
Please:

No Staples.
No Paperclips.
No folded down corners.

 2

 1
H01
CS56 W16

Name:
(as it would appear on official course roster)

Umail address: @umail.ucsb.edu section
4, 5, or 6

Optional: name you wish to be called
if different from name above.

Optional: name of "homework buddy"
(leaving this blank signifies "I worked alone"

You may collaborate on this homework with AT MOST one person, an optional "homework buddy".

H01: Due Thursday, 01.07 in Lab
Variables, Types (double vs. float, primitive vs. reference etc.) Instance Variables, Methods (HFJ Ch3,4)
Assigned: Mon 01.04 Total Points: 46

MAY ONLY BE TURNED IN IN THE LECTURE/LAB LISTED ABOVE AS THE DUE DATE,
OR IF APPLICABLE, SUBMITTED ON GRADESCOPE. There is NO MAKEUP for missed assignments;
in place of that, we drop the five lowest scores (if you have zeros, those are the five lowest scores.)

Reading Assignment: Throughout the quarter, when I refer to HFJ, this
means your Head First Java, 2nd Edition textbook.

Read HFJ:Chapter_3 (especially pages 59-62) and reading notes on
the wiki
Read HFJ:Chapter_4 and reading notes on the wiki

1. (6 pts) Fill in the homework header properly—this helps us keep the
grading pipeline flowing so that you get credit for your work and get
feedback more quickly.

writing either 4, 5, or 6 to indicate your discussion section (lab) meeting time

entering BOTH your name AND your umail address EVERY time.

Paper submissions: One sheet of 8.5x11 paper double sided, or two DISCONNECTED SHEETS with your name on EACH. Please: NO STAPLES, NO
PAPERCLIPS, NO TAPE, NO ATTACHMENT OF ANY KIND. These damage the document scanner.

Scanned submission: When submitting by PDF upload: scan your pages legibly and SCAN IN THE CORRECT ORDER. Page 1 first, then Page 2, in the
correct orientation. Failure to scan properly may result in zero credit, meaning you "use up" one of your five "drop the lowest grade" slots.

2. Based on your reading in HFJ Chapter 3:

a. (4 pts) If I write 3.4, is that of type double, or float?

b. (4 pts) Declare x as a double and assign it the value 3.4 (as a double)

c. (4 pts) Declare y as a float and assign it the value 3.4 (as a float)

3. (5 pts) In C++, the name of a plain old array of Student objects is not an object, but is rather a pointer to a Student (i.e. it is of
type Student *. What about in Java—is an array an object, yes or no?

https://foo.cs.ucsb.edu/56wiki/index.php/HFJ
https://foo.cs.ucsb.edu/56wiki/index.php/HFJ:Chapter_3
https://foo.cs.ucsb.edu/56wiki/index.php/HFJ:Chapter_4

 2
H01
CS56 W16

 end

4. Variables that represent a primitive type (e.g. boolean x; or int y;) and variables containing object
references (String w; or Student z;) have this in common—they are both composed of bits in memory.
But—as explained in HFJ Chapter 3—they differ in what the bits actually represent. You won't get this one
by just guessing—you really have to read the book.

a. (4 pts) What do the bits that represent int y; represent?
Assume that y is assigned the value 13

b. (4 pts) What do the bits that represent String w; represent?
Assume that w is assigned the value "foo".

5. Consider these questions about memory—answers are in Chapter 3 of HFJ.

a. (2 pts) Does the amount of memory taken up by an object reference differ for different kinds of objects (say String vs.
ArrayList<String>?)

b. (2 pts) Does the amount of memory taken up by the object itself differ for different kinds of objects (assuming the same
JVM)

c. (2 pts) Can the amount of memory taking up for an object reference for a object particular type (say String) differ from one
JVM to another?

6. Based on your reading in HFJ Chapter 3, p. 59-62 and HFJ Chapter 4 p. 84:

a. (4 pts) Suppose I have a class called Student. How do I declare and allocate space for a plain old Java array called students
that can hold 5 references to Student objects?

b. (5 pts) Java for loops look pretty much just like C++ for loops (see HFJ page 10 if you really need to check.) Given that,
assuming there is a default constructor Student() that you can call to create a new Student object, write a for loop that
initializes all of the elements of the array students (from the previous problem) to be instances of the Student class.

