
Metrics For QuantifyingPartially Ordered Transport Services �Rahmi Marasli Paul D. Amery Phillip T. ConradComputer and Information Science DepartmentUniversity of Delaware, Newark, DE 19716 USAEmail: fmarasli,amer,pconradg@cis.udel.eduPhone: (302) 831-1944 Fax: (302) 831-8458AbstractPartially ordered transport service o�ers a middle ground between ordered service and un-ordered service. For applications requiring only partial order rather than total order, partiallyordered service provides performance improvements in terms of delay and bu�er utilization. In-tuitively, one expects a partially ordered service to provide relatively greater performance im-provement when the partial order speci�ed by the service user is more \exible" (i.e., has fewerorder constraints) and smaller performance improvement when the partial order is less \exible"(i.e., has more order constraints). In this paper, we investigate this notion formally by proposingmetrics for the \exibility" of partial orders, and determining through an OPNET simulation howwell these metrics correlate with expected performance. Two metrics are investigated: m(PO),and density. Results show that for �xed system conditions (e.g., �xed bu�er size, network lossrate, and round-trip delay,) m(PO) and density correlate highly with the performance statisticsinvestigated. However, since density is signi�cantly easier to calculate, our conclusion is that den-sity is the best way to rank partial orders as to their ability to provide performance improvementsusing partially ordered service.Keywords: transport protocol, partially ordered service, multimedia, correlation, simulation, qual-ity of service1 IntroductionComputer networks traditionally o�er either ordered (e.g., TCP) or unordered (e.g., UDP) transportservice. Some applications such as multimedia do not need an ordered service since they can toleratesome reordering in the delivery of the objects. The degree of reordering should be within the spe-ci�c limits of the applications; otherwise problems result at the application layer such as increased�This work supported, in part, by the National Science Foundation (NCR-9314056), the US Army CommunicationElectronics Command (CECOM), Ft. Monmouth, the US Army Research O�ce (DAAH04-94-G-0093, DAAL03-92-G-0070), and the US Department of the Army, Army Research Laboratory under Cooperative Agreement DAAL01-96-2-0002 Federated Laboratory ATIRP Consortium.yCorresponding author.

complexity, increased bu�ering, and loss of synchronization. For such applications, neither orderednor unordered service is a perfect �t. Ordered service insists on delivering all data in sequence evenif it results in higher delay and bu�er utilization. Unordered service, on the other hand, minimizesdelay and bu�er utilization, but provides no order guarantees. If an application with some orderconstraints uses an unordered transport service, the application programmer is burdened with thetask of implementing mechanisms for object ordering.To achieve better tradeo�s between order and other quality-of-service (QoS) parameters (e.g., delay),and to satisfy the minimal order requirements of applications, partially ordered transport service hasbeen proposed [1, 5, 7]. Partially ordered service �lls the gap between ordered and unordered serviceby allowing applications to specify the delivery order of objects in the form of a partial order. Sincepartially ordered service does not insist on delivering all objects in sequence, it can provide lower delayand bu�er utilization than ordered service, while, at the same time, guaranteeing an application'spartial order requirements.The authors are designing a new transport-layer protocol, called Partial Order Connection (POC),that provides partially ordered and partially reliable service to its users [1, 5, 7]. POC enhancesan unreliable and unordered network service just enough to allow applications to specify controlledlevels of loss and reordering in the delivery of the objects. Thus, both the order and the reliabilityrequirements of the applications are generalized in POC. This is illustrated in Figure 1 in whichreliability and order are shown as orthogonal axes. Ordered, reliable service (e.g., TCP) is representedby a single point at the upper right, and unordered, unreliable service (e.g., UDP) is represented bya single point at the lower left. POC, on the other hand, provides a range of services covering theentire plane. Analytic study has formally con�rmed the intuitive results that, in general,� a partially reliable service provides lower delay and higher throughput than a reliable ser-vice [11], and� a partially ordered service provides lower delay than an ordered service while consuming lessbu�er space [10].A question arises as to what units should be used to label the axes. If we represent unreliable serviceby 0 and reliable service by 1, we could say that the reliability axis is labeled with the probabilityof delivering a packet. In this paper, we attempt to �nd a similar metric for the order axis. Whatis desirable is a metric where ordered service corresponds to 1, unordered service corresponds to 0,and the partial orders that lie in between have meaningful values in this range. In particular, wewould like the values for this metric to correlate highly with the expected performance statistics forpartially ordered service.Therefore, we investigate two metrics of a partial order's exibility and the correlation between thesemetrics and the performance observed in the corresponding partially ordered service. The two metricsconsidered are m(PO) and density. Reference [1] proposes m(PO), a metric based on number oflinear extensions of a partial order, as a complexity measure of di�erent partially ordered services.Density [9] is another metric that measures the exibility of a partial order.This paper studies by way of simulation the correlation of these two metrics to four important trans-port layer performance statistics: throughput, average end-to-end packet delay, standard deviationof end-to-end packet delay, and average bu�er utilization. Having a metric with high correlation toperformance statistics would allow us (for a particular set of network conditions) to characterize the\region" of partial orders where partially ordered service o�ers signi�cant performance improvements2

