 Incorrect: Listener object
+ 0 Incorrect: public class FooPanel implements
ActionListener
+ 0 Incorrect: Listener or Listeners
+ 0 Incorrect: Instance Variable
+ 2 Partial Credit: *this (The prefix * is a C++ thing.)
+ 0 incorrect: dot operator
+ 0 Incorrect: ActionListener
+ 0 Left Blank
+ 0 Incorrect: protected
+ 0 Incorrect: implements

+ 0 Incorrect: ActionHandler

+ 0 Incorrect: Event handler

+ 0 Incorrect: static

+ 0 Incorrect: widget

+ 0 Incorrect: new

+ 0 Not a rubric item, just a comment: see
http://stackoverflow.com/questions/3124126/java-
addactionlistenerthis for more information on this

topic.

1.3 (c) Disadvantage of making FooPanel be
object that implements ActionListener? 0/

+ 5 Correct: there can be only one actionPerformed
method in the class. (That's a problem if you have
more than two things you want to do---because you'll
have to have complex code to handle all the different
cases inside your one single actionPerformed
method.)

+ 0 Left Blank

+ 4 PARTIAL CREDIT correct answer: It may not
enforce separation of concerns or good object-
oriented practices. [Awarded 4/5 because this is a
good generic answer for why to make something a
separate object. In this case, there is a more specific
reason as well that is context dependent that we
discussed in lecture.]

+ 0 Incorrect: Unable to reuse the code written in the
inner class. This is incorrect, because part c is not
discussing the use of an inner class at all.

+ 0 Incorrect answer: "It only applies to events
contained within the FooPanel class. If we have
another class with the same event, it will not work."
OR "You are not allowed to use the ActionListener
outside of the FooPanel class". Neither of those is
true. We "could" use an instance of this class to be

an ActionListener for some other class' event. So it is

possible. But even if it were true that we couldn't
(and that's NOT true), it is very unlikely that we would
want to. An ActionListener in a GUI needs to make
changes to the state of elements of a particular GUL.
When you press a button, or scroll a scroller, or click a
mouse, something is supposed to "happen". And
making that thing happen likely requires access to the
internal state of the FooPanel. And that fact pretty
much negates the whole point you are trying to make,
i.e. that "reuse" is something desirable here.

+ 0 Incorrect Ansswer: "If somewhere else in the
program you need the same ActionListener, your
code will not be DRY." That "seems" like a plausible
answer---in general, we try to avoid duplicate code to
make things DRY. But in this case, that's not the
problem.. An ActionListener in a GUI typically
needs to make changes to the state of elements of
that GUIL. When you press a button, or scroll a
scroller, or click a mouse, something is supposed to
"happen". And making that thing happen likely
requires access to the internal state of the FooPanel.
It is not likely that you are going to be able to reuse
that code anywhere else in your program.

+ 0 Incorrect Answer: "This will make the FooPanel
both extends JPanel and implements ActionListener,
which may cause writing method of same name." So,
I'm not sure what problem you are trying to describe
here--- "may cause writing method of same name"
isn't very precise. Same name as what? In any case
having a class that both. extends JPanel and
implements ActionListener is a perfectly legal thing to
do, and causes no naming conflicts.

+ 2 Partial credit answer: "You have to create an
instance of the FooPanel class itself within the
FooPanel class. It's more complicated and its' not
good for data encapsulation. There can only be one
implementation." That last sentence, i.e. "there can
only be one implementation" is what saved you from
a zero credit answer---because that is true, though
you didn't really explain why that's a problem. The
first part is just false---you don't need a separate

instance. The keyword "this" is a reference back to

the instance itself. So, there is only one instance,
and the data encapsulation is just fine---perfect, in a
sense, since we are dealing only with a single object.
+ 0 Incorrect Answer. "This limits what the FooPanel
class is able to do because each class is made so that
it specializes at one job." This is incorrect.
Implementing ActionListener doesn't "limit" what
FooPanel can do. On the contrary, the essence of
implementing an interface is that it provides a marker
of some additional capability that the class CAN do. It
expresses the idea "this class can do this thing,
because it has all the necessary methods to do it".
The second part of your sentence: "because each
class is made so that it specializes at one job",
describes an important design goal of a good object
oriented system. But it is not the correct answer to
THIS question.

+ 0 Incorrect answer: "There might not be a visual
indicator of what or where the ActionListener is for
the user". Incorrect because a "user" would never
need to have any visual indicator of an
ActionListener--its entirely an internal code construct,
not a user-facing thing. If you mean "programmer"
rather than "user", it's still incorrect. It will be visible
from the fact that FooPanel class will say
"implements ActionListener" right at the top, and the
fact that the addActionListener() method for any
widget with an ActionListener will take the parameter
"this". Both of those are visual indicators of what or
where the ActionListener is for the programmer.

+ 0 Not a rubric item, just a comment: see
http://stackoverflow.com/questions/3124126/java-
addactionlistenerthis for more information on this
topic.

+ 0 Incorrect: "The FooPanel class can ONLY do
what the ActionListener interface can do, no more,
no less". OR "FooPanel would not be able to make
method calls with a normal object functionality.
FooPanel will only be used for waiting until the user
makes an action. This means you cannot [illegible...
have? hide?]an ActionEvent in this class definition."

That is not correct. FooPanel can be a JPanel that

has any kind of functionality that a JPanel would
normally have, PLUS it can also be an
ActionListener. All we have to do is add an
actionPerformed method to the class.

+ 3 PARTIAL CREDIT: "If FooPanel implements
ActionListener, there can only ever be 1 interactive
button/widget in the Panel..." That's not correct.
There can be several. The problem isn't that we can't
have more than one--its that we have to stuff all of
that code for handling, say, a Button, a TextArea and
a slider into a single method that has to complicated
logic (e.g. a series of if tests) to determine which kind
of event happened. Still, 3/5 because you are at least
on the right track with this line of thinking.

Incorrect: "That will let FooPanel implement a lot
[sic] useless methods and in this case FooPanel
needs to implement all the methods in ActionListener
which are not what we want for FooPanel.". So,
ActionListener has only one method
(actionPerformed) and it really isn't a big deal to
implement it. If we only need one action for a single
widget, it may be less work to add this one method

than to create a separate class.

1.4 (d) Disadvantage of separate class? (5/5)
+ 5 Correct: the separate class does not have access
to the private members of FooPanel. (Which it will
likely need in order to make things happen in the
GUI).
+ 2 Partial credit: bulky code involved with separate
classes for separate ActionListeners...vague or fails to
mention idea that event handlers need access to
instance variables.

