
CS56—Midterm Exam 2—Question 1
E02, Q01, W16, Phill Conrad, UC Santa Barbara 02/10/2016

HAND THIS IN WITH YOUR EXAM.
YOU MAY USE THIS FOR SCRATCH WORK, BUT ALL ANSWERS SHOULD BE ON YOUR EXAM PAPER.

Name: ___

Umail Address: ______________________________@ umail.ucsb.edu

Code for class Foo, Bar, and Fum

/* 1 */ public class Foo {
/* 2 */
/* 3 */ public int mysteryNumber;
/* 4 */
/* 5 */ void doThing() {
/* 6 */ System.out.println("x");
/* 7 */ }
/* 8 */
/* 9 */ public static void main(String [] args) {
/* 10 */ Foo foo = new Foo();
/* 11 */ Bar bar = new Bar();
/* 12 */ Fum fum = new Fum();
/* 13 */ System.out.println("Hello");
/* 14 */ /* this is line 14 */
/* 15 */ }
/* 16 */ }
/* 17 */
/* 18 */ class Bar extends Foo {
/* 19 */
/* 20 */ public boolean mysteryBoolean;
/* 21 */
/* 22 */ void doThing() {
/* 23 */ System.out.println("y");
/* 24 */ }
/* 25 */ }
/* 26 */
/* 27 */ class Fum extends Foo {
/* 28 */ public String mysteryString;
/* 29 */
/* 30 */ void doOtherThing() {
/* 31 */ System.out.println("z");
/* 32 */ }
/* 32 */ }

Javadoc for java.util.ArrayList is on the other side

java.util.ArrayList<E>

boolean
add(E e)
Appends the specified element to the end of this list.

void
add(int index,
 E element)
Inserts the specified element at the specified position in this list.

boolean
addAll(Collection<? extends E> c)
Appends all of the elements in the specified collection to the end of this list, in the order that they are returned by the specified
collection's Iterator.

boolean
addAll(int index,
 Collection<? extends E> c)
Inserts all of the elements in the specified collection into this list, starting at the specified position.

void
clear()
Removes all of the elements from this list.

Object
clone()
Returns a shallow copy of this ArrayList instance.

boolean
contains(Object o)
Returns true if this list contains the specified element.

void
ensureCapacity(int minCapacity)
Increases the capacity of this ArrayList instance, if necessary, to ensure that it can hold at least the number of elements
specified by the minimum capacity argument.

E
get(int index)
Returns the element at the specified position in this list.

int
indexOf(Object o)
Returns the index of the first occurrence of the specified element in this list, or -1 if this list does not contain the element.

boolean
isEmpty()
Returns true if this list contains no elements.

Iterator<E>
iterator()
Returns an iterator over the elements in this list in proper sequence.

int
lastIndexOf(Object o)
Returns the index of the last occurrence of the specified element in this list, or -1 if this list does not contain the element.

ListIterator<E>
listIterator()
Returns a list iterator over the elements in this list (in proper sequence).

ListIterator<E>
listIterator(int index)
Returns a list iterator over the elements in this list (in proper sequence), starting at the specified position in the list.

E
remove(int index)
Removes the element at the specified position in this list.

boolean
remove(Object o)
Removes the first occurrence of the specified element from this list, if it is present.

boolean
removeAll(Collection<?> c)
Removes from this list all of its elements that are contained in the specified collection.

protected void
removeRange(int fromIndex,
 int toIndex)
Removes from this list all of the elements whose index is between fromIndex, inclusive, and toIndex, exclusive.

boolean
retainAll(Collection<?> c)
Retains only the elements in this list that are contained in the specified collection.

E
set(int index,
 E element)
Replaces the element at the specified position in this list with the specified element.

int
size()
Returns the number of elements in this list.

List<E>
subList(int fromIndex,
 int toIndex)
Returns a view of the portion of this list between the specified fromIndex, inclusive, and toIndex, exclusive.

Object[]
toArray()
Returns an array containing all of the elements in this list in proper sequence (from first to last element).

<T> T[]
toArray(T[] a)
Returns an array containing all of the elements in this list in proper sequence (from first to last element); the runtime type of
the returned array is that of the specified array.

file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#add(E)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#add(int,%20E)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#addAll(java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#addAll(int,%20java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#clear()
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#clone()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#contains(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#ensureCapacity(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#get(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#indexOf(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#isEmpty()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Iterator.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#iterator()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#lastIndexOf(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ListIterator.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#listIterator()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ListIterator.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#listIterator(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#remove(int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#remove(java.lang.Object)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#removeAll(java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#removeRange(int,%20int)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#retainAll(java.util.Collection)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/Collection.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#set(int,%20E)
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#size()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/List.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#subList(int,%20int)
file:///Users/pconrad/github/CS56-Exams/W16/java/lang/Object.html
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#toArray()
file:///Users/pconrad/github/CS56-Exams/W16/java/util/ArrayList.html#toArray(T[])

CMPSC 56 E02

TOTAL POINTS

70 / 70

QUESTION 1

Java Swing 30 pts

1.1 (a) Purpose of FooPanel? (5 / 5)

+ 5 Correct: a widget that implements a GUI, or

contains an interactive widget (e.g. a button) that

needs a callback routine when it is clicked (or

activated in some way).

+ 5 Alternative Correct Answer: to receive events and

perform the desired actions in response.

+ 3 Partial Credit: Answer that is correct, but focuses

on what an "interface" is, missing the point that

ActionListener has a specific role in Java Swing. The

question was getting at the "purpose" of class

FooPanel in a specific sense, not an abstract sense.

+ 3 Partial Credit: Answer focuses on what an "inner

class" is, missing the point that ActionListener has a

specific role in Java Swing. The question was getting

at the "purpose" of class FooPanel in a specific sense,

not an abstract sense.

1.2 (b) What Java keyword? (5 / 5)

+ 5 Correct: this

+ 0 Incorrect: ActionEvent or ActionEvent object

+ 0 Incorrect: inner class

+ 0 Incorrect: Listener object

+ 0 Incorrect: public class FooPanel implements

ActionListener

+ 0 Incorrect: Listener or Listeners

+ 0 Incorrect: Instance Variable

+ 2 Partial Credit: *this (The prefix * is a C++ thing.)

+ 0 incorrect: dot operator

+ 0 Incorrect: ActionListener

+ 0 Left Blank

+ 0 Incorrect: protected

+ 0 Incorrect: implements

+ 0 Incorrect: ActionHandler

+ 0 Incorrect: Event handler

+ 0 Incorrect: static

+ 0 Incorrect: widget

+ 0 Incorrect: new

+ 0 Not a rubric item, just a comment: see

http://stackoverflow.com/questions/3124126/java-

addactionlistenerthis for more information on this

topic.

1.3 (c) Disadvantage of making FooPanel be
object that implements ActionListener? (5 /

5)

+ 5 Correct: there can be only one actionPerformed

method in the class. (That's a problem if you have

more than two things you want to do---because

you'll have to have complex code to handle all the

different cases inside your one single

actionPerformed method.)

+ 0 Left Blank

+ 4 PARTIAL CREDIT correct answer: It may not

enforce separation of concerns or good object-

oriented practices. [Awarded 4/5 because this is a

good generic answer for why to make something a

separate object. In this case, there is a more specific

reason as well that is context dependent that we

discussed in lecture.]

+ 0 Incorrect: Unable to reuse the code written in the

inner class. This is incorrect, because part c is not

discussing the use of an inner class at all.

+ 0 Incorrect answer: "It only applies to events

contained within the FooPanel class. If we have

another class with the same event, it will not work."

OR "You are not allowed to use the ActionListener

outside of the FooPanel class". Neither of those is

true. We "could" use an instance of this class to be

an ActionListener for some other class' event. So it is

possible. But even if it were true that we couldn't

(and that's NOT true), it is very unlikely that we would

want to. An ActionListener in a GUI needs to make

changes to the state of elements of a particular GUI.

When you press a button, or scroll a scroller, or click a

mouse, something is supposed to "happen". And

making that thing happen likely requires access to the

internal state of the FooPanel. And that fact pretty

much negates the whole point you are trying to make,

i.e. that "reuse" is something desirable here.

+ 0 Incorrect Ansswer: "If somewhere else in the

program you need the same ActionListener, your

code will not be DRY." That "seems" like a plausible

answer---in general, we try to avoid duplicate code to

make things DRY. But in this case, that's not the

problem. . An ActionListener in a GUI typically

needs to make changes to the state of elements of

that GUI. When you press a button, or scroll a

scroller, or click a mouse, something is supposed to

"happen". And making that thing happen likely

requires access to the internal state of the FooPanel.

It is not likely that you are going to be able to reuse

that code anywhere else in your program.

+ 0 Incorrect Answer: "This will make the FooPanel

both extends JPanel and implements ActionListener,

which may cause writing method of same name." So,

I'm not sure what problem you are trying to describe

here--- "may cause writing method of same name"

isn't very precise. Same name as what? In any case

having a class that both. extends JPanel and

implements ActionListener is a perfectly legal thing to

do, and causes no naming conflicts.

+ 2 Partial credit answer: "You have to create an

instance of the FooPanel class itself within the

FooPanel class. It's more complicated and its' not

good for data encapsulation. There can only be one

implementation." That last sentence, i.e. "there can

only be one implementation" is what saved you from

a zero credit answer---because that is true, though

you didn't really explain why that's a problem. The

first part is just false---you don't need a separate

instance. The keyword "this" is a reference back to

the instance itself. So, there is only one instance,

and the data encapsulation is just fine---perfect, in a

sense, since we are dealing only with a single object.

+ 0 Incorrect Answer. "This limits what the FooPanel

class is able to do because each class is made so that

it specializes at one job." This is incorrect.

Implementing ActionListener doesn't "limit" what

FooPanel can do. On the contrary, the essence of

implementing an interface is that it provides a marker

of some additional capability that the class CAN do. It

expresses the idea "this class can do this thing,

because it has all the necessary methods to do it".

The second part of your sentence: "because each

class is made so that it specializes at one job",

describes an important design goal of a good object

oriented system. But it is not the correct answer to

THIS question.

+ 0 Incorrect answer: "There might not be a visual

indicator of what or where the ActionListener is for

the user". Incorrect because a "user" would never

need to have any visual indicator of an

ActionListener--its entirely an internal code construct,

not a user-facing thing. If you mean "programmer"

rather than "user", it's still incorrect. It will be visible

from the fact that FooPanel class will say

"implements ActionListener" right at the top, and the

fact that the addActionListener() method for any

widget with an ActionListener will take the parameter

"this". Both of those are visual indicators of what or

where the ActionListener is for the programmer.

+ 0 Not a rubric item, just a comment: see

http://stackoverflow.com/questions/3124126/java-

addactionlistenerthis for more information on this

topic.

+ 0 Incorrect: "The FooPanel class can ONLY do what

the ActionListener interface can do, no more, no less".

OR "FooPanel would not be able to make method

calls with a normal object functionality. FooPanel will

only be used for waiting until the user makes an

action. This means you cannot [illegible... have?

hide?] an ActionEvent in this class definition." That is

not correct. FooPanel can be a JPanel that has any

kind of functionality that a JPanel would normally

have, PLUS it can also be an ActionListener. All we

have to do is add an actionPerformed method to the

class.

