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complexity, increased bu�ering, and loss of synchronization. For such applications, neither orderednor unordered service is a perfect �t. Ordered service insists on delivering all data in sequence evenif it results in higher delay and bu�er utilization. Unordered service, on the other hand, minimizesdelay and bu�er utilization, but provides no order guarantees. If an application with some orderconstraints uses an unordered transport service, the application programmer is burdened with thetask of implementing mechanisms for object ordering.To achieve better tradeo�s between order and other quality-of-service (QoS) parameters (e.g., delay),and to satisfy the minimal order requirements of applications, partially ordered transport service hasbeen proposed [1, 5, 7]. Partially ordered service �lls the gap between ordered and unordered serviceby allowing applications to specify the delivery order of objects in the form of a partial order. Sincepartially ordered service does not insist on delivering all objects in sequence, it can provide lower delayand bu�er utilization than ordered service, while, at the same time, guaranteeing an application'spartial order requirements.The authors are designing a new transport-layer protocol, called Partial Order Connection (POC),that provides partially ordered and partially reliable service to its users [1, 5, 7]. POC enhancesan unreliable and unordered network service just enough to allow applications to specify controlledlevels of loss and reordering in the delivery of the objects. Thus, both the order and the reliabilityrequirements of the applications are generalized in POC. This is illustrated in Figure 1 in whichreliability and order are shown as orthogonal axes. Ordered, reliable service (e.g., TCP) is representedby a single point at the upper right, and unordered, unreliable service (e.g., UDP) is represented bya single point at the lower left. POC, on the other hand, provides a range of services covering theentire plane. Analytic study has formally con�rmed the intuitive results that, in general,� a partially reliable service provides lower delay and higher throughput than a reliable ser-vice [11], and� a partially ordered service provides lower delay than an ordered service while consuming lessbu�er space [10].A question arises as to what units should be used to label the axes. If we represent unreliable serviceby 0 and reliable service by 1, we could say that the reliability axis is labeled with the probabilityof delivering a packet. In this paper, we attempt to �nd a similar metric for the order axis. Whatis desirable is a metric where ordered service corresponds to 1, unordered service corresponds to 0,and the partial orders that lie in between have meaningful values in this range. In particular, wewould like the values for this metric to correlate highly with the expected performance statistics forpartially ordered service.Therefore, we investigate two metrics of a partial order's exibility and the correlation between thesemetrics and the performance observed in the corresponding partially ordered service. The two metricsconsidered are m(PO) and density. Reference [1] proposes m(PO), a metric based on number oflinear extensions of a partial order, as a complexity measure of di�erent partially ordered services.Density [9] is another metric that measures the exibility of a partial order.This paper studies by way of simulation the correlation of these two metrics to four important trans-port layer performance statistics: throughput, average end-to-end packet delay, standard deviationof end-to-end packet delay, and average bu�er utilization. Having a metric with high correlation toperformance statistics would allow us (for a particular set of network conditions) to characterize the\region" of partial orders where partially ordered service o�ers signi�cant performance improvements2
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Figure 1: Reliability vs. Orderover ordered service. Our hypothesis is that eitherm(PO) or density can be used for this purpose. Todetermine if this is true, we use simulation to generate correlation values between these two metricsand the performance statistics over a wide range of �xed independent system conditions (i.e., �xednetwork loss rate, �xed bu�er size, and �xed network layer delay).The paper is organized as follows: Section 2 introduces a partially ordered service and motivates itwith two example applications. The metrics m(PO) and density are formally de�ned in Section 3.Section 4 explains the experimental design for the simulation study and presents the results.2 Why Use a Partially Ordered Service?References [1, 7] introduce the development and motivation for a partially ordered protocol/serviceincluding several examples. A summary of this material is provided here.Essentially, a partially ordered service can be employed and is motivated whenever a total order onthe delivery of objects is not mandatory. When two objects can be delivered to a transport serviceuser in either order, there is no need to use an ordered service that delays delivery of the second onetransmitted until the �rst arrives. In general, the order requirements of objects in a partially orderedservice can be represented by using a partial order PO over the set [N ] = f1; 2; . . . ; Ng, where N isthe total number of objects to be communicated, and x � y in PO signi�es that object x must bedelivered to the receiving application prior to object y.2.1 A Simple Application for Partially Ordered Service: Screen RefreshConsider an application that must do a \screen refresh" on a workstation screen/display containingmultiple windows (see Figure 2). In refreshing the screen from a remote source, objects (icons, still orvideo images) that overlap one another should be refreshed from bottom to top for optimal redisplaye�ciency. Objects that do not overlap may be refreshed in any order. Therefore, the way in which3