Incorrect: fails to identify a disadvantage of
separate classes

Left Blank
+ 3 Partial Credit: Correctly indicates that it is more
work, with this architecture, to make changes to
FooPanel from inside the ActionListener, but doesn't

clearly explain why.
1.5 (e) Briefly describe third approach to
ActionListener (not self, not separate class)

(2/5)
+ 5 Correct: Making an inner class that implements
ActionListener is the third approach.
+ 5 ALTERNATIVE correct answer--if "anonymous
inner class" used as answer to part (e). This lists
various advantages of an anonymous inner class.
+ 3 Partial credit: correctly identifies inner class, but
doesn't mention that the inner class will be the one
implementing ActionListener
+ 2 Partial credit: answer--"have a method in
FooPanel implement ActionListener..." incorrectly
says method instead of inner class, but interfaces
must be implemented by a class
Incorrect: doesn't identify a third approach on how
to implement ActionListener
blank

1.6 (f) Advantages of third approach (1/5)
+ 5 Correct: One or more inner class objects can be
used to implement one or more ActionListeners, and
each of those will have full access to the outer class'
instance variables.
+ 5 ALTERNATIVE correct answer--if "anonymous
inner class" used as answer to part (e). This lists
various advantages of an anonymous inner class.
+ 3 Partial credit: correctly includes access to instance
variables, but also should discuss how inner classes
allow you to have multiple ActionListeners to handle
multiple events
+ 3 Partial credit: correctly states that inner classes
allow you to have multiple ActionListeners to handle
multiple events, but doesn't say that inner classes
have access to instance variables
+ 1 Partial credit: vague or incomplete response that
fails to identify advantages of inner classes
Incorrect: identifies disadvantages of inner
classes
Incorrect: doesn't identify an advantage of inner
classes

blank

QUESTION 2

Foo, Bar, Fum (inheritance) 20 pts

2.1 What methods can be invoked on foo?
(5/5)

so an invocation of them cannot be used as argument
of System.out.printin()

+ 2 Partial credit for answer "mysteryString", omitting

+ 5 Correct: doThing() lines 5-7 (ok to say line 5 too).

+ 0 OK to include main, since foo.main(args) will,
technically, compile (I tried it). Also ok to omit this
from answer, since we typically would not do this.

- 1 Directions indicated to include the line number in

your answer.
2.2 What public data members can follow
bar. (0/5)

+ 5 Correct: mysteryBoolean and mysteryNumber

- 2 -2 for including doThing() in the answer along with
mysteryBoolean and mysteryNumber, since it is not a
data member. Also, doThing() returns void, so an
invocation of it cannot be used as argument of
System.out.printin()

+ 0 no points for answer doThing() if it is the only
thing included in the answer. doThing() is not a data
member.

+ 2 2 points for only including mysteryNumber, and
not including mysteryBoolean.

+ 2 2 points for only including mysteryBoolean, and

not including mysteryNumber.

2.3 Methods can be invoked on fum? (5/5)

+ 5 [NOTE TYPO CORRECTION given to all students:

"object foo" should read "object fum".] Correct:
doThing, line 5 (or 5-7) and doOtherThing, line 30,
(or 30-32)

+ 0 Ok to include main; technically, it can be invoked
on object fum; but not necessary for full credit.

+ 2 Partial Credit for mentioning only doOtherThing
from lines 30-32 and leaving out doThing from lines
5-7, which is inherited.

2.4 Data members for fum? (5/5)

+ 5 Correct: mysteryNumber and mysteryString

- 2 -2 for including doThing and/or doOtherThing in
the answer along with mysteryBoolean and
mysteryString, since those are methods (member

functions), not data members. Also, they return void,

mysteryNumber which should also be included, as it
is inherited.

+ 0 No credit for answer consisting only of doThing
and doOtherThing, since those are methods
(member functions), not data members. Also, they
return void, so an invocation of them cannot be used

as argument of System.out.printin()

QUESTION 3

3 Two main categories of exceptions in

Java. Names of two kinds, and reason

why. (2 /10)
+ 4 4 of the 10 points are earned for correctly
IDENTIFYING THE TWO CATEGORIES.. One
category is Unchecked exceptions (which inherit from
java.lang.RuntimeException) and the other is Checked
exceptions, which inherit from java.lang.Exception. It
is acceptable if the official names of these categories
aren't given but it is clear that they are being referred
to via the base class such exceptions have in
common (RuntimeException / RuntimeExceptions
without a space, Exception capitalized). "Thrown
Exceptions" is not acceptable as all exceptions are
thrown.
+ 3 3 of the 10 points are earned for
correctly/completely identifying PURPOSE OF
RUNTIME/UNCHECKED EXCEPTIONS. These
indicate a problem with code logic. try/catch blocks
for these are not required because they would clutter
the code logic.
+ 3 3 of the 10 points are earned for
correctly/completely identifying PURPOSE OF
CHECKED EXCEPTIONS. These indicate a problem
that the programmer cannot prevent, should
anticipate, and should either handle with a try/catch
block, or report to the caller by declaring that the
method may throw the exception.

+ 0 No points for incorrect explanation of Checked

exceptions.
+ 0 No points for incorrect explanation of Unchecked
exceptions.

Your explanation of the difference is that it is a
distinction between catching the problem at compile
time vs. run time, but that is not correct. Both of
these happen at run time. The name is a bit
misleading, | acknowledge---that's all the more reason
to be sure you learn the correct distinction.

+ 2 Partial credit for an identification of the two
categories that is incorrect, or only partially correct.
Here are some examples of incorrect pairs of names:
(1) IOExceptions vs. Exceptions (2) Runtime
Exceptions vs. User-Defined Exceptions (3) runtime

exceptions vs. undefined exceptions (4) RunTime

Exceptions vs. Compiler Exceptions, (5) the first type

is RuntimeExceptions, and the second type is the
kind that uses the try/catch block (6)
RuntimeException vs. CriticalException (7)
RuntimeExceptoin and self-declared exceptions.
Examples of correctly distinguishing are (1) checked
vs. unchecked exceptions (2) Runtime exceptions vs.
Checked Exceptions. (3) "RuntimeException" vs.
"Regular plain-old Exception". (This last one isn't the
"best" way to describe it, but | would accept as long
as the explanations are correct.)

Partial Credit for identifying the dichotomy
between Runtime Exceptions and the other kind, but
not indicating how the latter kind have to be handled
in code (caught, or declared to be thrown.)

Click here to replace this description.

QUESTION 4
4 Collection<? extends E> ... what does this

mean? (5 /10)

Correct: c is an object of a class that implements
the Collection interface, and it is a collection of either
objects of type E, or of objects from classes or
interfaces that extend (inherit from) type E. That
explanation is sufficient for full credit... but to explain

further with an example: if we have an instance of

ArrayList<Student> and Undergrad extends Student,
then c could be any of the following types:
ArrayList<Student>, ArrayList<Undergrad>,
PriorityQueue<Student>, PriorityQueue<Undergrad>,
etc. Subject to deductions below. Note that E
doesn't have to be a class. It could also be an
interface.

+ 5 Partial Credit: Answer that is correct but
incomplete--that says nothing wrong, but doesn't get
to the point about what the <? extends E> part
means.

Partial Credit: "c is a collection of elements of any
type... The reason that c can contain any type is
because it is a collection of type E, which is a
template parameter, meaning E can be of any type.".
Yes, but no. E in this case is already bound. ltis a
specific type, the type that THIS ArrayList<E> instance
is a collection of. <? extends E> actually RESTRICTS
the type of what ¢ can be a collection of. It restricts it
to being only elements of type E, or any
class/interface that extends E.

Partial Credit "c is an instance of a class that
implements an interface that extends the interface
Collection<E>." OR "any object of a class that
extends classes that implement the Collection
interface". NO.. If that were our intent, we might
write <T extends Collection<E>> boolean addAll(T c).
Or we could simply write: boolean
addAll(Collection<E> c). Your answer seems to
indicate that the ? extends is about extending
Collection, but that is NOT the case. The extending
is NOT of Collection, but of E itself.