+ 3 PARTIAL CREDIT: "If FooPanel implements

ActionListener, there can only ever be 1 interactive

button/widget in the Panel..." That's not correct.

There can be several. The problem isn't that we can't

have more than one--its that we have to stuff all of

that code for handling, say, a Button, a TextArea and

a slider into a single method that has to complicated

logic (e.g. a series of if tests) to determine which kind

of event happened. Still, 3/5 because you are at least

on the right track with this line of thinking.

+ 0 Incorrect: "That will let FooPanel implement a lot

[sic] useless methods and in this case FooPanel

needs to implement all the methods in ActionListener

which are not what we want for FooPanel.". So,

ActionListener has only one method

(actionPerformed) and it really isn't a big deal to

implement it. If we only need one action for a single

widget, it may be less work to add this one method

than to create a separate class.

1.4 (d) Disadvantage of separate class? (5 / 5)

+ 5 Correct: the separate class does not have access

to the private members of FooPanel. (Which it will

likely need in order to make things happen in the

GUI).

+ 2 Partial credit: bulky code involved with separate

classes for separate ActionListeners...vague or fails to

mention idea that event handlers need access to

instance variables.

+ 0 Incorrect: fails to identify a disadvantage of

separate classes

+ 0 Left Blank

+ 3 Partial Credit: Correctly indicates that it is more

work, with this architecture, to make changes to

FooPanel from inside the ActionListener, but doesn't

clearly explain why.

1.5 (e) Briefly describe third approach to
ActionListener (not self, not separate class)

(5 / 5)

+ 5 Correct: Making an inner class that implements

ActionListener is the third approach.

+ 5 ALTERNATIVE correct answer--if "anonymous

inner class" used as answer to part (e). This lists

various advantages of an anonymous inner class.

+ 3 Partial credit: correctly identifies inner class, but

doesn't mention that the inner class will be the one

implementing ActionListener

+ 2 Partial credit: answer--"have a method in

FooPanel implement ActionListener..." incorrectly

says method instead of inner class, but interfaces

must be implemented by a class

+ 0 Incorrect: doesn't identify a third approach on how

to implement ActionListener

+ 0 blank

1.6 (f) Advantages of third approach (5 / 5)

+ 5 Correct: One or more inner class objects can be

used to implement one or more ActionListeners, and

each of those will have full access to the outer class'

instance variables.

+ 5 ALTERNATIVE correct answer--if "anonymous

inner class" used as answer to part (e). This lists

various advantages of an anonymous inner class.

+ 3 Partial credit: correctly includes access to instance

variables, but also should discuss how inner classes

allow you to have multiple ActionListeners to handle

multiple events

+ 3 Partial credit: correctly states that inner classes

allow you to have multiple ActionListeners to handle

multiple events, but doesn't say that inner classes

have access to instance variables

+ 1 Partial credit: vague or incomplete response that

fails to identify advantages of inner classes

+ 0 Incorrect: identifies disadvantages of inner

classes

+ 0 Incorrect: doesn't identify an advantage of inner

classes

+ 0 blank

QUESTION 2

Foo, Bar, Fum (inheritance) 20 pts

2.1 What methods can be invoked on foo?
(5 / 5)

+ 5 Correct: doThing() lines 5-7 (ok to say line 5 too).

+ 0 OK to include main, since foo.main(args) will,

technically, compile (I tried it). Also ok to omit this

from answer, since we typically would not do this.

- 1 Directions indicated to include the line number in

your answer.

2.2 What public data members can follow
bar. (5 / 5)

+ 5 Correct: mysteryBoolean and mysteryNumber

- 2 -2 for including doThing() in the answer along with

mysteryBoolean and mysteryNumber, since it is not a

data member. Also, doThing() returns void, so an

invocation of it cannot be used as argument of

System.out.println()

+ 0 no points for answer doThing() if it is the only

thing included in the answer. doThing() is not a data

member.

+ 2 2 points for only including mysteryNumber, and

not including mysteryBoolean.

+ 2 2 points for only including mysteryBoolean, and

not including mysteryNumber.

2.3 Methods can be invoked on fum? (5 / 5)

+ 5 [NOTE TYPO CORRECTION given to all students:

"object foo" should read "object fum".] Correct:

doThing, line 5 (or 5-7) and doOtherThing, line 30,

(or 30-32)

+ 0 Ok to include main; technically, it can be invoked

on object fum; but not necessary for full credit.

+ 2 Partial Credit for mentioning only doOtherThing

from lines 30-32 and leaving out doThing from lines

5-7, which is inherited.

2.4 Data members for fum? (5 / 5)

+ 5 Correct: mysteryNumber and mysteryString

- 2 -2 for including doThing and/or doOtherThing in

the answer along with mysteryBoolean and

mysteryString, since those are methods (member

functions), not data members. Also, they return void,

so an invocation of them cannot be used as argument

of System.out.println()

+ 2 Partial credit for answer "mysteryString", omitting

mysteryNumber which should also be included, as it

is inherited.

+ 0 No credit for answer consisting only of doThing

and doOtherThing, since those are methods

(member functions), not data members. Also, they

return void, so an invocation of them cannot be used

as argument of System.out.println()

QUESTION 3

3 Two main categories of exceptions in
Java. Names of two kinds, and reason
why. (10 / 10)

+ 4 4 of the 10 points are earned for correctly

IDENTIFYING THE TWO CATEGORIES.. One

category is Unchecked exceptions (which inherit

from java.lang.RuntimeException) and the other is

Checked exceptions, which inherit from

java.lang.Exception. It is acceptable if the official

names of these categories aren't given but it is clear

that they are being referred to via the base class

such exceptions have in common (RuntimeException

/ RuntimeExceptions without a space, Exception

capitalized). "Thrown Exceptions" is not acceptable

as all exceptions are thrown.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

RUNTIME/UNCHECKED EXCEPTIONS. These

indicate a problem with code logic. try/catch blocks

for these are not required because they would

clutter the code logic.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

CHECKED EXCEPTIONS. These indicate a problem

that the programmer cannot prevent, should

anticipate, and should either handle with a try/catch

block, or report to the caller by declaring that the

method may throw the exception.

+ 0 No points for incorrect explanation of Checked

exceptions.

+ 0 No points for incorrect explanation of Unchecked

exceptions.

+ 0 Your explanation of the difference is that it is a

distinction between catching the problem at compile

time vs. run time, but that is not correct. Both of

these happen at run time. The name is a bit

misleading, I acknowledge---that's all the more reason

to be sure you learn the correct distinction.

+ 2 Partial credit for an identification of the two

categories that is incorrect, or only partially correct.

Here are some examples of incorrect pairs of names:

(1) IOExceptions vs. Exceptions (2) Runtime

Exceptions vs. User-Defined Exceptions (3) runtime

exceptions vs. undefined exceptions (4) RunTime

Exceptions vs. Compiler Exceptions, (5) the first type

is RuntimeExceptions, and the second type is the kind

that uses the try/catch block (6) RuntimeException vs.

CriticalException (7) RuntimeExceptoin and self-

declared exceptions. Examples of correctly

distinguishing are (1) checked vs. unchecked

exceptions (2) Runtime exceptions vs. Checked

Exceptions. (3) "RuntimeException" vs. "Regular

plain-old Exception". (This last one isn't the "best" way

to describe it, but I would accept as long as the

explanations are correct.)

+ 2 Partial Credit for identifying the dichotomy

between Runtime Exceptions and the other kind, but

not indicating how the latter kind have to be handled

in code (caught, or declared to be thrown.)

+ 0 Click here to replace this description.

QUESTION 4

4 Collection<? extends E> ... what does this
mean? (10 / 10)

+ 10 Correct: c is an object of a class that implements

the Collection interface, and it is a collection of

either objects of type E, or of objects from classes or

interfaces that extend (inherit from) type E. That

explanation is sufficient for full credit... but to explain

further with an example: if we have an instance of

ArrayList<Student> and Undergrad extends Student,

then c could be any of the following types:

ArrayList<Student>, ArrayList<Undergrad>,

PriorityQueue<Student>, PriorityQueue<Undergrad>,

etc. Subject to deductions below. Note that E

doesn't have to be a class. It could also be an

interface.

+ 5 Partial Credit: Answer that is correct but

incomplete--that says nothing wrong, but doesn't get

to the point about what the <? extends E> part means.

+ 5 Partial Credit: "c is a collection of elements of any

type... The reason that c can contain any type is

because it is a collection of type E, which is a

template parameter, meaning E can be of any type.".

Yes, but no. E in this case is already bound. It is a

specific type, the type that THIS ArrayList<E> instance

is a collection of. <? extends E> actually RESTRICTS

the type of what c can be a collection of. It restricts it

to being only elements of type E, or any

class/interface that extends E.

+ 5 Partial Credit "c is an instance of a class that

implements an interface that extends the interface

Collection<E>. " OR "any object of a class that

extends classes that implement the Collection

interface". NO.. If that were our intent, we might

write <T extends Collection<E>> boolean addAll(T c).

Or we could simply write: boolean

addAll(Collection<E> c). Your answer seems to

indicate that the ? extends is about extending

Collection, but that is NOT the case. The extending

is NOT of Collection, but of E itself.

- 2 -2 deduction from full credit answer for imprecise

language: "elements that are of class E or extends

class E as its parameter". What you mean to say is

"elements that are of class/interface E, or any

class/interface that extends E as its parameter".

Those extra words are important to be precise in your

meaning.

+ 5 Imprecise answer: "Collection<? extends E> c

means that it could be a subclass of the given data

type". This is too imprecise for full credit. What

does "it" refer to? Does it refer to c or E? I can't tell.

And the given data type? What does that refer to?

Collection<? extends E>? E? Without knowing this, I

can't tell if your answer is correct or not. Therefore, it

cannot earn full credit.

+ 5 Partial credit: Any answer that indicates that

Collection<? extends E> c means that "c is any object

that implements Collection, where it can be a

collection of any type of object at all", i.e. there is no

restriction on what type of object can be in the

Collection. NO. E is already "bound" to whatever

this PARTICULAR ArrayList<E> is a collection of. So,

not ANY object. c is a Collection of objects of class

or interface E, or any class or interface that extends

E, where E is something *specific*, the SPECIFIC class

or interface that this ArrayList is an ArrayList of. For

example, if E is Animal, and Dog extends Animal then

<? extends E> means that c can be a

Collection<Animal> or a Collection<Dog>

+ 5 Partial Credit: E is of whatever type the ArrayList

is. c is an interface that extends whatever type the

ArrayList is. If it is an ArrayList<Integer> then c will be

a Collection that extends Integer. NO.

+ 5 Partial credit: c is a type of Collection that extends

E. NO. c is a type of Collection that contains inside it

instances of E, or any class/interface that extends E.

The Colection does NOT extend E. Not in any way.

+ 5 Partial credit: T"his means that the parameter c

must be compatible with the elements of the

ArrayList. By this, I mean that 'c' must be an instance

of a class tht is the supertype E, or a subtype of E."

