
The Transport Layer: Tutorial and Survey
SAMI IREN and PAUL D. AMER

University of Delaware

AND

PHILLIP T. CONRAD

Temple University

Transport layer protocols provide for end-to-end communication between two or
more hosts. This paper presents a tutorial on transport layer concepts and
terminology, and a survey of transport layer services and protocols. The transport
layer protocol TCP is used as a reference point, and compared and contrasted with
nineteen other protocols designed over the past two decades. The service and
protocol features of twelve of the most important protocols are summarized in both
text and tables.

Categories and Subject Descriptors: C.2.0 [Computer-Communication
Networks]: General—Data communications; Open System Interconnection
Reference Model (OSI); C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; Packet-switching networks;
Store and forward networks; C.2.2 [Computer-Communication Networks]:
Network Protocols; Protocol architecture (OSI model); C.2.5 [Computer-
Communication Networks]: Local and Wide-Area Networks

General Terms: Networks

Additional Key Words and Phrases: Congestion control, flow control, transport
protocol, transport service, TCP/IP

1. INTRODUCTION

In the OSI 7-layer Reference Model, the
transport layer is the lowest layer that
operates on an end-to-end basis be-
tween two or more communicating
hosts. This layer lies at the boundary
between these hosts and an internet-

work of routers, bridges, and communi-
cation links that moves information be-
tween hosts. A good transport layer
service (or simply, transport service) al-
lows applications to use a standard set
of primitives and run on a variety of
networks without worrying about differ-
ent network interfaces and reliabilities.

This work was supported, in part, by the National Science Foundation (NCR 9314056), the U.S. Army
Research Office (DAAL04-94-G-0093), and the Adv Telecomm/Info Dist’n Research Program (ATIRP)
Consortium sponsored by ARL under Fed Lab Program, Cooperative Agreement DAAL01-96-2-0002.
Authors’ addresses: S. Iren and P. D. Amer, Department of Computer and Information Sciences,
University of Delaware, Newark, DE 19716; P. T. Conrad, Department of Computer and Information
Sciences, Temple University, Philadelphia, PA 19122.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 2000 ACM 0360-0300/99/1200–0360 $5.00

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Essentially, the transport layer isolates
applications from the technology, de-
sign, and idiosyncracies of the network.

Dozens of transport protocols have
been developed or proposed over the last
two decades. To put this research in
perspective, we focus first on the fea-
tures of probably the most well-known
transport protocol — namely the Inter-
net’s Transmission Control Protocol

(TCP) — and then contrast TCP with
many alternative designs.

Section 2 introduces the basic con-
cepts and terminology of the transport
layer through a simple example illus-
trating a TCP connection. Section 3 sur-
veys the range of different services that
can be provided by a transport layer.
Similarly, Section 4 surveys the range
of protocol designs that provide these
services. (The important distinction be-
tween service and protocol is a major
theme throughout this paper.) Section 5
briefly surveys nine widely imple-
mented transport protocols other than
TCP (UDP, TP0, TP4, SNA-APPN,
DECnet-NSP, ATM, XTP, T/TCP and
RTP) and two others that, although not
widely implemented, have been particu-
larly influential (VMTP and NETBLT).
This section also includes briefer de-
scriptions of eight experimental proto-
cols that appear in the research litera-
ture (Delta-t, MSP, SNR, DTP, k-XP,
TRUMP, POC, and TP11). Section 6
concludes the paper with an overview of
past, current, and future trends that
have influenced transport layer design
including the impact of wireless net-
works. This section also presents a few
of the debates concerning transport pro-
tocol design. As an appendix, tables are
provided summarizing TCP and eleven
of the transport protocols discussed in
Section 5. Similar tables for the experi-
mental protocols are omitted for reasons
of space, but are available on the au-
thors’ Web site: www.eecis.udel.edu/
˜amer/PEL/survey/ .

This survey concentrates on unicast
service and protocols — that is, commu-
nication between exactly two hosts (or
two host processes). Multicast protocols
[Armstrong et al. 1992; Bormann et al.
1994; Braudes and Zabele 1993; Deer-
ing 1989; Floyd et al. 1995; McCanne et
al. 1996; Smith and Koifman 1996] pro-
vide communication among n $ 2
hosts. Multicast represents an impor-
tant research area currently undergoing
significant change and development,
and is worthy of a separate survey.

CONTENTS

1. Introduction
2. Transport Layer Concepts and Terminology

2.1 Introduction to TCP
2.2 General Role of the Transport Layer
2.3 Terminology: SDUs, PDUs, and the like
2.4 Example TCP Connection, Step-by-Step
2.5 What this example shows. . . and does not show

3. Transport Service
3.1 CO-message vs. CO-byte vs. CL
3.2 Reliability
3.3 Blocking vs. Non-Blocking
3.4 Multicast vs. Unicast
3.5 Priority vs. No-priority
3.6 Security vs. No-security
3.7 Status-reporting vs. No-status-reporting
3.8 Quality-of-service vs. No-quality-of-service

4. Transport Protocol Features
4.1 Connection-oriented vs. Connectionless
4.2 Transaction-oriented
4.3 CO Protocol Features
4.4 Error Control: Sequence Numbers, Acks, and

Retransmissions
4.5 Flow/Congestion Control
4.6 Multiplexing/Demultiplexing
4.7 Splitting/Recombining
4.8 Concatenation/Separation
4.9 Blocking/Unblocking
4.10 Segmentation/Reassembly

5. Transport Protocol Examples
5.1 UDP
5.2 TP4
5.3 TP0
5.4 NETBLT
5.5 VMTP
5.6 T/TCP
5.7 RTP
5.8 APPN (SNA)
5.9 NSP (DECnet)
5.10 XTP
5.11 SSCOP/AAL5 (ATM)
5.12 Miscellaneous Transport Protocols

6. Future Directions and Conclusion
6.1 Impacts of Trends and New Technologies
6.2 Wireless Networks
6.3 Debates
6.4 Final Observations

APPENDIX

Transport Layer • 361

ACM Computing Surveys, Vol. 31, No. 4, December 1999

A previous study surveying eight
transport protocols can be found in Do-
eringer et al. [1990].

2. TRANSPORT LAYER CONCEPTS AND
TERMINOLOGY

From an application programmer’s per-
spective, the transport layer provides
interprocess communication between
two processes that most often are run-
ning on different hosts. This section in-
troduces some basic transport layer con-
cepts and terminology through an
example: a simple document retrieval
over the World Wide Web (herein Web)
utilizing the TCP transport protocol.

2.1 Introduction to TCP

Although we provide a broad survey of
the transport layer, the service and pro-
tocol features of TCP are used through-
out this paper as a point of reference.

Over the last two decades the Inter-
net protocol suite (also called the
TCP/IP protocol suite) has come to be
the most ubiquitous form of computer
networking. Hence, the most widely
used transport protocols today are TCP
and its companion transport protocol,
the User Datagram Protocol (UDP). A
few other protocols are widely used,
mainly because of their connection to
the proprietary protocol suites of partic-
ular vendors. Examples include the
transport protocols from IBM’s SNA,
and Digital’s DECnet. However, the
success of the Internet has led nearly all
vendors in the direction of TCP/IP as
the future of networking.

The Internet’s marked success would
not alone be sufficient justification for
organizing a survey around a single pro-
tocol. Also important is that TCP pro-
vides examples of many significant is-
sues that arise in transport protocol
design. The design choices made in TCP
have been the subject of extensive re-
view, experimentation, and large-scale
experience, involving the best research-
ers and practitioners in the field. TCP
represents the culmination of many

years of thought about transport proto-
col design.

A final reason that TCP provides a
good starting point for study, is that the
history of research and development on
TCP can be traced in publicly available
documents. Ongoing research and de-
velopment of transport protocols, partic-
ularly TCP, is the focus of two working
groups of the Internet Society. The
end2end working group of the Internet
Research Task Force (IRTF, www.irtf.
org) discusses ongoing long-term re-
search on transport protocols in general
(including TCP), while the tcp-impl
group of the Internet Engineering Task
Force (IETF, www.ietf.org) focuses on
short-term TCP implementation issues.
Both groups maintain active mailing
lists where ideas are discussed and de-
bated openly. The work of these groups
can be found in journal articles, confer-
ence proceedings, and documents
known as Internet Drafts and Requests
for Comments (RFCs). RFCs contain not
only all the Internet Standards, but also
other information of historical and tech-
nical interest. It is much more difficult
for researchers to obtain similar infor-
mation concerning proprietary proto-
cols.

2.2 General Role of the Transport Layer

To illustrate the role that the transport
layer plays in a familiar application, the
remainder of Section 2 examines the
role of TCP in a simple interaction over
the Web.

The Web is an example of a client/
server application. A human interacts
with a Web browser (client) running on
a “local” machine. The Web browser
communicates with a server on some
“remote” machine. The Web uses an ap-
plication layer protocol called the Hy-
pertext Transfer Protocol (HTTP) [Bern-
ers-Lee et al. 1996]. HTTP is a simple
request/response protocol. Suppose, for
example, that you have a personal com-
puter with Internet access, and you
wish to retrieve the page “http://www.
eecis.udel.edu/research.html ”

362 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

from the University of Delaware Web
site. In the simplest case,1the client
sends a request containing the filename
of the desired Web page (“GET /re-
search.html ”) to a server (“www.
eecis.udel.edu ”), and the server
sends back a response consisting of the
contents of that file.

This communication takes place over
a complex internetwork of computers
that is constantly changing in terms of
both technology and topology. A connec-
tion between two particular hosts may
involve such diverse technologies as
Ethernet, Token Ring, X.25, ATM, PPP,
SONET, just to name a few. However, a
programmer writing a Web client or
server does not want to be concerned
with the details of how communication
takes place between client and server.
The programmer simply wants to send
and receive messages in a way that does
not change as the underlying network
changes. This is the function of the
transport layer: to provide an abstrac-
tion of interprocess communication that
is independent of the underlying net-
work.

HTTP uses TCP as the transport
layer. The programmer writing code for
an HTTP client or server would access
TCP’s service through function calls
that comprise that transport layer’s Ap-
plication Program Interface (API). At a
minimum, a transport layer API pro-
vides functions to send and receive mes-
sages; for example, the Berkeley Sockets
API provides functions called write()
and read() (for more details, see
Stevens [1998]).

Because TCP is connection-oriented,
the Berkeley Sockets API also provides
a connect() function for setting up a
connection between the local and remote
processes. It also provides a close()

function for closing a connection. Note
that while TCP is connection-oriented,
not all transport services establish a
connection before data is sent. Connec-
tion-oriented and connectionless ser-
vices and protocols are discussed in Sec-
tions 3.1, 3.2.5 and 4.1.

2.3 Terminology: SDUs, PDUs, and the like

One difficulty in summarizing any topic
is the wide range of terms used for
similar concepts. Throughout this pa-
per, we use a simplified communication
model (Figure 1) that employs some OSI
terminology. At the top layer, a user
sender (e.g., a Web client) has some
messages to communicate to the user
receiver (e.g., a Web server). These so-
called application entities use the ser-
vice of the transport layer. Communica-
tion between peer entities consists of an
exchange of Protocol Data Units
(PDUs). Application peers communicate
using Application PDUs (APDUs), while
transport peers communicate using
Transport PDUs (TPDUs), etc. In our
Web example, the first APDU is the
request “GET /research.html ” sent
from the client (application entity) to
the server (its peer application entity).
The Web server will respond with an
APDU containing the entire text of the
file “research.html ”.

Many transport and application pro-
tocols are bidirectional; that is, both
sides can send and receive data simulta-
neously. However, it is frequently use-
ful to focus on one direction while re-
maining aware that the other direction
is also operational. As Figure 1 shows,
each application entity can assume both
the role of sender and receiver; for the
APDU “GET /research.html ”, the cli-
ent is the user sender and the server is
the user receiver (as shown by more
prominent labels). When the APDU con-
taining the contents of the file “re-
search.html ” is sent, user sender and
user receiver reverse roles (as indicated
by the dotted line boxes, and the lighter
italicized labels).

The term transport entity refers to the

1To simplify the discussion, we will assume HTTP
version 0.9 and a document containing only hyper-
text: no inline images, applets, etc. This avoids
discussion of HTTP 1.0 headers, persistent con-
nections as in HTTP 1.1, (which complicate the
issue of how and when the connection is closed,)
and the necessity for multiple connections where
inline images are involved.

Transport Layer • 363

ACM Computing Surveys, Vol. 31, No. 4, December 1999

hardware and/or software within a
given host that implements a particular
transport service and protocol. Again,
even when the protocol is bidirectional,
we focus on one direction for purposes of
clarity. In this model, the user sender
submits a chunk of user data (i.e., a
Transport Service Data Unit (TSDU), or
informally, a message) to the transport
sender. The transport sender transmits
or sends this data to the transport re-
ceiver over a network which may provide
different levels of reliability. The trans-
port receiver receives the data that ar-
rives from the network and delivers it to
the user receiver. Note that even when
one transport entity assumes the role of
sender and the other assumes the role
of receiver, we use solid lines to show
TPDUs flowing in both directions. This
illustrates that TPDUs may flow in both
directions even when user data flows
only from sender to receiver. TPDUs
from receiver to sender are examples of
control TPDUs, which are exchanged
between transport entities for connec-
tion management. When the flow of
user data is bidirectional, control and
data information can be piggybacked, as
discussed in Section 4. Control TPDUs
may flow in both directions between
sender and receiver, even in the absence
of user data.

Figure 2 shows the terminology we
use to describe what happens to the
request APDU “GET /research.html ”
as it passes through the various layers

on its way from the Web client to the
Web server. When the user sender sub-
mits the request APDU to the transport
sender, that APDU becomes a TSDU.
The transport sender adds its own
header information to the TSDU, to con-
struct a TPDU that it can send to the
transport receiver. TPDUs exchanged
by the transport entities are encapsu-
lated (i.e., contained) in NPDUs which
are exchanged between the network en-
tities, as illustrated in Figure 2. The
network layer routes NPDUs between
the local and remote network entities
over intermediate links. When an
NPDU arrives, the network layer entity
processes the NPDU header and passes
the payload of the NPDU to a transport
layer entity. The transport entity either
passes the payload of the TPDU to the
transport user if it is user data, or pro-
cesses the payload itself if it is a control
TPDU.

In the previous paragraph we de-
scribe a single APDU becoming a single
TSDU, being encapsulated in a single
TPDU, which in turn becomes a single
NSDU encapsulated in a single NPDU.
This is the simplest case, and one that
is likely to occur for a small APDU such
as the HTTP request in our example.
However, there are many other possibil-
ities for the relationships between AP-
DUs, TSDUs, TPDUs, NSDUs, and NP-
DUs, as described in Step (5) of Section
2, and also in Sections 3 and 4.

Figure 2 also shows some of the ter-

Transport Sender

User Sender

Network

User Receiver

TSAP

NSAP

Host A Host B

User/Transport
Interface

Transport/Network
Interface

TPDUs

APDUs

Application (e.g. web client) Application (e.g. web server)

Transport Receiver

Arrive/Receive

Submit

Transmit/Send

Deliver

(Receiver) (Sender)

(Receiver) (Sender)

Application
Entities

Transport
Entities

Figure 1. Transport service.

364 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

minology commonly used in the Internet
protocol suite to identify PDUs at vari-
ous layers. TCP’s PDUs are called seg-
ments, while IP’s NPDUs are called
datagrams. However, the Internet com-
munity’s terminology can be confusing.
For example, the term packet is often
used informally to refer to both IP Data-
grams (NPDUs) and TCP segments (TP-
DUs). The term datagram can refer ei-
ther to IP’s NPDUs, or to the TPDUs of
the User Datagram Protocol. To avoid
such confusion, we make use of some
OSI terms throughout the paper. Al-
though some may criticize OSI termi-
nology as being cumbersome, it often
has the advantage of being more pre-
cise.

2.4 Example TCP Connection, Step-by-
Step

Now let us consider the Web document
retrieval example, one step at a time.
This discussion omits many details; the
purpose here is to provide a general
understanding of the transport layer in
the context of a well-known application.

(1) You select “http://www.eecis.
udel.edu/research.html ” with
your Web client.
—http indicates the application

layer protocol to be used; more
importantly from a transport
layer perspective, it also implic-
itly indicates the TCP port num-

ber that will be used for the con-
nection (80, in this case). Port
numbers differentiate between
multiple connection points on the
same machine; for example, be-
tween servers for Web, File Trans-
fer Protocol (FTP) and telnet (re-
mote terminal) requests.