-2 deduction from full credit answer for imprecise
language: "elements that are of class E or extends
class E as its parameter". What you mean to say is
"elements that are of class/interface E, or any
class/interface that extends E as its parameter".
Those extra words are important to be precise in your
meaning.

Imprecise answer: "Collection<? extends E> ¢
means that it could be a subclass of the given data

type". This is too imprecise for full credit. What

does "it" refer to? Does it refertoc or E? |can'ttell
And the given data type? What does that refer to?
Collection<? extends E>? E? Without knowing this, |
can't tell if your answer is correct or not. Therefore, it
cannot earn full credit.

+ 5 Partial credit: Any answer that indicates that
Collection<? extends E> ¢ means that "c is any object
that implements Collection, where it can be a
collection of any type of object at all", i.e. there is no
restriction on what type of object can be in the
Collection. NO. E is already "bound" to whatever
this PARTICULAR ArrayList<E> is a collection of. So,
not ANY object. cis a Collection of objects of class
or interface E, or any class or interface that extends
E, where E is something *specific*, the SPECIFIC class
or interface that this ArrayList is an ArrayList of. For
example, if E is Animal, and Dog extends Animal then
<? extends E> means that c can be a
Collection<Animal> or a Collection<Dog>

+ 5 Partial Credit: E is of whatever type the ArrayList
is. cis an interface that extends whatever type the
ArraylList is. If it is an ArrayList<Integer>then c will be
a Collection that extends Integer. NO.

+ 5 Partial credit: c is a type of Collection that extends
E. NO. cis atype of Collection that contains inside it
instances of E, or any class/interface that extends E.
The Colection does NOT extend E. Not in any way.

+ 5 Partial credit: T"his means that the parameter c
must be compatible with the elements of the
ArrayList. By this, | mean that 'c' must be an instance
of a class tht is the supertype E, or a subtype of E."
Almost there, but NO. What you should have said is
"This means that the parameter ¢ __is a Collection of
elements that____ must be compatible with ..." You
left out those crucial words "is a Collection of
elements that..."

+ 5 Partial credit: "c can be any class that extends E".
c could also be an interface, and it must implement
Collection interface

- 3 Collection is an interface so it must be
implemented, it is not a super class that can be

extended

+ 5 "The means that any object that extends
Collection can be put in as an argument and that
Collections ? will wrap around the object E so for
example if ArrayList<Dog> is put as an argument then
? will wrap around Dog and allow the function to
manipulate Dog objects." Incorrect. The "extends"
keyword here is NOT about extending Collection. If
ArrayList<Dog> were the context, than E is Dog, and
what we have for c is a Collection of Dog or a
collection of some object that extends Dog.

+ 9 9/10, for mostly correct answer. "This is a
polymorphic argument. Essentially a polymorphic
argument is when a super class is a parameter and
one can pass a subclass through this parameter." [So
far so good.] "In our case, addAll can take anything
that is a subclass of collections, such as Stack,
ArraylList, etc. [Ooops... not subclass. We noted that
Collection is an interface, so we should have said
anything that *implements* Collection. Continuing...]
"The <? extends E> ensures that the argument is the
same object or a subclass of the object that the
ArrayList holds. YES.

+ 0 No credit: "This means that ¢ can be any class that
extends Object. In Java, primitives are not objects."
That is incorrect. The type expression constrains the
type of what c can be far more narrowly than "any
class that extends Object", which is the same as
saying "anything except a primitive". The statement
"In Java, primitives are not objects" is correct, but
that's not relevant to the problem, so no partial credit
for that.

+ 5 Partial Credit: "It means that an ArrayList can add
any object E or any collection of object E, or a
subclass of E. The E object is any object or collection
of objects that user defines it to be." Not exactly.
We can't pass an object of type E or a subclass of E to
this addAll method. We can only pass a Collection of
objects of type E, or a Collection of a objects of some
type that is a subclass of E.

+ 5 Incorrect/imprecise answer: "That this method
works for all the classes that implement the collection

interface. The type of collection must extend E..."

[Ooops. Not the type of collection (e.g. ArrayList,
HashSet, PriorityQueue, Stack) must extend E, but the
thing that c is a collection OF must be E or extend E.
You are getting 5/10 for the benefit of the doubt that
you meant to refer to the "thing that c is a Collection
of", but your answer isn't precise enough to get full
credit. Continuing...]" ... must be an element type
(object references) but cannot be of primitive type.
e.g. ¢ cannot be of type ArrayList<int> but can be of
type ArraylList<Integer>." So that last part is true, but
"vacuously" true, since it is true of any parameterized
type in Java. That part has nothing to do with the
question asked, so you get no partial credit for it.

+ 5 Incorrect answer: "First, c is a specified collection,
and inside the brackets, it stands for iterating all
elements in this collection because addAll will
append all of the elements." So, while it is true that
addAll will append all of the elements, and c is a
Collection, it is NOT true that the part in brackets (i.e.

<? extends E> means to iterate over the collection.

Page 7 sl gradescope

CS56—Midterm Exam
E02, W16, Phill Conrad, UC Santa Barbara
Monday, 02/29/2016

Name:

Umail @ umail.ucsb.edu

« Please write your name above AND AT THE TOP OF EVERY PAGE
Please put your pages in order, facing the same way.
« All the odd pages have dots (¢); these should be upper right, and facing up.
« All the even numbered pages have crosses (x) at upper right and should be facing
down. '
Be sure you turn in every page of this exam.
e Each of the pages is numbered (e.g. Page 1, Page 2, etc.)
e The last page clearly says "End of Exam".
This exam is closed book, closed notes, closed mouth, cell phone off
You are permitted one sheet of paper (max size 8.5x11") on which to write notes
This sheet will be collected with the exam, and might not be returned
Please write your name on your notes sheet

On VYou) R A d e »JV/ (N The. hac <
Ll vethodo
The blocked o PM‘ Sheltd repddd

L de spuefied clenod e
A?Wié i jpaéﬂj @%ﬁ—%ﬁs lish

. |3

2 X

1.In Java Swing applications, we sometimes need an object that implements the ActionListener interface.
Suppose that this situation arises in the context of a class called FooPanel

Page: 2 Name:

purpose of class FooPanel, and why do we need an ob]ect that unplements ActlonLlstener inside of it?
o= P R .
| ne 0 .ilwifi of Feoo (eve ! s & de something s hen 4 le

rhekes an e YR e, [fjwﬁ?;[v/ 1 dhooF +le Hedrn

,/ w/jfj € v gﬁy €. fr pwg@%" We l;@ ”VV Cﬁ\wﬂfaf 4o .,(,jle/ f@n@/ & ‘Tf{;/’?'/ e q(_}{{(.‘fw
é { fi & é ¢
b.(5 pts) There are three relationships that the object that implements ActionListener can have with the class
o FooBr. One of those, is that the object that implements ActionListener can be an instance of Epo‘Bar itself.