Order

R
el

ia
bi

lit
y

POC

Ordered, Reliable

Unordered, Unreliable

10
0

1

Figure 1: Reliability vs. Orderover ordered service. Our hypothesis is that eitherm(PO) or density can be used for this purpose. Todetermine if this is true, we use simulation to generate correlation values between these two metricsand the performance statistics over a wide range of �xed independent system conditions (i.e., �xednetwork loss rate, �xed bu�er size, and �xed network layer delay).The paper is organized as follows: Section 2 introduces a partially ordered service and motivates itwith two example applications. The metrics m(PO) and density are formally de�ned in Section 3.Section 4 explains the experimental design for the simulation study and presents the results.2 Why Use a Partially Ordered Service?References [1, 7] introduce the development and motivation for a partially ordered protocol/serviceincluding several examples. A summary of this material is provided here.Essentially, a partially ordered service can be employed and is motivated whenever a total order onthe delivery of objects is not mandatory. When two objects can be delivered to a transport serviceuser in either order, there is no need to use an ordered service that delays delivery of the second onetransmitted until the �rst arrives. In general, the order requirements of objects in a partially orderedservice can be represented by using a partial order PO over the set [N] = f1; 2; . . . ; Ng, where N isthe total number of objects to be communicated, and x � y in PO signi�es that object x must bedelivered to the receiving application prior to object y.2.1 A Simple Application for Partially Ordered Service: Screen RefreshConsider an application that must do a \screen refresh" on a workstation screen/display containingmultiple windows (see Figure 2). In refreshing the screen from a remote source, objects (icons, still orvideo images) that overlap one another should be refreshed from bottom to top for optimal redisplaye�ciency. Objects that do not overlap may be refreshed in any order. Therefore, the way in which3

NETWORK

NETWORK

NETWORK

NETWORK

Ordered Service

PartiallyOrderedService

PartiallyOrderedService

Unordered Service

1 2 3 4

1

2

3
4

1 2

3 4

1
2
3
4

A.

B.

C.

D.