—“www.eecis.udel.edu ” indicates
the host name to which a TCP
connection is established. This is
converted to the IP address
128.175.2.17 by the Domain
Name System (which is outside
the scope of this discussion). The
combination of IP address and TCP
port number (128.175.2.17, 80)
represents what OSI calls a TSAP
address. A TSAP (Transport Ser-
vice Access Point) address identi-
fies one endpoint of a communica-
tion channel between a process on
a local machine, and a process on
a remote machine.

—“/research.html ” is the file you
are requesting; the Web client
uses this to form the HTTP request
(APDU) “GET /research.html ”
that must be sent to the Web
server via TCP.

(2) The Web client starts by making a
connection request to the transport
entity at (128.175.2.17, 80) by
calling the connect() function.
This causes the local-client TCP en-

TSDU

NSDU

TPDU (e.g., TCP segment)

NPDU (e.g., IP Datagram)

TPDU
header

NPDU
header

Transport
Layer

Network
Layer

Application
(or Session)
Layer

APDU (e.g., "GET /research.html")

Figure 2. Relationship between Service Data Units (SDUs) and Protocol Data Units (PDUs).

Transport Layer • 365

ACM Computing Surveys, Vol. 31, No. 4, December 1999

tity (or simply, the “local TCP”) to
initiate a 3-way-handshake with the
remote-server TCP entity (or sim-
ply, the “remote TCP”). TPDUs are
exchanged between the TCP entities
to ensure reliable connection estab-
lishment, and to establish initial se-
quence numbers to be used by the
transport layer (see Figure 3, and
Section 4). If the 3-way-handshake
fails, TCP notifies the application by
returning an error code as the result
of the connect() function; other-
wise a success code is returned. In
this way, TCP provides what OSI
calls confirmation of the connect re-
quest.

(3) Once the connect request is con-
firmed, the Web client submits a
request to send data (in this case
the APDU “GET /research.html ”).
The local TCP then sends this data
— most likely, in a single TPDU.
This TPDU (i.e., TCP segment) con-
tains the service user’s data (the
TSDU), plus a transport layer
header, containing (among other
things) the negotiated initial se-
quence number for the data. The
purpose of this sequence number is
discussed in Step (2).

(4) When the remote TCP receives the
TPDU, the data “GET /re-
search.html ” is buffered. It is de-
livered when the Web server does a
read() . In OSI terminology, this
delivery is known as a data indica-
tion. The remote TCP also sends
back an acknowledgment (ACK) con-
trol TPDU to the local TCP. Ac-
knowledgments inform the trans-
port sender about TPDU arrivals
(see Section 4).

(5) The Web server then responds with
the contents of “research.html ”.
This file may be too large to be
efficiently submitted to TCP in one
write() call, i.e., one TSDU. If so,
the Web server divides this APDU
into multiple write() calls, i.e.,
multiple TSDUs. The remote TCP

then sends these TSDUs to the local
TCP in multiple TPDUs, utilizing
the service of the underlying net-
work layer.
One interesting aspect of TCP is
that the sizes of the TSDUs submit-
ted by the transport entities may
bear little or no relationship to the
sizes of the TPDUs actually ex-
changed by TCP. TCP treats the
flow of data from sender to receiver
as a byte-stream and segments it in
whatever manner seems to make
best use of the underlying network
service, without regard to TSDU
boundaries. It delivers data in the
same fashion; thus for TCP, the
boundaries between APDUs, sub-
mitted TSDUs, TPDUs, and deliv-
ered TSDUs may all be different.
Other transport services/protocols
have a message orientation, mean-
ing that they preserve the bound-
aries of TSDUs (see Section 3).

(6) Because the network layer (IP in
this case) can lose or reorder NS-
DUs, TCP must detect and recover
from network errors. As the remote
TCP sends the TPDUs containing
the successive portions of the file
“research.html ”, it includes a se-
quence number in each TPDU corre-
sponding to the sequence number of
the first byte in that TPDU relative
to the entire flow of data from re-
mote TCP to local TCP. The remote
TCP also places a copy of the data in
each TPDU sent into a buffer, and
sets a timer. If this timer expires
before the remote TCP receives a
matching ACK TPDU from the local
TCP, the data in the TPDU will be
retransmitted in a new TPDU. In
TCP, the data are tracked by indi-
vidual byte-stream sequence num-
bers, and TPDUs retransmitted may
or may not correspond exactly to the
original TPDUs. The remote TCP
also places a checksum in the TPDU
header to detect bit errors intro-
duced by noise or software errors in
the network, data link and physical

366 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

layers. Such error control is a major
function of the transport layer as
discussed in Section 4.

(7) As TPDUs are received by the local
TCP, any TPDUs with checksum er-
rors are discarded. The sequence
numbers of the incoming TPDUs are
checked to ensure that no pieces of
the byte-stream are missing or have
arrived out-of-order. Any out-of-or-
der pieces will be buffered and re-
ordered. As TPDUs arrive, the local
TCP responds to the remote TCP
with ACK TPDUs. If ACKs are lost,
the remote TCP may send a TPDU
which duplicates data sent in an
earlier TPDU. The local TCP also
discards any duplicate data that ar-
rives. By detecting and recovering
from loss, reordering, duplication
and noise, the local and remote TCP
entities cooperate to ensure reliable
delivery of data. As pieces of the
byte-stream arrive correctly, these
will be buffered until the Web client
requests them by doing read()
calls. Each read() results in deliv-
ery of a TSDU to the Web client.

(8) In general, a TCP connection is bidi-
rectional, and either side may ini-
tiate the closing of the connection.
However, in first-generation Web
systems, the server initiates the
close by calling the close() func-
tion after it sends the last piece of
the file requested. In OSI terminol-
ogy, this is called a disconnect re-
quest. TCP handles disconnect re-
quests with a 4-way-handshake
procedure (shown in Figure 4) to
ensure graceful termination without
loss of data. The remote TCP re-
sponds to the server’s disconnect re-
quest by sending a disconnect TPDU
and waiting for an ACK TPDU. The
local TCP signals the server’s dis-
connect request to the client by re-
turning “end-of-file” as the result of
a client read() request. The client
then responds with its own close()
request; this causes another ex-

change of a disconnect TPDU and
ACK. This procedure and other
methods of connection termination
are discussed in Section 4.3.4.

2.5 What this example shows. . . and does
not show

From this example, we see that TCP
provides a connection-oriented (CO)
byte-stream, no-loss, no-duplicates, or-
dered transport service, and that its
protocol is designed to operate on top of
a lossy network service, such as IP
datagram service [Postel 1981].

This example also shows a few as-
pects of communication between the
user layer and the transport layer, and
between peer entities. It illustrates one
example of connection establishment,
reliable data exchange, and connection
termination. However, many aspects of
this example were not discussed, such
as flow control and congestion avoid-
ance, piggybacking of ACKs, and round-
trip-time estimation, to name just a few.

Also, consider that in the case of a
Web browser using TCP, the transport
service is reliable, which means (among
other things) that the transport service
may not lose any TSDUs. This guaran-
tee comes at the expense of potentially
increased delay, since reliable delivery
may require more TPDUs to be ex-
changed. Other transport services (for
example, those used for audio or video
transmission) do not provide reliability,
since for some applications lower delay
is more important than receiving every
TSDU.

Many variations exist both in the type
of service provided by the transport
layer, and in the design of transport
protocols. These variations are what
make the transport layer so interesting!
Sections 3 and 4 provide an overview of
the most important of these variations.

3. TRANSPORT SERVICE

This section classifies the typical service
provided by the transport layer (see Ta-
ble I). A transport service abstracts a

Transport Layer • 367

ACM Computing Surveys, Vol. 31, No. 4, December 1999

set of functions that is provided to a
higher layer. A protocol, on the other
hand, refers to the details of how a
transport sender and a transport re-
ceiver cooperate to provide that service.
In defining a service, we treat the trans-
port layer as a black box. In Section 4,
we look at internal details of that black
box.

One of the valuable contributions of
the OSI Reference Model is its emphasis
in distinguishing between service and
protocol. This distinction is not well dif-
ferentiated in the TCP/IP protocol suite
where RFCs intermix service and proto-
col concepts, frequently in a confusing
manner. As will be seen in Section 4,
there are often several different protocol
mechanisms that can provide a given
service.

3.1 CO-message vs. CO-byte vs. CL

Transport services can be divided into
two types: connection-oriented and con-
nectionless. A connection-oriented (CO)
service provides for the establishment,
maintenance, and termination of a logi-
cal connection between transport users.
The transport user generally performs
three distinct phases of operation: con-
nection establishment, data transfer,
and connection termination. When a
user sender wants to transmit some
data to a remote user receiver by using
a connection-oriented service, the user
sender first explicitly asks the transport
sender to open a connection to the re-
mote transport receiver (T-Connect).

Once a connection is established, the
user sender provides the transport
sender with the data to be transmitted
(T-Data). At the end of the data trans-
fer, the user sender explicitly asks the
transport sender to terminate the con-
nection (T-Disconnect).

CO service itself has two variations:
message-oriented and byte-stream. In
the former, the user sender’s messages
(or what OSI calls service data units
(SDUs)) have a specified maximum size,
and message boundaries are preserved.
When two 1K messages are submitted
by a user sender, they are delivered to
the user receiver as the same two dis-
tinct 1K messages, never for example as
one 2K message or four .5K messages.
TP4 is an example that provides mes-
sage-oriented service. In byte-stream
service as provided by TCP, the flow of
data from user sender to user receiver is
viewed as an unstructured sequence of
bytes that flow in a FIFO manner.
There is no concept of message (or mes-
sage boundary or maximum message
size) for the user sender. Data submit-
ted by a user sender is appended to the
end of the byte-stream, and the user
receiver reads from the head of the
byte-stream.

An advantage of byte-stream service
is that it gives the transport sender
flexibility to divide TSDUs in ways that
make better use of the underlying net-
work service. However, byte-stream ser-
vice has been criticized because it does
not deliver data to an application in
meaningful units. A message-oriented
service better preserves the semantics
of each APDU down through the lower
layers for so-called Application Level
Framing [Clark and Tennenhouse 1990]
(see Section 6). One research team notes
that adaptive applications are much
easier to develop if the unit of process-
ing (i.e., APDU) is strongly tied to the
unit of control (i.e., TPDU) [Dabbous
and Diot 1995].

A connectionless (CL) service provides
only one phase of operation: data trans-
fer. There are no T-Connect and T-Dis-

Table I. Transport Service Features

CO-message vs. CO-byte vs. CL
No-loss vs. Uncontrolled-loss vs. Controlled-loss
No-duplicates vs. Maybe-duplicates
Ordered vs. Unordered vs. Partially-ordered
Data-integrity vs. No-data-integrity vs. Partial-

data-integrity
Blocking vs. Non-blocking
Multicast vs. Unicast
Priority vs. No-priority
Security vs. No-security
Status-reporting vs. No-status-reporting
Quality-of-service vs. No-quality-of-service

368 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

connect primitives exchanged (either ex-
plicitly or implicitly) between a user
sender and the transport sender. When
the user sender has some data, it simply
submits the data to the transport
sender. As with CO-message service, in
a CL service the user sender submits
messages, and message boundaries are
maintained. Messages submitted to a
CL service as in UDP often are referred
to as datagrams.

3.2 Reliability

Unfortunately, the terms reliable and
unreliable mean different things to dif-
ferent people. To avoid ambiguity in our
definition, unless otherwise stated, a
service is reliable if and only if it is all
of the following (as defined below): no-
loss, no-duplicates, ordered, and data-
integrity. If even one feature is lacking,
the service is unreliable.

3.2.1 No-loss vs. Uncontrolled-loss vs.
Controlled-loss. There are three levels
of delivery guarantee. A no-loss (or at-
least-once delivery) service guarantees
that for all data submitted to the trans-
port sender by the user sender, one of
two results will occur. Either (1) the
data is delivered2 to the user receiver,
or (2) the user sender is notified that
some data may not have been delivered.
It never occurs that a user sender be-
lieves some data was delivered to the
user receiver when in fact it was not.
For example, TCP provides a no-loss
service using disconnection as a means
of notifying a user sender that data may
not have been delivered.3

An uncontrolled-loss (or best-effort)
service does not provide the above as-
surance for any of the data. For exam-

ple, UDP provides an uncontrolled-loss
service. Any data submitted to UDP by
a user sender may fail to be delivered to
the user receiver without the user
sender being notified. Analogously, the
default service of the United States
Postal Service is an uncontrolled-loss
service. A user sender may not be noti-
fied if a letter is not delivered to the
user receiver.

A controlled-loss service lies in be-
tween no-loss and uncontrolled-loss.
Loss may occur, but there is control
over the degree of loss. Several varia-
tions of a controlled-loss service are pos-
sible. For example, a user sender might
request different loss levels for different
messages. The k-XP protocol [Amer et
al. 1997; Marasli et al. 1996] supports
three controlled-loss service classes:

● reliable messages will be retransmit-
ted (if needed) until successfully de-
livered to the user receiver;

● partially reliable messages will be re-
transmitted (if needed) at most k
times and then dropped if unsuccess-
ful, where k is a user sender parame-
ter; and

● unreliable messages will be transmit-
ted only once.

In the TRUMP protocol [Golden 1997], a
user sender assigns a time limit to each
message. The transport layer does its
best to deliver the message before the
time limit; if unsuccessful, the message
is discarded.

3.2.2 No-duplicates vs. Maybe-dupli-
cates. A no-duplicates (or at-most-once
delivery) service (e.g., TCP) guarantees
that all data submitted to the transport
sender will be delivered to the user re-
ceiver at most once.

A maybe-duplicates service (e.g.,
UDP) does not provide the above guar-
antee. Efforts by the protocol may or
may not be made to avoid delivering
duplicates, but delivery of duplicates
may occur nevertheless.

2Depending on the data-integrity service defined
in Section 3, delivered data may or may not con-
tain bit errors.
3Strictly speaking, for the most common TCP API,
namely the Berkeley Sockets API, this is only true
if the application specifies the SOLINGER
socket option; by default, it is possible for a TCP
connection to lose data without notifying the appli-
cation during connection teardown [Stevens 1998].

Transport Layer • 369

ACM Computing Surveys, Vol. 31, No. 4, December 1999

3.2.3 Ordered vs. Unordered vs. Par-
tially-ordered. An ordered service (e.g.,
TCP) preserves the user sender’s sub-
mission order of data when delivering it
to the user receiver. It never occurs that
a user sender submits two pieces of
data, first A, then B, and A is delivered
after B is delivered.

An unordered service (e.g., UDP) does
not provide the guarantee above. While
the service may try to preserve the or-
der of data when delivering it to the
user receiver, no guarantee of preserva-
tion-of-order is made.

A partially-ordered service guaran-
tees to deliver pieces of data in one of a
set of permitted orders as predefined by
a partial order relation agreed upon by
the user sender and user receiver. Par-
tially-ordered service is useful for appli-
cations such as multimedia communica-
tion or distributed databases where
delivery of some objects is constrained
by others having been delivered, yet
independent of certain other objects ar-
riving [Connolly et al. 1994]. POC is an
example protocol providing partially-or-
dered service [Conrad et al. 1996].

3.2.4 Data-integrity vs. No-data-in-
tegrity vs. Partial-data-integrity. A da-
ta-integrity service ensures with high
probability that all data bits delivered
to a user receiver are identical to those
originally submitted. The actual proba-
bility achieved in practice depends on
the strength of the error detection
method. Good discussions of error detec-
tion methods can be found in Lin and
Costello [1982], and McNamara [1998].
TCP uses a 16-bit checksum for data-
integrity; its goodness is evaluated in
Partridge et al. [1995].

A no-data-integrity service does not
provide any guarantees regarding bit
errors. Any number of bit errors may
occur in the delivered data. UDP may or
may not be configured to use a check-
sum; in the latter case, UDP provides a
no-data-integrity service.

A partial-data-integrity service allows
a controlled amount of bit errors in de-
livered data. This service may be ac-

ceptable as a means of achieving higher
throughput. A real-time multimedia ap-
plication might request the transport
receiver to tolerate certain levels of bit
errors when errored data could be use-
ful to the user receiver [Han and Mess-
erschmitt 1996]. For example, a Web
browser retrieving an image might pre-
fer to progressively display a partially
damaged image while waiting for the
retransmission and delivery of the cor-
rect data (assuming the decompression
algorithm can process damaged image
data.)