In this case, what Java keyword is used to refer to the object that implements ActionListener? Foulare |

) shrer Ob J;f Lot

c. (5 pts) What is the main disadvantage of making the FooPanel class itself be the Ob_] ect that lmplements
ActionListener? oo ﬂﬂf ool net he. hle & midee method oy/s

f’ [’l/’ et | Afenitfrol ?{,7 ‘ [ﬂ Pm Y ony he (s8) for lgitta, of

User eked L (A e h / : \ gy
L L o altren, AT e 5 yo- Corred hll o oy L pdren Crermd) 27
+hic ol (o f)n -

htg (C",E {‘E{fg ;ﬁf;.m’ 22-°v%

d. (5 pts) A second technique is to make a completely separate class, separate from FooPanel that 1mplements

ActionListener. What is the main dlsadvantage of this approach’7 -
Tl\a M") 'g &m! “(@ff IR . I f Ladt 1/ {L‘/: le £ L ’/5*’—/‘ ff.ﬂfpg Ere sl Fop “ Fol &
oesy . Whivh wil) ndude gefter aad sedder e fled s, 4o Jub 3hore

’

e. (5 pts) There is a third approach where the object that implements ActionListener has a different relationship

with FooPanel from the two already described. What is this third approach? Briefly describe it.

(Note: in Java 8, a fourth approach is to use Lambda Functions, but those are NOT covered on this exam, and it isn't what I'm looking for '
here. Those will be on the final exam.)

) ' ; / PET T — [1/ A -

Thipd- < /\{'/a”zzn.rf} 15 1R Awe < pethd ity foo ﬂ‘"‘f U F LA rplamons
f’(,"}ﬁ"'i"" Kf‘\ ura ot f;‘: €n /"7 ’/‘;I\.{‘. fa&'«"'!' if?" ff" £)4 Qi("’"’ A}
el et QEC e fuf

f. (5 pts) What are the advantages of this third approach to making an ActionListener over the other two already
described?

Fhis ¢ e Yeed en) tle o Lieas X mat fuchiod

+[c"5 ';/il-ﬂ/ a-ﬁl’;:\(,v/ 7{7&\4«3 &f‘;ﬁgﬁqg 4 e f’

3 ‘ 2

Page: 3 Name:

2. Consider the code for classes Foo, Bar and Fum on the handout. Answer the questions below about this code. N \\@.‘ﬁd

i b e
Aot S
Y L%

P ¥

‘%}é 14

a. (5 pts) Inside the main routine, locate the comment that says This is line 14.Suppose we Zere to
invoke a method on the object referred to by reference(foo) Disregarding methods that are] from
class java.lang.Object, and considering only methods defined in the code here, list the methods we
could invoke on object £oo, and for each one, indicate the line number on which it is defined.

oo b wThap; L lhe S

b. (5 pts) On line 13, there is a System.out. println() statement, with argument "Hello". Suppose we
were to replace the argument with a reference/bar] the dot operator, and then any of the public data members
that may be accessed through the reference bar. Disre garding any that might be inherited from class
java.lang.Object, what is the complete list of data members that could follow baxr . on this line? List
them all. | '

gﬁ; Void doThin)7(A;, fHon line 227
-
whan e

c. (5 pts) Inside the main routine, locate the comment that says This is line 14.Suppose wAvere to

invoke a method on the object referred to by referenc@f Disregarding methods that are issemerted from

class java.lang.Object, agkg‘considering only methods defined in the code here, list the methods we
could invoke on object §96 , §?1d for each one, indicate the line number on which it is defined.

_:!’Lv"t' 7oaty 1 poe } ! v
. \'"4%7 doT ;x M(ﬂ;%{) t’;’ia 3% N \g
Ve c¥ I, Odey Thineof) o [0€ SE2

e

do YWV [Arehi Y

d. (5 pts) On line 13, there is a System.out.println() statement, with argument "Hello". Suppose we
were to replace the argument with a reference um] the dot operator, and then any of the public data members
that may be accessed through the reference fum. Disre garding any that might be inherited from class
java.lang.Object, what is the complete list of data members that could follow fum. on this line? List
them all.
L

. ~ b Yoy “f‘{ii .f“séi?fs Vid=a g«(<
i in P-blic in¥ mysio T | T 2

p-blic sy s Sty 4 oop (ne 207

4 X

Page: 4 Name

¥

3.

(10 pts) Briefly describe the two main categories of exceptions in Java.

!
Be sure that your answer includes not only the names of the two kinds of exceptions, but also the reason that there are two different
categories, and how they have to be treated differently.

Dbscnbc as if you were asked during a job interview. You should include enough detail so that the interviewer knows that you are very
Familiar with exceptions in Java, but not so much that you are wasting the interviewer's time.
% W} '5 ’Mc‘ e (‘P‘"”W S: B xeepHens 4hed do net dav o ke Cevy ht oy de¢lared
- . { T AL be ! N
(/lf(i(\l»’f;; L E“i ra ” 5[6)5 § . hert WG« - & Xden b
; nelty T
) ve he[pAil when
b of Cwcls or
% e o le
Fod e it alrs 34, .
£ RN i‘“'g ;
17 e,
4. (10 pts) On the reverse side of the handout, you will find the javadoc for the class ArrayList<E>. The third and
. fourth Tows in this table contain the dcscnpuon of this method:
I‘» £ ,.q . ,g\ ., =
B boolean addAll (Collection<? extends E> c) !
-1

I wall tell you two additional pieces of information:
o that Collection<E> is an interface
 that a number of classes implement this interface, including ArrayList<E>, HashSet<E>

PWE> and Stack<eE>. - T
With that information, answer the following question.
The type of‘ parameter c is given as Collection<? extends E>
What does this mean? Explain bneﬂy
What evev J%g‘ﬁm C whot rati-e \JAIC) }«»,(T!f hett

c éﬁ! g.g g;‘ﬁi i[*v 1% 'l 4 t f’"'\;a{",(, 4

-~ y _r o 7 , ’
R O TV (P w@x Meched €L g e s
7 e 7 :
ev €, [N i . ‘
\ & Lo ¢ e . * ¥ | NS -)
2 1< e v . [] € \f'f' £ dgl :) F
; ; ¥ . oI €t Vol o oy Cler eollerd;
[& ong 5 N d 3 any Fles colifetiv
£, # | o { ¢ ot ' !
¥ i Loy Cfpcr c!/v/r

CMPSC 56 EO2a
I

TOTAL POINTS

30/30

QUESTION 1
Question 5 (coding) 30 pts
1.1 Correct structure (10 /10)

+10 10 pts correct structure of class: public class
TempSequence extends ArrayList<integer>{ ... } with
two methods inside with correct method signatures.
(Subject to deductions below)

- 3 Should not have a private instance variable of type
ArrayList<Integer>, since we are using inheritance (as
we did in 1ab03.) Therefore "this" is implicitly already
an ArraylList<Integer>. You are using composition, not
inheritance.

- 1-1 missing close brace on class

- 5 Serious errors in class syntax.

- 2 There should not be a public data member of type
double to store the average temperature. Instead,
the variable to calculate the average shoud be a local
variable of the averageTemp method. You are
exposing a value that might not have a correct value,
depending on whether the averageTemp method has
been called recently or not. You should expose only
the method UNLESS you have a way to ensure that
the value being exposed is always correct---and since
making it public makes it possible for someone
outside the class to set it to any legal value of a
double, you cannot ensure that.

- 2 TempSequence<> is incorrect. So is
TempSequence<integer>. TempSequence is not a
templated class.

- 3 ltisn't necessary to implement a constructor, but if
you do, you shouldn't do it by making a recursive call
to the constructor inside the constructor you are
defining. That will result in stack overflow, since there
is no base case.

- 2 Keeping the avg as an instance variable is not

appropriate, since you don't use it anywhere except
inside the averageTemp method as a temporary
result before returning the value. It should be a local
variable inside that method.