1
2

3
4

1

32

4

1

2
3

4

1
2

4
3

Figure 2: Screen Refreshthe windows overlap induces a partial order.Consider the four cases in Figure 2. A sender wishes to refresh a remote display that contains fouractive windows (objects) named f1 2 3 4g. Assume the windows are transmitted in numerical orderand the receiving application refreshes windows as soon as the transport layer delivers them. If thewindows are con�gured as seen in Figure 2.A, an ordered service (sometimes referred as a FIFOchannel) is required. In this case, only one ordering is permitted at the destination. If window 2 isreceived before window 1, the transport layer must bu�er window 2 and deliver it only after window 1arrives and is delivered.At the other extreme, if the windows are con�gured as in Figure 2.D, an unordered service wouldsu�ce. Here any of 4! delivery orderings would satisfy the application since the four windows canbe refreshed in any order. Each of these orderings represents a linear extension (LE) of the partialorder (PO). As notation, four ordered objects are written 1 � 2 � 3 � 4, and unordered objectsare written using a parallel operator: 1jj2jj3jj4 (xjjy means there is no dependency relation betweenobjects x and y). Figures 2.B and 2.C demonstrate two (of many) window con�gurations that callfor a partial order delivery service. In these cases, two and six linear extensions, respectively, arepermitted at the destination.2.2 Using Partially Ordered Service for Remote Document RetrievalReference [6] describes a prototype system for the retrieval and display of multimedia documents froma remote server using Partial Order Connection version 2 (POCv2), a partially ordered and partiallyreliable1 transport protocol providing coarse-grained synchronization support. In this system, multi-media documents are described using a Prototype Multimedia Speci�cation Language (PMSL). Thislanguage gives an author the ability to specify the synchronization, order, and reliability require-1Partial reliability refers to the notion that individual objects may have di�erent QoS requirements with respectto loss; some may require reliable transport service (guaranteed no-loss), while for others, unreliable transport service(best-e�ort) may su�ce. Partially reliable transport service provides a middle ground between these two in which theloss tolerance of each object can be speci�ed individually. References [1, 5, 6, 7] consider partial order and partialreliability in juxtaposition, while [10] and this paper focus solely on partial order.4

ments of the objects that make up a temporal multimedia document. The application serving thesedocuments can extract these requirements from such a speci�cation and communicate them to thetransport layer, which then provides the necessary QoS and synchronization support.This simpli�es application development, since the document display client need not contain complexmechanisms for object synchronization and reordering. It also allows for graceful degradation, sincethe document can be presented \perfectly" when network conditions allow, and in a less than perfectbut nevertheless acceptable manner when network conditions degrade. Finally, the use of partial orderand partial reliability rather than ordered/reliable or unordered/unreliable service allows better QoStradeo�s between qualitative parameters such as order/reliability and quantitative parameters suchas delay, bu�er utilization and throughput.3 How to Quantify Partially Ordered ServicesAnalytic study shows that, in general, a partially ordered service provides increasingly better perfor-mance as the precedence constraints among the objects decrease. That is, if a more exible partialorder (PO) is used, then the overall system performance can be improved. In this section, we in-troduce two metrics as possible candidates for quantifying partially ordered services: m(PO) anddensity. Each of these metrics measures the exibility of a partial order from a di�erent point ofview. In the simulation study of Section 4, we determine how well, if at all, these metrics correlateto the expected system performance.3.1 A metric based on number of linear extensions: m(PO)The complexity of a partial order PO can be quanti�ed by its set of linear extensions, denotedL(PO). Each linear extension in the set L(PO) is essentially one of the orderings of the objects thatis permitted by PO. From a purely theoretical point of view, the number of linear extensions of PO,denoted e(PO), is thought as the best single number which measures the complexity of PO [14].Clearly, for N objects, e(complete order) = 1 and e(no order) = N ! It is argued in [1] that e(PO)appropriately quanti�es a desired partially ordered service in communication networks. Intuitivelythis metric correlates to the level of e�ort and resources a protocol would have to use to provide aparticular partial order service. This is because the larger the number of permitted orderings allowedat the receiving application (i.e., transport service user), the less overhead is expected for a protocol(i.e., transport service provider) to provide acceptable object delivery.One of the main problems with e(PO) is that it gets large very fast with increasing number ofobjects in PO. To avoid such large numbers, m(PO) is de�ned in [1] as a normalized logarithmicscale of e(PO). m(PO) is a normalized partial order metric in the interval [0; 1] where 0 representsan ordered service, values from 0 to 1 represent increasingly more exible partially ordered service,and 1 represents unordered service:m(PO) = log e(PO)logN ! (1)Using a metric based on e(PO) presents some di�culties since computing e(PO) for an arbitrarypartial order is #P � Complete, and it is therefore highly unlikely that any polynomial algorithmexists for this computation [3, 4]. 5