3.2.5 Remarks on Reliability and CO
vs. CL. Note that all four aspects of
reliability — loss, duplicates, order, and
data-integrity — are orthogonal; they
are independent functions. For example,
ordered service does not imply no-loss
service; some portion of the data might
get lost while the data that is delivered
is guaranteed to be in order.

A wide range of understanding (i.e.,
confusion) exists in the relationship be-
tween a service being CO or CL and
whether or not it is reliable. These two
services are orthogonal, yet so many
people presume a CO service is reliable.
Why? In the past when the number of
available services and protocols was
smaller, and applications were fewer
and less diverse in their service needs,
reasoning about connections and reli-
ability was simple:

Whereas: TCP service is CO and TCP
service is reliable,

Whereas: TP4 service is CO and TP4
service is reliable,

Whereas: X.25 service is CO and X.25
service is reliable,

Therefore: CO service [reliable ser-
vice.

Whereas: UDP service is CL and
UDP service is unreliable,

Therefore: CL service [unreliable
service.

370 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

We emphasize that these equiva-
lences do not hold! It is quite reason-
able to design a transport layer provid-
ing CO service that is not reliable (e.g.,
provides controlled-loss rather than no-
loss service, or unordered rather than
ordered service), say to support best-
effort compressed-image transmission
[Amer et al. 1999; Iren and Amer 2000;
Iren 1999]. Similarly, a transport layer
can provide a CL service that is reliable
if an underlying network layer is reli-
able.

3.3 Blocking vs. Non-Blocking

A blocking service ensures that the
transport layer is not overwhelmed with
incoming data. In this case, a user
sender submits data to the transport
sender and then waits for the transport
sender to signal that the user sender
can resume processing. A blocking ser-
vice provides flow control between user
sender and transport sender.

A non-blocking service allows the user
sender to submit data and continue pro-
cessing without awaiting the transport
sender’s ok. A non-blocking service does
not take into account the transport lay-
er’s buffering capabilities, or the rate at
which the user receiver consumes data.
The user sender submits data at any
rate it chooses, possibly resulting in ei-
ther data loss or notification to the user
sender that data cannot be submitted
right now.

Of the many transport protocols sur-
veyed, all could potentially provide
blocking or non-blocking service de-
pending on their API; one can therefore
argue that this service feature is an
implementation decision, not an inher-
ent feature of a given transport layer.
(Note that the term “blocking” as used
here has no relationship to its use in
Section 4.9.)

3.4 Multicast vs. Unicast

A multicast service enables a user
sender to submit data, a copy of which
will be delivered to one or more user

receiver(s). Applications such as real-
time news and information broadcast-
ing, teleconferencing, and remote col-
laboration can take advantage of a
multicast service to reach multiple des-
tinations. Depending on the reliability
of the service, delivery to each user re-
ceiver may be no-loss vs. uncontrolled-
loss vs. controlled-loss, no-duplicates vs.
maybe-duplicates, etc. The use of a mul-
ticast service influences many of the
protocol features to be discussed in Sec-
tion 4.

A unicast service limits the data sub-
mitted by a user sender to be delivered
to exactly one user receiver.

(As stated earlier, although the tables
in the appendix indicate which protocols
surveyed offer multicast service, this
paper does not survey or discuss multi-
cast protocols.)

3.5 Priority vs. No-priority

A priority service enables a user sender
to indicate the relative importance of
various messages. A user of priority ser-
vice may expect higher priority data to
be delivered sooner, if possible, than
lower priority data, even at the expense
of slowing down data submitted earlier.
When combined with uncontrolled-loss
or controlled-loss service, a priority ser-
vice may drop lower priority data when
necessary, thereby allowing the delivery
of higher priority data with smaller de-
lay and/or higher probability. Priority
also may be passed down to a network
service if it has a notion of priority, such
as IP’s type of service field.

In OSI, priority service is provided in
the form of expedited data and the pri-
ority QoS parameter (see Section 3).
Expedited data is an entirely separate
data flow that is not subject to normal
data flow control.

A no-priority service does not allow a
user sender to differentiate the impor-
tance of classes of data.

Despite common misconceptions to
the contrary, TCP’s urgent data service
is neither a priority service nor an expe-
dited data service. The Berkeley Sock-

Transport Layer • 371

ACM Computing Surveys, Vol. 31, No. 4, December 1999

ets API provides access to this service
via what it calls out-of-band data. How-
ever, this is misleading, since data sent
in urgent mode is not expedited, sent
out-of-band, or sent with higher prior-
ity. Rather, TCP urgent mode is a ser-
vice by which the user sender (i.e., an
application) marks some portion of the
byte-stream as needing special treat-
ment by the user receiver. Thus, signal-
ing the presence of urgent data and
marking its position in the data stream
are the only aspects that distinguish the
delivery of urgent data from the deliv-
ery of all other TCP data; for all other
purposes, urgent data is treated identi-
cally to the rest of the TCP byte-stream.
The user receiver must read every byte
of data exactly in the order it was sub-
mitted regardless of whether or not ur-
gent mode is used.

3.6 Security vs. No-security

A security service (e.g., TP4) provides
one or more security functions such as:
authentication, access control, confiden-
tiality, and integrity [ISO 1989]. Au-
thentication is the verification of user
sender’s and user receiver’s identities.
Access control checks a user’s permis-
sion status before allowing the use of
different resources. Confidentiality
guarantees that only the intended user
receiver(s) can decode and understand
the user sender’s data; no other user
receiver can understand the data’s con-
tent. Finally, integrity4 detects (and
sometimes recovers from) any modifica-
tion, insertion, deletion, or replay of
transport sender’s data. Secure routing
also has been noted as a security service
[Stallings 1997]. This service guaran-
tees that while going from user sender
to user receiver, data will only pass
through secure links and secure inter-
mediate routers.

A no-security service does not provide
any of the above security functions. TCP
currently provides no-security-service,

although some discussion is underway
to include security features in a future
generation.

3.7 Status-reporting vs. No-status-
reporting

A status-reporting service allows a user
sender to obtain specific information
about the transport entity or its connec-
tions. This information may allow the
user sender to make better use of the
available service. Some information
that a status reporting service might
provide are: performance characteristics
of a connection (e.g., throughput, mean
delay), addresses (network, transport),
current timer values, or the state of the
protocol machine supporting a connec-
tion.

A no-status-reporting service does not
provide any information about the
transport entity and its connections.

A distinction can be made between
status-reporting and QoS monitoring as,
for example, in applications based on
the Real-time Transport Protocol (RTP).
Although QoS monitoring provides some
of the information listed in the above
definition (delay, throughput), it pro-
vides no information on the protocol’s
internal structure such as state infor-
mation, timer values, etc. Status-report-
ing service provides explicit interactions
between a user and its transport entity.
In QoS monitoring, there are no such
explicit interactions.

Of the protocols surveyed, only TCP
provides anything resembling status-re-
porting service. When TCP’s Socket De-
bug Option is enabled, the kernel main-
tains for future analysis a trace record
of what happens on a connection
[Stevens 1994]. Status-reporting is a
valuable service that designers should
consider incorporating into their proto-
col implementations.

3.8 Quality-of-service vs. No-quality-of-
service

A transport layer that provides Quality
of Service (QoS) allows a user sender to

4See Section 3.2.4 for a slightly different usage of
integrity.

372 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

specify the quality of transmission ser-
vice desired. The protocol then presum-
ably optimizes network resources to
provide the requested QoS. Since the
underlying network places limits on the
service that can be provided by the
transport protocol, a user sender should
recognize two facts: (1) depending on
the underlying network’s capabilities, a
transport protocol will have varying de-
grees of success in providing the re-
quested QoS, and (2) there is a trade-off
among QoS parameters such as reliabil-
ity, delay, throughput, and cost of ser-
vice [Marasli et al. 1996].

Transport QoS is a broad and compli-
cated issue. No universally accepted list
of parameters exists, and how the trans-
port layer should behave for a desired
QoS under different circumstances is
unclear. The ISO Transport Service
[ITU-T 1995c] defines a number of pos-
sible performance QoS parameters that
are negotiated during connection estab-
lishment. User senders can specify (sus-
tained) target, acceptable, and mini-
mum values for various service
parameters. The transport protocol ex-
amines these parameters, and deter-
mines whether it can provide the re-
quired service; this depends in part on
the available network service. ISO spec-
ifies eleven QoS parameters:

● Connection Establishment Delay is
the maximum acceptable time be-
tween a transport connection being
requested and its confirmation being
received by the user sender.

● Connection Establishment Failure
Probability is the probability a con-
nection cannot be established within
the maximum connection establish-
ment delay time due to network or
internal problems.

● Throughput is the number of bytes of
user sender data transferred per unit
time over some time interval.

● Transit Delay is the elapsed time be-
tween a message being submitted by

a user sender and being delivered to
the user receiver.

● Residual Error Rate is the ratio of
incorrect, lost, and duplicate TSDUs
to the total number of TSDUs that
were sent.

● Transfer Failure Probability is the ra-
tio of total transfer failures to total
transfer samples observed during a
performance measurement.

● Connection Release Delay is the max-
imum acceptable time between a
transport user initiating release of a
connection and the actual release at
the peer transport service user.

● Connection Release Failure Probabil-
ity is the fraction of connection re-
lease attempts that did not complete
within the agreed upon connection re-
lease delay interval.

● Protection is used by the user sender
to specify interest in having the
transport protocol provide protection
against unauthorized third parties
reading or modifying the transmitted
data.

● Priority allows a user sender to spec-
ify the relative importance of trans-
port connections. In case of conges-
tion or the need to recover resources,
lower-priority connections are de-
graded or terminated before the high-
er-priority ones.

● Resilience is the probability that the
transport protocol itself will sponta-
neously terminate a connection due to
internal or network problems.

A transport layer that provides No-
Quality-of-Service (No-QoS) does not al-
low a user sender to specify desired
quality of transmission service.

The original definitions of TP0 and
TP4 support QoS service, however, only
recently have the lower layers of net-
works matured sufficiently for the com-
munity to consider transport layer QoS
handling. The ATM environment sup-
ports only two QoS parameters: (sus-

Transport Layer • 373

ACM Computing Surveys, Vol. 31, No. 4, December 1999

tained) target, acceptable, and mini-
mum throughput and transit delay
[ITU-T 1995a]. Within the Internet
IETF community, much work is ongoing
to create an integrated services (INT-
SERV) QoS control framework so that
the TCP/IP suite can provide more than
its current no-QoS service. While not
itself a transport protocol, RSVP [Bra-
den et al. 1997] sits on top of IP. RSVP
allows a host to request specific quali-
ties of service from the network. A re-
quest may refer to a single path in the
case of unicast or multiple paths in the
case of multicast. General QoS parame-
ters supported by the INTSERV frame-
work are defined in Shenker and Wro-
clawski [1997]. Requests result in
reserved resources by individual net-
work elements (i.e., subnets, IP routers)
along the path. Thus far use of RSVP
has been defined to provide two kinds of
Internet QoS: controlled load [Wroclaw-
ski 1997] and guaranteed [Shenker et
al. 1997].

4. TRANSPORT PROTOCOL FEATURES

The previous section describes general
features of transport layer service. This
section focuses on internal transport
layer mechanisms that provide this ser-
vice. It is important to understand that
almost every service can be accom-
plished by several different protocols.

4.1 Connection-oriented vs.
Connectionless

Not only can a service be classified CO
or CL, so too can a protocol that pro-
vides either service. The distinction de-
pends on the establishment and mainte-
nance of state information, a record of
characteristics and events related to the
communication between the transport
sender and receiver. Perhaps the most
important piece of state information is
the sequence number that identifies a
TPDU. Consistent viewpoints of the se-
quence numbers used by transport
sender and transport receiver are re-
quired for reliable data transfer. Choos-

ing an initial value for the sequence
number can be hazardous, particularly
when two transport entities close and
immediately reopen a connection (see
Section 4.4.7).

A transport protocol is CO (e.g., TCP)
if state information is maintained be-
tween transport entities. Typically, a
CO protocol has three phases: connec-
tion establishment, data transfer, and
connection termination. In the connec-
tion establishment phase, state infor-
mation is initialized either explicitly by
exchanging control TPDUs, or implicitly
with the arrival of first data TPDU.
During a connection’s lifetime (i.e., data
transfer phase), state information is up-
dated to reflect the reception of data
and control PDUs (e.g., ACKs). When
both transport entities agree to termi-
nate the connection, they discard the
state information. Note the distinction
between a CO service and a CO proto-
col. A CO service entails a three phase
operation to establish a logical connec-
tion between transport users. A CO pro-
tocol entails a three phase operation to
maintain state information between
transport entities.

If no state information is maintained
at the transport sender and receiver,
the protocol is CL. A CL protocol is
based on individually self-contained
units of communication often called
datagrams that are exchanged indepen-
dently without reference to each other
or to any shared state information.
Each datagram contains all of the infor-
mation that the receiving transport en-
tity needs to interpret it.

4.2 Transaction-oriented

Transaction-oriented protocols attempt
to optimize the case where a user
sender wishes to communicate a single
APDU (called a request) to a user re-
ceiver, who then normally responds
with a single APDU (called a response).
Such a request/response pair is called a
transaction.

A transaction-oriented transport pro-
tocol attempts to provide reliable ser-

374 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

vice for transactions with as few TPDUs
as possible, ideally only one for the re-
quest and one for the response. This is
done by trying to minimize overhead for
connection establishment. Transactions
share the following characteristics [Bra-
den 1992a]: an asymmetrical model (i.e.,
client and server), simplex data trans-
fer, short duration, low delay, few data
TPDUs, message orientation, and the
need for no-duplicates service. Exam-
ples of transaction-oriented protocols in-
clude VMTP and T/TCP, a backwards
compatible TCP extension.

4.3 CO Protocol Features

The following subsections refer only to
CO protocols.

4.3.1 Signaling. Signaling is the ex-
change of control (i.e., state) informa-
tion between transport entities for man-
aging a connection.5 Signaling is used to
establish and terminate a connection
and to exchange communication system
parameters. Signaling can be accom-
plished in-band, where control informa-
tion and user data are multiplexed on
the same connection, or out-of-band,
where separate connections are used.
In-band signaling (e.g., TCP) is gener-
ally more suitable for applications that
require short-lived connections (e.g.,
transaction-oriented communications).
The extra overhead incurred for manag-
ing two bands is avoided, and small
amounts of user data can be transmit-
ted during the signaling operation.

Out-of-band signaling (e.g., TP11) is
desirable for high-speed communication
systems. It avoids the overhead of sepa-
rating signaling information from user
data by doing so below the transport
layer. Out-of-band signaling can sup-
port transporting more than one kind of
data over a connection, thereby facili-
tating operations involving third par-
ties, for example, a server validating
security information, or billing.

4.3.2 Unidirectional vs. Bidirectional.
In a unidirectional connection (e.g.,
NETBLT, VMTP) data flows only in one
direction at a time (half duplex). That
is, while one transport entity is sending
data, the other may not send data in the
reverse direction. Each transport entity
can assume the role of transport sender
or transport receiver, but not both si-
multaneously.

In a bidirectional connection (e.g.,
TCP), both transport entities simulta-
neously assume the roles of transport
sender and transport receiver, thereby
allowing full duplex data flow.

4.3.3 Connection Establishment.
Three modes of connection establish-
ment are shown in Figure 3. The cost
associated with connection establish-
ment can be amortized over a connec-
tion’s lifetime. For short-lived connec-
tions which result from transaction-
oriented applications, this cost can be
significant. Therefore, protocols for
short-lived connections have been de-
signed using a timer-based connection
establishment and termination mecha-
nism. For longer connections and when
avoiding false connections is important,
2-way or 3-way handshake mechanisms
are needed. A handshake involves the
explicit exchange of control TPDUs.

In implicit connect, the connection is
open as soon as the first TPDU is sent
or received. The transport sender starts
transmitting data without any explicit
connection verification by the transport
receiver. Further data TPDUs can be
sent without receiving an ACK from the
transport receiver. Implicit connections
can provide reliable service only if the
protocol definition guarantees that de-
layed TPDUs from any previously
closed connection cannot cause a false
open. T/TCP [Braden 1994] achieves
this via connection-unique identifiers
and timer-based connection termina-
tion.

In 2-way-handshake connect (e.g.,
APPN, SSCOP/AAL5), a CR-TPDU
(Connection Request) and a CC-TPDU
(Connection Confirm) are exchanged to

5While in some cases data may be exchanged,
signaling generally refers to exchanging control
info.