- 3 Your overridden methods for add and size will
lead to infinite recursion when called on temp inside
averageTemp and aboveAverage.

- 3 Relying on an instance variable size is dangerous.
The size could be changed by calls to the add or set
methods. Instead, you should recompute size inside
the averageTemp and aboveAverage methods.

- 3 You don't need a constructor, but if you implement
one, it makes no sense to declare a local variable n of
type ArrayList<Integer> inside it, that can't be
accessed anywhere outside that constructor, and is
never used.

- 1 Having an instance variable and a method with
exactly the same name CAN be done, but SHOULD
not be.

-1 Since we are using inheritance not composition,
you don't need a constructor. But since you wrote
one, you need to at least write it correctly. You write
list=new ArrayList<Integer>; It should be list=new

ArrayList<Integer>();

1.2 public double averageTemp() method
correct (10 /10)

+ 10 Correct implementation (subject to deductions
below.)

- 2 Since this is inheritance not composition, you
should use this, not a private instance variable list
inside the method.

- 3 Conversion to double must happen for either
numerator or denominator BEFORE the division takes
place. Otherwise, you get integer division and lose

precision.

- 3 By initializing averTemp to get(0), and then STILL
adding get(0) into the array, that value is being added
into the array TWICE.

- 3 The double increment of i (both in loop header,
and inside loop) will result in skipping every other
element.

- 5 Did not accumulate a sum. Perhaps you meant to
write avg+= instead of avg= ? In any case | wonder
whether it's a good idea to accumulate a sumin a
variable called avg.

- 3 Cannot use this[i] notation in Java for an
ArrayList<Integer>. Must use this.get(i) instead

+ 0 This implementation is too far from correct to
receive any partial credit. See submission specific
comments below for why.

- 3 Divide by this.size() to get average, not by 2.

- 5 You are calculating your result based on the
variable myTempSequence, which is a local variable
declared inside the constructor; a variable which is
out of scope and garbage collected immediately after
the constructor ends. So this won't work at all. You
should be using "this" instead of myTempSequence

- 2 this.length is a method for ArrayLists, and its called
this.size() (javadoc was provided on the handout with
the exam, so you didn't have to have this memorized,
but you did need to look it up.)

- 1 Single letter variables names a, b, ¢ are not good
practice. How about len, sum and avg if you want
something really short that is at least minimally
descriptive?

1.3 public TempSequence aboveAverage()

(10 / 10)

+ 10 Correct implementation (subject to deductions
below.)

- 3 Since this is inheritance, not composition, you
should use this, not a private instance of
ArrayList<Integer> inside the method.

- 3 Value returned MUST be a TempSequence, NOT
an ArrayList<integer>

- 11In Java, constructor must be invoked with (), i.e.

TempSequence abovelist = new TempSequence() ;

- 1 Missing semicolon

- 1 Missing close brace on method.

- 3 TempSequence<integer> is incorrect syntax;
TempSequence is not a templated class.

- 3 You are using the average of an empty
TempSequence as the basis of this method. How is
that going to work?

- 3 Comparing against an instance variable that stores
the average temperature requires that the
averageTemp method has been called, and IT MIGHT
NOT HAVE BEEN. So this code cannot be
guaranteed to operate correctly without depending
on a particular order of execution. Even setting it to
a flag value such as -99999.99 initially, and recalling
averageTemp if it doesn't match that value isn't
guaranteed to work. Since TempSequence extends
ArrayList<Integer>, there is the opportunity to add,
remove, or set additional temperature values after
averageTemp has always been called. The only way
to ensure correctness is to ALWAYS call
averageTemp inside aboveAverage, which then
renders the instance variable useless.

- 3 CANNOT return O from a method that returns type
TempSequence. You could just return the newly
constructed empty TempSequence instead.

- 3 Rounding, as opposed to truncating, the average
temperature to an integer, before comparing is not
necessary, and introduces correctness problems.
Suppose the average temperature ends up being 71.6
Then 72 is an above average temperature. However,
71.2 gets rounded up to 72 before the comparison
and 72 will then not be included in the final result.

- 3 Invoking this.averageTemp() inside the loop
results in recalculating that result every time. It would
be better to calculate it only once outside the loop.
Otherwise, the running time ends up being O(n"2).

- 3 Cannot use this[i] notation in Java for an
ArrayList<Integer>. Must use this.get(i) instead and
instead of result[j]=x use result.set(j,x) or result.add(x)
instead.

- 3 In Java, declaring TempSequence result; creates

an uninitialized reference to a TempSequence, not an

instance of TempSequence (as it would in C++). You
need TempSequence result = new TempSequence();
+ 0 Regrettably, this is too far from a correct
implementation to receive any partial credit. See the
submission specific instructions for further notes.

- 2 newSeq.add(this.get(i)) NOT
TempSequence.add(this.get(i)); add is a non-static
method, so it has to be invoked on the instance (the
instance of TempSequence that you are returning),
not the class.

+ 0 Click here to replace this description.

- 3 NOT: results.get(count) = this.get(i); count++; BUT
RATHER either: results.set(count,this.get(i)); count++
OR BETTER YET, JUST: results.add(this.get(i));

- 3 TempSequence<> is incorrect syntax, since
TempSequence is not a templated class.

- 5 You are calculating your result based on the
variable myTempSequence, which is a local variable
declared inside the constructor; a variable which is
out of scope and garbage collected immediately after

the constructor ends. So this won't work at all.

Page 3 sl gradescope

Page: 1 Nam

CS56—Midterm Exam

EO02, W16, Phill Conrad, UC Santa Barbara
y, 02/29/2016

@ umail.ucsb.edu

e Please write your name above AND AT THE TOP OF EVERY PAGE
« Please put your pages in order, facing the same way.
« All the odd pages have dots (¢); these should be upper right, and facing up.
« All the even numbered pages have crosses (x) at upper right and should be facing
down. ‘
e Be sure you turn in every page of this exam.
e Each of the pages is numbered (e.g. Page 1, Page 2, etc.)
e The last page clearly says "End of Exam".
This exam is closed book, closed notes, closed mouth, cell phone off
You are permitted one sheet of paper (max size 8.5x11") on which to write notes
This sheet will be collected with the exam, and might not be returned
Please write your name on your notes sheet

On N Ao o jjf’ ON e hack
Al e hods
The blacked @ﬁf’Pwﬁ‘ Shotd repddd

boolean s (E)

, *\ﬂw Aue

o bed clowst b
T T S

——

5 , @

Page: 5 Na

5. (30 pts) Write the full code for a public Java class named TempSequence that extends ArrayList<Integer> to
represent a sequence of temperature readings. It should provide & additional ggetfiod beyond those inherited from

ArrayList<Integer> +p ednods
« public double averageTemp() returns the average temperature across all readings in the

ArrayList. .
e public TempSequence aboveAverage() Teturnsanew TempSequence consisting of only the
temperatures that were above the average of the temperatures in the TempSequence object on which the

method was invoked.