Almost there, but NO. What you should have said is

"This means that the parameter c __is a Collection of

elements that___ must be compatible with ..." You

left out those crucial words "is a Collection of

elements that..."

+ 5 Partial credit: "c can be any class that extends E".

c could also be an interface, and it must implement

Collection interface

- 3 Collection is an interface so it must be

implemented, it is not a super class that can be

extended

+ 5 "The means that any object that extends

Collection can be put in as an argument and that

Collections ? will wrap around the object E so for

example if ArrayList<Dog> is put as an argument then

? will wrap around Dog and allow the function to

manipulate Dog objects." Incorrect. The "extends"

keyword here is NOT about extending Collection. If

ArrayList<Dog> were the context, than E is Dog, and

what we have for c is a Collection of Dog or a

collection of some object that extends Dog.

+ 9 9/10, for mostly correct answer. "This is a

polymorphic argument. Essentially a polymorphic

argument is when a super class is a parameter and

one can pass a subclass through this parameter." [So

far so good.] "In our case, addAll can take anything

that is a subclass of collections, such as Stack,

ArrayList, etc. [Ooops... not subclass. We noted that

Collection is an interface, so we should have said

anything that *implements* Collection. Continuing...]

"The <? extends E> ensures that the argument is the

same object or a subclass of the object that the

ArrayList holds. YES.

+ 0 No credit: "This means that c can be any class that

extends Object. In Java, primitives are not objects."

That is incorrect. The type expression constrains the

type of what c can be far more narrowly than "any

class that extends Object", which is the same as

saying "anything except a primitive". The statement

"In Java, primitives are not objects" is correct, but

that's not relevant to the problem, so no partial credit

for that.

+ 5 Partial Credit: "It means that an ArrayList can add

any object E or any collection of object E, or a

subclass of E. The E object is any object or collection

of objects that user defines it to be." Not exactly.

We can't pass an object of type E or a subclass of E to

this addAll method. We can only pass a Collection of

objects of type E, or a Collection of a objects of some

type that is a subclass of E.

+ 5 Incorrect/imprecise answer: "That this method

works for all the classes that implement the collection

interface. The type of collection must extend E..."

[Ooops. Not the type of collection (e.g. ArrayList,

HashSet, PriorityQueue, Stack) must extend E, but the

thing that c is a collection OF must be E or extend E.

You are getting 5/10 for the benefit of the doubt that

you meant to refer to the "thing that c is a Collection

of", but your answer isn't precise enough to get full

credit. Continuing...] " ... must be an element type

(object references) but cannot be of primitive type.

e.g. c cannot be of type ArrayList<int> but can be of

type ArrayList<Integer>." So that last part is true, but

"vacuously" true, since it is true of any parameterized

type in Java. That part has nothing to do with the

question asked, so you get no partial credit for it.

+ 5 Incorrect answer: "First, c is a specified collection,

and inside the brackets, it stands for iterating all

elements in this collection because addAll will

append all of the elements." So, while it is true that

addAll will append all of the elements, and c is a

Collection, it is NOT true that the part in brackets (i.e.

<? extends E> means to iterate over the collection.

Page 7

CMPSC 56 E02

TOTAL POINTS

60 / 70

QUESTION 1

Java Swing 30 pts

1.1 (a) Purpose of FooPanel? (5 / 5)

+ 5 Correct: a widget that implements a GUI, or

contains an interactive widget (e.g. a button) that

needs a callback routine when it is clicked (or

activated in some way).

+ 5 Alternative Correct Answer: to receive events and

perform the desired actions in response.

+ 3 Partial Credit: Answer that is correct, but focuses

on what an "interface" is, missing the point that

ActionListener has a specific role in Java Swing. The

question was getting at the "purpose" of class

FooPanel in a specific sense, not an abstract sense.

+ 3 Partial Credit: Answer focuses on what an "inner

class" is, missing the point that ActionListener has a

specific role in Java Swing. The question was getting

at the "purpose" of class FooPanel in a specific sense,

not an abstract sense.

1.2 (b) What Java keyword? (0 / 5)

+ 5 Correct: this

+ 0 Incorrect: ActionEvent or ActionEvent object

+ 0 Incorrect: inner class

+ 0 Incorrect: Listener object

+ 0 Incorrect: public class FooPanel implements

ActionListener

+ 0 Incorrect: Listener or Listeners

+ 0 Incorrect: Instance Variable

+ 2 Partial Credit: *this (The prefix * is a C++ thing.)

+ 0 incorrect: dot operator

+ 0 Incorrect: ActionListener

+ 0 Left Blank

+ 0 Incorrect: protected

+ 0 Incorrect: implements

+ 0 Incorrect: ActionHandler

+ 0 Incorrect: Event handler

+ 0 Incorrect: static

+ 0 Incorrect: widget

+ 0 Incorrect: new

+ 0 Not a rubric item, just a comment: see

http://stackoverflow.com/questions/3124126/java-

addactionlistenerthis for more information on this

topic.

1.3 (c) Disadvantage of making FooPanel be
object that implements ActionListener? (5 /

5)

+ 5 Correct: there can be only one actionPerformed

method in the class. (That's a problem if you have

more than two things you want to do---because

you'll have to have complex code to handle all the

different cases inside your one single

actionPerformed method.)

+ 0 Left Blank

+ 4 PARTIAL CREDIT correct answer: It may not

enforce separation of concerns or good object-

oriented practices. [Awarded 4/5 because this is a

good generic answer for why to make something a

separate object. In this case, there is a more specific

reason as well that is context dependent that we

discussed in lecture.]

+ 0 Incorrect: Unable to reuse the code written in the

inner class. This is incorrect, because part c is not

discussing the use of an inner class at all.

+ 0 Incorrect answer: "It only applies to events

contained within the FooPanel class. If we have

another class with the same event, it will not work."

OR "You are not allowed to use the ActionListener

outside of the FooPanel class". Neither of those is

true. We "could" use an instance of this class to be

an ActionListener for some other class' event. So it is

possible. But even if it were true that we couldn't

(and that's NOT true), it is very unlikely that we would

want to. An ActionListener in a GUI needs to make

changes to the state of elements of a particular GUI.

When you press a button, or scroll a scroller, or click a

mouse, something is supposed to "happen". And

making that thing happen likely requires access to the

internal state of the FooPanel. And that fact pretty

much negates the whole point you are trying to make,

i.e. that "reuse" is something desirable here.

+ 0 Incorrect Ansswer: "If somewhere else in the

program you need the same ActionListener, your

code will not be DRY." That "seems" like a plausible

answer---in general, we try to avoid duplicate code to

make things DRY. But in this case, that's not the

problem. . An ActionListener in a GUI typically

needs to make changes to the state of elements of

that GUI. When you press a button, or scroll a

scroller, or click a mouse, something is supposed to

"happen". And making that thing happen likely

requires access to the internal state of the FooPanel.

It is not likely that you are going to be able to reuse

that code anywhere else in your program.

+ 0 Incorrect Answer: "This will make the FooPanel

both extends JPanel and implements ActionListener,

which may cause writing method of same name." So,

I'm not sure what problem you are trying to describe

here--- "may cause writing method of same name"

isn't very precise. Same name as what? In any case

having a class that both. extends JPanel and

implements ActionListener is a perfectly legal thing to

do, and causes no naming conflicts.

+ 2 Partial credit answer: "You have to create an

instance of the FooPanel class itself within the

FooPanel class. It's more complicated and its' not

good for data encapsulation. There can only be one

implementation." That last sentence, i.e. "there can

only be one implementation" is what saved you from

a zero credit answer---because that is true, though

you didn't really explain why that's a problem. The

first part is just false---you don't need a separate

instance. The keyword "this" is a reference back to

the instance itself. So, there is only one instance,

and the data encapsulation is just fine---perfect, in a

sense, since we are dealing only with a single object.

+ 0 Incorrect Answer. "This limits what the FooPanel

class is able to do because each class is made so that

it specializes at one job." This is incorrect.

Implementing ActionListener doesn't "limit" what

FooPanel can do. On the contrary, the essence of

implementing an interface is that it provides a marker

of some additional capability that the class CAN do. It

expresses the idea "this class can do this thing,

because it has all the necessary methods to do it".

The second part of your sentence: "because each

class is made so that it specializes at one job",

describes an important design goal of a good object

oriented system. But it is not the correct answer to

THIS question.

+ 0 Incorrect answer: "There might not be a visual

indicator of what or where the ActionListener is for

the user". Incorrect because a "user" would never

need to have any visual indicator of an

ActionListener--its entirely an internal code construct,

not a user-facing thing. If you mean "programmer"

rather than "user", it's still incorrect. It will be visible

from the fact that FooPanel class will say

"implements ActionListener" right at the top, and the

fact that the addActionListener() method for any

widget with an ActionListener will take the parameter

"this". Both of those are visual indicators of what or

where the ActionListener is for the programmer.

+ 0 Not a rubric item, just a comment: see

http://stackoverflow.com/questions/3124126/java-

addactionlistenerthis for more information on this

topic.

+ 0 Incorrect: "The FooPanel class can ONLY do what

the ActionListener interface can do, no more, no less".

OR "FooPanel would not be able to make method

calls with a normal object functionality. FooPanel will

only be used for waiting until the user makes an

action. This means you cannot [illegible... have?

hide?] an ActionEvent in this class definition." That is

not correct. FooPanel can be a JPanel that has any

kind of functionality that a JPanel would normally

have, PLUS it can also be an ActionListener. All we

have to do is add an actionPerformed method to the

class.

+ 3 PARTIAL CREDIT: "If FooPanel implements

ActionListener, there can only ever be 1 interactive

button/widget in the Panel..." That's not correct.

There can be several. The problem isn't that we can't

have more than one--its that we have to stuff all of

that code for handling, say, a Button, a TextArea and

a slider into a single method that has to complicated

logic (e.g. a series of if tests) to determine which kind

of event happened. Still, 3/5 because you are at least

on the right track with this line of thinking.

+ 0 Incorrect: "That will let FooPanel implement a lot

[sic] useless methods and in this case FooPanel

needs to implement all the methods in ActionListener

which are not what we want for FooPanel.". So,

ActionListener has only one method

(actionPerformed) and it really isn't a big deal to

implement it. If we only need one action for a single

widget, it may be less work to add this one method

than to create a separate class.

1.4 (d) Disadvantage of separate class? (5 / 5)

+ 5 Correct: the separate class does not have access

to the private members of FooPanel. (Which it will

likely need in order to make things happen in the

GUI).

+ 2 Partial credit: bulky code involved with separate

classes for separate ActionListeners...vague or fails to

mention idea that event handlers need access to

instance variables.

+ 0 Incorrect: fails to identify a disadvantage of

separate classes

+ 0 Left Blank

+ 3 Partial Credit: Correctly indicates that it is more

work, with this architecture, to make changes to

FooPanel from inside the ActionListener, but doesn't

clearly explain why.

1.5 (e) Briefly describe third approach to
ActionListener (not self, not separate class)

(5 / 5)

+ 5 Correct: Making an inner class that implements

ActionListener is the third approach.

+ 5 ALTERNATIVE correct answer--if "anonymous

inner class" used as answer to part (e). This lists

various advantages of an anonymous inner class.