3.2 A metric based on precedence constraints: densityThe density of a PO is de�ned as follows [9]. Let a partial order PO be represented as a transitivelyclosed 0-1 matrix of size N by N , where ai;j = 1 i� i � j in PO. (In this representation, ai;i = 0,for all i.) Let D be de�ned as D = PNi=1PNj=1 aij . D is the total number of restrictions in PO,or the number of edges in the transitively closed precedence graph. The maximum value for D isN(N � 1)=2, therefore the density, d, is de�ned by the ratio d = 2D=[N(N � 1)] and ranges over theinterval [0; 1].Density correlates intuitively with the exibility of a partial order; a chain has a value of 1, while anantichain has a value of 0. The density also has the advantage of being relatively easy to compute.4 Simulation StudyIn Section 3, we introduce two metrics as possible candidates for quantifying partially ordered trans-port services. In this section, by way of simulation, we show that both of these metrics correlatehighly to various performance statistics. But �rst, we introduce the de�nition of correlation andperformance statistics, and the partial orders used in experiments.4.1 De�nition of CorrelationThe correlation coe�cient between two variables X and Y , denoted by �(X;Y), is de�ned [13], aslong as V ar(X) � V ar(Y) is nonzero, by:�(X;Y) = Cov(X; Y)pV ar(X) � V ar(Y) (2)where Cov(X;Y) = E[XY]�E[X]E[Y] is the covariance between X and Y .The correlation coe�cient is a measure of the degree of linearity between X and Y . A value of�(X;Y) near +1 or �1 indicates a high degree of linearity between X and Y , whereas a value near0 indicates lack of such linearity. Additionally, a positive value of �(X;Y) indicates that Y tends toincrease with increasingX, whereas a negative sign indicates that Y tends to decrease with increasingX.In general, as j�(X;Y)j gets closer to 1, we can make more accurate predictions of Y through X andvice-versa. As an example, suppose that for metrics M1 and M2, and QoS parameter delay, we have�(M1; delay) = 0:60 and �(M2; delay) = �0:75. Then, we can conclude that M2 is a better metricthan M1 in predicting delay. Additionally, in such a case, if delay is the only QoS parameter thatconcerns us, then we can conclude that M2 is a stronger metric than M1 in quantifying partiallyordered services.4.2 Performance Statistics of a Partially Ordered ServiceTable 1 de�nes four performance statistics for a partially ordered transport service. Throughput, �,is the rate at which the transport service delivers packets to the receiving application. End-to-endpacket delay, Tend , is the average time for a packet to reach to the receiving application once it isgiven to the sending transport entity. For many applications such as real time audio and video, lowerdelay is more important than higher throughput. STD(Tend) is the standard deviation of the end-to-end packet delay. Multimedia applications generally consist of di�erent streams such as video and6

Throughput (�) Average number of packets delivered to receiving application per unit timeEnd-to-end Packet Delay (Tend) Average end-to-end packet delaySTD(Tend) Standard deviation of end-to-end packet delayReceiver Bu�er Utilization(R Bu�) Average number of packets bu�ered at receiver waiting to be delivered to applicationTable 1: De�nition of Performance Statisticsaudio, and objects that need to be synchronized with each other. Generally, if the variation on thedelays (i.e., STD(Tend)) is smaller, then a �ner synchronization among di�erent streams or objectscan be achieved. Hence, STD(Tend) quanti�es a system's jitter. Finally, bu�er utilization at thereceiver, R Bu� , indicates the average memory resources that the transport protocol must allocateto satisfy an application. In general, it is desirable to have higher �, and lower Tend , STD(Tend) andR Bu� .4.3 Partial Orders Used In ExperimentsThere exists a large number of partial orders from which to choose for our experiments. The partialorders chosen can be classi�ed into �ve classes: chain-singleton, chain-of-antichain, antichain-chain,parallel-streams, and random. The �rst four classes are motivated by multimedia applications. Ran-dom partial orders are not suggested by any real application; we use them solely for mathematicalinvestigation. The random POs are generated by methods discussed in [9].
Density=0.067 m(PO)=0.881

2.

