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Abstract

Partially ordered transport service offers a middle ground between ordered service and un-
ordered service. For applications requiring only partial order rather than total order, partially
ordered service provides performance improvements in terms of delay and buffer utilization. In-
tuitively, one expects a partially ordered service to provide relatively greater performance im-
provement when the partial order specified by the service user is more “flexible” (i.e., has fewer
order constraints) and smaller performance improvement when the partial order is less “flexible”
(i.e., has more order constraints). In this paper, we investigate this notion formally by proposing
metrics for the “flexibility” of partial orders, and determining through an OPNET simulation how
well these metrics correlate with expected performance. Two metrics are investigated: m(PO),
and density. Results show that for fixed system conditions (e.g., fixed buffer size, network loss
rate, and round-trip delay,) m(PO) and density correlate highly with the performance statistics
investigated. However, since density is significantly easier to calculate, our conclusion is that den-
sity is the best way to rank partial orders as to their ability to provide performance improvements
using partially ordered service.

Keywords: transport protocol, partially ordered service, multimedia, correlation, simulation, qual-
ity of service

1 Introduction

Computer networks traditionally offer either ordered (e.g., TCP) or unordered (e.g., UDP) transport
service. Some applications such as multimedia do not need an ordered service since they can tolerate
some reordering in the delivery of the objects. The degree of reordering should be within the spe-
cific limits of the applications; otherwise problems result at the application layer such as increased
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complexity, increased buffering, and loss of synchronization. For such applications, neither ordered
nor unordered service is a perfect fit. Ordered service insists on delivering all data in sequence even
if it results in higher delay and buffer utilization. Unordered service, on the other hand, minimizes
delay and buffer utilization, but provides no order guarantees. If an application with some order
constraints uses an unordered transport service, the application programmer is burdened with the
task of implementing mechanisms for object ordering.

To achieve better tradeoffs between order and other quality-of-service (QoS) parameters (e.g., delay),
and to satisfy the minimal order requirements of applications, partially ordered transport service has
been proposed [1, 5, 7]. Partially ordered service fills the gap between ordered and unordered service
by allowing applications to specify the delivery order of objects in the form of a partial order. Since
partially ordered service does not insist on delivering all objects in sequence, it can provide lower delay
and buffer utilization than ordered service, while, at the same time, guaranteeing an application’s
partial order requirements.

The authors are designing a new transport-layer protocol, called Partial Order Connection (POC),
that provides partially ordered and partially reliable service to its users [1, 5, 7]. POC enhances
an unreliable and unordered network service just enough to allow applications to specify controlled
levels of loss and reordering in the delivery of the objects. Thus, both the order and the reliability
requirements of the applications are generalized in POC. This is illustrated in Figure 1 in which
reliability and order are shown as orthogonal axes. Ordered, reliable service (e.g., TCP) is represented
by a single point at the upper right, and unordered, unreliable service (e.g., UDP) is represented by
a single point at the lower left. POC, on the other hand, provides a range of services covering the
entire plane. Analytic study has formally confirmed the intuitive results that, in general,

e a partially reliable service provides lower delay and higher throughput than a reliable ser-
vice [11], and

e a partially ordered service provides lower delay than an ordered service while consuming less
buffer space [10].

A question arises as to what units should be used to label the axes. If we represent unreliable service
by 0 and reliable service by 1, we could say that the reliability axis is labeled with the probability
of delivering a packet. In this paper, we attempt to find a similar metric for the order axis. What
is desirable is a metric where ordered service corresponds to 1, unordered service corresponds to 0,
and the partial orders that lie in between have meaningful values in this range. In particular, we
would like the values for this metric to correlate highly with the expected performance statistics for
partially ordered service.

Therefore, we investigate two metrics of a partial order’s flexibility and the correlation between these
metrics and the performance observed in the corresponding partially ordered service. The two metrics
considered are m(PO) and density. Reference [1] proposes m(PO), a metric based on number of
linear extensions of a partial order, as a complexity measure of different partially ordered services.
Density [9] is another metric that measures the flexibility of a partial order.