+ 3 Partial credit: correctly identifies inner class, but

doesn't mention that the inner class will be the one

implementing ActionListener

+ 2 Partial credit: answer--"have a method in

FooPanel implement ActionListener..." incorrectly

says method instead of inner class, but interfaces

must be implemented by a class

+ 0 Incorrect: doesn't identify a third approach on how

to implement ActionListener

+ 0 blank

1.6 (f) Advantages of third approach (5 / 5)

+ 5 Correct: One or more inner class objects can be

used to implement one or more ActionListeners, and

each of those will have full access to the outer class'

instance variables.

+ 5 ALTERNATIVE correct answer--if "anonymous

inner class" used as answer to part (e). This lists

various advantages of an anonymous inner class.

+ 3 Partial credit: correctly includes access to instance

variables, but also should discuss how inner classes

allow you to have multiple ActionListeners to handle

multiple events

+ 3 Partial credit: correctly states that inner classes

allow you to have multiple ActionListeners to handle

multiple events, but doesn't say that inner classes

have access to instance variables

+ 1 Partial credit: vague or incomplete response that

fails to identify advantages of inner classes

+ 0 Incorrect: identifies disadvantages of inner

classes

+ 0 Incorrect: doesn't identify an advantage of inner

classes

+ 0 blank

QUESTION 2

Foo, Bar, Fum (inheritance) 20 pts

2.1 What methods can be invoked on foo?
(5 / 5)

+ 5 Correct: doThing() lines 5-7 (ok to say line 5 too).

+ 0 OK to include main, since foo.main(args) will,

technically, compile (I tried it). Also ok to omit this

from answer, since we typically would not do this.

- 1 Directions indicated to include the line number in

your answer.

2.2 What public data members can follow
bar. (5 / 5)

+ 5 Correct: mysteryBoolean and mysteryNumber

- 2 -2 for including doThing() in the answer along with

mysteryBoolean and mysteryNumber, since it is not a

data member. Also, doThing() returns void, so an

invocation of it cannot be used as argument of

System.out.println()

+ 0 no points for answer doThing() if it is the only

thing included in the answer. doThing() is not a data

member.

+ 2 2 points for only including mysteryNumber, and

not including mysteryBoolean.

+ 2 2 points for only including mysteryBoolean, and

not including mysteryNumber.

2.3 Methods can be invoked on fum? (5 / 5)

+ 5 [NOTE TYPO CORRECTION given to all students:

"object foo" should read "object fum".] Correct:

doThing, line 5 (or 5-7) and doOtherThing, line 30,

(or 30-32)

+ 0 Ok to include main; technically, it can be invoked

on object fum; but not necessary for full credit.

+ 2 Partial Credit for mentioning only doOtherThing

from lines 30-32 and leaving out doThing from lines

5-7, which is inherited.

2.4 Data members for fum? (5 / 5)

+ 5 Correct: mysteryNumber and mysteryString

- 2 -2 for including doThing and/or doOtherThing in

the answer along with mysteryBoolean and

mysteryString, since those are methods (member

functions), not data members. Also, they return void,

so an invocation of them cannot be used as argument

of System.out.println()

+ 2 Partial credit for answer "mysteryString", omitting

mysteryNumber which should also be included, as it

is inherited.

+ 0 No credit for answer consisting only of doThing

and doOtherThing, since those are methods

(member functions), not data members. Also, they

return void, so an invocation of them cannot be used

as argument of System.out.println()

QUESTION 3

3 Two main categories of exceptions in
Java. Names of two kinds, and reason
why. (10 / 10)

+ 4 4 of the 10 points are earned for correctly

IDENTIFYING THE TWO CATEGORIES.. One

category is Unchecked exceptions (which inherit

from java.lang.RuntimeException) and the other is

Checked exceptions, which inherit from

java.lang.Exception. It is acceptable if the official

names of these categories aren't given but it is clear

that they are being referred to via the base class

such exceptions have in common (RuntimeException

/ RuntimeExceptions without a space, Exception

capitalized). "Thrown Exceptions" is not acceptable

as all exceptions are thrown.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

RUNTIME/UNCHECKED EXCEPTIONS. These

indicate a problem with code logic. try/catch blocks

for these are not required because they would

clutter the code logic.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

CHECKED EXCEPTIONS. These indicate a problem

that the programmer cannot prevent, should

anticipate, and should either handle with a try/catch

block, or report to the caller by declaring that the

method may throw the exception.

+ 0 No points for incorrect explanation of Checked

exceptions.

+ 0 No points for incorrect explanation of Unchecked

exceptions.

+ 0 Your explanation of the difference is that it is a

distinction between catching the problem at compile

time vs. run time, but that is not correct. Both of

these happen at run time. The name is a bit

misleading, I acknowledge---that's all the more reason

to be sure you learn the correct distinction.

+ 2 Partial credit for an identification of the two

categories that is incorrect, or only partially correct.

Here are some examples of incorrect pairs of names:

(1) IOExceptions vs. Exceptions (2) Runtime

Exceptions vs. User-Defined Exceptions (3) runtime

exceptions vs. undefined exceptions (4) RunTime

Exceptions vs. Compiler Exceptions, (5) the first type

is RuntimeExceptions, and the second type is the kind

that uses the try/catch block (6) RuntimeException vs.

CriticalException (7) RuntimeExceptoin and self-

declared exceptions. Examples of correctly

distinguishing are (1) checked vs. unchecked

exceptions (2) Runtime exceptions vs. Checked

Exceptions. (3) "RuntimeException" vs. "Regular

plain-old Exception". (This last one isn't the "best" way

to describe it, but I would accept as long as the

explanations are correct.)

+ 2 Partial Credit for identifying the dichotomy

between Runtime Exceptions and the other kind, but

not indicating how the latter kind have to be handled

in code (caught, or declared to be thrown.)

+ 0 Click here to replace this description.

QUESTION 4

4 Collection<? extends E> ... what does this
mean? (5 / 10)

+ 10 Correct: c is an object of a class that implements

the Collection interface, and it is a collection of either

objects of type E, or of objects from classes or

interfaces that extend (inherit from) type E. That

explanation is sufficient for full credit... but to explain

further with an example: if we have an instance of

ArrayList<Student> and Undergrad extends Student,

then c could be any of the following types:

ArrayList<Student>, ArrayList<Undergrad>,

PriorityQueue<Student>, PriorityQueue<Undergrad>,

etc. Subject to deductions below. Note that E

doesn't have to be a class. It could also be an

interface.

+ 5 Partial Credit: Answer that is correct but

incomplete--that says nothing wrong, but doesn't get

to the point about what the <? extends E> part

means.

+ 5 Partial Credit: "c is a collection of elements of any

type... The reason that c can contain any type is

because it is a collection of type E, which is a

template parameter, meaning E can be of any type.".

Yes, but no. E in this case is already bound. It is a

specific type, the type that THIS ArrayList<E> instance

is a collection of. <? extends E> actually RESTRICTS

the type of what c can be a collection of. It restricts it

to being only elements of type E, or any

class/interface that extends E.

+ 5 Partial Credit "c is an instance of a class that

implements an interface that extends the interface

Collection<E>. " OR "any object of a class that

extends classes that implement the Collection

interface". NO.. If that were our intent, we might

write <T extends Collection<E>> boolean addAll(T c).

Or we could simply write: boolean

addAll(Collection<E> c). Your answer seems to

indicate that the ? extends is about extending

Collection, but that is NOT the case. The extending

is NOT of Collection, but of E itself.

- 2 -2 deduction from full credit answer for imprecise

language: "elements that are of class E or extends

class E as its parameter". What you mean to say is

"elements that are of class/interface E, or any

class/interface that extends E as its parameter".

Those extra words are important to be precise in your

meaning.

+ 5 Imprecise answer: "Collection<? extends E> c

means that it could be a subclass of the given data

type". This is too imprecise for full credit. What

does "it" refer to? Does it refer to c or E? I can't tell.

And the given data type? What does that refer to?

Collection<? extends E>? E? Without knowing this, I

can't tell if your answer is correct or not. Therefore, it

cannot earn full credit.

+ 5 Partial credit: Any answer that indicates that

Collection<? extends E> c means that "c is any object

that implements Collection, where it can be a

collection of any type of object at all", i.e. there is no

restriction on what type of object can be in the

Collection. NO. E is already "bound" to whatever

this PARTICULAR ArrayList<E> is a collection of. So,

not ANY object. c is a Collection of objects of class

or interface E, or any class or interface that extends

E, where E is something *specific*, the SPECIFIC class

or interface that this ArrayList is an ArrayList of. For

example, if E is Animal, and Dog extends Animal then

<? extends E> means that c can be a

Collection<Animal> or a Collection<Dog>

+ 5 Partial Credit: E is of whatever type the ArrayList

is. c is an interface that extends whatever type the

ArrayList is. If it is an ArrayList<Integer> then c will be

a Collection that extends Integer. NO.

+ 5 Partial credit: c is a type of Collection that extends

E. NO. c is a type of Collection that contains inside it

instances of E, or any class/interface that extends E.

The Colection does NOT extend E. Not in any way.

+ 5 Partial credit: T"his means that the parameter c

must be compatible with the elements of the

ArrayList. By this, I mean that 'c' must be an instance

of a class tht is the supertype E, or a subtype of E."

Almost there, but NO. What you should have said is

"This means that the parameter c __is a Collection of

elements that___ must be compatible with ..." You

left out those crucial words "is a Collection of

elements that..."

+ 5 Partial credit: "c can be any class that extends E".

c could also be an interface, and it must implement

Collection interface

- 3 Collection is an interface so it must be

implemented, it is not a super class that can be

extended

+ 5 "The means that any object that extends

Collection can be put in as an argument and that

Collections ? will wrap around the object E so for

example if ArrayList<Dog> is put as an argument then

? will wrap around Dog and allow the function to

manipulate Dog objects." Incorrect. The "extends"

keyword here is NOT about extending Collection. If

ArrayList<Dog> were the context, than E is Dog, and

what we have for c is a Collection of Dog or a

collection of some object that extends Dog.

+ 9 9/10, for mostly correct answer. "This is a

polymorphic argument. Essentially a polymorphic

argument is when a super class is a parameter and

one can pass a subclass through this parameter." [So

far so good.] "In our case, addAll can take anything

that is a subclass of collections, such as Stack,

ArrayList, etc. [Ooops... not subclass. We noted that

Collection is an interface, so we should have said

anything that *implements* Collection. Continuing...]

"The <? extends E> ensures that the argument is the

same object or a subclass of the object that the

ArrayList holds. YES.

+ 0 No credit: "This means that c can be any class that

extends Object. In Java, primitives are not objects."

That is incorrect. The type expression constrains the

type of what c can be far more narrowly than "any

class that extends Object", which is the same as

saying "anything except a primitive". The statement

"In Java, primitives are not objects" is correct, but

that's not relevant to the problem, so no partial credit

for that.

+ 5 Partial Credit: "It means that an ArrayList can add

any object E or any collection of object E, or a

subclass of E. The E object is any object or collection

of objects that user defines it to be." Not exactly.