Density=0.022 m(PO)=0.954

1.

Density=0.133 m(PO)=0.790

3.

4.

Density=0.222 m(PO)=0.683 Density=0.333 m(PO)=0.564

5. 6.

Density=0.467 m(PO)=0.436

7.

Density=0.622 m(PO)=0.298 Density=0.800 m(PO)=0.152

8.Figure 3: Chain-Singleton POs (Directed Graph Representation)1. Chain-Singleton POs: These partial orders contain one chain and a set of singletons (seeFigure 3). Such POs can be represented as two components composed in parallel: CjjS whereC = c1 � :: � cm and S = s1jj::jjsl are the chain and the singleton components, respectively.Consider an application that opens with a welcome message and concurrently paints the screen withnon-overlapping objects. The welcome message can be represented by a chain where each word (orsentence) is a separate object. The objects put on the screen as they arrive from the network can beidenti�ed as singletons (i.e., antichain). In general, any application that contains an audio or videostream in parallel with some independent objects to be displayed can be represented by this partialorder class.2. Chain-of-Antichain POs: These partial orders contain several antichains in sequence (seeFigure 4). Such POs can be represented as several components composed in chain: A1 � :: � Am7

Density=0.733 m(PO)=0.448

9.

13.

Density=0.889 m(PO)=0.229

Density=0.533 m(PO)=0.646

3.

Density=0.467 m(PO)=0.683

2.

Density=0.711 m(PO)=0.467

8.

5.

Density=0.622 m(PO)=0.527

6.

Density=0.689 m(PO)=0.481

7.

Density=0.689 m(PO)=0.481

12.

Density=0.822 m(PO)=0.329

11.

Density=0.822 m(PO)=0.329

10.

Density=0.800 m(PO)=0.348

Density=0.556 m(PO)=0.634

4.

Density=0.356 m(PO)= 0.748

1.

Figure 4: Chain-of-Antichain POs (Petri-Net Representation)where2 each component Ai = a1jj::jjam is an antichain. Consider an application that displays ascreen full of non-overlapping objects, and then moves on to the next screen either after a certainamount of time or by an interaction from user. In each screen, the non-overlapping objects will bepainted as they arrive. Thus, each screen in such an application can be represented by an antichain.Additionally, the objects in one screen should precede everything in the next screen. Hence, theorder requirements of such applications can be represented by chain-of-antichain POs.3. Antichain-Chain POs: These partial orders contain an antichain and a chain part in sequence(see Figure 5). Such POs can be represented as two components composed in chain: A � C whereA = a1jj::jjam and C = c1 � :: � cl are the antichain and chain components, respectively. Consideran application that opens with a screen containing non-overlapping objects for di�erent icons andsome buttons for an audio or video presentation. Then, based on the user input, the applicationstarts up an audio or video. Screen that contains non-overlapping objects can be identi�ed by anantichain. Notice that this screen should precede the up-coming audio or video presentation thatcan be represented by a chain. Thus, the order requirements of such applications can be identi�edby this partial order class.4. Parallel-Streams POs: These are partial orders composed of multiple streams in parallel (seeFigure 6). Such POs can be represented as S1jj::jjSn where each Si = s1 � :: � sm is a stream. Theapplications that contain independent streams (e.g., audio, video, or subtitle streams) in parallel canbe represented by this class of partial orders.4.4 Simulation ExperimentsAt the University of Delaware's Protocol Engineering Lab, we built an OPNET-based simulationmodel to investigate the performance of partially ordered services. OPNET (OPtimize Network2\�" is the linear sum or concatenation operator for POs de�ned [8] as x � y in P � Q if and only if x; y�P andx � y in P , or x; y�Q and x � y in Q, or x�P and y�Q. 8

1.