Transport Layer • 375

ACM Computing Surveys, Vol. 31, No. 4, December 1999

establish the connection. The transport
sender may transmit data in the CR-
TPDU, but sending additional data is
prohibited until the CC-TPDU is re-
ceived. During this handshake, QoS pa-
rameters such as buffer size, burst size,
burst rate, etc., can be negotiated.
When the underlying network service
provides a small degree of loss, a 2-way-
handshake mechanism may be good
enough to establish new connections
without significant risk of false connec-
tions.

In 3-way-handshake connect (e.g.,
TCP), the transport sender sends a CR-
TPDU to the transport receiver, which
responds with a CC-TPDU. The proce-
dure is completed with an ACK-CC-
TPDU (ACK for Connection Confirm).
Normally, no user data is carried on
these connection establishment TP-
DUs.6 If the underlying network service
provides an unacceptable degree of loss,
a 3-way-handshake is needed to prevent
false connections that might result from
delayed TPDUs. Because TCP was de-
signed specifically for use over an unre-
liable network service, TCP uses a
3-way handshake.

4.3.4 Connection Termination. Four
modes of connection termination are
shown in Figure 4.

With implicit disconnect (e.g., VMTP),
when a transport entity does not hear
from its peer for a certain time period,
the entity terminates the connection.
Typically, implicit disconnection is used
with implicit connection establishment.

In abortive disconnect, when a trans-
port entity must close the connection
abnormally due to an error condition, it
simply sends an abort-TPDU and termi-
nates the connection. The entity does
not wait for a response. Thus TPDUs in
transit in either direction may be lost.

In 2-way-handshake disconnect (e.g.,
NETBLT), a transport entity sends a
DR-TPDU (Disconnect Request) to its
peer and receives a DC-TPDU (Discon-
nect Confirm) in return. If a connection
is unidirectional (see Section 4), the
transport sender usually initiates con-
nection termination, and before discard-
ing its state information verifies the
reception of all TPDUs by the transport
receiver. In a bidirectional connection, a
2-way-handshake can only verify recep-
tion of TPDUs in one direction. TPDUs
in transit in the reverse direction may
be lost.

Finally, in 4(3)-way-handshake dis-
connect (e.g., TCP), two 2-way-hand-
shakes are used, one for each direction
of data flow. The transport entity that
closes its sending flow sends a DR-

6TCP allows user data to be sent on a CR-TPDU.
However, that data cannot be delivered to the
user until the 3-way-handshake is completed.
Furthermore, outside of T/TCP compliant imple-
mentations, TCP implementations typically do not
take advantage of this feature [Stevens 1996].

Host A Host B

TPDU

Implicit

Host A Host B

CR-TPDU

2-way-handshake

CC-TPDU

Host A Host B

CR-TPDU

3-way-handshake

CC-TPDU

ACK-CC-TPDU

Point in time at which connection is
said to be established for that host.

Figure 3. Three modes of connection establishment.

376 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

TPDU to its peer entity (in TCP the FIN
flag is set in its last TPDU). This dis-
connect request is then acknowledged
by the transport receiver as soon as all
preceding TPDUs have been received.
The connection is terminated when data
flows in both directions are closed. The
number of control TPDUs exchanged
can be reduced to three if the first DC-
TPDU also functions as a DR-TPDU for
the reverse direction.

Connections may be terminated ei-
ther gracefully or ungracefully. In an
ungraceful termination as in TP0 or
TP4,7some data in transit may be lost.
In a graceful close, no data in transit is
lost since a connection is closed only
after all data have arrived at their des-
tination. For bidirectional connections,
only a 4(3)-way-handshake can guaran-
tee graceful close.

4.4 Error Control: Sequence Numbers,
Acks, and Retransmissions

Error control is a combination of tech-
niques to guard against loss or damage
of user data and control information. CL
network protocols such as IP perform no
error control on user data. Even CO
networks are being designed with light-
weight virtual circuits that provide no
error control [McAuley 1990; Parulkar
and Turner 1989]. Recent studies have
shown that for realistic high-speed net-
works with low error rates, transport
layer error control is more efficient than

link layer error control [Bae et al. 1991;
Bhargava et al. 1988]. There are two
phases in transport layer error control:
error detection, and error reporting and
recovery.

4.4.1 Error Detection. Error detec-
tion identifies lost, misordered, dupli-
cated, and corrupted TPDUs. Sequence
numbers help uncover the first three
problems. Corrupted data is discovered
by means of (1) length fields that allow
a transport receiver to detect missing or
extra data, and (2) redundant informa-
tion in the form of error detecting codes
(EDC). Cyclic redundancy checks and
other forms of checksums are the most
common examples of EDCs. An EDC
can verify the header/trailer, the data,
or both. TCP and AAL5 contain a single
checksum on both. XTP performs one
checksum on the header and allows for
an optional second checksum on the
data.

Separate EDCs for header and data
are recommended for multimedia appli-
cations [La Porta and Schwartz 1992].
In voice applications, where corrupted
data is tolerable but retransmissions
are less advantageous due to delay con-
straints, only a header EDC needs to be
used. In image transfer using both
EDCs, corrupted data may be used tem-
porarily until a corrected version is ob-
tained via retransmission.

4.4.2 Error Reporting and Recovery.
Error reporting is a mechanism where
the transport receiver explicitly informs
the transport sender about errors that

7The OSI Session Layer provides the graceful
close.

Host A Host B

Abort-TPDU

Abortive

Host A Host B

DR-TPDU

2-way-handshake

DC-TPDU

Host A Host B

DR-TPDU

4(3)-way-handshake

DR-TPDU

DC-TPDU

Point in time at which connection is
said to be terminated for that host.

Host A Host B

Implicit

No data
flow

DC-TPDU

Figure 4. Four modes of connection termination.

Transport Layer • 377

ACM Computing Surveys, Vol. 31, No. 4, December 1999

have been detected. Error recovery is a
mechanism used by both transport
sender and receiver to recover from er-
rors whether or not they are explicitly
reported.

Error reporting and recovery are tra-
ditionally accomplished using timers,
sequence numbers, and acknowledg-
ments. Sequence numbers are assigned
to TPDUs (or associated with the byte-
stream). The transport receiver informs
the transport sender via ACKs about
TPDU arrivals so that the sender can
retransmit those that are missing.

A positive ACK, or PACK, contains
sequence number information about
those TPDUs that have been received. A
negative ACK, or NACK, often known as
a selective reject, explicitly identifies
TPDUs that have not been received.8

Protocols that use ACKs are known as
Positive Ack with Retransmission (PAR)
or Automatic Repeat reQuest (ARQ)
schemes. Upon receipt of an ACK, the
transport sender updates its state infor-
mation, discards buffered TPDUs that
are acknowledged, and retransmits any
TPDUs that are not acknowledged. A
protocol that only use PACKs has no
error reporting mechanism.

If a transport sender does not receive
an ACK within a reasonable timeout
period, it may assume something has
gone wrong and retransmits unacknowl-
edged TPDU(s). With delays within
most underlying networks being vari-
able and dynamic, accurate calculation
of a reasonable timeout value within the
transport layer is a most difficult prob-
lem. However, accurate round-trip time
(RTT) estimation is essential [Zhang
1986]. The basic idea is to keep an RTT
estimate by measuring the time be-
tween sending a TPDU and receiving its
ACK. Research has shown the impor-
tance of not updating this estimate for
retransmitted TPDUs, since it is impos-
sible to determine whether the received
ACK is for the original TPDU transmis-

sion or a subsequent retransmission
[Karn and Partridge 1987]. Jacobson
[1988]refined TCP’s retransmission
timeout calculation by using a low-pass
filter to estimate the mean, and mean
deviation of the RTT. RTT estimation
has been a key area of research in TCP;
an informative summary appears in
Stevens [1994].

4.4.3 Piggybacking. When a TPDU
arrives at a transport receiver, instead
of immediately returning an ACK as a
separate control TPDU, some protocols
(including TCP) artificially delay re-
turning an ACK hoping the user re-
ceiver will soon submit its next message
to be sent as part of the reverse direc-
tion data flow. When this occurs, the
ACK is piggyback-ed as header informa-
tion on the reverse direction data
TPDU. This is an example of transport
layer concatenation (see Section 4).

4.4.4 Cumulative vs. Selective Ac-
knowledgment. A common type of
PACK is the cumulative PACK. Each
cumulative PACK carries a sequence
number indicating that all TPDUs with
lower9 sequence numbers have been re-
ceived. With cumulative PACKs, even if
PACKi is lost, the arrival of a later
PACKj such that j . i, positively ac-
knowledges all TPDUs up to TPDUj.
The later cumulative PACK incorpo-
rates the information of the previously
lost one.10

A disadvantage of cumulative PACKs
occurs when TPDUi is lost and
TPDUi11, TPDUi12, . . . , arrive intact
and are buffered. Each PACK following
the loss can acknowledge only TPDUs
up to and including TPDUi21. Thus, the
transport sender may not receive timely
feedback on the success of TPDUs sent

8For clarity in this paper, PACK refers only to a
positive ACK, and ACK refers to either a PACK or
NACK.

9This is TCP’s definition; some protocols use “low-
er or equal”.
10Most implementations allow sequence number
wraparound. For simplicity, we assume that j . i
implies that TPDUj is later in the data flow than
TPDUi.

378 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

after TPDUi, and retransmit them un-
necessarily.

The second PACK type in its most
basic form is the selective PACK, which
acknowledges exactly one TPDU. With
selective PACKs, a transport receiver
informs the transport sender about each
TPDU that arrives successfully, so the
transport sender can more likely re-
transmit only those TPDUs that have
actually been lost. Selective PACKs are
used by NETBLT and VMTP.

A block PACK is a variation of selec-
tive PACK, where blocks of individual
TPDUs are selectively acknowledged
[Brown et al. 1989]. For example, an
XTP ACK is actually a series of block
PACKs. If TPDUs {1, 2, 4, 5, 6, 9, 10}
arrive and {3, 7, 8} are missing, then the
block PACK would look like 1-2;4-6;9-
10.

In part due to the influence of innova-
tive acknowledgment schemes in proto-
cols such as XTP, NETBLT, and VMTP,
TCP with selective acknowledgment
(called SACK) recently has been pro-
posed. SACK combines selective (block)
and cumulative PACKs within TCP
[Braden and Jacobson 1988; Floyd 1996;
Mathis et al. 1996]. One simulation
study shows the strength of TCP imple-
mentations with vs. without selective
PACKs [Fall and Floyd 1996].

4.4.5 Retransmission Strategies.
When a transport sender transmits
TPDUi and determines later that it
may not have arrived at the transport
receiver, two retransmission strategies
are possible. (This determination can
result when the transport sender does
not receive a PACK within a predeter-
mined timeout period, or when it re-
ceives back-to-back cumulative PACKs
that are identical.) A conservative ap-
proach has the transport sender re-
transmit selectively only TPDUi and
wait for a PACK with sequence number
larger than previous PACKs. This selec-
tive repeat approach is used in SNR
[Doshi et al. 1993], and avoids retrans-
mitting correctly received TPDUs [Feld-
meier and Biersack 1990].

A more aggressive transport sender
retransmits TPDUi and all TPDUs al-
ready sent after TPDUi. This Go-
Back-N approach is fairly simple but
decreases channel utilization by poten-
tially retransmitting correctly-received
TPDUs. These unnecessary retransmis-
sions then add to network congestion.
The protocol SMART combines good fea-
tures of selective repeat and Go-Back-N
by having the transport receiver return
both a cumulative PACK, and a selec-
tive PACK for the TPDU that most re-
cently arrived [Keshav and Morgan
1997]. This combined ACK information
helps the transport sender avoid unnec-
essary retransmissions. Further work
on innovative retransmission strategies
for use over wireless networks can be
found in Balakrishnan et al. [1996] (see
Section 6). Both selective repeat and
Go-Back-N also apply to data link layer
communication, and are thoroughly an-
alyzed in Stallings [1997], Tanenbaum
[1996], and Walrand [1991].

4.4.6 Sender-dependent vs. Sender-in-
dependent Acknowledgment. In some
protocols, transport receiver ACKs are
generated in response to explicit or im-
plicit events initiated by the transport
sender. These ACKs are called sender-
dependent [Doeringer et al. 1990; Thai
et al. 1994]. In XTP, no ACKs are gen-
erated until the transport sender explic-
itly instructs the transport receiver to
generate one. Some transaction-ori-
ented protocols such as VMTP try to
minimize the number of control TPDUs
exchanged by using the response as an
implicit PACK for a transmitted re-
quest, and a new request as an implicit
PACK for the previous response.

Sender-independent ACKs are those
generated by a transport receiver inde-
pendent of actions by the transport
sender. SNR/ESNR [Doshi et al. 1993;
Netravali et al. 1990] uses an error re-
porting and recovery scheme called Pe-
riodic State Exchange, where complete
state information is exchanged periodi-
cally between a transport sender and a
transport receiver based on timers, not

Transport Layer • 379

ACM Computing Surveys, Vol. 31, No. 4, December 1999

the arrival or loss of TPDUs. If a control
TPDU containing state information is
lost, no immediate steps are taken.
Eventually, after another period the
complete state information containing
information in the lost control TPDU
will be exchanged. This approach sim-
plifies the error recovery mechanism
and reduces the number of error recov-
ery timers. With parallel processors,
one processor at the receiver can be
dedicated to processing state informa-
tion and inserting control TPDUs while
a second focuses on processing TPDUs.

4.4.7 Duplicate Detection. Sequence
numbers are also the basic mechanism
for duplicate detection. If an ACK is lost
and as a result one or more TPDUs are
retransmitted, duplicate TPDUs can ar-
rive at the transport receiver. In most
CO protocols, the transport receiver
maintains state information about pre-
viously received TPDUs. (A less com-
mon approach to duplicate detection
uses synchronized clocks instead of
state information [Liskov et al. 1990]).
When a duplicate TPDU is received, the
state information allows it to be de-
tected. In CL protocols, where no state
information is maintained, duplicate de-
tection is not possible and the typical
offered service is maybe-loss, maybe-du-
plicates. In CL protocols that use ACKs
and retransmissions, the offered service
is limited to no-loss, maybe-duplicates
service.

When a duplicate is received after a
connection close and subsequent recon-
nection between the same two transport
entities, duplicate detection becomes a
delicate problem. In this case, the dupli-
cate may accidentally be considered
original data for the second connection.
Several solutions exist for this delayed
duplicate problem. First, each transport
entity can remember the last sequence
number used for each terminated con-
nection (i.e., maintain state even after
disconnection). If a connection is re-es-
tablished, the next sequence number is
used. A design problem involves decid-
ing how long each transport entity must

maintain the state information. A sec-
ond approach uses a unique connection
identifier for each connection. Both ap-
proaches work fine, unless the system
loses the sequence number or connec-
tion identifier information, say due to a
system crash. A third approach requires
a minimum amount of time before a
connection between the same two trans-
port entities can be reestablished, and
enforces a maximum lifetime of any
TPDU to be less than that minimum.
This so-called TIME-WAIT approach is
used in TCP; it has the disadvantage of
introducing artificial delays between
consecutive connections.

4.4.8 Forward Error Correction. Be-
cause each retransmission requires at
least one round-trip time, PAR and
ARQ schemes may operate poorly for
applications that have tight latency con-
straints. As an alternative, Forward Er-
ror Correction (FEC) can be used for low
latency error control, with or without
PAR/ARQ. In TP11, a transport sender
can transmit each TSDU as k data TP-
DUs and an additional h redundant par-
ity TPDUs. Unless the network loses
more than h of the h1k TPDUs sent,
the transport receiver can reconstruct
the original k data TPDUs.

4.5 Flow/Congestion Control

The terms flow control and congestion
control create confusion, since different
authors approach these subjects from
different perspectives. In this section
we try to make a useful distinction be-
tween the terms while recognizing that
overlap exists.

First, we define transport layer flow
control as any scheme by which the
transport sender limits the rate at
which data is sent over the network.
The goals of flow control may include
one or both of the following: (1) prevent-
ing a transport sender from sending
data for which there is no available
buffer space at the transport receiver,
or (2) preventing too much traffic in the
underlying network. Flow control for (2)

380 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

also is called congestion control, or con-
gestion avoidance. Congestion is essen-
tially a network layer problem, and doz-
ens of schemes are discussed and
classified in Yang and Reddy [1995].
However, congestion often is addressed
by transport layer flow control (also
known as end-point flow control).