We can't pass an object of type E or a subclass of E to

this addAll method. We can only pass a Collection of

objects of type E, or a Collection of a objects of some

type that is a subclass of E.

+ 5 Incorrect/imprecise answer: "That this method

works for all the classes that implement the collection

interface. The type of collection must extend E..."

[Ooops. Not the type of collection (e.g. ArrayList,

HashSet, PriorityQueue, Stack) must extend E, but the

thing that c is a collection OF must be E or extend E.

You are getting 5/10 for the benefit of the doubt that

you meant to refer to the "thing that c is a Collection

of", but your answer isn't precise enough to get full

credit. Continuing...] " ... must be an element type

(object references) but cannot be of primitive type.

e.g. c cannot be of type ArrayList<int> but can be of

type ArrayList<Integer>." So that last part is true, but

"vacuously" true, since it is true of any parameterized

type in Java. That part has nothing to do with the

question asked, so you get no partial credit for it.

+ 5 Incorrect answer: "First, c is a specified collection,

and inside the brackets, it stands for iterating all

elements in this collection because addAll will

append all of the elements." So, while it is true that

addAll will append all of the elements, and c is a

Collection, it is NOT true that the part in brackets (i.e.

<? extends E> means to iterate over the collection.

Page 7

pconrad
Sticky Note
None set by pconrad

pconrad
Sticky Note
MigrationNone set by pconrad

pconrad
Sticky Note
Unmarked set by pconrad

pconrad
Sticky Note
None set by pconrad

pconrad
Sticky Note
MigrationNone set by pconrad

pconrad
Sticky Note
Unmarked set by pconrad

CMPSC 56 E02

TOTAL POINTS

35 / 70

QUESTION 1

Java Swing 30 pts

1.1 (a) Purpose of FooPanel? (5 / 5)

+ 5 Correct: a widget that implements a GUI, or

contains an interactive widget (e.g. a button) that

needs a callback routine when it is clicked (or

activated in some way).

+ 5 Alternative Correct Answer: to receive events

and perform the desired actions in response.

+ 3 Partial Credit: Answer that is correct, but focuses

on what an "interface" is, missing the point that

ActionListener has a specific role in Java Swing. The

question was getting at the "purpose" of class

FooPanel in a specific sense, not an abstract sense.

+ 3 Partial Credit: Answer focuses on what an "inner

class" is, missing the point that ActionListener has a

specific role in Java Swing. The question was getting

at the "purpose" of class FooPanel in a specific sense,

not an abstract sense.

1.2 (b) What Java keyword? (0 / 5)

+ 5 Correct: this

+ 0 Incorrect: ActionEvent or ActionEvent object

+ 0 Incorrect: inner class

+ 0 Incorrect: Listener object

+ 0 Incorrect: public class FooPanel implements

ActionListener

+ 0 Incorrect: Listener or Listeners

+ 0 Incorrect: Instance Variable

+ 2 Partial Credit: *this (The prefix * is a C++ thing.)

+ 0 incorrect: dot operator

+ 0 Incorrect: ActionListener

+ 0 Left Blank

+ 0 Incorrect: protected

+ 0 Incorrect: implements

+ 0 Incorrect: ActionHandler

+ 0 Incorrect: Event handler

+ 0 Incorrect: static

+ 0 Incorrect: widget

+ 0 Incorrect: new

+ 0 Not a rubric item, just a comment: see

http://stackoverflow.com/questions/3124126/java-

addactionlistenerthis for more information on this

topic.

1.3 (c) Disadvantage of making FooPanel be
object that implements ActionListener? (0 /

5)

+ 5 Correct: there can be only one actionPerformed

method in the class. (That's a problem if you have

more than two things you want to do---because you'll

have to have complex code to handle all the different

cases inside your one single actionPerformed

method.)

+ 0 Left Blank

+ 4 PARTIAL CREDIT correct answer: It may not

enforce separation of concerns or good object-

oriented practices. [Awarded 4/5 because this is a

good generic answer for why to make something a

separate object. In this case, there is a more specific

reason as well that is context dependent that we

discussed in lecture.]

+ 0 Incorrect: Unable to reuse the code written in the

inner class. This is incorrect, because part c is not

discussing the use of an inner class at all.

+ 0 Incorrect answer: "It only applies to events

contained within the FooPanel class. If we have

another class with the same event, it will not work."

OR "You are not allowed to use the ActionListener

outside of the FooPanel class". Neither of those is

true. We "could" use an instance of this class to be

an ActionListener for some other class' event. So it is

possible. But even if it were true that we couldn't

(and that's NOT true), it is very unlikely that we would

want to. An ActionListener in a GUI needs to make

changes to the state of elements of a particular GUI.

When you press a button, or scroll a scroller, or click a

mouse, something is supposed to "happen". And

making that thing happen likely requires access to the

internal state of the FooPanel. And that fact pretty

much negates the whole point you are trying to make,

i.e. that "reuse" is something desirable here.

+ 0 Incorrect Ansswer: "If somewhere else in the

program you need the same ActionListener, your

code will not be DRY." That "seems" like a plausible

answer---in general, we try to avoid duplicate code to

make things DRY. But in this case, that's not the

problem. . An ActionListener in a GUI typically

needs to make changes to the state of elements of

that GUI. When you press a button, or scroll a

scroller, or click a mouse, something is supposed to

"happen". And making that thing happen likely

requires access to the internal state of the FooPanel.

It is not likely that you are going to be able to reuse

that code anywhere else in your program.

+ 0 Incorrect Answer: "This will make the FooPanel

both extends JPanel and implements ActionListener,

which may cause writing method of same name." So,

I'm not sure what problem you are trying to describe

here--- "may cause writing method of same name"

isn't very precise. Same name as what? In any case

having a class that both. extends JPanel and

implements ActionListener is a perfectly legal thing to

do, and causes no naming conflicts.

+ 2 Partial credit answer: "You have to create an

instance of the FooPanel class itself within the

FooPanel class. It's more complicated and its' not

good for data encapsulation. There can only be one

implementation." That last sentence, i.e. "there can

only be one implementation" is what saved you from

a zero credit answer---because that is true, though

you didn't really explain why that's a problem. The

first part is just false---you don't need a separate

instance. The keyword "this" is a reference back to

the instance itself. So, there is only one instance,

and the data encapsulation is just fine---perfect, in a

sense, since we are dealing only with a single object.

+ 0 Incorrect Answer. "This limits what the FooPanel

class is able to do because each class is made so that

it specializes at one job." This is incorrect.

Implementing ActionListener doesn't "limit" what

FooPanel can do. On the contrary, the essence of

implementing an interface is that it provides a marker

of some additional capability that the class CAN do. It

expresses the idea "this class can do this thing,

because it has all the necessary methods to do it".

The second part of your sentence: "because each

class is made so that it specializes at one job",

describes an important design goal of a good object

oriented system. But it is not the correct answer to

THIS question.

+ 0 Incorrect answer: "There might not be a visual

indicator of what or where the ActionListener is for

the user". Incorrect because a "user" would never

need to have any visual indicator of an

ActionListener--its entirely an internal code construct,

not a user-facing thing. If you mean "programmer"

rather than "user", it's still incorrect. It will be visible

from the fact that FooPanel class will say

"implements ActionListener" right at the top, and the

fact that the addActionListener() method for any

widget with an ActionListener will take the parameter

"this". Both of those are visual indicators of what or

where the ActionListener is for the programmer.

+ 0 Not a rubric item, just a comment: see

http://stackoverflow.com/questions/3124126/java-

addactionlistenerthis for more information on this

topic.

+ 0 Incorrect: "The FooPanel class can ONLY do

what the ActionListener interface can do, no more,

no less". OR "FooPanel would not be able to make

method calls with a normal object functionality.

FooPanel will only be used for waiting until the user

makes an action. This means you cannot [illegible...

have? hide?] an ActionEvent in this class definition."

That is not correct. FooPanel can be a JPanel that

has any kind of functionality that a JPanel would

normally have, PLUS it can also be an

ActionListener. All we have to do is add an

actionPerformed method to the class.

+ 3 PARTIAL CREDIT: "If FooPanel implements

ActionListener, there can only ever be 1 interactive

button/widget in the Panel..." That's not correct.

There can be several. The problem isn't that we can't

have more than one--its that we have to stuff all of

that code for handling, say, a Button, a TextArea and

a slider into a single method that has to complicated

logic (e.g. a series of if tests) to determine which kind

of event happened. Still, 3/5 because you are at least

on the right track with this line of thinking.

+ 0 Incorrect: "That will let FooPanel implement a lot

[sic] useless methods and in this case FooPanel

needs to implement all the methods in ActionListener

which are not what we want for FooPanel.". So,

ActionListener has only one method

(actionPerformed) and it really isn't a big deal to

implement it. If we only need one action for a single

widget, it may be less work to add this one method

than to create a separate class.

1.4 (d) Disadvantage of separate class? (5 / 5)

+ 5 Correct: the separate class does not have access

to the private members of FooPanel. (Which it will

likely need in order to make things happen in the

GUI).

+ 2 Partial credit: bulky code involved with separate

classes for separate ActionListeners...vague or fails to

mention idea that event handlers need access to

instance variables.

+ 0 Incorrect: fails to identify a disadvantage of

separate classes

+ 0 Left Blank

+ 3 Partial Credit: Correctly indicates that it is more

work, with this architecture, to make changes to

FooPanel from inside the ActionListener, but doesn't

clearly explain why.

1.5 (e) Briefly describe third approach to
ActionListener (not self, not separate class)

(2 / 5)

+ 5 Correct: Making an inner class that implements

ActionListener is the third approach.

+ 5 ALTERNATIVE correct answer--if "anonymous

inner class" used as answer to part (e). This lists

various advantages of an anonymous inner class.

+ 3 Partial credit: correctly identifies inner class, but

doesn't mention that the inner class will be the one

implementing ActionListener

+ 2 Partial credit: answer--"have a method in

FooPanel implement ActionListener..." incorrectly

says method instead of inner class, but interfaces

must be implemented by a class

+ 0 Incorrect: doesn't identify a third approach on how

to implement ActionListener

+ 0 blank

1.6 (f) Advantages of third approach (1 / 5)

+ 5 Correct: One or more inner class objects can be

used to implement one or more ActionListeners, and

each of those will have full access to the outer class'

instance variables.

+ 5 ALTERNATIVE correct answer--if "anonymous

inner class" used as answer to part (e). This lists

various advantages of an anonymous inner class.

+ 3 Partial credit: correctly includes access to instance

variables, but also should discuss how inner classes

allow you to have multiple ActionListeners to handle

multiple events

+ 3 Partial credit: correctly states that inner classes

allow you to have multiple ActionListeners to handle

multiple events, but doesn't say that inner classes

have access to instance variables

+ 1 Partial credit: vague or incomplete response that

fails to identify advantages of inner classes

+ 0 Incorrect: identifies disadvantages of inner

classes

+ 0 Incorrect: doesn't identify an advantage of inner

classes

+ 0 blank

QUESTION 2

Foo, Bar, Fum (inheritance) 20 pts

2.1 What methods can be invoked on foo?
(5 / 5)

+ 5 Correct: doThing() lines 5-7 (ok to say line 5 too).