This paper studies by way of simulation the correlation of these two metrics to four important trans-
port layer performance statistics: throughput, average end-to-end packet delay, standard deviation
of end-to-end packet delay, and average buffer utilization. Having a metric with high correlation to
performance statistics would allow us (for a particular set of network conditions) to characterize the
“region” of partial orders where partially ordered service offers significant performance improvements
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Figure 1: Reliability vs. Order

over ordered service. Our hypothesis is that either m(PO) or density can be used for this purpose. To
determine if this is true, we use simulation to generate correlation values between these two metrics
and the performance statistics over a wide range of fixed independent system conditions (i.e., fixed
network loss rate, fixed buffer size, and fixed network layer delay).

The paper is organized as follows: Section 2 introduces a partially ordered service and motivates it
with two example applications. The metrics m(PO) and density are formally defined in Section 3.
Section 4 explains the experimental design for the simulation study and presents the results.

2 Why Use a Partially Ordered Service?

References [1, 7] introduce the development and motivation for a partially ordered protocol/service
including several examples. A summary of this material is provided here.

Essentially, a partially ordered service can be employed and is motivated whenever a total order on
the delivery of objects is not mandatory. When two objects can be delivered to a transport service
user in either order, there is no need to use an ordered service that delays delivery of the second one
transmitted until the first arrives. In general, the order requirements of objects in a partially ordered
service can be represented by using a partial order PO over the set [N] = {1,2,..., N}, where N is
the total number of objects to be communicated, and z < y in PO signifies that object z must be
delivered to the receiving application prior to object y.

2.1 A Simple Application for Partially Ordered Service: Screen Refresh

Consider an application that must do a “screen refresh” on a workstation screen/display containing
multiple windows (see Figure 2). In refreshing the screen from a remote source, objects (icons, still or
video images) that overlap one another should be refreshed from bottom to top for optimal redisplay
efficiency. Objects that do not overlap may be refreshed in any order. Therefore, the way in which






ments of the objects that make up a temporal multimedia document. The application serving these
documents can extract these requirements from such a specification and communicate them to the
transport layer, which then provides the necessary QoS and synchronization support.

This simplifies application development, since the document display client need not contain complex
mechanisms for object synchronization and reordering. It also allows for graceful degradation, since
the document can be presented “perfectly” when network conditions allow, and in a less than perfect
but nevertheless acceptable manner when network conditions degrade. Finally, the use of partial order
and partial reliability rather than ordered/reliable or unordered /unreliable service allows better QoS
tradeoffs between qualitative parameters such as order/reliability and quantitative parameters such
as delay, buffer utilization and throughput.

3 How to Quantify Partially Ordered Services

Analytic study shows that, in general, a partially ordered service provides increasingly better perfor-
mance as the precedence constraints among the objects decrease. That is, if a more flexible partial
order (PO) is used, then the overall system performance can be improved. In this section, we in-
troduce two metrics as possible candidates for quantifying partially ordered services: m(PQO) and
density. Each of these metrics measures the flexibility of a partial order from a different point of
view. In the simulation study of Section 4, we determine how well, if at all, these metrics correlate
to the expected system performance.

3.1 A metric based on number of linear extensions: m(PO)

The complexity of a partial order PO can be quantified by its set of linear extensions, denoted
L(PO). Each linear extension in the set L(PO) is essentially one of the orderings of the objects that
is permitted by PO. From a purely theoretical point of view, the number of linear extensions of PO,
denoted e(PO), is thought as the best single number which measures the complexity of PO [14].
Clearly, for N objects, e(complete order) = 1 and e(no order) = N! It is argued in [1] that e(PO)
appropriately quantifies a desired partially ordered service in communication networks. Intuitively
this metric correlates to the level of effort and resources a protocol would have to use to provide a
particular partial order service. This is because the larger the number of permitted orderings allowed
at the receiving application (i.e., transport service user), the less overhead is expected for a protocol
(i.e., transport service provider) to provide acceptable object delivery.