Techniques used to implement both
goals are often tightly integrated, as is
the case in TCP. Regardless of which
goal is being pursued, the flow of data is
being controlled. Therefore, some au-
thors use “flow control” to refer to proto-
col features that address both goals,
thus blurring the distinction between
flow and congestion control [Stevens
1994, p. 310]. Bertsekas and Gallager
[1992] state that flow and congestion
control overlap so much that it is better
to treat them as a single problem; how-
ever, he discusses flow control as a ma-
jor network layer function. Other au-
thors [Stallings 1997; Tanenbaum 1996;
Walrand 1991] clearly separate conges-
tion control from flow control. Feld-
meier states that congestion control can
be viewed as a generalized n-dimen-
sional version of flow control, and sug-
gests that flow control for all layers
should be performed at the lowest layer
that requires flow control [Feldmeier
1993a]. In this paper, we use flow con-
trol as the overall term for such tech-
niques, but emphasize that (1) flow con-
trol is only one example of many
possible congestion control techniques,
and (2) congestion control is only one of
the two motivations for flow control.

We now present a discussion of gen-
eral flow control techniques, and a dis-
cussion of how these techniques combat
network congestion.

4.5.1 General Flow Control Tech-
niques. Transport layer flow control is
more complex than network or data-link
layer flow control. This is because stor-
age and forwarding at intermediate
routers causes highly variable delays
that are generally longer than actual
transmission time [Stallings 1997].
Transport layer flow control usually is

provided in tandem with error control,
by using sequence numbers and win-
dowing techniques. Some authors, how-
ever, claim that error control and flow
control have different goals and should
be separated in high-speed network pro-
tocol design [Feldmeier 1990; La Porta
and Schwartz 1992; Lundy and Tipici
1994].

Two techniques may be used, either
alone or together, to avoid network con-
gestion and overflowing receiver buff-
ers. These are: (1) window flow control
and (2) rate control.

In window (or sliding-window) flow
control, the transport sender continues
sending new data as long as there re-
mains space in the sending window. In
general, this window may be fixed or
variable in size. In fixed size window
control, ACKs from the transport re-
ceiver are used to advance the transport
sender’s window.

In variable size window control, also
called a credit scheme, ACKs are de-
coupled from flow control. A TPDU may
be acknowledged without granting the
transport sender additional credit to
send new TPDUs, and additional credit
can be given without acknowledging a
TPDU. The transport receiver adopts a
policy concerning the amount of data it
permits the transport sender to trans-
mit, and advertises the size of this win-
dow in TPDUs that flow from receiver to
sender.

Early experience with TCP showed a
problem, known as the Silly Window
Syndrome, that can afflict protocols us-
ing the credit scheme. The silly window
syndrome can start either because the
transport receiver advertises a very
small window, or the transport sender
sends a very small TPDU. Clark [1982]
describes how this can degenerate into a
vicious cycle where the average TPDU
size ends up being much smaller than
the optimal case, and throughput suf-
fers as a result. TCP includes mecha-
nisms in both the transport sender and
transport receiver to avoid the condi-
tions that lead to this problem.

Transport Layer • 381

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Credit schemes may be described as
conservative or aggressive (optimistic).
The conservative approach, as used in
TCP, only allows new TPDUs up to the
transport receiver’s available buffer
space. This approach has the disadvan-
tage that it may limit a transport con-
nection’s throughput in long delay or
large bandwidth-product situations.
The aggressive approach attempts to in-
crease throughput by allowing a trans-
port receiver to optimistically grant
credit for space it does not have [Stall-
ings 1997]. A disadvantage of the ag-
gressive approach is its potential for
buffer overflow at the transport receiver
(hence, wasted bandwidth) unless the
credit-granting mechanism is carefully
timed [Clark 1982].

Rate control uses timers at the trans-
port sender to limit data transmission
[Cheriton 1988; Clark et al. 1987;
Weaver 1994]. Either a transport
sender can be assigned (1) a burst size
and interval (or burst rate), or (2) an
interpacket delay time. In (1), a trans-
port sender transmits a burst of TPDUs
at its maximum rate, then waits for the
specified burst interval before transmit-
ting the next burst (e.g., NETBLT and
XTP). This is often modeled as a token-
bucket scheme. In (2), a transport
sender transmits data as long as it has
credit available, but artificially pauses
between each TPDU according to the
interpacket delay (e.g., VMTP [Cheriton
and Williamson 1989]). This is often
modeled as a leaky-bucket scheme. Case
(2) improves performance because
spreading TPDU transmissions helps
avoid network congestion and receiver
overflow. However, interpacket delay al-
gorithms are more difficult to imple-
ment because of the timers needed.

Rate control schemes involve low net-
work overhead since they do not ex-
change control TPDUs except to occa-
sionally adjust the rate in response to a
significant change in the network or the
transport receiver. They also do not af-
fect the way data ACKs are managed
[Doeringer et al. 1990]. Some authors
argue that implementing window con-

trol and rate control together as in XTP
and NETBLT will achieve better perfor-
mance than implementing only one of
them [Clark et al. 1987; Doeringer et al.
1990; La Porta and Schwartz 1992;
Sanders and Weaver 1990].

One innovative approach imple-
mented in TP11 involves backpressure,
where the application, transport, and
network layers all interact. If a user
receiver reads from the transport re-
ceiver at a rate slower than the trans-
port sender is sending, the transport
receiver’s buffers eventually will fill up.
The transport receiver explicitly trig-
gers congestion control procedures
within the network. The network sender
in turn refuses additional TPDUs from
the transport sender. The transport
sender may then exercise backpressure
on the sending application by refusing
to accept any more new APDUs, until
notice arrives that the transport receiv-
er’s buffers have started to empty
[Stevens 1994]. This method will not
work if multiple transport connections
are multiplexed on a single network
connection [Stallings 1997].

4.5.2 Flow Control Techniques for Ad-
dressing Congestion. Congestion con-
trol schemes have two primary objec-
tives: fairness, and optimality.

Fairness involves sharing resources
among users (individual data flows)
fairly. Since transport entities lack
knowledge about general network re-
sources, the bottleneck(s) itself is at a
better position to enforce fairness. The
transport layer’s role is limited to en-
suring that all transport senders coop-
erate. For example, TCP’s congestion
control technique assumes that all TCP
entities will “back-off” in a similar man-
ner in the presence of congestion. Un-
fortunately, it only works in a coopera-
tive environment. Today’s Internet is
experiencing congestion difficulties be-
cause of many non-TCP-conformant
transport entities acting selfishly. Mod-
ifications to Random Early Dropping
(RED) algorithms have been proposed to

382 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

counter these selfish TCP implementa-
tions [Floyd and Jacobson 1993].

Optimality involves ensuring that all
routers operate at optimal levels. Trans-
port entities have a role to play by lim-
iting the traffic sent over any router
that becomes a bottleneck. A router can
monitor itself and send explicit access
control feedback to the traffic sources
[Prue and Postel 1987; Ramakrishnan
and Jain 1988]. Alternatively, transport
entities can use implicit access control
and detect potential bottlenecks from
timeouts and delays derived from the
ACKs received [Ahn et al. 1995; Jain
1989]. A third method is to use packet-
pair flow control which also has the
advantage of ensuring that well-be-
haved users are protected from ill-be-
haved users because of the use of round-
robin schedulers [Keshav 1991; 2000].

Explicit access control has been im-
plemented in XTP and TP11. XTP im-
plements both end-to-end flow control
and explicit access congestion control.
Initially, default parameters control the
transport sender’s transmission rate.
However, during the exchange of control
information, the network can modify
the flow control parameters to control
congestion. Furthermore, network rout-
ers can explicitly send control PDUs to
transport entities to control the conges-
tion. TP11 uses the previously men-
tioned backpressure both to avoid over-
whelming a slow receiver and to control
congestion.

When the network layer provides no
support for explicit access control, the
transport protocol may operate on the
assumption that any TPDU loss indi-
cates network congestion — a reason-
able assumption when the underlying
network links are highly reliable. TCP’s
approach to congestion avoidance incor-
porates two important design princi-
ples. The first principle is slow-start,
where new connections do not initially
send at the full available bandwidth,
but rather first send one TPDU per
RTT, then two, then four, etc., (expo-
nential increase per RTT), until the full
bandwidth is reached, or a loss is de-

tected. The second principle is that
when loss is encountered, indicating po-
tential congestion, the transport sender
reduces its sending rate significantly,
and then uses an additive increase per
RTT in an attempt to find an optimal
sending rate. A goal of TCP is that
network bandwidth is shared fairly
when all TCP connections abide by both
principles. Details of these principles
have been refined over various imple-
mentations of TCP, which go by the
names Tahoe, Reno, and Vegas [Ahn et
al. 1995; Fall and Floyd 1996; Jacobson
1988].

Using a control-theoretic approach,
congestion control schemes can be
viewed as a control policy to achieve
prescribed goals (e.g., minimize round-
trip delay). These schemes are divided
into open loop (e.g., rate control and
implicit access control schemes), where
control decisions by the transport
sender do not depend on feedback from
the congested sites, and closed loop
(e.g., explicit access control schemes),
where control decisions do depend on
such feedback. With networks having
higher speeds and higher bandwidth-
delay products, open loop schemes have
been proposed as being more effective.
Many current admission control
schemes, which can be called regulation
schemes, are open loop.

4.6 Multiplexing/Demultiplexing

Multiplexing, as shown in Figure 5(a),
supports several transport layer connec-
tions using a single network layer asso-
ciation. Multiplexing maps several user/
transport interface points (what ISO
calls TSAPs) onto a single transport/
network interface point (NSAP). An as-
sociation is a virtual circuit in the case
of a CO network. In the case of a CL
network, an association is a pair of net-
work addresses (source and destina-
tion). When the underlying network is
CL (as is the case for TCP), multiplex-
ing/demultiplexing as provided by TCP’s
port numbers is necessary to serve mul-
tiple transport users.

Transport Layer • 383

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Multiplexing uses network layer re-
sources more efficiently by reducing the
network layer’s context-state informa-
tion. Additionally, it can provide primi-
tive stream synchronization [Feldmeier
1990]. For example, video and audio
streams of a movie can be multiplexed
to maintain “lip sync,” in which case the
multiplexed streams are handled as a
single stream in a single, uniform man-
ner. This method works only if all
streams require the same network layer
QoS. Multiplexing’s advantages come at
the expense of having to demultiplex TP-
DUs at the transport receiver and to en-
sure fair sharing of resources among the
multiplexed connections. Demultiplexing
requires a look-up operation to identify
the intended receiver and possibly extra
process switching and data copying.

4.7 Splitting/Recombining

Splitting (or downward-multiplexing
[Walrand 1991]) as shown in Figure 5(b)
is the opposite of multiplexing. In this
case, several network layer associations
support a single transport layer connec-
tion. Splitting provides additional resil-
ience against a network failure and po-
tentially increases throughput by
letting a fast processor output data over
several slower network connections
[Strayer and Weaver 1988].

4.8 Concatenation/Separation

Concatenation, as shown in Figure 6,
combines several TPDUs into one net-
work service data unit (NSDU), thus
reducing the number of NSDUs submit-

ted to the network layer. The transport
receiver has to separate the concate-
nated TPDUs. This mechanism saves
network bandwidth at the expense of
extra processing time at the transport
sender and receiver. Considering that
the transport receiver is often the bot-
tleneck in protocol processing and that
available bandwidth is increasing, some
authors argue that concatenation/sepa-
ration and splitting/recombining mecha-
nisms are becoming less important
[Thai et al. 1994].

4.9 Blocking/Unblocking

Blocking combines several TSDUs into
a single TPDU (see Figure 7(a)), thereby
reducing the number of transport layer
encapsulations and the number of NS-
DUs submitted to the network layer. The
receiving transport entity has to unblock
or deblock the blocked TSDUs before de-
livering them to transport service user.

Blocking/unblocking is intended to
save network bandwidth. The effect on
processing time varies with the particu-
lar implementation. A protocol that has
to do both blocking and unblocking, say
to preserve TSDU boundaries, might
add processing time. However, TCP’s
form of blocking, described by the Nagle
Algorithm [Nagle 1984], actually may
reduce processing time at the transport
receiver, since it reduces the number of
TCP headers which must be processed.
TCP’s transport receiver unblocks, but
does not preserve TSDU boundaries.
This is consistent with TCP’s CO-byte
service.

NSAPTSAPs

Flow of NPDUs

Application
(Session)

Transport

Network

Host A Host B

... ...

NSAPsTSAP

Flows of NPDUs

Host A Host B

... ...

(a) (b)

Figure 5. (a) Multiplexing/demultiplexing(b) Splitting/recombining.

384 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Although blocking and concatenation
are similar (both permit grouping of
PDUs), they may serve different pur-
poses. As one subtle difference, concate-
nation permits the transport layer to
group control (e.g., ACK) TPDUs with
data TPDUs that were derived from TS-
DUs. Piggybacking ACKs and data is an
example of concatenation. Blocking only
combines TSDUs (i.e., transport layer
data). Segmentation and concatenation
may occur, but blocking, as defined
within the ISO Reference Model, in CL
protocols is not permitted [ITU-T 1994b].

4.10 Segmentation/Reassembly

Often the network service imposes a
maximum permitted NSDU size. In
such cases, a larger TSDU is segmented
into smaller TPDUs by the transport
sender as shown in Figure 7(b). The
transport receiver reassembles the TSDU
before delivering it to the user receiver.

TCP segmentation is based on negoti-
ating a maximum segment size during
connection establishment, or in more
recent implementations, on a Path Max-
imum Transmission Unit (MTU) discov-
ery mechanism. To avoid the overhead
associated with network layer fragmen-
tation, many TCP implementations de-
termine the largest size IP datagram
that can be transmitted end-to-end
without IP fragmentation [Kent and

Mogul 1987]. These implementations
then use transport layer segmentation
(and/or blocking) with this MTU in
mind, thereby reducing11 the risk for
network layer segmentation [Stevens
1994, p. 340].

5. TRANSPORT PROTOCOL EXAMPLES

This section now summarizes eleven
widely implemented or particularly in-
fluential transport protocols other than
TCP. Each one’s features are described
in terms of the service and protocol fea-
tures discussed in general in Sections 3
and 4, respectively. The protocol de-
scriptions are summarized from the in-
dicated references and from direct cor-
respondence with those people most
responsible for each protocol’s design
and development. Together these proto-
cols are summarized in the Appendix in
Tables II–IV. Each of these tables are
divided into three parts: (a) general fea-
tures, (b) service features, and (c) proto-
col features.

The last part of the section provides a
brief statement about eight experimen-
tal transport protocols that appear in
the literature.

11Due to dynamic route changes, the MTU can
change with TCP; thus IP fragmentation can be
avoided but not prevented.

NSDU

TPDU TPDU

Sender Receiver

Transport
Layer

NSDU

TPDU TPDU

Network
Layer

... ...

Figure 6. Concatenation and separation.

Sender Receiver

Transport
Layer TPDU

TSDU TSDU TSDU

TPDU TPDU

Sender Receiver

...

TPDU

TSDU TSDU...

...

TSDU

TPDU TPDU...

(a) (b)

Figure 7. (a) Blocking/unblocking (b) Segmentation/reassembly.

Transport Layer • 385

ACM Computing Surveys, Vol. 31, No. 4, December 1999

5.1 UDP

User Datagram Protocol (UDP) (see Ta-
ble II) provides CL, uncontrolled-loss,
maybe-duplicates, unordered service
[Postel 1980]. UDP is basically an inter-
face to IP, adding little more than TSAP
demultiplexing (port numbers) and op-
tional data integrity service. By not pro-
viding reliability service, UDP’s over-
head is significantly less than that of
TCP. Although UDP includes an optional
checksum, there is no provision for error
reporting; incoming TPDUs with check-
sum errors are discarded, and valid ones
are passed to the user receiver.

5.2 TP4

The ISO Transport Protocol Class 4 (or
TP4) (see Table II) was designed for the
same reasons as TCP. It provides a sim-
ilar CO, reliable service over a CL unre-
liable network. TP4 relies on the same
mechanisms as TCP with the following
differences. First, TP4 provides a CO-
message service rather than CO-byte.
Therefore, sequence numbers enumer-
ate TPDUs rather than bytes. Next, se-
quence numbers are not initiated from a
clock counter as in TCP [Stevens 1994],
but rather start from 0. A destination
reference number is used to distinguish
between connections. This number is
similar to the destination port number
in TCP, but here the reference number
maps onto the port number and can be
chosen randomly or sequentially [Bert-
sekas and Gallager 1992]. Another im-
portant difference is that (at least in
theory) a set of QoS parameters (see
Section 3) can be negotiated for a TP4
connection. Other differences between
TCP and TP4 are discussed in Piscitello
and Chapin [1993].