Density=0.200 m(PO)=0.848

7.

Density=0.933 m(PO)=0.119

2.

Density=0.378 m(PO)=0.702

3.

Density=0.533 m(PO)=0.564

6.

Density=0.867 m(PO)=0.210
Density=0.778 m(PO)=0.317

8.

Density=0.978 m(PO)=0.046

5.4.

Density=0.667 m(PO)=0.436

Figure 5: Antichain-Chain POs (Petri-Net Representation)Engineering Tools) is a comprehensive engineering system capable of simulating large communicationnetworks with detailed protocol modeling and performance analysis [2]. The simulation model wasveri�ed by� detailed code-inspection and debugging,� comparing the results against those of the analytic model (whenever possible), and� designing a set of 22 experiments, stating their expected results, running the experiments, andverifying the results as expected [12].In the simulation model's veri�cation phase, results for �, R Bu� , and Tend were generally within1% of the analytic model results when each experiment was repeated three times with 30; 000objects [12]. For the current study, each simulation experiment is repeated �ve times with 30; 000objects, hence the results reported in this paper are expected also to be within 1% of the actualvalues.There existed a large number of independent system parameters (e.g., loss rates, bu�er sizes) tostudy in our experiments. It was impractical to exhaustively simulate millions of possible systemcon�gurations. Because of this, in our study, we only focused on three important parameters: lossrates, bu�er sizes and network layer delays. The values simulated for these parameters were asfollows:� Loss rates= 0.01, 0.05, 0.1, 0.2, 0.4, 0.6 (6 di�erent loss rates)� Bu�er sizes= Receiver:5; Sender:3, 5, 10 (3 di�erent bu�er sizes)� One-way network layer delays= Normal(� = 4; 6;� = 0:25 � �) (2 di�erent delays)We simulated loss levels ranging from 1% up to 60% which is well over the loss rate of most practicalnetworks. Additionally, with our choices of sender and receiver bu�er sizes, we investigated all threeinteresting cases: (1) sender bu�er size (Buf S) < receiver bu�er size (Buf R), (2) Buf S = Buf R, and9

11.

Density=0.644 m(PO)=0.252

1. 3.

Density=0.200 m(PO)=0.652

Density=0.111 m(PO)=0.771

2.

Density=0.178 m(PO)=0.671

4.

Density=0.267 m(PO)=0.552

5.

Density=0.289 m(PO)=0.533

6.

Density=0.311 m(PO)=0.519

7.

Density=0.378 m(PO)=0.473

8.

Density=0.444 m(PO)=0.366

10.

Density=0.533 m(PO)=0.317

9.

Density=0.467 m(PO)=0.354Figure 6: Parallel-Streams POs (Directed Graph Representation)(3) Buf S > Buf R. When network layer delay is 4, a sender bu�er size of 10 will be equal to thepipesize3 (i.e., delay-bandwidth product of the system). Smaller bu�er sizes represent the case whenthe pipesize is never full. By having two di�erent delay values and three di�erent bu�er sizes, westudied a variety of cases in terms of network layer delays and Buf S-to-pipesize ratios. We performed36 simulation experiments, one for each combination of these system parameter values.In each experiment, we simulated a total of 60 partial orders (40 POs in Figures 3-6 + 20 randomPOs). All POs were used in periodic form with 10 objects and 3; 000 periods. A periodic PO can bede�ned as a partial order repeating itself some number of times. Periodic POs can be represented asP 1� ::�Pw where each P i is identical, and w is the number of periods. The lossiness of the networklayer in all experiments was modeled by a Bernoulli process. Our absolute results might di�er fora bursty-loss process, however, we expect identical relative advantages in comparison of two partialorder metrics. Additionally, in all experiments, constant object sizes were used. In general, given aPO with variable object sizes, we can obtain an equivalent PO with constant object size by breakinglarge objects into smaller ones that are chained to each other. Thus, using �xed object sizes for theseexperiments does not limit the e�ectiveness of our results.The 36 experiments show that partially ordered services provide a throughput improvement onlywhen the sender has many more bu�ers than the receiver. Since most transport layer protocols tendto use sender and receiver bu�er sizes of roughly equal size, for most practical purposes, we cansay that a partially ordered service provides no throughput improvement over an ordered service.Because of this, we focus on the correlation of partial order metrics to the other performance statistics(i.e., end-to-end packet delay, standard deviation of packet delay, and bu�er utilization at receiver).Throughput correlation results are given only when larger sender bu�er sizes are simulatedBy studying the correlation of both metrics to expected performance in instances where all systemparameters are �xed, we determine which of these metrics is useful for ordering PO's by expectedperformance (independent of network conditions).3Notice that there is no advantage of using a larger sender bu�er size than the pipesize since retransmissions getpriority over new packets. 10