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Figure 2: Screen Refreshthe windows overlap induces a partial order.Consider the four cases in Figure 2. A sender wishes to refresh a remote display that contains fouractive windows (objects) named f1 2 3 4g. Assume the windows are transmitted in numerical orderand the receiving application refreshes windows as soon as the transport layer delivers them. If thewindows are con�gured as seen in Figure 2.A, an ordered service (sometimes referred as a FIFOchannel) is required. In this case, only one ordering is permitted at the destination. If window 2 isreceived before window 1, the transport layer must bu�er window 2 and deliver it only after window 1arrives and is delivered.At the other extreme, if the windows are con�gured as in Figure 2.D, an unordered service wouldsu�ce. Here any of 4! delivery orderings would satisfy the application since the four windows canbe refreshed in any order. Each of these orderings represents a linear extension (LE) of the partialorder (PO). As notation, four ordered objects are written 1 � 2 � 3 � 4, and unordered objectsare written using a parallel operator: 1jj2jj3jj4 (xjjy means there is no dependency relation betweenobjects x and y). Figures 2.B and 2.C demonstrate two (of many) window con�gurations that callfor a partial order delivery service. In these cases, two and six linear extensions, respectively, arepermitted at the destination.2.2 Using Partially Ordered Service for Remote Document RetrievalReference [6] describes a prototype system for the retrieval and display of multimedia documents froma remote server using Partial Order Connection version 2 (POCv2), a partially ordered and partiallyreliable1 transport protocol providing coarse-grained synchronization support. In this system, multi-media documents are described using a Prototype Multimedia Speci�cation Language (PMSL). Thislanguage gives an author the ability to specify the synchronization, order, and reliability require-1Partial reliability refers to the notion that individual objects may have di�erent QoS requirements with respectto loss; some may require reliable transport service (guaranteed no-loss), while for others, unreliable transport service(best-e�ort) may su�ce. Partially reliable transport service provides a middle ground between these two in which theloss tolerance of each object can be speci�ed individually. References [1, 5, 6, 7] consider partial order and partialreliability in juxtaposition, while [10] and this paper focus solely on partial order.4



ments of the objects that make up a temporal multimedia document. The application serving thesedocuments can extract these requirements from such a speci�cation and communicate them to thetransport layer, which then provides the necessary QoS and synchronization support.This simpli�es application development, since the document display client need not contain complexmechanisms for object synchronization and reordering. It also allows for graceful degradation, sincethe document can be presented \perfectly" when network conditions allow, and in a less than perfectbut nevertheless acceptable manner when network conditions degrade. Finally, the use of partial orderand partial reliability rather than ordered/reliable or unordered/unreliable service allows better QoStradeo�s between qualitative parameters such as order/reliability and quantitative parameters suchas delay, bu�er utilization and throughput.3 How to Quantify Partially Ordered ServicesAnalytic study shows that, in general, a partially ordered service provides increasingly better perfor-mance as the precedence constraints among the objects decrease. That is, if a more exible partialorder (PO) is used, then the overall system performance can be improved. In this section, we in-troduce two metrics as possible candidates for quantifying partially ordered services: m(PO) anddensity. Each of these metrics measures the exibility of a partial order from a di�erent point ofview. In the simulation study of Section 4, we determine how well, if at all, these metrics correlateto the expected system performance.3.1 A metric based on number of linear extensions: m(PO)The complexity of a partial order PO can be quanti�ed by its set of linear extensions, denotedL(PO). Each linear extension in the set L(PO) is essentially one of the orderings of the objects thatis permitted by PO. From a purely theoretical point of view, the number of linear extensions of PO,denoted e(PO), is thought as the best single number which measures the complexity of PO [14].Clearly, for N objects, e(complete order) = 1 and e(no order) = N ! It is argued in [1] that e(PO)appropriately quanti�es a desired partially ordered service in communication networks. Intuitivelythis metric