5.3 TP0

The ISO Transport Protocol Class 0 (or
TP0) (see Table II) was designed as a
minimum transport protocol providing
only those functions necessary to estab-
lish a connection, transfer data, and
report protocol errors. TP0 was de-

signed to operate on top of a CO reliable
network service that also provides end-
to-end flow control. TP0 does not even
provide its own disconnection proce-
dures; when the underlying network
connection closes, TP0 closes with it.
One interesting use of TP0 is that it can
be employed to create an OSI transport
service on TCP’s reliable byte-stream
service, enabling OSI applications to
run over TCP/IP networks [Rose and
Cass 1987].

5.4 NETBLT

Network Block Transfer (NETBLT) (see
Table III) was developed at MIT for
high throughput bulk data transfer
[Clark et al. 1987]. It is optimized to
operate efficiently over long-delay links.
NETBLT was designed originally to op-
erate on top of IP, but can operate on
top of any network protocol that pro-
vides a similar CL unreliable network
service. Data exchange is realized via
unidirectional connections. The unit of
transmission is a buffer, several of
which can be concurrently active to
keep data flowing at a constant rate.
Connection is established via a 2-way-
handshake during which buffer, TPDU
and burst sizes are negotiated. Flow
control is accomplished using buffers
(transport-user-level control) and rate
control (transport-protocol-level con-
trol). Either transport user of a connec-
tion can limit the flow of data by not
providing a buffer. Additionally, NET-
BLT uses burst size and burst rate pa-
rameters to accomplish rate control.
NETBLT uses selective retransmission
for error recovery. After a transport
sender has transmitted a whole buffer,
it waits for a control TPDU from the
transport receiver. This TPDU can be a
RESEND, indicating lost TPDUs, or an
OK, acknowledging the whole buffer. A
GO allows the transmission of another
buffer. Instead of waiting after each
buffer, a multiple buffering mechanism
can be used [Dupuy et al. 1992].

386 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

5.5 VMTP

The Versatile Message Transaction Pro-
tocol (VMTP) (see Table III) was de-
signed at Stanford University to provide
high performance communication ser-
vice for distributed operating systems,
including file access, remote procedure
calls (RPC), real-time datagrams and
multicast [Cheriton and Williamson
1989]. VMTP is a request-response pro-
tocol that uses timer-based connection
management to provide communication
between network-visible entities. Each
entity has a 64-bit identifier that is
unique, stable, and independent of host-
address. The latter property allows enti-
ties to be migrated and handled inde-
pendent of network layer addressing,
facilitating process migration and mo-
bile and multihomed hosts [Cheriton
and Williamson 1989]. Each request
(and response) is identified by a trans-
action identifier. In the common case, a
client increments its transaction identi-
fier and sends a request to a single
server; the server sends back a response
with the same (Client, Transaction)
identifier. A response implicitly ac-
knowledges the request, and each new
request implicitly acknowledges the last
response sent to this client by the
server. Multicast is realized by sending
to a group of servers. Datagram support
is provided by indicating in the request
that no response is expected. Addition-
ally, VMTP provides a streaming mode
in which an entity can issue a stream of
requests, receiving the responses back
asynchronously [Williamson and Cheri-
ton 1989]. Flow control is achieved by a
rate control scheme borrowed from
NETBLT with negotiated interpacket
delay time.

5.6 T/TCP

Transaction TCP (T/TCP) (see Table III)
is a backwards-compatible extension of
TCP that provides efficient transaction-
oriented service in addition to CO ser-
vice [Braden 1992a; 1994]. The goal of
T/TCP is to allow each transaction to be

efficiently performed as a single incar-
nation of a TCP connection. It intro-
duces two major improvements over
TCP. First, after an initial transaction
is handled using a 3-way-handshake
connection, subsequent transactions
streamline connection establishment
through the use of a 32-bit incarnation
number, called a “connection count”
(CC) carried in each TPDU. T/TCP uses
the monotonically increasing CC values
in initial CR-TPDUs to bypass the
3-way-handshake, using a mechanism
called TCP Accelerated Open. With this
mechanism, a transport entity needs to
cache a small amount of state for each
remote peer entity. The second improve-
ment is that T/TCP shortens the delay
in the TIME-WAIT12 state. T/TCP de-
fines three new TCP options, each of
which carries one 32-bit CC value.
These options accelerate connection setup
for transactions. T/TCP includes all nor-
mal TCP semantics, and operates exactly
as TCP for all features other than connec-
tion establishment and termination.

5.7 RTP

Real-time Transport Protocol (RTP) (see
Table III) was designed for real-time
multiparticipant multimedia applica-
tions [Schulzrinne 1996; Schulzrinne et
al. 1996]. Even though RTP is called a
transport protocol by its designers, this
sometimes creates confusion, because
RTP by itself does not provide a com-
plete transport service. RTP TPDUs
must be encapsulated within the TP-
DUs of another transport protocol that
provides framing, checksums, and end-
to-end delivery, such as UDP. The main
transport layer functions performed by

12When a TCP entity performs an active close and
sends the final ACK, that entity must remain in
the TIME-WAIT state for twice the Maximum
Segment Lifetime (MSL), the maximum time any
TPDU can exist in the network before being dis-
carded. This allows time for the other TCP entity
to send and resend its final ACK in case the first
copy is lost. This closing scheme prevents TPDUs
of a closed connection from appearing in a subse-
quent connection between the same pair of TCP
entities [Braden 1992b].

Transport Layer • 387

ACM Computing Surveys, Vol. 31, No. 4, December 1999

RTP are to provide timestamps and se-
quence numbers for TSDUs. These
timestamps and sequence numbers may
be used by an application written on top
of RTP to provide error detection, rese-
quencing of out-of-order data, and/or er-
ror recovery. However, it should be em-
phasized that RTP itself does not
provide any form of error detection or
error control. Furthermore, in addition
to transport layer functions, RTP also
incorporates presentation layer func-
tions; through the use of so-called RTP
profiles, RTP provides a means for the
application to identify the format of data
(i.e., whether the data is audio or video,
what compression method is used, etc.).

RTP has no notion of a connection; it
may operate over either CO or CL ser-
vice. Framing and segmentation must
be done by the underlying transport
layer. RTP is typically implemented as
part of the application and not in the
operating system kernel; it is a good
example of Application Level Framing
and Integrated Layer Processing [Clark
and Tennenhouse 1990]. It consists of
two parts: data and control. Continuous
media data such as audio and video is
carried in RTP data TPDUs. Control
information is carried in RTCP (RTP
Control Protocol) TPDUs. Control TP-
DUs are multicast periodically to the
same multicast group as data TPDUs.
The functions of RTCP can be summa-
rized as QoS monitoring, intermedia
synchronization, identification, and ses-
sion size estimation/scaling. The control
traffic load is scaled with the data traf-
fic load so that it makes up a certain
percentage of the data rate (5%).

RTP and RTCP were designed under
the auspices of the Internet Engineer-
ing Task Force (IETF).

5.8 APPN (SNA)

The first version of IBM’s proprietary
Systems Network Architecture (SNA)
(see Table IV) was implemented in 1974
in a hierarchical, host-centric manner:
the intelligence and control resided at
the host, which was connected to dumb

terminals. The growing popularity of
LAN-based systems led to SNA version
2, a dynamic peer-to-peer architecture
called Advanced Peer-to-Peer Network-
ing (APPN) [Chiong 1996; Dorling et al.
1997]. Version 3, called High Perfor-
mance Routing (HPR), is a small but
powerful extension to APPN [Dorling
1997; Freeman 1995]. HPR includes
APPN-based high-performance routing,
which addresses emerging high-speed
digital transmissions. Although SNA is
a proprietary architecture, its structure
has moved closer to TCP/IP with each
revision. Today, SNA exists mostly for
legacy reasons. SNA and TCP/IP are the
most widely used protocols in the enter-
prise networking arena [Chiong 1996].

APPN does not map nicely onto ISO’s
modular layering since it does not de-
fine an explicit transport protocol per
se. However, end-to-end transport layer
functions such as end-to-end connection
management are performed as part of
APPN. Its CO service is built on top of a
reliable network service. Therefore,
many functions related to error control
that are commonly handled at the
transport layer are not required in AP-
PN’s transport layer. Unlike applica-
tions using TCP, SNA applications do
not directly interface to the transport
layer. Instead, applications are based on
a “Logical Unit” concept which contains
the services of all three layers above
network layer. An interesting feature of
APPN is its Class of Service(COS)-based
route selection where the route can be
chosen based on the associated cost fac-
tor. The overall cost for each route de-
pends on various factors such as the
speed of the link, cost per connection,
cost per transaction, propagation delay,
and other user-configurable items such
as security. For service and protocol de-
tails of APPN, see Table IV.

HPR, an extension to APPN, en-
hances data routing performance by de-
creasing intermediate router process-
ing. The main components of HPR are
Automatic Network Routing (ANR) and
Rapid Transport Protocol (RTP) [Chiong
1996; Dorling et al. 1997]. Unlike

388 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

APPN, RTP is an explicit transport pro-
tocol which provides a CO-message, re-
liable service. Some of the key features
of RTP include bidirectional data trans-
fer, end-to-end connections without in-
termediate session switching, end-to-
end flow and congestion control based
on adaptive rate-based (ARB) control,
and automatic switching of sessions
without service disruption.

5.9 NSP (DECnet)

DECnet (see Table IV) is a proprietary
protocol suite from Digital Equipment
Corporation. Early versions (1974-1982)
were limited in functions, providing
only point-to-point links, or networks of
255 processors. The first version ca-
pable of building networks of thousands
of nodes was DECnet Phase IV in 1982
(two years earlier than the OSI Refer-
ence Model was standardized). Its layer
corresponding most closely to the OSI
Transport layer was called the “End
Communication Layer”; it consisted of a
proprietary protocol called the Network
Services Protocol (NSP).

NSP provides CO-message and reli-
able service. It supports segmentation
and reassembly, and has provisions for
flow control and congestion control
[Robertson 1996]. Two data channels
are provided: a “Normal-Data” channel
and an “Other-Data” channel which car-
ries expedited data and messages re-
lated to flow control. DEC engineers
claim that OSI’s TP4 “is essentially an
enhancement and refinement of Digi-
tal’s proprietary NSP protocol” [Martin
and Leben 1992]. Indeed, there are
many similarities between TP4 and
NSP, such as their mechanisms for han-
dling expedited data.

In the early 1990s, DECnet Phase V
was introduced to integrate OSI proto-
cols with the earlier proprietary proto-
cols. Phase V supports a variant of TP4,
plus TP0 and TP2 and NSP for back-
wards compatibility. A session level ser-
vice known as “tower matching” re-
solves which protocol(s) are available
for a particular connection, and selects

a specific protocol at connection estab-
lishment.

DECnet was widely used throughout
the 1980’s, and remains an important
legacy protocol for many organizations.
DECnet was one of the two target proto-
col suites for the original implementa-
tion of the popular X11 windowing sys-
tem (the other being TCP/IP).

5.10 XTP

The Xpress Transport Protocol’s design
(XTP Version 4.013) (see Table IV) was
coordinated within the XTP Forum to
support a variety of applications such as
multimedia distribution and distributed
applications over WANs as well as
LANs [Strayer et al. 1992]. Originally
XTP was designed to be implemented in
VLSI; hence it has a 64-bit alignment, a
fixed-size header, and fields likely to
control a TPDU’s initial processing lo-
cated early in the header. However, no
hardware implementations were ever
built. XTP combines classic functions of
TCP, UDP, and TP4, and adds new ser-
vices such as transport multicast, multi-
cast group management, priorities, rate
and burst control, and selectable error
and flow control mechanisms. XTP can
operate on top of network protocols such
as IP or ISO CLNP, data link protocols
such as 802.2, or directly on top of the
AAL of ATM. XTP simply requires fram-
ing and end-to-end delivery from the
underlying service. One of XTP’s most
important features is the orthogonality
it provides between communication par-
adigm, error control and flow control.
An XTP user can choose any communi-
cation paradigm (CO, CL, or transac-
tion-oriented) and whether or not to en-
able error control and/or flow control.
XTP uses both window-based and rate-
based flow control.

13XTP version 3.6 (the Xpress Transfer Protocol)
was a transport and network layer protocol com-
bined. XTP 4.0 performs only transport layer func-
tions.

Transport Layer • 389

ACM Computing Surveys, Vol. 31, No. 4, December 1999

5.11 SSCOP/AAL5 (ATM)

In the ATM environment, several trans-
port protocols have been and are being
developed; they are referred to as ATM
Adaptation Layers (AALs).14 These
AALs have been specified over time to
handle different traffic classes [Stall-
ings 1998] - CO constant bit rate (CBR)
requiring synchronization, CO variable
bit rate (VBR) requiring synchroniza-
tion, CO-VBR not needing synchroniza-
tion, CL-VBR not requiring synchroni-
zation, and most recently available bit
rate (ABR) where bandwidth and timing
requirements are defined by the user in
an environment where an ATM back-
bone provides the same quality of ser-
vice as found in a LAN [Black 1995].

Although 5 transport protocols
(AAL1-5) have been proposed for these
traffic classes, AAL5 which supports
virtually all data applications has
greatest potential for marketplace suc-
cess. None of the AALs including AAL5
provide reliable service (although with
minor changes AAL5 could).15 Another
protocol that does provide end-to-end
reliability is the Service Specific Connec-
tion-Oriented Protocol (SSCOP) [ITU-T
1994a] which can run on top of AAL5.

SSCOP was initially standardized to
provide for reliable communication of
control signals [ITU-T 1995b], not data
transfer. It has since been approved for
reliable data transfer with I.365.3
[ITU-T 1995a] specifying it as the basis
for providing ISO’s connection-oriented
transport service [ITU-T 1995c]. Some

authors cite SSCOP as potentially appli-
cable as a general purpose end-to-end
reliable transport protocol in the ATM
environment [Henderson 1995]. For
these reasons, we select SSCOP/AAL5
as the ATM transport protocol to survey
in Table IV.

SSCOP incorporates a number of im-
portant design principles of other high-
speed transport protocols (e.g., SNR
[Lundy and Tipici 1994]) including the
use of complete state exchange between
transport sender and receiver to reduce
reliance on timers. SSCOP’s main draw-
back for general usage is that it is de-
signed to run over an underlying ATM
service that provides in-order PDU de-
livery. The SSCOP receiver assumes
that every out-of-order PDU indicates a
loss (as opposed to possible misordering)
and immediately returns a NACK
(called a USTAT) which acts as a selec-
tive reject (see Section 4). Over an unor-
dered service, SSCOP would still cor-
rectly provide its advertised reliable
service; it is simply unclear whether
SSCOP would be efficient in an environ-
ment where the underlying service mi-
sorders PDUs. One author indicates
that SSCOP could be modified to be a
more general robust transport protocol
capable of running above an unreliable,
connectionless service [Henderson 1995].

5.12 Miscellaneous Transport Protocols

The following are brief descriptions of
eight experimental transport protocols
that influenced transport protocol de-
velopment. While many of the ideas con-
tained in these protocols are innovative
and useful, for one reason or another,
they have not themselves been success-
ful in the marketplace. This may be the
result of: (1) the marketing problem of
introducing new transport protocols into
an existing infrastructure, (2) the pri-
marily university nature of the protocol
without added industrial support, or (3)
the failure of an infrastructure for
which the protocol has been specifically
designed.

Although these protocols were surveyed

14Some authors note that since none of the AALs
provide reliable service, then “It is not really clear
whether or not ATM has a transport layer.”
[Tanenbaum 1996]. We argue that reliability or
the lack thereof is not the issue; since ATM vir-
tual circuits/paths are a concatenation of links
between store-and-forward NPDU (cell) switches,
then by definition, the AAL protocols above ATM
provide end-to-end transport service.
15Because of AAL’s lack of reliable service and the
popularity of TCP/IP, there exists a protocol stack
with TCP over IP over AAL over ATM. This stack
essentially puts a transport layer over a network
layer over a transport layer over a network layer
to provide reliable data transfer in a mixed
TCP/IP - ATM environment [Cole et al. 1996].