+ 0 OK to include main, since foo.main(args) will,

technically, compile (I tried it). Also ok to omit this

from answer, since we typically would not do this.

- 1 Directions indicated to include the line number in

your answer.

2.2 What public data members can follow
bar. (0 / 5)

+ 5 Correct: mysteryBoolean and mysteryNumber

- 2 -2 for including doThing() in the answer along with

mysteryBoolean and mysteryNumber, since it is not a

data member. Also, doThing() returns void, so an

invocation of it cannot be used as argument of

System.out.println()

+ 0 no points for answer doThing() if it is the only

thing included in the answer. doThing() is not a data

member.

+ 2 2 points for only including mysteryNumber, and

not including mysteryBoolean.

+ 2 2 points for only including mysteryBoolean, and

not including mysteryNumber.

2.3 Methods can be invoked on fum? (5 / 5)

+ 5 [NOTE TYPO CORRECTION given to all students:

"object foo" should read "object fum".] Correct:

doThing, line 5 (or 5-7) and doOtherThing, line 30,

(or 30-32)

+ 0 Ok to include main; technically, it can be invoked

on object fum; but not necessary for full credit.

+ 2 Partial Credit for mentioning only doOtherThing

from lines 30-32 and leaving out doThing from lines

5-7, which is inherited.

2.4 Data members for fum? (5 / 5)

+ 5 Correct: mysteryNumber and mysteryString

- 2 -2 for including doThing and/or doOtherThing in

the answer along with mysteryBoolean and

mysteryString, since those are methods (member

functions), not data members. Also, they return void,

so an invocation of them cannot be used as argument

of System.out.println()

+ 2 Partial credit for answer "mysteryString", omitting

mysteryNumber which should also be included, as it

is inherited.

+ 0 No credit for answer consisting only of doThing

and doOtherThing, since those are methods

(member functions), not data members. Also, they

return void, so an invocation of them cannot be used

as argument of System.out.println()

QUESTION 3

3 Two main categories of exceptions in
Java. Names of two kinds, and reason
why. (2 / 10)

+ 4 4 of the 10 points are earned for correctly

IDENTIFYING THE TWO CATEGORIES.. One

category is Unchecked exceptions (which inherit from

java.lang.RuntimeException) and the other is Checked

exceptions, which inherit from java.lang.Exception. It

is acceptable if the official names of these categories

aren't given but it is clear that they are being referred

to via the base class such exceptions have in

common (RuntimeException / RuntimeExceptions

without a space, Exception capitalized). "Thrown

Exceptions" is not acceptable as all exceptions are

thrown.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

RUNTIME/UNCHECKED EXCEPTIONS. These

indicate a problem with code logic. try/catch blocks

for these are not required because they would clutter

the code logic.

+ 3 3 of the 10 points are earned for

correctly/completely identifying PURPOSE OF

CHECKED EXCEPTIONS. These indicate a problem

that the programmer cannot prevent, should

anticipate, and should either handle with a try/catch

block, or report to the caller by declaring that the

method may throw the exception.

+ 0 No points for incorrect explanation of Checked

exceptions.

+ 0 No points for incorrect explanation of Unchecked

exceptions.

+ 0 Your explanation of the difference is that it is a

distinction between catching the problem at compile

time vs. run time, but that is not correct. Both of

these happen at run time. The name is a bit

misleading, I acknowledge---that's all the more reason

to be sure you learn the correct distinction.

+ 2 Partial credit for an identification of the two

categories that is incorrect, or only partially correct.

Here are some examples of incorrect pairs of names:

(1) IOExceptions vs. Exceptions (2) Runtime

Exceptions vs. User-Defined Exceptions (3) runtime

exceptions vs. undefined exceptions (4) RunTime

Exceptions vs. Compiler Exceptions, (5) the first type

is RuntimeExceptions, and the second type is the

kind that uses the try/catch block (6)

RuntimeException vs. CriticalException (7)

RuntimeExceptoin and self-declared exceptions.

Examples of correctly distinguishing are (1) checked

vs. unchecked exceptions (2) Runtime exceptions vs.

Checked Exceptions. (3) "RuntimeException" vs.

"Regular plain-old Exception". (This last one isn't the

"best" way to describe it, but I would accept as long

as the explanations are correct.)

+ 2 Partial Credit for identifying the dichotomy

between Runtime Exceptions and the other kind, but

not indicating how the latter kind have to be handled

in code (caught, or declared to be thrown.)

+ 0 Click here to replace this description.

QUESTION 4

4 Collection<? extends E> ... what does this
mean? (5 / 10)

+ 10 Correct: c is an object of a class that implements

the Collection interface, and it is a collection of either

objects of type E, or of objects from classes or

interfaces that extend (inherit from) type E. That

explanation is sufficient for full credit... but to explain

further with an example: if we have an instance of

ArrayList<Student> and Undergrad extends Student,

then c could be any of the following types:

ArrayList<Student>, ArrayList<Undergrad>,

PriorityQueue<Student>, PriorityQueue<Undergrad>,

etc. Subject to deductions below. Note that E

doesn't have to be a class. It could also be an

interface.

+ 5 Partial Credit: Answer that is correct but

incomplete--that says nothing wrong, but doesn't get

to the point about what the <? extends E> part

means.

+ 5 Partial Credit: "c is a collection of elements of any

type... The reason that c can contain any type is

because it is a collection of type E, which is a

template parameter, meaning E can be of any type.".

Yes, but no. E in this case is already bound. It is a

specific type, the type that THIS ArrayList<E> instance

is a collection of. <? extends E> actually RESTRICTS

the type of what c can be a collection of. It restricts it

to being only elements of type E, or any

class/interface that extends E.

+ 5 Partial Credit "c is an instance of a class that

implements an interface that extends the interface

Collection<E>. " OR "any object of a class that

extends classes that implement the Collection

interface". NO.. If that were our intent, we might

write <T extends Collection<E>> boolean addAll(T c).

Or we could simply write: boolean

addAll(Collection<E> c). Your answer seems to

indicate that the ? extends is about extending

Collection, but that is NOT the case. The extending

is NOT of Collection, but of E itself.

- 2 -2 deduction from full credit answer for imprecise

language: "elements that are of class E or extends

class E as its parameter". What you mean to say is

"elements that are of class/interface E, or any

class/interface that extends E as its parameter".

Those extra words are important to be precise in your

meaning.

+ 5 Imprecise answer: "Collection<? extends E> c

means that it could be a subclass of the given data

type". This is too imprecise for full credit. What

does "it" refer to? Does it refer to c or E? I can't tell.

And the given data type? What does that refer to?

Collection<? extends E>? E? Without knowing this, I

can't tell if your answer is correct or not. Therefore, it

cannot earn full credit.

+ 5 Partial credit: Any answer that indicates that

Collection<? extends E> c means that "c is any object

that implements Collection, where it can be a

collection of any type of object at all", i.e. there is no

restriction on what type of object can be in the

Collection. NO. E is already "bound" to whatever

this PARTICULAR ArrayList<E> is a collection of. So,

not ANY object. c is a Collection of objects of class

or interface E, or any class or interface that extends

E, where E is something *specific*, the SPECIFIC class

or interface that this ArrayList is an ArrayList of. For

example, if E is Animal, and Dog extends Animal then

<? extends E> means that c can be a

Collection<Animal> or a Collection<Dog>

+ 5 Partial Credit: E is of whatever type the ArrayList

is. c is an interface that extends whatever type the

ArrayList is. If it is an ArrayList<Integer> then c will be

a Collection that extends Integer. NO.

+ 5 Partial credit: c is a type of Collection that extends

E. NO. c is a type of Collection that contains inside it

instances of E, or any class/interface that extends E.

The Colection does NOT extend E. Not in any way.

+ 5 Partial credit: T"his means that the parameter c

must be compatible with the elements of the

ArrayList. By this, I mean that 'c' must be an instance

of a class tht is the supertype E, or a subtype of E."

Almost there, but NO. What you should have said is

"This means that the parameter c __is a Collection of

elements that___ must be compatible with ..." You

left out those crucial words "is a Collection of

elements that..."

+ 5 Partial credit: "c can be any class that extends E".

c could also be an interface, and it must implement

Collection interface

- 3 Collection is an interface so it must be

implemented, it is not a super class that can be

extended

+ 5 "The means that any object that extends

Collection can be put in as an argument and that

Collections ? will wrap around the object E so for

example if ArrayList<Dog> is put as an argument then

? will wrap around Dog and allow the function to

manipulate Dog objects." Incorrect. The "extends"

keyword here is NOT about extending Collection. If

ArrayList<Dog> were the context, than E is Dog, and

what we have for c is a Collection of Dog or a

collection of some object that extends Dog.

+ 9 9/10, for mostly correct answer. "This is a

polymorphic argument. Essentially a polymorphic

argument is when a super class is a parameter and

one can pass a subclass through this parameter." [So

far so good.] "In our case, addAll can take anything

that is a subclass of collections, such as Stack,

ArrayList, etc. [Ooops... not subclass. We noted that

Collection is an interface, so we should have said

anything that *implements* Collection. Continuing...]

"The <? extends E> ensures that the argument is the

same object or a subclass of the object that the

ArrayList holds. YES.

+ 0 No credit: "This means that c can be any class that

extends Object. In Java, primitives are not objects."

That is incorrect. The type expression constrains the

type of what c can be far more narrowly than "any

class that extends Object", which is the same as

saying "anything except a primitive". The statement

"In Java, primitives are not objects" is correct, but

that's not relevant to the problem, so no partial credit

for that.

+ 5 Partial Credit: "It means that an ArrayList can add

any object E or any collection of object E, or a

subclass of E. The E object is any object or collection

of objects that user defines it to be." Not exactly.

We can't pass an object of type E or a subclass of E to

this addAll method. We can only pass a Collection of

objects of type E, or a Collection of a objects of some

type that is a subclass of E.

+ 5 Incorrect/imprecise answer: "That this method

works for all the classes that implement the collection

interface. The type of collection must extend E..."

[Ooops. Not the type of collection (e.g. ArrayList,

HashSet, PriorityQueue, Stack) must extend E, but the

thing that c is a collection OF must be E or extend E.

You are getting 5/10 for the benefit of the doubt that

you meant to refer to the "thing that c is a Collection

of", but your answer isn't precise enough to get full

credit. Continuing...] " ... must be an element type

(object references) but cannot be of primitive type.

e.g. c cannot be of type ArrayList<int> but can be of

type ArrayList<Integer>." So that last part is true, but

"vacuously" true, since it is true of any parameterized

type in Java. That part has nothing to do with the

question asked, so you get no partial credit for it.

+ 5 Incorrect answer: "First, c is a specified collection,

and inside the brackets, it stands for iterating all

elements in this collection because addAll will

append all of the elements." So, while it is true that

addAll will append all of the elements, and c is a

Collection, it is NOT true that the part in brackets (i.e.

<? extends E> means to iterate over the collection.

Page 7

CMPSC 56 E02a

TOTAL POINTS

30 / 30

QUESTION 1

Question 5 (coding) 30 pts

1.1 Correct structure (10 / 10)

+ 10 10 pts correct structure of class: public class

TempSequence extends ArrayList<Integer> { ... } with

two methods inside with correct method signatures.