correlates to the level of e�ort and resources a protocol would have to use to provide aparticular partial order service. This is because the larger the number of permitted orderings allowedat the receiving application (i.e., transport service user), the less overhead is expected for a protocol(i.e., transport service provider) to provide acceptable object delivery.One of the main problems with e(PO) is that it gets large very fast with increasing number ofobjects in PO. To avoid such large numbers, m(PO) is de�ned in [1] as a normalized logarithmicscale of e(PO). m(PO) is a normalized partial order metric in the interval [0; 1] where 0 representsan ordered service, values from 0 to 1 represent increasingly more exible partially ordered service,and 1 represents unordered service:m(PO) = log e(PO)logN ! (1)Using a metric based on e(PO) presents some di�culties since computing e(PO) for an arbitrarypartial order is #P � Complete, and it is therefore highly unlikely that any polynomial algorithmexists for this computation [3, 4]. 5



3.2 A metric based on precedence constraints: densityThe density of a PO is de�ned as follows [9]. Let a partial order PO be represented as a transitivelyclosed 0-1 matrix of size N by N , where ai;j = 1 i� i � j in PO. (In this representation, ai;i = 0,for all i.) Let D be de�ned as D = PNi=1PNj=1 aij . D is the total number of restrictions in PO,or the number of edges in the transitively closed precedence graph. The maximum value for D isN(N � 1)=2, therefore the density, d, is de�ned by the ratio d = 2D=[N(N � 1)] and ranges over theinterval [0; 1].Density correlates intuitively with the exibility of a partial order; a chain has a value of 1, while anantichain has a value of 0. The density also has the advantage of being relatively easy to compute.4 Simulation StudyIn Section 3, we introduce two metrics as possible candidates for quantifying partially ordered trans-port services. In this section, by way of simulation, we show that both of these metrics correlatehighly to various performance statistics. But �rst, we introduce the de�nition of correlation andperformance statistics, and the partial orders used in experiments.4.1 De�nition of CorrelationThe correlation coe�cient between two variables X and Y , denoted by �(X;Y ), is de�ned [13], aslong as V ar(X) � V ar(Y ) is nonzero, by:�(X;Y ) = Cov(X; Y )pV ar(X) � V ar(Y ) (2)where Cov(X;Y ) = E[XY ]�E[X]E[Y ] is the covariance between X and Y .The correlation coe�cient is a measure of the degree of linearity between X and Y . A value of�(X;Y ) near +1 or �1 indicates a high degree of linearity between X and Y , whereas a value near0 indicates lack of such linearity. Additionally, a positive value of �(X;Y ) indicates that Y tends toincrease with increasingX, whereas a negative sign indicates that Y tends to decrease with increasingX.In general, as j�(X;Y )j gets closer to 1, we can make more accurate predictions of Y through X andvice-versa. As an example, suppose that for metrics M1 and M2, and QoS parameter delay, we have�(M1; delay) = 0:60 and �(M2; delay) = �0:75. Then, we can conclude that M2 is a better metricthan M1 in predicting delay. Additionally, in such a case, if delay is the only QoS parameter thatconcerns us, then we can conclude that M2 is a stronger metric than M1 in quantifying partiallyordered services.4.2 Performance Statistics of a Partially Ordered ServiceTable 1 de�nes four performance statistics for a partially ordered transport service. Throughput, �,is the rate at which the transport service delivers packets to the receiving application. End-to-endpacket delay, Tend , is the average time for a packet to reach to the receiving application once it isgiven to the sending transport entity. For many applications such as real time audio and video, lowerdelay is more important than higher throughput. STD(Tend) is the standard deviation of the end-to-end packet delay. Multimedia applications generally consist of di�erent streams such as video and6



Throughput (�) Average number of packets delivered to receiving application per unit timeEnd-to-end Packet Delay (Tend ) Average end-to-end packet delaySTD(Tend) Standard deviation of end-to-end packet delayReceiver Bu�er Utilization(R Bu� ) Average number of packets bu�ered at receiver waiting to be delivered to applicationTable 1: De�nition of Performance Statisticsaudio, and objects that need to be synchronized with each other. Generally, if the variation on thedelays (i.e., STD(Tend)) is smaller, then a �ner synchronization among di�erent streams or objectscan be achieved. Hence, STD(Tend) quanti�es a system's jitter. Finally, bu�er utilization at thereceiver, R Bu� , indicates the average memory resources that the transport protocol must allocateto satisfy an application. In general, it is desirable to have higher �, and lower Tend , STD(Tend) andR Bu� .4.3 Partial Orders Used In ExperimentsThere exists a large number of partial orders from which to choose for our experiments. The partialorders chosen can be classi�ed into �ve classes: chain-singleton, chain-of-antichain, antichain-chain,parallel-streams, and random. The �rst four classes are motivated by multimedia applications. Ran-dom partial orders are not suggested by any real application; we use them solely for mathematicalinvestigation. The random POs are generated by methods discussed in [9].