4.5 Simulation ResultsDens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO)loss rate = 0.01 loss rate = 0.05 loss rate = 0.1 loss rate = 0.2 loss rate = 0.4 loss rate = 0.6Sender Bu�er Size = 3Tend 0.88 -0.89 0.91 -0.91 -0.92 -0.91 0.92 -0.92 0.93 -0.92 0.91 -0.91STD(Tend) 0.86 -0.88 0.90 -0.89 0.92 -0.90 0.92 -0.92 0.94 -0.89 0.90 -0.89R Bu� 0.89 -0.90 0.91 -0.91 0.92 -0.92 0.92 -0.92 0.92 -0.92 0.91 -0.91Sender Bu�er Size = 5Tend 0.92 -0.88 0.95 -0.91 0.96 -0.93 0.96 -0.93 0.97 -0.94 0.95 -0.93STD(Tend) 0.92 -0.87 0.95 -0.90 0.96 -0.92 0.96 -0.91 0.96 -0.90 0.96 -0.88R Bu� 0.93 -0.91 0.95 -0.93 0.96 -0.95 0.96 -0.95 0.96 -0.96 0.95 -0.94Sender Bu�er Size = 10Tend 0.92 -0.89 0.96 -0.92 0.97 -0.92 0.97 -0.92 0.97 -0.92 0.97 -0.93STD(Tend) 0.93 -0.90 0.97 -0.92 0.97 -0.90 0.95 -0.86 0.95 -0.87 0.96 -0.89R Bu� 0.84 -0.84 0.87 -0.86 0.90 -0.88 0.95 -0.93 0.97 -0.96 0.97 -0.96� -0.93 0.89 -0.96 0.91 -0.97 0.92 -0.97 0.92 -0.98 0.91 -0.97 0.90Table 2: Correlation coe�cients at selected �xed system conditions when network layer delay= 4Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO)loss rate = 0.01 loss rate = 0.05 loss rate = 0.1 loss rate = 0.2 loss rate = 0.4 loss rate = 0.6Sender Bu�er Size = 3Tend 0.89 -0.89 0.90 -0.90 0.92 -0.91 0.92 -0.91 0.92 -0.92 0.91 -0.91STD(Tend) 0.87 -0.88 0.89 -0.89 0.92 -0.90 0.93 -0.90 0.92 -0.91 0.91 -0.89R Bu� 0.89 -0.89 0.91 -0.91 0.92 -0.92 0.92 -0.92 0.92 -0.92 0.91 -0.91Sender Bu�er Size = 5Tend 0.93 -0.89 0.95 -0.91 0.96 -0.93 0.97 -0.94 0.97 -0.94 0.95 -0.93STD(Tend) 0.93 -0.89 0.95 -0.90 0.97 -0.92 0.97 -0.91 0.97 -0.91 0.95 -0.91R Bu� 0.94 -0.92 0.95 -0.94 0.96 -0.95 0.96 -0.96 0.96 -0.96 0.95 -0.95Sender Bu�er Size = 10Tend 0.92 -0.89 0.96 -0.93 0.97 -0.93 0.97 -0.92 0.97 -0.92 0.98 -0.93STD(Tend) 0.93 -0.91 0.97 -0.92 0.97 -0.88 0.95 -0.86 0.95 -0.88 0.97 -0.89R Bu� 0.77 -0.78 0.80 -0.82 0.87 -0.86 0.94 -0.92 0.97 -0.96 0.97 -0.96� -0.93 0.90 -0.96 0.92 -0.97 0.92 -0.97 0.92 -0.98 0.91 -0.97 0.90Table 3: Correlation coe�cients at selected �xed system conditions when network layer delay= 6Table 2 introduces the correlation coe�cients at various �xed loss rates and �xed bu�er sizes whennetwork layer delay= 4. Similarly, Table 3 presents the corresponding values for network layer delay=6. These tables' correlation values indicate how good the partial order metrics are in correlating tothe performance statistics for the 60 partial orders at given �xed system conditions. For example, thetable entry 0:88 for density (noted as \Dens" in the table) and Tend indicates that �(density;Tend) =0:88 for the 60 POs when end-to-end packet delays obtained at Buf S = 3, loss rate= 0:01, andnetwork layer delay= 4 are considered.It can be seen that both m(PO) and density correlate highly with performance for a given set ofnetwork conditions. The observed correlation coe�cients are much higher than even we expected.Both metrics would be ideal candidates for ordering partially ordered services along the x-axis of11