390 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

as were TCP and the previous eleven,
space limitations prevent presenting
them in detail. The tables that summa-
rize these protocols are available at: www.
eecis.udel.edu/˜amer/PEL/survey/ .

Delta-t was designed in the late 1970s
for reliable stream and transaction-ori-
ented communications on top of a best
effort network such as IP or ISO CLNP
[Watson 1989]. Its main contribution is in
connection management: it achieves haz-
ard-free connection management without
exchanging explicit control TPDUs.

SNR was designed in the late 1980s for
a high speed data communications net-
work [Doshi et al. 1993; Lundy and Tipici
1994]. Its key ideas are periodic exchange
of state information between the trans-
port sender and the transport receiver,
reduction of protocol overhead by making
decisions about blocks of TPDUs instead
of individual ones (packet blocking), and
parallel implementation of the protocol on
a dedicated front-end communications
processor. SNR uses three modes of oper-
ation: one for virtual networks, one for
real-time applications over reliable net-
works, and one for large file transfers.

The MultiStream Protocol (MSP), a
feature-rich, highly flexible CO trans-
port protocol designed in the early
1990s, supports applications that re-
quire different types of service for dif-
ferent portions of their traffic (e.g., mul-
timedia). Transport users can
dynamically change modes of operation
during the life of a connection without
loss of data [La Porta and Schwartz
1993a; 1993b]. MSP defines seven traf-
fic streams, each of which is defined by
a set of common protocol functions.
These functions specify the order in
which TPDUs will be accepted and
passed to the user receiver.

TP11 was developed in the early
1990s. It is intended for a heterogeneous
internetwork with a large bandwidth-de-
lay product [Biersack et al. 1992; Feld-
meier 1993b]. It uses backpressure for
flow and congestion control, and is de-
signed to carry three major application
classes: constrained latency service,
transactions, and bulk data transfer.

DTP, a slightly modified version of
TCP, was developed in the early 1990s
[Sanghi and Agrawala 1993]. Some key
features that distinguish DTP from TCP
are its use of a send-time control
scheme for flow control, selective as well
as cumulative PACKs, and TPDU-based
sequence numbers.

Partial Order Connection (POC) was
recently designed to offer a middle
ground between the ordered/no-loss ser-
vice provided by TCP, and the unor-
dered/uncontrolled-loss service provided
by UDP [Amer et al. 1994]. The main
innovation of POC is the introduction of
partially-ordered/controlled-loss service
[Conrad Ph.D dissertation; 1996; Ma-
rasli 1997; Marasli et al. 1997].

Two recent transport protocols, the
k-Transmit Protocol (k-XP) and the
Timed-Reliable Unordered Message Pro-
tocol (TRUMP), provide CO-message,
unordered, controlled-loss service. k-XP
was implemented as an application soft-
ware library that provides several major
enhancements to the basic service pro-
vided by UDP, such as connection man-
agement and controlled-loss delivery
[Amer et al. 1997]. TRUMP is a varia-
tion of k-XP that allows applications to
specify an expiration time for each
TSDU [Golden 1997].

6. FUTURE DIRECTIONS AND CONCLUSION

In this section, we first summarize how
several recent trends and technological
developments have impacted transport
layer design. We then cover a particular
trend in more detail; namely, the im-
pact of wireless networking on the
transport layer. Next, we enumerate
some of the debates concerning trans-
port layer design. We conclude with a
few final observations.

6.1 Impacts of Trends and New
Technologies

Several trends have influenced the de-
sign of transport protocols over the last
two decades.

Faster satellite links and gigabit net-

Transport Layer • 391

ACM Computing Surveys, Vol. 31, No. 4, December 1999

works have resulted in networks with
larger end-to-end bandwidth-delay
products. These so-called “Long Fat
Networks” allow increased amounts of
data in transit at any given moment.
This required extensions to TCP, for
example, to prevent wrapping of se-
quence numbers [Borman et al. 1992].

Fiber optics has improved the quality
of communication links, thus shifting
the major source of network errors —at
least for wired networks— from line bit
errors to NPDU losses due to conges-
tion. This fact is exploited by TCP’s
Congestion Avoidance and Fast Re-
transmit and Recovery algorithms
which were made necessary because of
the exponential growth in the use of the
Internet — even before the Web made
the Internet a household word. Conges-
tion avoidance continues to be an active
research area for the TCP community
[Brakmo et al. 1994; Jacobson 1988;
Stevens 1997].

Higher speed links and fiber optics
have caused some designers of so-called
light-weight transport protocols to shift
their design goals from minimizing
transmission costs (at the expense of
processing power) to minimizing pro-
cessing requirements (at the expense of
transmission bandwidth) [Doeringer et
al. 1990]. On the other hand, the prolif-
eration of relatively low speed point-to-
point (PPP) and wireless links has re-
sulted in a varying and complex
interconnection of low, medium, and
high speed links with varying degrees of
loss. This has introduced a new compli-
cation into the design of flow control
and error control algorithms.

New applications such as transaction
processing, audio/video transmission, and
the Web have resulted in new and widely
varying network service demands.

Over the years, TCP has been opti-
mized for a particular mix of applica-
tions: that is, bulk transfer (e.g., File
Transfer Protocol (FTP) and Simple
Mail Transfer Protocol (SMTP)) and re-
mote terminal traffic (e.g., telnet and
rlogin). The introduction of the Web has
created new performance challenges, as

the request/response nature of Web in-
teractions is a poor match for TCP’s
byte-stream [Heidemann 1997]. Even
before the introduction of the Web, in-
terest in request/response (transaction)
protocols was reflected in the develop-
ment of VMTP and T/TCP.

The delay and jitter sensitivity of au-
dio and video based applications re-
quired transport protocols providing
something other than reliable service.
This has led to increased usage of UDP,
which lacks congestion control features,
resulting in increased Internet conges-
tion. This has created a need for proto-
cols that incorporate TCP-compatible
congestion control, yet provide services
appropriate for audio/video transmis-
sion (e.g., maybe-loss or controlled-loss).
Audio/video transmission also required
synchronization as enabled by RTP
timestamps.

Finally, distributed applications in-
volving one-to-many, many-to-one, and
many-to-many communication have re-
quired a new multicast paradigm of
communication. Unicast protocols such
as XTP, VMTP, TP11, and UDP have
been extended to support multicast.

6.2 Wireless Networks

Regarding the future of the transport
layer, we note the influence of the rapid
growth of wireless networks. Although
transport protocols are supposed to be
independent of the underlying network-
ing technology, in practice, TCP is tai-
lored to perform in networks where
links are tethered. As more wireless
links are deployed, it becomes more
likely that the path between transport
sender and transport receiver will not
be fully wired. Designing a transport
protocol that performs well over a heter-
ogeneous network is difficult because
wireless networks have two inherent
differences that require, if not their own
specific transport protocols, at least spe-
cific variations of existing ones.

The first difference is the major cause
for TPDU gaps at the transport receiver.
In wired networks missing, TPDUs are

392 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

primarily due to network congestion as
routers discard NPDUs. In wireless net-
works, gaps are most likely due to bit
errors and hand-off problems. On de-
tecting a gap, TCP’s transport receiver
responds by invoking congestion control
and avoidance algorithms to slow the
transport sender and thereby reduce the
network load. For wireless networks, a
better response is to retransmit lost TP-
DUs as soon as possible [Balakrishnan
et al. 1996].

Recent studies have concentrated on
alleviating the effects of non-congestion-
related losses on TCP performance over
wireless and other high-loss networks
[Bakre and Badrinath 1997; Balakrish-
nan et al. 1995; Yavatkar and Bhagwat
1994]. These studies follow two funda-
mentally different approaches. One ap-
proach hides any noncongestion-related
loss from the transport sender by mak-
ing the lossy link appear as a higher
quality link with reduced effective
bandwidth. As a result, the losses that
are seen by the transport sender are
mostly due to congestion. Some exam-
ples include: (1) reliable link layer pro-
tocols (AIRMAIL [Ayanoglu et al.
1995]), (2) splitting a transport connec-
tion into two connections (I-TCP [Bakre
and Badrinath 1997]), and (3) TCP-
aware link layer schemes (snoop [Bal-
akrishnan et al. 1995]).

The second approach makes the
transport sender aware that wireless
hops exist and does not invoke conges-
tion control for TPDU losses. Selective
ACK proposals such as TCP SACK [Ma-
this et al. 1996] and SMART [Keshav
and Morgan 1997] can be considered
examples of this approach. One study
shows that a reliable link layer protocol
with some knowledge of TCP provides
10-30% higher throughput than a link
layer protocol without that knowledge
[Balakrishnan et al. 1996]. Further-
more, selective ACKs and explicit loss
notifications result in significant perfor-
mance improvements.

The second inherent difference is that
wireless devices are constrained in both
their computing and communication

power due to limited power supply.
Therefore, the transport protocols used
on these devices should be less complex
to allow efficient battery usage. This
approach is taken in Mobile-TCP [Haas
and Agrawal 1997]. It uses the same
splitting approach used in I-TCP, how-
ever, instead of identical transport enti-
ties on both ends of the wireless link,
Mobile-TCP employs an asymmetri-
cally-based protocol design which re-
duces the computation and communica-
tion overhead on the mobile host’s
transport entity. Because the wireless
segment is known to be a single-hop
connection, several transport functions
can be either simplified or eliminated.

6.3 Debates

In reviewing the last two decades of
transport protocol research, we first
note there seems to have been two
schools of thought on the direction of
transport protocol design: (1) the “hard-
ware-oriented” school, and (2) the “ap-
plication-oriented” school.

The hardware-oriented school feels
that transport protocols should be sepa-
rated from the operating system as
much as possible, and implementations
should be moved into VLSI, parallel, or
special purpose processors [Feldmeier
1993c; Haas 1990; La Porta and
Schwartz 1992; Strayer and Weaver
1988]. This school claims that the heavy
usage of timers, interrupts, and memory
read/writes degrades the performance of
a transport protocol, and thus special
purpose architectures are necessary.
They would also point out that as net-
work rates reach the Gigabit/sec range,
it will be more difficult to process TP-
DUs in real time. Therefore TPDU for-
mats should be carefully chosen to allow
parallel processing and to avoid TPDU
field limitations for sequence number-
ing, window size, etc. This school of
thought is reflected in the design of
protocols such as MSP and XTP.

By contrast, the application-oriented
school prefers moving some transport
layer functions out of the operating sys-

Transport Layer • 393

ACM Computing Surveys, Vol. 31, No. 4, December 1999

tem into the user application, thereby
integrating the upper layer end-to-end
processing, and achieving a faster appli-
cation processing pipeline. This school
would claim that the bottleneck is actu-
ally in operations such as checksums
and presentation layer conversion, all of
which can be done more efficiently if
they are integrated with the copying of
data into application user space. This
school of thought is reflected in the con-
cepts of Application Level Framing
(ALF) and Integrated Layer Processing
(ILP) [Clark and Tennenhouse 1990].
ALF states that “the application should
break the data into suitable aggregates,
and the lower layers should preserve
these frame boundaries as they process
the data”. ILP is an implementation
concept which “permits the implemen-
tor the option of performing all (data)
manipulation steps in one or two inte-
grated processing loops”. Ongoing re-
search shows that performance gains
can be obtained by using ALF and ILP
[Ahlgren et al. 1996; Braun 1995; Braun
and Diot 1995; 1996; Diot and Gagnon
1999; Diot et al. 1995]. ALF concepts
are reflected in the design of protocols
such as RTP, POC, and TRUMP.

A second debate, orthogonal to the de-
bate about where transport services
should be implemented, is the debate
about functionality. Older transport ser-
vices tend to focus on a single type of
service. Some recent protocol designers
advocate high degrees of flexibility, or-
thogonality, and user-configurability to
meet the requirements of various applica-
tions. These designers feel that: (1) a sin-
gle transport protocol offer different com-
munication paradigms, and different
levels of reliability and flow control, and
the transport user should be able to
choose among them, and (2) protocol de-
sign should include multiple functions to
support multicast, real-time data, syn-
chronization, security, user-defined QoS,
etc., that will meet the requirements of
today’s more complex user applications.
This is reflected in the designs of XTP,
MSP and POC, for example.

A third debate concerns protocol opti-

mization. The lightweight protocol
school of thought argues that since
high-speed networks offer extremely
low error rates, protocols should be
“success-oriented” and optimized for
maximum throughput [Doeringer et al.
1990; Haas 1990; La Porta and
Schwartz 1992]. Others emphasize the
increased deployment of wireless net-
works, which are more prone to bit er-
rors; they argue that protocols should be
designed to operate in both environ-
ments efficiently. The SMART retrans-
mission strategy [Keshav and Morgan
1997] is a good example of the latter
approach.

6.4 Final Observations

Several of the experimental protocols sur-
veyed in this paper present beneficial
ideas for the overall improvement of
transport protocols. However, most of
these schemes are not widely used. This
may have more to do with the difficulty of
introducing new transport protocols than
with the merits of the ideas themselves.

In the 1980’s, the primary battle was
between TCP and ISO TP0/4—or, more
broadly, between the Internet (TCP/IP)
suite and OSI suite in general. Never-
ending hallway discussions debated
which would win. Today the victor is
TCP/IP, due to a combination of “tim-
ing”, “technology”, “implementations,”
and “politics” [Tanenbaum 1996]. Some-
times the usefulness of transport proto-
col research is questioned—even re-
search to improve TCP—because the
market base of the current TCP version
is so large that inertia prevents new
good ideas from propagating into the
user community. However, the success-
ful incorporation of SACK [Mathis
1996], TCP over high-speed networks
[Borman 1992], and T/TCP [Braden
1994] into implementations clearly
shows that transport research is useful.
What should be clear is that for any
new idea to have influence in practice in
the short term, it must be interoperable
with elements of the existing TCP/IP
protocol suite.

394 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

APPENDIX

Table II. (a) General features of TCP, UDP, TP4, and TP0

General Features TCP (Internet) UDP (Internet) TP4 (OSI) TP0 (OSI)

Well suited for Stream transport
over unreliable
networks

Applications
where normal
case is operation
over LAN with
low loss rates
(e.g., NFS, SNMP)

Message-oriented
transport over
unreliable
networks

Message-oriented
transport over
reliable networks

Developed for General purpose
reliable data
communication
over unreliable
networks

General purpose
datagram
transport with
minimum of
protocol
mechanism

General purpose
reliable data
communication
over unreliable
networks

Minimum
function protocol
over reliable CO
networks

Features for special
applications

Nagle algorithm1

for interactive data
None Oriented for

teletext; OSI-TCP
gateway2

Underlying service IP IP Unreliable
network

Reliable CO
network (e.g., X.25)

Has been
implemented in Software Software Software Software

1Since interactive data TPDUs often carry 1 byte of user data, overhead of 40-byte header (20 for TCP;
20 for IP) adds to congestion in WANs. Therefore, Nagle Algorithm restricts a TCP connection to having
at most one outstanding unacknowledged small TPDU. No additional small TPDUs can be sent until the
ACK is received.
2TP0 can be used to create OSI transport service on top of TCP’s reliable byte-stream service, enabling
OSI apps to run over TCP/IP [Rose and Cass 1987].

Table II. (b) Service features of TCP, UDP, TP4, and TP0

Service Features TCP (Internet) UDP (Internet) TP4 (OSI) TP0 (OSI)

CO-byte vs. CO-message vs. CL CO-byte CL CO-message CO-message

Reliability
No-loss vs. Uncontrolled-
loss vs. Controlled-loss

No-loss Uncontrolled-
loss

No-loss No-loss3

No-duplicates vs. Maybe-
duplicates

No-duplicates Maybe-
duplicates

No-duplicates No-duplicates3

Ordered vs. Unordered vs.
Partially-ordered

Ordered Unordered Ordered Ordered3

Data-integrity vs. No-
data-integrity vs. Partial-
data-integrity

Data-integrity Data-integrity
and No-data-
integrity4

Data-integrity Data-
integrity3

Multicast vs Unicast Unicast Unicast5 Unicast Unicast

Priority vs. No-priority No-priority Priority Priority Priority

Security vs. No-security No-security No-security Security Security6

3Assumed to be part of the underlying network service.
4UDP provides an optional checksum on the header and user data.
5UDP can provide multicast service with IP support.
6Protection is a QoS parameter that can be specified as protection against passive monitoring, passive
modification, replay, addition, or deletion.