One of the main problems with e¢(PO) is that it gets large very fast with increasing number of
objects in PO. To avoid such large numbers, m(PO) is defined in [1] as a normalized logarithmic
scale of e(PO). m(PO) is a normalized partial order metric in the interval [0, 1] where 0 represents
an ordered service, values from 0 to 1 represent increasingly more flexible partially ordered service,
and 1 represents unordered service:

m(PO) = llgg% (1)

Using a metric based on e(PO) presents some difficulties since computing e(PO) for an arbitrary
partial order is #P — Complete, and it is therefore highly unlikely that any polynomial algorithm
exists for this computation [3, 4].



3.2 A metric based on precedence constraints: density

The density of a PO is defined as follows [9]. Let a partial order PO be represented as a transitively
closed 0-1 matrix of size N by N, where a;; = 1 iff i < j in PO. (In this representation, a;; = 0,
for all i.) Let D be defined as D = YN, Z;VZI a;j. D is the total number of restrictions in PO,
or the number of edges in the transitively closed precedence graph. The maximum value for D is
N(N —1)/2, therefore the density, d, is defined by the ratio d = 2D /[N (N — 1)] and ranges over the
interval [0, 1].

Density correlates intuitively with the flexibility of a partial order; a chain has a value of 1, while an
antichain has a value of (0. The density also has the advantage of being relatively easy to compute.

4 Simulation Study

In Section 3, we introduce two metrics as possible candidates for quantifying partially ordered trans-
port services. In this section, by way of simulation, we show that both of these metrics correlate
highly to various performance statistics. But first, we introduce the definition of correlation and
performance statistics, and the partial orders used in experiments.

4.1 Definition of Correlation

The correlation coefficient between two variables X and Y, denoted by p(X,Y), is defined [13], as
long as Var(X) * Var(Y) is nonzero, by:
Cov(X,Y)
X,Y) = P
ol ) \/Var(X) * Var(Y) @

where Cov(X,Y) = E[XY| — E[X]E[Y] is the covariance between X and Y.

The correlation coefficient is a measure of the degree of linearity between X and Y. A value of
p(X,Y) near +1 or —1 indicates a high degree of linearity between X and Y, whereas a value near
0 indicates lack of such linearity. Additionally, a positive value of p(X,Y") indicates that Y tends to
increase with increasing X, whereas a negative sign indicates that Y tends to decrease with increasing
X.

In general, as |p(X,Y)| gets closer to 1, we can make more accurate predictions of Y through X and
vice-versa. As an example, suppose that for metrics M; and My, and QoS parameter delay, we have
p(My, delay) = 0.60 and p(Mjy, delay) = —0.75. Then, we can conclude that M is a better metric
than M; in predicting delay. Additionally, in such a case, if delay is the only QoS parameter that
concerns us, then we can conclude that My is a stronger metric than M; in quantifying partially
ordered services.

4.2 Performance Statistics of a Partially Ordered Service

Table 1 defines four performance statistics for a partially ordered transport service. Throughput, A,
is the rate at which the transport service delivers packets to the receiving application. End-to-end
packet delay, T,,q, is the average time for a packet to reach to the receiving application once it is
given to the sending transport entity. For many applications such as real time audio and video, lower
delay is more important than higher throughput. ST D(T,,4) is the standard deviation of the end-

to-end packet delay. Multimedia applications generally consist of different streams such as video and
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Throughput () Average number of packets delivered to receiving application per unit time

End-to-end Packet Delay (T,,q) Average end-to-end packet delay

STD(Tena) Standard deviation of end-to-end packet delay

Receiver Buffer Utilization(R_Buff) || Average number of packets buffered at receiver waiting to be delivered to application

Table 1: Definition of Performance Statistics

audio, and objects that need to be synchronized with each other. Generally, if the variation on the
delays (i.e., STD(T¢yq)) is smaller, then a finer synchronization among different streams or objects
can be achieved. Hence, ST D(T,,q) quantifies a system’s jitter. Finally, buffer utilization at the
receiver, R_Buff, indicates the average memory resources that the transport protocol must allocate
to satisfy an application. In general, it is desirable to have higher A, and lower T,,4, ST D(T,,4) and
R_Buff.