1 , o

' ;
A7 7l € e \ PN 5 FARTL S
")l/'-,’,)“‘~‘ { A ¢y : /)\T‘J el

(B
P‘ Aol ¢ ?(\g Mole (vl

~ 2 ? L4 i e] Rl
‘(4"?{ { At (T NS iy
i _ . !
/

] = "¢l , N & J B o
avey & = ladde) This, o
P 1
) {,
=
P,
k4
~ ;
Pt C 1 {
i] &
\{?M Yo ¥ .
/ﬂ;f; ;” ,‘ <
y [) .
1 t \ .-//\ 3 (;i < (\[! 1
7Tl a
e (/ 4.\/'0/!
e 1
/
(S ’B { y') o
{ ' \ STV

6

Page: 6 Name:

End of Exam

total points=100

CMPSC 56 EO2a
.

TOTAL POINTS

26/30

QUESTION 1
Question 5 (coding) 20 pts
1.1 Correct structure (9/10)

+10 10 pts correct structure of class: public class
TempSequence extends ArrayList<integer>{ ... } with
two methods inside with correct method signatures.
(Subject to deductions below)

Should not have a private instance variable of type
ArrayList<Integer>, since we are using inheritance (as
we did in 1ab03.) Therefore "this" is implicitly already
an ArraylList<Integer>. You are using composition, not
inheritance.

- 1-1 missing close brace on class

Serious errors in class syntax.

There should not be a public data member of type
double to store the average temperature. Instead,
the variable to calculate the average shoud be a local
variable of the averageTemp method. You are
exposing a value that might not have a correct value,
depending on whether the averageTemp method has
been called recently or not. You should expose only
the method UNLESS you have a way to ensure that
the value being exposed is always correct---and since
making it public makes it possible for someone
outside the class to set it to any legal value of a
double, you cannot ensure that.

TempSequence<> is incorrect. So is
TempSequence<integer>. TempSequence is not a
templated class.

It isn't necessary to implement a constructor, but if
you do, you shouldn't do it by making a recursive call
to the constructor inside the constructor you are
defining. That will result in stack overflow, since there
is no base case.

Keeping the avg as an instance variable is not

appropriate, since you don't use it anywhere except
inside the averageTemp method as a temporary
result before returning the value. It should be a local
variable inside that method.

Your overridden methods for add and size will
lead to infinite recursion when called on temp inside
averageTemp and aboveAverage.

Relying on an instance variable size is dangerous.
The size could be changed by calls to the add or set
methods. Instead, you should recompute size inside
the averageTemp and aboveAverage methods.

You don't need a constructor, but if you implement
one, it makes no sense to declare a local variable n of
type Arraylist<integer>inside it, that can't be
accessed anywhere outside that constructor, and is
never used.

Having an instance variable and a method with
exactly the same name CAN be done, but SHOULD
not be.

Since we are using inheritance not composition,
you don't need a constructor. But since you wrote
one, you need to at least write it correctly. You write
list=new ArrayList<Integer>; It should be list=new

ArrayList<Integer>();

1.2 public double averageTemp() method
correct (7/10)

+ 10 Correct implementation (subject to deductions
below.)

Since this is inheritance not composition, you
should use this, not a private instance variable list
inside the method.

- 3 Conversion to double must happen for either
numerator or denominator BEFORE the division
takes place. Otherwise, you get integer division and

lose precision.

- 3 By initializing averTemp to get(0), and then STILL
adding get(0) into the array, that value is being added
into the array TWICE.

- 3 The double increment of i (both in loop header,
and inside loop) will result in skipping every other
element.

- 5 Did not accumulate a sum. Perhaps you meant to
write avg+= instead of avg= ? In any case | wonder
whether it's a good idea to accumulate a sumin a
variable called avg.

- 3 Cannot use this[i] notation in Java for an
ArrayList<Integer>. Must use this.get(i) instead

+ 0 This implementation is too far from correct to
receive any partial credit. See submission specific
comments below for why.

- 3 Divide by this.size() to get average, not by 2.

- 5 You are calculating your result based on the
variable myTempSequence, which is a local variable
declared inside the constructor; a variable which is
out of scope and garbage collected immediately after
the constructor ends. So this won't work at all. You
should be using "this" instead of myTempSequence

- 2 this.length is a method for ArrayLists, and its called
this.size() (javadoc was provided on the handout with
the exam, so you didn't have to have this memorized,
but you did need to look it up.)

- 1 Single letter variables names a, b, ¢ are not good
practice. How about len, sum and avg if you want
something really short that is at least minimally
descriptive?

1.3 public TempSequence aboveAverage()

(10 / 10)

+ 10 Correct implementation (subject to deductions
below.)

- 3 Since this is inheritance, not composition, you
should use this, not a private instance of
ArrayList<Integer> inside the method.

- 3 Value returned MUST be a TempSequence, NOT
an ArrayList<integer>

- 11In Java, constructor must be invoked with (), i.e.

TempSequence abovelist = new TempSequence() ;

- 1 Missing semicolon

- 1 Missing close brace on method.

- 3 TempSequence<integer> is incorrect syntax;
TempSequence is not a templated class.

- 3 You are using the average of an empty
TempSequence as the basis of this method. How is
that going to work?

- 3 Comparing against an instance variable that stores
the average temperature requires that the
averageTemp method has been called, and IT MIGHT
NOT HAVE BEEN. So this code cannot be
guaranteed to operate correctly without depending
on a particular order of execution. Even setting it to
a flag value such as -99999.99 initially, and recalling
averageTemp if it doesn't match that value isn't
guaranteed to work. Since TempSequence extends
ArrayList<Integer>, there is the opportunity to add,
remove, or set additional temperature values after
averageTemp has always been called. The only way
to ensure correctness is to ALWAYS call
averageTemp inside aboveAverage, which then
renders the instance variable useless.

- 3 CANNOT return O from a method that returns type
TempSequence. You could just return the newly
constructed empty TempSequence instead.

- 3 Rounding, as opposed to truncating, the average
temperature to an integer, before comparing is not
necessary, and introduces correctness problems.
Suppose the average temperature ends up being 71.6
Then 72 is an above average temperature. However,
71.2 gets rounded up to 72 before the comparison
and 72 will then not be included in the final result.

- 3 Invoking this.averageTemp() inside the loop
results in recalculating that result every time. It would
be better to calculate it only once outside the loop.
Otherwise, the running time ends up being O(n"2).

- 3 Cannot use this[i] notation in Java for an
ArrayList<Integer>. Must use this.get(i) instead and
instead of result[j]=x use result.set(j,x) or result.add(x)
instead.

- 3 In Java, declaring TempSequence result; creates

an uninitialized reference to a TempSequence, not an

instance of TempSequence (as it would in C++). You
need TempSequence result = new TempSequence();
+ 0 Regrettably, this is too far from a correct
implementation to receive any partial credit. See the
submission specific instructions for further notes.

- 2 newSeq.add(this.get(i)) NOT
TempSequence.add(this.get(i)); add is a non-static
method, so it has to be invoked on the instance (the
instance of TempSequence that you are returning),
not the class.

+ 0 Click here to replace this description.

- 3 NOT: results.get(count) = this.get(i); count++; BUT
RATHER either: results.set(count,this.get(i)); count++
OR BETTER YET, JUST: results.add(this.get(i));

- 3 TempSequence<> is incorrect syntax, since
TempSequence is not a templated class.

- 5 You are calculating your result based on the
variable myTempSequence, which is a local variable
declared inside the constructor; a variable which is
out of scope and garbage collected immediately after

the constructor ends. So this won't work at all.