Figure 1. Since density is signi�cantly easier to compute for a given PO, it is the metric of choicefor quantifying partially ordered services.References[1] Paul D. Amer, C. Chassot, Thomas J. Connolly, Phillip T. Conrad, and M. Diaz. Partial order transport servicefor multimedia and other applications. IEEE/ACM Trans on Networking, 2(5), 440{456, Oct 1994.[2] Nate Baxter, Herman Chien, Andy Loreen, Kathryn Marshall, and Steven Baraniuk. OPNET Manual. MIL 3,Inc, 1993.[3] G. Brightwell and P. Winkler. Counting Linear Extensions. Order, 8, 225{242, 1991.[4] G. Brightwell and P. Winkler. Counting Linear Extensions is #P-Complete. In Proceeedings of the 23rd ACMSymposium on the Theory of Computing, 175{181, 1991.[5] Thomas J. Connolly, Paul D. Amer, and Phillip T. Conrad. RFC-1693, An Extension to TCP: Partial OrderService.[6] Phillip T. Conrad, Edward Golden, Paul. D. Amer, and Rahmi Marasli. A Multimedia Document RetrievalSystem Using Partially-Ordered/Partially-Reliable Transport Service. In Multimedia Computing and Networking1996 (MMCN96; sponsored by SPIE/IS&T), San Jose, CA, USA, Jan 1996.[7] M. Diaz, A. Lozes, C. Chassot, and P. Amer. Partial order connections: a new concept for high speed andmultimedia services and protocols. Annals of Telecommunications, 49(5-6), 270{281, May 1994.[8] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 1990.[9] William V. Gehrlein. On Methods for Generating Random Partial Orders. Operations Research Letters, 5(6),285{291, December 1986.[10] Rahmi Marasli, Paul D. Amer, and Phillip T. Conrad. Partial Order Transport Service: An Analytic Model.(Submitted for publication).[11] Rahmi Marasli, Paul D. Amer, and Phillip T. Conrad. Retransmission-Based Partially Reliable Transport Service:An Analytic Model. In IEEE INFOCOM'96, San Fransisco, CA, March 1996. IEEE.[12] Rahmi Marasli. Partially Ordered and Partially Reliable Transport Protocols: Performance Analysis. PhD thesis,University of Delaware, (In progress).[13] Sheldon Ross. A First Course in Probability, Fourth Edition. Macmillian College Publishing, 1994.[14] R. Stanley. Enumerative Combinatorics: Volume 1. Wardsworth + Brooks/Cole Advanced Books & Software,1986.

12