4.3 Partial Orders Used In Experiments

There exists a large number of partial orders from which to choose for our experiments. The partial
orders chosen can be classified into five classes: chain-singleton, chain-of-antichain, antichain-chain,
parallel-streams, and random. The first four classes are motivated by multimedia applications. Ran-
dom partial orders are not suggested by any real application; we use them solely for mathematical
investigation. The random POs are generated by methods discussed in [9].
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Figure 3: Chain-Singleton POs (Directed Graph Representation)

1. Chain-Singleton POs: These partial orders contain one chain and a set of singletons (see
Figure 3). Such POs can be represented as two components composed in parallel: C||S where
C =c <. <c¢pand S = sif..||s; are the chain and the singleton components, respectively.
Consider an application that opens with a welcome message and concurrently paints the screen with
non-overlapping objects. The welcome message can be represented by a chain where each word (or
sentence) is a separate object. The objects put on the screen as they arrive from the network can be
identified as singletons (i.e., antichain). In general, any application that contains an audio or video
stream in parallel with some independent objects to be displayed can be represented by this partial
order class.

2. Chain-of-Antichain POs: These partial orders contain several antichains in sequence (see
Figure 4). Such POs can be represented as several components composed in chain: A & .. ® A,
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Figure 4: Chain-of-Antichain POs (Petri-Net Representation)
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where? each component A; = ai||..|]|a;, is an antichain. Consider an application that displays a
screen full of non-overlapping objects, and then moves on to the next screen either after a certain
amount of time or by an interaction from user. In each screen, the non-overlapping objects will be
painted as they arrive. Thus, each screen in such an application can be represented by an antichain.
Additionally, the objects in one screen should precede everything in the next screen. Hence, the
order requirements of such applications can be represented by chain-of-antichain POs.

3. Antichain-Chain POs: These partial orders contain an antichain and a chain part in sequence
(see Figure 5). Such POs can be represented as two components composed in chain: A @& C where
A = a1]]..|lam and C = ¢; < .. < ¢ are the antichain and chain components, respectively. Consider
an application that opens with a screen containing non-overlapping objects for different icons and
some buttons for an audio or video presentation. Then, based on the user input, the application
starts up an audio or video. Screen that contains non-overlapping objects can be identified by an
antichain. Notice that this screen should precede the up-coming audio or video presentation that
can be represented by a chain. Thus, the order requirements of such applications can be identified
by this partial order class.

4. Parallel-Streams POs: These are partial orders composed of multiple streams in parallel (see
Figure 6). Such POs can be represented as Si||..||S, where each S; = 51 < .. < sy, is a stream. The
applications that contain independent streams (e.g., audio, video, or subtitle streams) in parallel can
be represented by this class of partial orders.

4.4 Simulation Experiments

At the University of Delaware’s Protocol Engineering Lab, we built an OPNET-based simulation
model to investigate the performance of partially ordered services. OPNET (OPtimize Network

24@” is the linear sum or concatenation operator for POs defined [8] as z < y in P @ @ if and only if x, yeP and
x <yin P, or z,ye@ and x < y in @, or zeP and ye@.
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Figure 5: Antichain-Chain POs (Petri-Net Representation)

Engineering Tools) is a comprehensive engineering system capable of simulating large communication
networks with detailed protocol modeling and performance analysis [2]. The simulation model was
verified by

e detailed code-inspection and debugging,
e comparing the results against those of the analytic model (whenever possible), and

e designing a set of 22 experiments, stating their expected results, running the experiments, and
verifying the results as expected [12].

In the simulation model’s verification phase, results for A\, R_Buff, and T,,4 were generally within
1% of the analytic model results when each experiment was repeated three times with 30,000
objects [12]. For the current study, each simulation experiment is repeated five times with 30,000
objects, hence the results reported in this paper are expected also to be within 1% of the actual
values.