Page 3 sl gradescope

CS56—Midterm Exam
E02, W16, Phill Conrad, UC Santa Barbara
Monday, 02/29/2016

Umail Ac ail.ucsb.edu

e Please OP OF EVERY PAGE
« Please put your pages in order, facing the same way.
« All the odd pages have dots (e); these should be upper right, and facing up.
« All the even numbered pages have crosses (x) at upper right and should be facing
down. '
« Be sure you turn in every page of this exam.
e Each of the pages is numbered (e.g. Page 1, Page 2, etc.)
e The last page clearly says "End of Exam".
This exam is closed book, closed notes, closed mouth, cell phone off
You are permitted one sheet of paper (max size 8.5x11") on which to write notes
This sheet will be collected with the exam, and might not be returned
Please write your name on your notes sheet

é} 0 N?!' 0@[A }‘\ e Q; e e / (_:} /A ﬂ c \?/) (j&(;éf
[+ . |0
’T{ﬂﬁ bﬁgmkecj @j, ?Wﬂ% §hgﬂ§ {*emig

—

T e

T‘b | | wdd(E o) L

| g}@)%@l)\ﬂ f
)

L fre speched elened e
W@ yE s lish
‘ erd pt s

\

- e

5 | ‘ @

Page: 5 Name:

5. (30 pts) Write the full code for a public Java class named TempSequence that extends ArrayList<Integer> to
represent a sequence of temperature readings. It should provide &g additional gietliod beyond those inherited from
ArrayList<Integer> V7, fmcfmaﬁf;s

« public double averageTemp() Treturns the average temperature across all readings in the
ArrayList. :

« public TempSequence aboveAverage() returnsanew TempSequence consisting of only the
temperatures that were above the average of the temperatures in the TempSequence object on which the
method was invoked.

[. — ~ .
e gttt Y R rﬁrf\/‘ [I o " O .. SOy ne. / /
o \J - iy | £ r> -0 & ven A\ Ol A Lot I mdre .
{ - [ST ;{A JEN C< { L3 ,f‘;tﬁi, 4 S5 n eapor > 5
o - &
/{/J”o (= [ornp D e 0 \
| i
<
4
public dovale overage T (N $
¥) \\: s ’v A
int_ sur .
7 .
7 L N L - « - N N -
for(int ~ o Jbge. s 2ze (N Oy 1 vty 8
- —-7) ‘7
'@ [”,‘] .
S LAY = PSNC)QQTL g{(\
2 9 =1 4)
4 A
~
hoy
prviay
O NS) L {’}‘kk.éxf.c ved o - 11). g Y /.
W;\, A A by ok | i by / e (\
. Ao n) ' B 7))
/ R - Aveya g o
! J=)
AN - s
(N kl1¢ [ff‘\ﬁ/&fﬁ N) ,
11 [S £ 7
|) S
I\ L ’}rﬁ oy N i
Y] 7‘ == 0.\“\/,_{,(-079{/—7?!‘ Lo \
i e e ‘ ~
U afn e ~ s T
L (erice Q«(QCJ'\JK/ Of e
< N Mo
A . MY o » -V, bT,r) RS
e o (1 ~ J ‘ AR 8 & ey ¢ €
& AW T e namy 38, o 3 . : - J A
22 " v Al 4 X pe".
v L (2 - = ’
\ SV =) L
~ %5 > . \
~ ANPro g | ¢
J<J g
- NeoOVe _ p oo .
— — \7* —— 7\?,7 — T R UL O = ' ’77 —— SEE. - — -
! S UAS a e
Ctorn o s
Lol MIONe __cave (a6
. ‘ L - CAeYeap
7 7
L 4

6

Page: 6 Name:

End of Exam

total points=100

CMPSC 56 EO2a
|

TOTAL POINTS

7/30

QUESTION 1
Question 5 (coding) 20 pts
1.1 Correct structure (7/10)

+10 10 pts correct structure of class: public class
TempSequence extends ArrayList<integer>{ ... } with
two methods inside with correct method signatures.
(Subject to deductions below)

Should not have a private instance variable of type
ArrayList<Integer>, since we are using inheritance (as
we did in 1ab03.) Therefore "this" is implicitly already
an ArraylList<Integer>. You are using composition, not
inheritance.

- 1-1 missing close brace on class

Serious errors in class syntax.

- 2 There should not be a public data member of
type double to store the average temperature.
Instead, the variable to calculate the average shoud
be a local variable of the averageTemp method.
You are exposing a value that might not have a
correct value, depending on whether the
averageTemp method has been called recently or
not. You should expose only the method UNLESS
you have a way to ensure that the value being
exposed is always correct---and since making it
public makes it possible for someone outside the
class to set it to any legal value of a double, you
cannot ensure that.

TempSequence<> is incorrect. So is
TempSequence<integer>. TempSequence is not a
templated class.

It isn't necessary to implement a constructor, but if
you do, you shouldn't do it by making a recursive call
to the constructor inside the constructor you are
defining. That will result in stack overflow, since there

is no base case.

Keeping the avg as an instance variable is not
appropriate, since you don't use it anywhere except
inside the averageTemp method as a temporary
result before returning the value. It should be a local
variable inside that method.

Your overridden methods for add and size will
lead to infinite recursion when called on temp inside
averageTemp and aboveAverage.

Relying on an instance variable size is dangerous.
The size could be changed by calls to the add or set
methods. Instead, you should recompute size inside
the averageTemp and aboveAverage methods.

You don't need a constructor, but if you implement
one, it makes no sense to declare a local variable n of
type ArrayList<Integer> inside it, that can't be
accessed anywhere outside that constructor, and is
never used.

Having an instance variable and a method with
exactly the same name CAN be done, but SHOULD
not be.

Since we are using inheritance not composition,
you don't need a constructor. But since you wrote
one, you need to at least write it correctly. You write
list=new ArrayList<Integer>; It should be list=new

ArrayList<Integer>();

1.2 public double averageTemp() method
correct (0/10)

Correct implementation (subject to deductions
below.)

Since this is inheritance not composition, you
should use this, not a private instance variable list
inside the method.

Conversion to double must happen for either
numerator or denominator BEFORE the division takes

place. Otherwise, you get integer division and lose

precision.

- 3 By initializing averTemp to get(0), and then STILL
adding get(0) into the array, that value is being added
into the array TWICE.

- 3 The double increment of i (both in loop header,
and inside loop) will result in skipping every other
element.

- 5 Did not accumulate a sum. Perhaps you meant to
write avg+= instead of avg= ? In any case | wonder
whether it's a good idea to accumulate a sumin a
variable called avg.

- 3 Cannot use this[i] notation in Java for an
ArrayList<Integer>. Must use this.get(i) instead

+ 0 This implementation is too far from correct to
receive any partial credit. See submission specific
comments below for why.

- 3 Divide by this.size() to get average, not by 2.

-5 You are calculating your result based on the
variable myTempSequence, which is a local variable
declared inside the constructor; a variable which is
out of scope and garbage collected immediately after
the constructor ends. So this won't work at all. You
should be using "this" instead of myTempSequence

- 2 this.length is a method for ArrayLists, and its called
this.size() (javadoc was provided on the handout with
the exam, so you didn't have to have this memorized,
but you did need to look it up.)

- 1 Single letter variables names a, b, ¢ are not good
practice. How about len, sum and avg if you want
something really short that is at least minimally

descriptive?

@ This code does not reflect enough
understanding of how Java works to receive

any credit for this method.