(Subject to deductions below)

- 3 Should not have a private instance variable of type

ArrayList<Integer>, since we are using inheritance (as

we did in lab03.) Therefore "this" is implicitly already

an ArrayList<Integer>. You are using composition, not

inheritance.

- 1 -1 missing close brace on class

- 5 Serious errors in class syntax.

- 2 There should not be a public data member of type

double to store the average temperature. Instead,

the variable to calculate the average shoud be a local

variable of the averageTemp method. You are

exposing a value that might not have a correct value,

depending on whether the averageTemp method has

been called recently or not. You should expose only

the method UNLESS you have a way to ensure that

the value being exposed is always correct---and since

making it public makes it possible for someone

outside the class to set it to any legal value of a

double, you cannot ensure that.

- 2 TempSequence<> is incorrect. So is

TempSequence<integer>. TempSequence is not a

templated class.

- 3 It isn't necessary to implement a constructor, but if

you do, you shouldn't do it by making a recursive call

to the constructor inside the constructor you are

defining. That will result in stack overflow, since there

is no base case.

- 2 Keeping the avg as an instance variable is not

appropriate, since you don't use it anywhere except

inside the averageTemp method as a temporary

result before returning the value. It should be a local

variable inside that method.

- 3 Your overridden methods for add and size will

lead to infinite recursion when called on temp inside

averageTemp and aboveAverage.

- 3 Relying on an instance variable size is dangerous.

The size could be changed by calls to the add or set

methods. Instead, you should recompute size inside

the averageTemp and aboveAverage methods.

- 3 You don't need a constructor, but if you implement

one, it makes no sense to declare a local variable n of

type ArrayList<Integer> inside it, that can't be

accessed anywhere outside that constructor, and is

never used.

- 1 Having an instance variable and a method with

exactly the same name CAN be done, but SHOULD

not be.

- 1 Since we are using inheritance not composition,

you don't need a constructor. But since you wrote

one, you need to at least write it correctly. You write

list=new ArrayList<Integer>; It should be list=new

ArrayList<Integer>();

1.2 public double averageTemp() method
correct (10 / 10)

+ 10 Correct implementation (subject to deductions

below.)

- 2 Since this is inheritance not composition, you

should use this, not a private instance variable list

inside the method.

- 3 Conversion to double must happen for either

numerator or denominator BEFORE the division takes

place. Otherwise, you get integer division and lose

precision.

- 3 By initializing averTemp to get(0), and then STILL

adding get(0) into the array, that value is being added

into the array TWICE.

- 3 The double increment of i (both in loop header,

and inside loop) will result in skipping every other

element.

- 5 Did not accumulate a sum. Perhaps you meant to

write avg+= instead of avg= ? In any case I wonder

whether it's a good idea to accumulate a sum in a

variable called avg.

- 3 Cannot use this[i] notation in Java for an

ArrayList<Integer>. Must use this.get(i) instead

+ 0 This implementation is too far from correct to

receive any partial credit. See submission specific

comments below for why.

- 3 Divide by this.size() to get average, not by 2.

- 5 You are calculating your result based on the

variable myTempSequence, which is a local variable

declared inside the constructor; a variable which is

out of scope and garbage collected immediately after

the constructor ends. So this won't work at all. You

should be using "this" instead of myTempSequence

- 2 this.length is a method for ArrayLists, and its called

this.size() (javadoc was provided on the handout with

the exam, so you didn't have to have this memorized,

but you did need to look it up.)

- 1 Single letter variables names a, b, c are not good

practice. How about len, sum and avg if you want

something really short that is at least minimally

descriptive?

1.3 public TempSequence aboveAverage()
(10 / 10)

+ 10 Correct implementation (subject to deductions

below.)

- 3 Since this is inheritance, not composition, you

should use this, not a private instance of

ArrayList<Integer> inside the method.

- 3 Value returned MUST be a TempSequence, NOT

an ArrayList<Integer>

- 1 In Java, constructor must be invoked with (), i.e.

TempSequence aboveList = new TempSequence() ;

- 1 Missing semicolon

- 1 Missing close brace on method.

- 3 TempSequence<Integer> is incorrect syntax;

TempSequence is not a templated class.

- 3 You are using the average of an empty

TempSequence as the basis of this method. How is

that going to work?

- 3 Comparing against an instance variable that stores

the average temperature requires that the

averageTemp method has been called, and IT MIGHT

NOT HAVE BEEN. So this code cannot be

guaranteed to operate correctly without depending

on a particular order of execution. Even setting it to

a flag value such as -99999.99 initially, and recalling

averageTemp if it doesn't match that value isn't

guaranteed to work. Since TempSequence extends

ArrayList<Integer>, there is the opportunity to add,

remove, or set additional temperature values after

averageTemp has always been called. The only way

to ensure correctness is to ALWAYS call

averageTemp inside aboveAverage, which then

renders the instance variable useless.

- 3 CANNOT return 0 from a method that returns type

TempSequence. You could just return the newly

constructed empty TempSequence instead.

- 3 Rounding, as opposed to truncating, the average

temperature to an integer, before comparing is not

necessary, and introduces correctness problems.

Suppose the average temperature ends up being 71.6

Then 72 is an above average temperature. However,

71.2 gets rounded up to 72 before the comparison

and 72 will then not be included in the final result.

- 3 Invoking this.averageTemp() inside the loop

results in recalculating that result every time. It would

be better to calculate it only once outside the loop.

Otherwise, the running time ends up being O(n^2).

- 3 Cannot use this[i] notation in Java for an

ArrayList<Integer>. Must use this.get(i) instead and

instead of result[j]=x use result.set(j,x) or result.add(x)

instead.

- 3 In Java, declaring TempSequence result; creates

an uninitialized reference to a TempSequence, not an

instance of TempSequence (as it would in C++). You

need TempSequence result = new TempSequence();

+ 0 Regrettably, this is too far from a correct

implementation to receive any partial credit. See the

submission specific instructions for further notes.

- 2 newSeq.add(this.get(i)) NOT

TempSequence.add(this.get(i)); add is a non-static

method, so it has to be invoked on the instance (the

instance of TempSequence that you are returning),

not the class.

+ 0 Click here to replace this description.

- 3 NOT: results.get(count) = this.get(i); count++; BUT

RATHER either: results.set(count,this.get(i)); count++

OR BETTER YET, JUST: results.add(this.get(i));

- 3 TempSequence<> is incorrect syntax, since

TempSequence is not a templated class.

- 5 You are calculating your result based on the

variable myTempSequence, which is a local variable

declared inside the constructor; a variable which is

out of scope and garbage collected immediately after

the constructor ends. So this won't work at all.

Page 3

CMPSC 56 E02a

TOTAL POINTS

26 / 30

QUESTION 1

Question 5 (coding) 30 pts

1.1 Correct structure (9 / 10)

+ 10 10 pts correct structure of class: public class

TempSequence extends ArrayList<Integer> { ... } with

two methods inside with correct method signatures.

(Subject to deductions below)

- 3 Should not have a private instance variable of type

ArrayList<Integer>, since we are using inheritance (as

we did in lab03.) Therefore "this" is implicitly already

an ArrayList<Integer>. You are using composition, not

inheritance.

- 1 -1 missing close brace on class

- 5 Serious errors in class syntax.

- 2 There should not be a public data member of type

double to store the average temperature. Instead,

the variable to calculate the average shoud be a local

variable of the averageTemp method. You are

exposing a value that might not have a correct value,

depending on whether the averageTemp method has

been called recently or not. You should expose only

the method UNLESS you have a way to ensure that

the value being exposed is always correct---and since

making it public makes it possible for someone

outside the class to set it to any legal value of a

double, you cannot ensure that.

- 2 TempSequence<> is incorrect. So is

TempSequence<integer>. TempSequence is not a

templated class.

- 3 It isn't necessary to implement a constructor, but if

you do, you shouldn't do it by making a recursive call

to the constructor inside the constructor you are

defining. That will result in stack overflow, since there

is no base case.

- 2 Keeping the avg as an instance variable is not

appropriate, since you don't use it anywhere except

inside the averageTemp method as a temporary

result before returning the value. It should be a local

variable inside that method.

- 3 Your overridden methods for add and size will

lead to infinite recursion when called on temp inside

averageTemp and aboveAverage.

- 3 Relying on an instance variable size is dangerous.

The size could be changed by calls to the add or set

methods. Instead, you should recompute size inside

the averageTemp and aboveAverage methods.

- 3 You don't need a constructor, but if you implement

one, it makes no sense to declare a local variable n of

type ArrayList<Integer> inside it, that can't be

accessed anywhere outside that constructor, and is

never used.

- 1 Having an instance variable and a method with

exactly the same name CAN be done, but SHOULD

not be.

- 1 Since we are using inheritance not composition,

you don't need a constructor. But since you wrote

one, you need to at least write it correctly. You write

list=new ArrayList<Integer>; It should be list=new

ArrayList<Integer>();

1.2 public double averageTemp() method
correct (7 / 10)

+ 10 Correct implementation (subject to deductions

below.)

- 2 Since this is inheritance not composition, you

should use this, not a private instance variable list

inside the method.

- 3 Conversion to double must happen for either

numerator or denominator BEFORE the division

takes place. Otherwise, you get integer division and

lose precision.

- 3 By initializing averTemp to get(0), and then STILL

adding get(0) into the array, that value is being added

into the array TWICE.

- 3 The double increment of i (both in loop header,

and inside loop) will result in skipping every other

element.

- 5 Did not accumulate a sum. Perhaps you meant to

write avg+= instead of avg= ? In any case I wonder

whether it's a good idea to accumulate a sum in a

variable called avg.

- 3 Cannot use this[i] notation in Java for an

ArrayList<Integer>. Must use this.get(i) instead

+ 0 This implementation is too far from correct to

receive any partial credit. See submission specific

comments below for why.

- 3 Divide by this.size() to get average, not by 2.

- 5 You are calculating your result based on the

variable myTempSequence, which is a local variable

declared inside the constructor; a variable which is

out of scope and garbage collected immediately after

the constructor ends. So this won't work at all. You

should be using "this" instead of myTempSequence

- 2 this.length is a method for ArrayLists, and its called

this.size() (javadoc was provided on the handout with

the exam, so you didn't have to have this memorized,

but you did need to look it up.)

- 1 Single letter variables names a, b, c are not good

practice. How about len, sum and avg if you want

something really short that is at least minimally

descriptive?

1.3 public TempSequence aboveAverage()
(10 / 10)

+ 10 Correct implementation (subject to deductions

below.)

- 3 Since this is inheritance, not composition, you

should use this, not a private instance of

ArrayList<Integer> inside the method.

- 3 Value returned MUST be a TempSequence, NOT

an ArrayList<Integer>

- 1 In Java, constructor must be invoked with (), i.e.

TempSequence aboveList = new TempSequence() ;

- 1 Missing semicolon

- 1 Missing close brace on method.

- 3 TempSequence<Integer> is incorrect syntax;

TempSequence is not a templated class.

- 3 You are using the average of an empty

TempSequence as the basis of this method. How is

that going to work?