There existed a large number of independent system parameters (e.g., loss rates, buffer sizes) to
study in our experiments. It was impractical to exhaustively simulate millions of possible system
configurations. Because of this, in our study, we only focused on three important parameters: loss
rates, buffer sizes and network layer delays. The values simulated for these parameters were as
follows:

e Loss rates= 0.01, 0.05, 0.1, 0.2, 0.4, 0.6 (6 different loss rates)
e Buffer sizes= Receiver:5; Sender:3, 5, 10 (3 different buffer sizes)

¢ One-way network layer delays= Normal(yu = 4,6;0 = 0.25 % u) (2 different delays)

We simulated loss levels ranging from 1% up to 60% which is well over the loss rate of most practical
networks. Additionally, with our choices of sender and receiver buffer sizes, we investigated all three
interesting cases: (1) sender buffer size (Buf ¢) < receiver buffer size (Buf ), (2) Buf ¢ = Buf g, and
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Figure 6: Parallel-Streams POs (Directed Graph Representation)

(3) Bufg > Bufp. When network layer delay is 4, a sender buffer size of 10 will be equal to the
pipesize? (i.e., delay-bandwidth product of the system). Smaller buffer sizes represent the case when
the pipesize is never full. By having two different delay values and three different buffer sizes, we
studied a variety of cases in terms of network layer delays and Buf g-to-pipesize ratios. We performed
36 simulation experiments, one for each combination of these system parameter values.

In each experiment, we simulated a total of 60 partial orders (40 POs in Figures 3-6 + 20 random
POs). All POs were used in periodic form with 10 objects and 3,000 periods. A periodic PO can be
defined as a partial order repeating itself some number of times. Periodic POs can be represented as
P'®..® P" where each P’ is identical, and w is the number of periods. The lossiness of the network
layer in all experiments was modeled by a Bernoulli process. Our absolute results might differ for
a bursty-loss process, however, we expect identical relative advantages in comparison of two partial
order metrics. Additionally, in all experiments, constant object sizes were used. In general, given a
PO with variable object sizes, we can obtain an equivalent PO with constant object size by breaking
large objects into smaller ones that are chained to each other. Thus, using fixed object sizes for these
experiments does not limit the effectiveness of our results.

The 36 experiments show that partially ordered services provide a throughput improvement only
when the sender has many more buffers than the receiver. Since most transport layer protocols tend
to use sender and receiver buffer sizes of roughly equal size, for most practical purposes, we can
say that a partially ordered service provides no throughput improvement over an ordered service.
Because of this, we focus on the correlation of partial order metrics to the other performance statistics
(i.e., end-to-end packet delay, standard deviation of packet delay, and buffer utilization at receiver).
Throughput correlation results are given only when larger sender buffer sizes are simulated

By studying the correlation of both metrics to expected performance in instances where all system
parameters are fixed, we determine which of these metrics is useful for ordering PO’s by expected
performance (independent of network conditions).

3Notice that there is no advantage of using a larger sender buffer size than the pipesize since retransmissions get
priority over new packets.
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4.5 Simulation Results