Here's what this code does: it declares a local

variable called avg.

Therre is then an assignment to a variable "list",
but you didn't declare this variable, so that's a

syntax error.

The line of code invokes the constructor of
ArrayList<Integer>, so now list points to an
empty list of integer values. It then tries to sum
the values of that list--but note that there cannot
possibly every be any values in that list. You
just created it as a local variable, and did
nothing to add anything into it. You then return
that as the average, without dividing by the

number of elements.

As much as it pains me to say it--if | were to
give you full credit, and then make deductions
for each of these errors, you'd get down to zero
(or possibly less than zero, though | generally
don't do that.) Which is why I'm simply not able

to assign any partial credit.

1.3 public TempSequence aboveAverage()
(0/10)

+ 10 Correct implementation (subject to deductions
below.)

- 3 Since this is inheritance, not composition, you
should use this, not a private instance of
ArrayList<Integer> inside the method.

- 3 Value returned MUST be a TempSequence, NOT
an ArrayList<Integer>

- 11In Java, constructor must be invoked with (), i.e.
TempSequence abovelist = new TempSequence() ;
- 1 Missing semicolon

- 1 Missing close brace on method.

- 3 TempSequence<integer> is incorrect syntax;
TempSequence is not a templated class.

- 3 You are using the average of an empty
TempSequence as the basis of this method. How is
that going to work?

- 3 Comparing against an instance variable that stores
the average temperature requires that the
averageTemp method has been called, and IT MIGHT
NOT HAVE BEEN. So this code cannot be
guaranteed to operate correctly without depending
on a particular order of execution. Even setting it to

a flag value such as -99999.99 initially, and recalling

averageTemp if it doesn't match that value isn't
guaranteed to work. Since TempSequence extends
ArraylList<integer>, there is the opportunity to add,
remove, or set additional temperature values after
averageTemp has always been called. The only way
to ensure correctness is to ALWAYS call
averageTemp inside aboveAverage, which then
renders the instance variable useless.

- 3 CANNOT return 0 from a method that returns type
TempSequence. You could just return the newly
constructed empty TempSequence instead.

- 3 Rounding, as opposed to truncating, the average
temperature to an integer, before comparing is not
necessary, and introduces correctness problems.
Suppose the average temperature ends up being 71.6
Then 72 is an above average temperature. However,
71.2 gets rounded up to 72 before the comparison
and 72 will then not be included in the final result.

- 3 Invoking this.averageTemp() inside the loop
results in recalculating that result every time. It would
be better to calculate it only once outside the loop.
Otherwise, the running time ends up being O(n"2).

- 3 Cannot use this[i] notation in Java for an
ArrayList<Integer>. Must use this.get(i) instead and
instead of result[j]=x use result.set(j,x) or result.add(x)
instead.

- 3 In Java, declaring TempSequence result; creates
an uninitialized reference to a TempSequence, not an
instance of TempSequence (as it would in C++). You
need TempSequence result = new TempSequence();
+ 0 Regrettably, this is too far from a correct
implementation to receive any partial credit. See the
submission specific instructions for further notes.

- 2 newSeq.add(this.get(i)) NOT
TempSequence.add(this.get(i)); add is a non-static
method, so it has to be invoked on the instance (the
instance of TempSequence that you are returning),
not the class.

+ 0 Click here to replace this description.

- 3 NOT: results.get(count) = this.get(i); count++;, BUT
RATHER either: results.set(count,this.get(i)); count++
OR BETTER YET, JUST: results.add(this.get(i));

Page 3

- 3 TempSequence<> is incorrect syntax, since
TempSequence is not a templated class.

-5 You are calculating your result based on the
variable myTempSequence, which is a local variable
declared inside the constructor; a variable which is
out of scope and garbage collected immediately after

the constructor ends. So this won't work at all.

® You are declaring a local variable of type
ArrayList<Integer>, which is the wrong return
type. A TempSequence "is-a"
ArraylList<Integer>, but an ArrayList<integer>
isn't a TempSequence, so it can't be returned

from a method that is suppose to return one.

Next, you create a local variable of type
ArrayListinteger> called "list", but you didn't

declare this variable, so that's a syntax error.

As in the previous problem, list is now yet
another completely empty ArraylList<Integer>.
You then try to use [] notation on the ArrayList,

which you cannot do in Java.

You are comparing against the instance variable
average---even supposing that averageTemp
were implemented correctly, there is no
guarantee that it has been called, because you
never called it. So, there is no guarantee it

doesn't still have the value O.

As much as it pains me to say it-—if | were to
give you full credit, and then make deductions
for each of these errors, you'd get down to zero
(or possibly less than zero, though | generally
don't do that.) Which is why I'm simply not able

to assign any partial credit.

sl gradescope

CS56—Midterm Exam
E02, W16, Phill Conrad, UC Santa Barbara
02/29/2016

Name:

Umail @ umail.ucsb.edu

« Please write your name above AND AT THE TOP OF EVERY PAGE
Please put your pages in order, facing the same way.
« All the odd pages have dots (¢); these should be upper right, and facing up.
« All the even numbered pages have crosses (x) at upper right and should be facing
down. '
Be sure you turn in every page of this exam.
e Each of the pages is numbered (e.g. Page 1, Page 2, etc.)
e The last page clearly says "End of Exam".
This exam is closed book, closed notes, closed mouth, cell phone off
You are permitted one sheet of paper (max size 8.5x11") on which to write notes
This sheet will be collected with the exam, and might not be returned
Please write your name on your notes sheet

On oot hovel ¢ vf@ ON Thee hack
)

(4 . |0
Ll methode ‘
The W@wffeci O j’ ?Ué"ﬁ‘ *§'}\ng méﬂig

/

Tf add (E @J | _/

| | ‘ A orBed elomed tthe |
] | A?P?f“gé e ?’é@ e s lish

5 - ' @

Page: 5 Name:

5. (30 pts) Write the full code for a public Java class namcd TempSequence that extends ArrayL1st<Inte ger>to
represent a sequence of temperature readings. It should provide i additional ggeﬁloﬁ beyond those inherited from

ArrayList<Integer> gy Wﬁ
e public double averageTemp() returns the average temperature across all readings in the
ArrayList.

e public TempSequence aboveAverage () returns a new TempSequence consisting of only the
temperatures that were above the average of the temperatures in the TempSequence object on which the
method was invoked.

Ao uliot < Tpkeqer)

xCO C; Ti=b "y | ¢ \fs%:.)eng'i‘;héjg) g
avg = avg + }35%:[:] t
: _

average = ovge
re }jMn a \/5 '5

-

Puum Temp Sequencl choue A\/cm@ /)
PﬁamLuf;i!*,l yieger 7 Lempnew = New /J”“““‘W«OD
/ |
\rek = vew Aoy Lict {dnteger 7 (5
for M 1205 1 Clafagh) 5 #9) L
V(e[> average) §
Fempnew . odd (1ist L ?BI)

L

| ‘gg

redurm Lempne)

{ .
~

\?U\D iC JDW‘;{/ Cp\,f’lq@ = @u@

6

Page: 6 Name:

End of Exam

total points=100

	CS56, W16, E02, Q01, Midterm Exam Handout
	E02-high_Redacted
	E02-medium_Redacted
	E02-low_Redacted
	E02-Q5-high_Redacted
	E02-Q5-medium_Redacted
	E02-Q5-low_Redacted