- 3 Comparing against an instance variable that stores

the average temperature requires that the

averageTemp method has been called, and IT MIGHT

NOT HAVE BEEN. So this code cannot be

guaranteed to operate correctly without depending

on a particular order of execution. Even setting it to

a flag value such as -99999.99 initially, and recalling

averageTemp if it doesn't match that value isn't

guaranteed to work. Since TempSequence extends

ArrayList<Integer>, there is the opportunity to add,

remove, or set additional temperature values after

averageTemp has always been called. The only way

to ensure correctness is to ALWAYS call

averageTemp inside aboveAverage, which then

renders the instance variable useless.

- 3 CANNOT return 0 from a method that returns type

TempSequence. You could just return the newly

constructed empty TempSequence instead.

- 3 Rounding, as opposed to truncating, the average

temperature to an integer, before comparing is not

necessary, and introduces correctness problems.

Suppose the average temperature ends up being 71.6

Then 72 is an above average temperature. However,

71.2 gets rounded up to 72 before the comparison

and 72 will then not be included in the final result.

- 3 Invoking this.averageTemp() inside the loop

results in recalculating that result every time. It would

be better to calculate it only once outside the loop.

Otherwise, the running time ends up being O(n^2).

- 3 Cannot use this[i] notation in Java for an

ArrayList<Integer>. Must use this.get(i) instead and

instead of result[j]=x use result.set(j,x) or result.add(x)

instead.

- 3 In Java, declaring TempSequence result; creates

an uninitialized reference to a TempSequence, not an

instance of TempSequence (as it would in C++). You

need TempSequence result = new TempSequence();

+ 0 Regrettably, this is too far from a correct

implementation to receive any partial credit. See the

submission specific instructions for further notes.

- 2 newSeq.add(this.get(i)) NOT

TempSequence.add(this.get(i)); add is a non-static

method, so it has to be invoked on the instance (the

instance of TempSequence that you are returning),

not the class.

+ 0 Click here to replace this description.

- 3 NOT: results.get(count) = this.get(i); count++; BUT

RATHER either: results.set(count,this.get(i)); count++

OR BETTER YET, JUST: results.add(this.get(i));

- 3 TempSequence<> is incorrect syntax, since

TempSequence is not a templated class.

- 5 You are calculating your result based on the

variable myTempSequence, which is a local variable

declared inside the constructor; a variable which is

out of scope and garbage collected immediately after

the constructor ends. So this won't work at all.

Page 3

CMPSC 56 E02a

TOTAL POINTS

7 / 30

QUESTION 1

Question 5 (coding) 30 pts

1.1 Correct structure (7 / 10)

+ 10 10 pts correct structure of class: public class

TempSequence extends ArrayList<Integer> { ... } with

two methods inside with correct method signatures.

(Subject to deductions below)

- 3 Should not have a private instance variable of type

ArrayList<Integer>, since we are using inheritance (as

we did in lab03.) Therefore "this" is implicitly already

an ArrayList<Integer>. You are using composition, not

inheritance.

- 1 -1 missing close brace on class

- 5 Serious errors in class syntax.

- 2 There should not be a public data member of

type double to store the average temperature.

Instead, the variable to calculate the average shoud

be a local variable of the averageTemp method.

You are exposing a value that might not have a

correct value, depending on whether the

averageTemp method has been called recently or

not. You should expose only the method UNLESS

you have a way to ensure that the value being

exposed is always correct---and since making it

public makes it possible for someone outside the

class to set it to any legal value of a double, you

cannot ensure that.

- 2 TempSequence<> is incorrect. So is

TempSequence<integer>. TempSequence is not a

templated class.

- 3 It isn't necessary to implement a constructor, but if

you do, you shouldn't do it by making a recursive call

to the constructor inside the constructor you are

defining. That will result in stack overflow, since there

is no base case.

- 2 Keeping the avg as an instance variable is not

appropriate, since you don't use it anywhere except

inside the averageTemp method as a temporary

result before returning the value. It should be a local

variable inside that method.

- 3 Your overridden methods for add and size will

lead to infinite recursion when called on temp inside

averageTemp and aboveAverage.

- 3 Relying on an instance variable size is dangerous.

The size could be changed by calls to the add or set

methods. Instead, you should recompute size inside

the averageTemp and aboveAverage methods.

- 3 You don't need a constructor, but if you implement

one, it makes no sense to declare a local variable n of

type ArrayList<Integer> inside it, that can't be

accessed anywhere outside that constructor, and is

never used.

- 1 Having an instance variable and a method with

exactly the same name CAN be done, but SHOULD

not be.

- 1 Since we are using inheritance not composition,

you don't need a constructor. But since you wrote

one, you need to at least write it correctly. You write

list=new ArrayList<Integer>; It should be list=new

ArrayList<Integer>();

1.2 public double averageTemp() method
correct (0 / 10)

+ 10 Correct implementation (subject to deductions

below.)

- 2 Since this is inheritance not composition, you

should use this, not a private instance variable list

inside the method.

- 3 Conversion to double must happen for either

numerator or denominator BEFORE the division takes

place. Otherwise, you get integer division and lose

precision.

- 3 By initializing averTemp to get(0), and then STILL

adding get(0) into the array, that value is being added

into the array TWICE.

- 3 The double increment of i (both in loop header,

and inside loop) will result in skipping every other

element.

- 5 Did not accumulate a sum. Perhaps you meant to

write avg+= instead of avg= ? In any case I wonder

whether it's a good idea to accumulate a sum in a

variable called avg.

- 3 Cannot use this[i] notation in Java for an

ArrayList<Integer>. Must use this.get(i) instead

+ 0 This implementation is too far from correct to

receive any partial credit. See submission specific

comments below for why.

- 3 Divide by this.size() to get average, not by 2.

- 5 You are calculating your result based on the

variable myTempSequence, which is a local variable

declared inside the constructor; a variable which is

out of scope and garbage collected immediately after

the constructor ends. So this won't work at all. You

should be using "this" instead of myTempSequence

- 2 this.length is a method for ArrayLists, and its called

this.size() (javadoc was provided on the handout with

the exam, so you didn't have to have this memorized,

but you did need to look it up.)

- 1 Single letter variables names a, b, c are not good

practice. How about len, sum and avg if you want

something really short that is at least minimally

descriptive?

This code does not reflect enough

understanding of how Java works to receive

any credit for this method.

Here's what this code does: it declares a local

variable called avg.

Therre is then an assignment to a variable "list",

but you didn't declare this variable, so that's a

syntax error.

The line of code invokes the constructor of

ArrayList<Integer>, so now list points to an

empty list of integer values. It then tries to sum

the values of that list--but note that there cannot

possibly every be any values in that list. You

just created it as a local variable, and did

nothing to add anything into it. You then return

that as the average, without dividing by the

number of elements.

As much as it pains me to say it---if I were to

give you full credit, and then make deductions

for each of these errors, you'd get down to zero

(or possibly less than zero, though I generally

don't do that.) Which is why I'm simply not able

to assign any partial credit.

1.3 public TempSequence aboveAverage()
(0 / 10)

+ 10 Correct implementation (subject to deductions

below.)

- 3 Since this is inheritance, not composition, you

should use this, not a private instance of

ArrayList<Integer> inside the method.

- 3 Value returned MUST be a TempSequence, NOT

an ArrayList<Integer>

- 1 In Java, constructor must be invoked with (), i.e.

TempSequence aboveList = new TempSequence() ;

- 1 Missing semicolon

- 1 Missing close brace on method.

- 3 TempSequence<Integer> is incorrect syntax;

TempSequence is not a templated class.

- 3 You are using the average of an empty

TempSequence as the basis of this method. How is

that going to work?

- 3 Comparing against an instance variable that stores

the average temperature requires that the

averageTemp method has been called, and IT MIGHT

NOT HAVE BEEN. So this code cannot be

guaranteed to operate correctly without depending

on a particular order of execution. Even setting it to

a flag value such as -99999.99 initially, and recalling

averageTemp if it doesn't match that value isn't

guaranteed to work. Since TempSequence extends

ArrayList<Integer>, there is the opportunity to add,

remove, or set additional temperature values after

averageTemp has always been called. The only way

to ensure correctness is to ALWAYS call

averageTemp inside aboveAverage, which then

renders the instance variable useless.

- 3 CANNOT return 0 from a method that returns type

TempSequence. You could just return the newly

constructed empty TempSequence instead.

- 3 Rounding, as opposed to truncating, the average

temperature to an integer, before comparing is not

necessary, and introduces correctness problems.

Suppose the average temperature ends up being 71.6

Then 72 is an above average temperature. However,

71.2 gets rounded up to 72 before the comparison

and 72 will then not be included in the final result.

- 3 Invoking this.averageTemp() inside the loop

results in recalculating that result every time. It would

be better to calculate it only once outside the loop.

Otherwise, the running time ends up being O(n^2).

- 3 Cannot use this[i] notation in Java for an

ArrayList<Integer>. Must use this.get(i) instead and

instead of result[j]=x use result.set(j,x) or result.add(x)

instead.

- 3 In Java, declaring TempSequence result; creates

an uninitialized reference to a TempSequence, not an

instance of TempSequence (as it would in C++). You

need TempSequence result = new TempSequence();

+ 0 Regrettably, this is too far from a correct

implementation to receive any partial credit. See the

submission specific instructions for further notes.

- 2 newSeq.add(this.get(i)) NOT

TempSequence.add(this.get(i)); add is a non-static

method, so it has to be invoked on the instance (the

instance of TempSequence that you are returning),

not the class.

+ 0 Click here to replace this description.

- 3 NOT: results.get(count) = this.get(i); count++; BUT

RATHER either: results.set(count,this.get(i)); count++

OR BETTER YET, JUST: results.add(this.get(i));

- 3 TempSequence<> is incorrect syntax, since

TempSequence is not a templated class.

- 5 You are calculating your result based on the

variable myTempSequence, which is a local variable

declared inside the constructor; a variable which is

out of scope and garbage collected immediately after

the constructor ends. So this won't work at all.

You are declaring a local variable of type

ArrayList<Integer>, which is the wrong return

type. A TempSequence "is-a"

ArrayList<Integer>, but an ArrayList<integer>

isn't a TempSequence, so it can't be returned

from a method that is suppose to return one.

Next, you create a local variable of type

ArrayListInteger> called "list", but you didn't

declare this variable, so that's a syntax error.

As in the previous problem, list is now yet

another completely empty ArrayList<Integer>.

You then try to use [] notation on the ArrayList,

which you cannot do in Java.

You are comparing against the instance variable

average---even supposing that averageTemp

were implemented correctly, there is no

guarantee that it has been called, because you

never called it. So, there is no guarantee it

doesn't still have the value 0.

As much as it pains me to say it---if I were to

give you full credit, and then make deductions

for each of these errors, you'd get down to zero

(or possibly less than zero, though I generally

don't do that.) Which is why I'm simply not able

to assign any partial credit.

Page 3

	CS56, W16, E02, Q01, Midterm Exam Handout
	E02-high_Redacted
	E02-medium_Redacted
	E02-low_Redacted
	E02-Q5-high_Redacted
	E02-Q5-medium_Redacted
	E02-Q5-low_Redacted