Dens | m(PO) || Dens | m(PO) || Dens | m(PO) || Dens | m(PO) || Dens | m(PO) || Dens | m(PO)
loss rate = 0.01 loss rate = 0.05 loss rate = 0.1 loss rate = 0.2 loss rate = 0.4 loss rate = 0.6
Sender Buffer Size = 3
Teond 0.88 -0.89 0.91 -0.91 || -0.92 -0.91 0.92 -0.92 0.93 -0.92 0.91 -0.91
STD(Tena) 0.86 -0.88 0.90 -0.89 0.92 -0.90 0.92 -0.92 0.94 -0.89 0.90 -0.89
R_Buff 0.89 -0.90 0.91 -0.91 0.92 -0.92 0.92 -0.92 0.92 -0.92 0.91 -0.91
Sender Buffer Size = 5
Teond 0.92 -0.88 0.95 -0.91 0.96 -0.93 0.96 -0.93 0.97 -0.94 0.95 -0.93
STD(Tena) 0.92 -0.87 0.95 -0.90 0.96 -0.92 0.96 -0.91 0.96 -0.90 0.96 -0.88
R_Buff 0.93 -0.91 0.95 -0.93 0.96 -0.95 0.96 -0.95 0.96 -0.96 0.95 -0.94
Sender Buffer Size = 10
Teond 0.92 -0.89 0.96 -0.92 0.97 -0.92 0.97 -0.92 0.97 -0.92 0.97 -0.93
STD(Tena) 0.93 -0.90 0.97 -0.92 0.97 -0.90 0.95 -0.86 0.95 -0.87 0.96 -0.89
R_Buff 0.84 -0.84 0.87 -0.86 0.90 -0.88 0.95 -0.93 0.97 -0.96 0.97 -0.96
Al -0.93 0.89 || -0.96 0.91 || -0.97 0.92 || -0.97 0.92 || -0.98 0.91 || -0.97 0.90
Table 2: Correlation coefficients at selected fixed system conditions when network layer delay= 4
Dens | m(PO) || Dens | m(PO) || Dens | m(PO) || Dens | m(PO) || Dens | m(PO) || Dens | m(PO)
loss rate = 0.01 loss rate = 0.05 loss rate = 0.1 loss rate = 0.2 loss rate = 0.4 loss rate = 0.6
Sender Buffer Size = 3
Teond 0.89 -0.89 0.90 -0.90 0.92 -0.91 0.92 -0.91 0.92 -0.92 0.91 -0.91
STD(Tena) 0.87 -0.88 0.89 -0.89 0.92 -0.90 0.93 -0.90 0.92 -0.91 0.91 -0.89
R_Buff 0.89 -0.89 0.91 -0.91 0.92 -0.92 0.92 -0.92 0.92 -0.92 0.91 -0.91
Sender Buffer Size = 5
Teond 0.93 -0.89 0.95 -0.91 0.96 -0.93 0.97 -0.94 0.97 -0.94 0.95 -0.93
STD(Tena) 0.93 -0.89 0.95 -0.90 0.97 -0.92 0.97 -0.91 0.97 -0.91 0.95 -0.91
R_Buff 0.94 -0.92 0.95 -0.94 0.96 -0.95 0.96 -0.96 0.96 -0.96 0.95 -0.95
Sender Buffer Size = 10
Teond 0.92 -0.89 0.96 -0.93 0.97 -0.93 0.97 -0.92 0.97 -0.92 0.98 -0.93
STD(Tena) 0.93 -0.91 0.97 -0.92 0.97 -0.88 0.95 -0.86 0.95 -0.88 0.97 -0.89
R_Buff 0.77 -0.78 0.80 -0.82 0.87 -0.86 0.94 -0.92 0.97 -0.96 0.97 -0.96
Al -0.93 0.90 || -0.96 0.92 || -0.97 0.92 || -0.97 0.92 || -0.98 0.91 || -0.97 0.90

Table 3: Correlation coefficients at selected fixed system conditions when network layer delay= 6

Table 2 introduces the correlation coefficients at various fixed loss rates and fixed buffer sizes when
network layer delay= 4. Similarly, Table 3 presents the corresponding values for network layer delay=
6. These tables’ correlation values indicate how good the partial order metrics are in correlating to
the performance statistics for the 60 partial orders at given fixed system conditions. For example, the
table entry 0.88 for density (noted as “Dens” in the table) and T,,, indicates that p(density, Tenq) =
0.88 for the 60 POs when end-to-end packet delays obtained at Bufg = 3, loss rate= 0.01, and
network layer delay= 4 are considered.

It can be seen that both m(PO) and density correlate highly with performance for a given set of
network conditions. The observed correlation coefficients are much higher than even we expected.
Both metrics would be ideal candidates for ordering partially ordered services along the x-axis of
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Figure 1. Since density is significantly easier to compute for a given PO, it is the metric of choice
for quantifying partially ordered services.
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