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4.5 Simulation ResultsDens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO)loss rate = 0.01 loss rate = 0.05 loss rate = 0.1 loss rate = 0.2 loss rate = 0.4 loss rate = 0.6Sender Bu�er Size = 3Tend 0.88 -0.89 0.91 -0.91 -0.92 -0.91 0.92 -0.92 0.93 -0.92 0.91 -0.91STD(Tend) 0.86 -0.88 0.90 -0.89 0.92 -0.90 0.92 -0.92 0.94 -0.89 0.90 -0.89R Bu� 0.89 -0.90 0.91 -0.91 0.92 -0.92 0.92 -0.92 0.92 -0.92 0.91 -0.91Sender Bu�er Size = 5Tend 0.92 -0.88 0.95 -0.91 0.96 -0.93 0.96 -0.93 0.97 -0.94 0.95 -0.93STD(Tend) 0.92 -0.87 0.95 -0.90 0.96 -0.92 0.96 -0.91 0.96 -0.90 0.96 -0.88R Bu� 0.93 -0.91 0.95 -0.93 0.96 -0.95 0.96 -0.95 0.96 -0.96 0.95 -0.94Sender Bu�er Size = 10Tend 0.92 -0.89 0.96 -0.92 0.97 -0.92 0.97 -0.92 0.97 -0.92 0.97 -0.93STD(Tend) 0.93 -0.90 0.97 -0.92 0.97 -0.90 0.95 -0.86 0.95 -0.87 0.96 -0.89R Bu� 0.84 -0.84 0.87 -0.86 0.90 -0.88 0.95 -0.93 0.97 -0.96 0.97 -0.96� -0.93 0.89 -0.96 0.91 -0.97 0.92 -0.97 0.92 -0.98 0.91 -0.97 0.90Table 2: Correlation coe�cients at selected �xed system conditions when network layer delay= 4Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO) Dens m(PO)loss rate = 0.01 loss rate = 0.05 loss rate = 0.1 loss rate = 0.2 loss rate = 0.4 loss rate = 0.6Sender Bu�er Size = 3Tend 0.89 -0.89 0.90 -0.90 0.92 -0.91 0.92 -0.91 0.92 -0.92 0.91 -0.91STD(Tend) 0.87 -0.88 0.89 -0.89 0.92 -0.90 0.93 -0.90 0.92 -0.91 0.91 -0.89R Bu� 0.89 -0.89 0.91 -0.91 0.92 -0.92 0.92 -0.92 0.92 -0.92 0.91 -0.91Sender Bu�er Size = 5Tend 0.93 -0.89 0.95 -0.91 0.96 -0.93 0.97 -0.94 0.97 -0.94 0.95 -0.93STD(Tend) 0.93 -0.89 0.95 -0.90 0.97 -0.92 0.97 -0.91 0.97 -0.91 0.95 -0.91R Bu� 0.94 -0.92 0.95 -0.94 0.96 -0.95 0.96 -0.96 0.96 -0.96 0.95 -0.95Sender Bu�er Size = 10Tend 0.92 -0.89 0.96 -0.93 0.97 -0.93 0.97 -0.92 0.97 -0.92 0.98 -0.93STD(Tend) 0.93 -0.91 0.97 -0.92 0.97 -0.88 0.95 -0.86 0.95 -0.88 0.97 -0.89R Bu� 0.77 -0.78 0.80 -0.82 0.87 -0.86 0.94 -0.92 0.97 -0.96 0.97 -0.96� -0.93 0.90 -0.96 0.92 -0.97 0.92 -0.97 0.92 -0.98 0.91 -0.97 0.90Table 3: Correlation coe�cients at selected �xed system conditions when network layer delay= 6Table 2 introduces the correlation coe�cients at various �xed loss rates and �xed bu�er sizes whennetwork layer delay= 4. Similarly, Table 3 presents the corresponding values for network layer delay=6. These tables' correlation values indicate how good the partial order metrics are in correlating tothe performance statistics for the 60 partial orders at given �xed system conditions. For example, thetable entry 0:88 for density (noted as \Dens" in the table) and Tend indicates that �(density;Tend ) =0:88 for the 60 POs when end-to-end packet delays obtained at Buf S = 3, loss rate= 0:01, andnetwork layer delay= 4 are considered.It can be seen that both m(PO) and density correlate highly with performance for a given set ofnetwork conditions. The observed correlation coe�cients are much higher than even we expected.Both metrics would be ideal candidates for ordering partially ordered services along the x-axis of11
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