Transport Layer • 395

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Table II. (c) Protocol features of TCP, UDP, TP4, and TP0

Protocol Features TCP (Internet) UDP (Internet) TP4 (OSI) TP0 (OSI)

CO vs CL Protocol CO CL CO CO

Transaction-oriented No No1 No No

CO Protocol
In-band vs. Out-of-band
Signaling

In-band N/A In-band In-band

Unidirectional vs.
Bidirectional conn

Bidirectional N/A Bidirectional Bidirectional

Conn establishment 3-way N/A 3-way 3-way

User data in conn
Establishment

Not
permitted2

N/A Permitted3 Not permitted

Conn termination 4-way N/A 3-way N/A4

Acknowledgments
Piggybacking Yes N/A Yes N/A5

Cumulative vs. Selective Cumulative6 N/A Selective N/A5

Sender-dependent vs.
Sender-independent

Sender-
independent

N/A Sender-
dependent and
optional Sender-
independent

N/A5

Error Control
Error detection Sequence no;

Checksum on
header and
data

Optional
checksum on
header and
data

Sequence no;
Length field;
Optional
checksum on
header and data

No

Error reporting No No No No

Error recovery PAR No PAR No

Flow/Congestion Control
End-to-end flow control Window No Window Backpressure4

Window allocation Byte-oriented N/A TPDU-oriented N/A

Rate control parameters N/A N/A N/A N/A

Congestion control Implicit
access control

No Implicit access
control

No

TPDU Format
TPDU numbering Byte-oriented No TPDU-oriented No

Min TPDU header/trailer 20-byte header 8-byte header 5-byte header 3-byte header

Multiplexing/Demultiplexing Yes Yes Yes No

Splitting/Recombining No No Yes No

Concatenation/Separation Yes7 No Yes No

Blocking/Deblocking Yes8 No Yes Yes

Segmentation/Reassembly Yes No Yes Yes
1But frequently used for transaction based applications.
2While data may be sent in TCP connection opening TPDU, it cannot be delivered to user receiver until
3-way-handshake is complete.
3Not .32 octets. This data (e.g., password) may help decide if connection should be established, thereby
allowing estab to depend on user data.
4Assumed to be part of the underlying network service.
5There are no ACKs in TP0.
6A version of TCP which combines selective ACKs and cumulative ACKs has been specified [Mathis et
al. 1996].
7Data and ACK TPDU is concatenated in the case of piggybacking.
8However, boundaries are not preserved between transport sender and transport receiver.

396 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Table III. (a) General features of NETBLT, VMTP, T/TCP, and RTP

General Features NETBLT (Internet) VMTP (Internet) T/TCP (Internet) RTP (Internet)

Well suited for Long-delay paths Transactions Transactions Real-time data

Developed for Bulk data
transfer

Remote
Procedure Calls,
multicast, real-
time
communication

Improving TCP
performance for
transaction
processing

Real-time, multi-
participant
multimedia
conferences

Features for special
applications

User controlled
window-based
flow control

Naming
mechanism for
process
migration, mobile
hosts;
Conditional
message delivery
for real-time
application;
Optimized for
page-level
network file
access; Call
forwarding

3-way can be
bypassed;
Shorter delay in
TIME-WAIT
state

Integrated layer
processing; QoS
feedback; Can be
tailored to
specific
applications;
Mixing,
translating via
SSRC fields

Underlying service IP Datagram
network

IP UDP,1 AALS

Has been
implemented in Software Software Software Software

1RTP may be used with other suitable underlying network or transport protocols.

Table III. (b) Service features of NETBLT, VMTP, T/TCP, and RTP

Service Features NETBLT
(Internet) VMTP (Internet) T/TCP (Internet) RTP (Internet)

CO-byte vs. CO-message vs. CL CO-message2 CL CO-byte and
CL3

CL

Reliability
No-loss vs. Uncontrolled-
loss vs. Controlled-loss

No-loss No-loss No-loss Uncontrolled-
loss

No-duplicates vs. Maybe-
duplicates

No-duplicates No-duplicates No-duplicates No-duplicates

Ordered vs. Unordered vs.
Partially-ordered

Ordered Ordered Ordered Unordered

Data-integrity vs. No-
data-integrity vs. Partial-
data-integrity

Data-integrity Data-integrity Data-integrity No-data-
integrity

Multicast and Unicast Unicast Multicast and
Unicast

Unicast Unicast4

Priority vs. No-priority No-priority Priority No-priority No-interrupt/
Priority

Security vs. No-security No-security Security5 No-security Security
2In this case message is a “buffer” as explained in section 5.4.
3T/TCP provides CO or CL service. For CO service, transport user has to issue the open, send, and close
primitives as in TCP. For CL service, only the sendto primitive is required.
4RTP can provide multicast service if available in lower layer protocols.
5VMTP’s security feature was designed but never implemented.

Transport Layer • 397

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Table III. (c) Protocol features of NETBLT, VMTP, T/TCP, and RTP

Protocol Features NETBLT (Internet) VMTP (Internet) T/TCP (Internet) RTP (Internet)

CO vs CL protocol CO CO CO CL1

Transaction-oriented No Yes Yes No

CO protocol
In-band vs. Out-of-band
signaling

In-band In-band In-band N/A

Unidirectional vs.
Bidirectional conn

Unidirectional Unidirectional Bidirectional N/A

Conn establishment 2-way Implicit 3-way and
Implicit

N/A

User data in conn
Establishment

Not permitted Permitted Permitted N/A

Conn termination 2-way Implicit 4-way N/A

Acknowledgments
Piggybacking N/A No2 Yes N/A

Cumulative vs. Selective Cumulative Selective Cumulative N/A

Sender-dependent vs.
Sender-independent

Sender-
dependent

Sender-
dependent

Sender-
dependent

N/A

Error Control
Error detection Sequence No;

Length field;
Header
checksum;
Optional data
checksum

Transaction ID;
Length field;
Checksum on
header and
data

Sequence No;
Checksum on
header and
data

Sequence No

Error reporting Selective reject Selective reject No Special
reports3

Error recovery ARQ with
selective
retransmission

ARQ with
selective
retransmission

PAR No

Flow/Congestion Control
End-to-end flow control Window and

Rate
Rate Window No

Window scheme Buffer-oriented N/A Byte-oriented N/A

Rate control parameters Burst size and
rate

Interpacket
delay

N/A N/A

Congestion control No Implicit access
control

Implicit access
control

No4

TPDU Format
TPDU numbering TPDU-oriented TPDU-oriented Byte-oriented TPDU-oriented

Min TPDU
header/trailer

24-byte header 64-byte header 24-byte header 12-byte header

Multiplexing/Demultiplexing Yes Yes Yes Yes5

Splitting/Recombining No No No No

Concatenation/Separation No No No No

Blocking/Deblocking No No Yes No

Segmentation/Reassembly Yes Yes Yes No
1RTP has no notion of a connection; however RTCP provides out-of-band signaling.
2Normally a response implicitly acks request; each new request implicitly acks last response rec’d. Thus
VMTP provides implicit but not explicit piggybacked ACK info.
3Sender and Receiver reports are exchanged via RTCP, a control protocol that monitors data delivery
and provides minimal control and id functions.
4Application may perform congestion control by using the QoS feedback provided by the RTCP control
messages.
5Visa synchronization source identifier (SSRC) field.

398 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Table IV. (a) General features of SNA/APPN, DECnet/NSP, XTP, and ATM/SSCOP/AAL5

General Features APPN (SNA) NSP (DECnet) XTP SSCOP/AAL5 (ATM)

Well suited for Distributed
systems

Message oriented
over unreliable
networks; dist’d
systems

Reliable
transport
multicast; Real-
time datagrams;
Fast connection
setup

High speed
reliable data and
control signaling

Developed for Diverse
platforms,
topologies, and
apps into single
network

General purpose
reliable data
comm over
unreliable nets

Single protocol
separates policy
from mechanism;
VLSI
implementation

ATM networks

Features for special
applications

Class of Service
selection1

Expedited data Out-of-band
data2;
Orthogonality;
Selectable flow
and error control

block
PACKs/NACKs

Underlying service APPN network
layer (virtual
circuit)

DECnet layer 3
protocol

Any network
layer3 or directly
over LLC, MAC,
ATM AALs

ATM

Has been
implemented in Software Software4

Software and
Hardware

1COS-based routing is provided by APPN network layer. APPN transport takes advantage by using
different service classes.
2Useful for passing control info about state of transport user processes, or passing semantic info about
data, or for event sequencing via timestamps.
3Most of all XTP implementations operate over IP.
4XTP was designed for but never implemented in VLSI.

Table IV. (b) Service features of SNA/APPN, DECnet/NSP, XTP, and ATM/SSCOP/AAL5

Service Features APPN (SNA) NSP (DECnet) XTP SSCOP/AAL5 (ATM)

CO-byte vs. CO-message vs.
CL

CO-message CO-message CL and CO-
byte

CO-message

Reliability
No-loss vs.Uncontrolled-
loss vs. Controlled-loss

No-loss5 No-loss No-loss and
Uncontrolled-
loss

No-loss

No-duplicates vs. Maybe-
duplicates

No-duplicates5 No-duplicates No-duplicates
and
Duplicates

No-duplicates

Ordered vs. Unordered
vs. Partially-ordered

Ordered5 Ordered Ordered and
Unordered

Ordered

Data-integrity vs. No-
data-integrity vs. Partial-
data-integrity

Data-
integrity5

No-data-
integrity

Data-integrity
and No-data-
integrity

Data-integrity6

Multicast and Unicast Unicast Unicast Multicast and
Unicast

Unicast

Priority vs No-priority Priority Priority Priority Priority7

Security vs No-security Security No-security No-security No-security
5Provided by the underlying network.
6Assumed to be provided by underlying service. SSCOP itself has no checksum.
7I.365.3 allows optionally expedited data using SSCOP unassured data delivery.

Transport Layer • 399

ACM Computing Surveys, Vol. 31, No. 4, December 1999

Table IV. (c) Protocol features of SNA/APPN, DECnet/NSP, XTP, and ATM/SSCOP/AAL5

Protocol Features APPN (SNA) NSP (DECnet) XTP SSCOP/AAL5 (ATM)

CO vs. CL protocol CO CO CO CO
Transaction-oriented Yes No Yes No
CO protocol

In-band vs. Out-of-band
signaling

Out-of-band In-band In-band N/A1

Unidirectional vs.
Bidirectional conn

Uni and
Bidirectional

Bidirectional Bidirectional Bidirectional

Conn establishment 2-way Implicit 2-way
User data in conn
establishment

No Yes Permitted Yes2

Conn termination 2-way 4-way3 2-way
Acknowledgments

Piggybacking N/A4 Yes No No
Cumulative vs Selective N/A4 Both Selective Both5

Sender-dependent vs.
Sender-independent

N/A4 Sender-
independent

Sender-
independent6

Error control
Error detection No7 Sequence No Sequence No;

Length field;
Header
checksum;
Optional
data
checksum

Sequence No;
Checksum on
header and data

Error reporting No7 Selective
reject

Selective reject8

Error recovery No7 PAR ARQ with
Go-Back-N
(optional sel
retrans)

ARQ with
selective repeat

Flow/Congestion control
End-to-end flow control N/A9 Window Window and

Rate
Window-credit

Window scheme N/A9 TPDU(segment)
-oriented

Byte-
oriented

TPDU-oriented

Rate control parameters N/A9 N/A Burst size
and rate

N/A

Congestion control N/A9 Explicit
access control

Explicit
access
control

No10

TPDU format
TPDU numbering TPDU-oriented TPDU-oriented Byte-oriented TPDU-oriented
Min TPDU header/trailer 9-byte header 32-byte header

Multiplexing/Demultiplexing No No Yes No
Splitting/Recombining No No No No
Concatenation/Separation No Yes11 No No
Blocking/Deblocking No No No No
Segmentation/Reassembly Yes Yes Yes Yes
1See Section 5.11.
2But no guarantee of delivery.
3XTP also employs 2-way handshake and abortive close modes of connection termination.
4APPN does not need ACKs because it assumes a fully reliable network service.
5STAT is full map of missing/ACKed PDUs.
6Sender periodically polls receiver.
7Responsibility of the underlying network.
8Transport receiver sends one USTAT (NACK) which provides selective reject info for every missing PDU.
9APPN does not perform flow/congestion control at transport layer; relies on network layer’s “adaptive pacing”.
10Local flow control backoff is discussed, but not specified/standardized.
11Data and ACK TPDU is concatenated in the case of piggybacking.

400 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

ACKNOWLEDGMENTS

The authors wish to thank several indi-
viduals: R. Marasli and E. Golden who
contributed to an early draft of this
paper; a number of protocol experts who
reviewed individual service/protocol
summaries and their respective table
entries, including A. Agrawala, A. Bhar-
gava, R. Case, L. Chapin, B. Dempsey,
D. Feldmeier, T. La Porta, D. Piscitello,
K. Sabnani, H. Schulzrinne, D. Sanghi,
T. Strayer, E. Tremblay, R. Watson, A.
Weaver, C. Williamson; M. Taube and
the anonymous reviewers who made
valuable suggestions.

REFERENCES

AHLGREN, B., BJORKMAN, M., AND GUNNINGBERG,
P. 1996. Integrated layer processing can be
hazardous to your performance. In Proceed-
ings of the Conference on Protocols for High-
Speed Networks, V (France, Oct.), W. Dabbous
and C. Diot, Eds. IFIP, 167–181.

AHN, J. S., DANZIG, P. B., LIU, Z., AND YAN,
L. 1995. Evaluation of TCP Vegas: Emula-
tion and experiment. SIGCOMM Comput.
Commun. Rev. 25, 4 (Oct.), 185–205.

AMER, P. D., CHASSOT, C., CONNOLLY, T. J., DIAZ,
M., AND CONRAD, P. 1994. Partial-order
transport service for multimedia and other
applications. IEEE/ACM Trans. Netw. 2, 5
(Oct. 1994), 440–456.

AMER, P., CONRAD, P., GOLDEN, E., IREN, S., AND
CARO, A. 1997. Partially ordered, partially
reliable transport service for multimedia ap-
plications. In Proceedings of the Conference
on Advanced Telecommunications/Informa-
tion Distribution Research Program (College
Park, MD, Jan.).

AMER, P. D., IREN, S., SEZEN, G., CONRAD, P.,
TAUBE, M., AND CARO, A. 1999. Network-
conscious GIF image transmission. Comput.
Netw. J. 31, 7 (Apr.), 693–708.

ARMSTRONG, S., FREIER, A., AND MARZULLO,
K. 1992. Multicast transport protocol.
RFC 1301.

AYANOGLU, E., PAUL, S., LAPORTA, T. F., SABNANI,
K. K., AND GITLIN, R. D. 1995. AIRMAIL: a
link-layer protocol for wireless networks.
Wireless Networks 1, 1 (Feb. 1995), 47–60.

BAE, J., SUDA, T., AND WATANABE, N. 1991.
Evaluation of the effects of protocol process-
ing overhead in error recovery schemes for a
high-speed packet switched network: link-by-
link versus edge-to-edge schemes. IEEE J.
Sel. Areas Commun. 9 (Dec.), 1496–1509.

BAKRE, A. V. AND BADRINATH, B. R. 1997.
Implementation and performance evaluation

of indirect TCP. IEEE Trans. Comput. 46, 3,
260–278.

BALAKRISHNAN, H., PADMANABHAN, V. N., SESHAN,
S., AND KATZ, R. H. 1996. A comparison of
mechanisms for improving TCP performance
over wireless links. SIGCOMM Comput.
Commun. Rev. 26, 4, 256–269.

BALAKRISHNAN, H., SESHAN, S., AND KATZ, R.
H. 1995. Improving reliable transport and
handoff performance in cellular wireless net-
works. Wireless Networks 1, 4, 469–481.

BERNERS-LEE, T., FIELDING, R., AND FRYSTYK,
H. 1996. Hypertext transfer protocol--
HTTP/1.0. RFC 1945.

BERTSEKAS, D. AND GALLAGER, R. 1992. Data
Networks. 2nd ed. Prentice-Hall, Inc., Up-
per Saddle River, NJ.

BHARGAVA, A., KUROSE, J. F., TOWSLEY, D., AND

VANLEEMPUT, G. 1991. Performance com-
parison of error control schemes in high-speed
computer communication networks. In
Broadband Switching: Architectures, Proto-
cols, Design, and Analysis, C. Chas, V. K.
Konangi, and M. Sreetharan, Eds. IEEE
Computer Society Press, Los Alamitos, CA,
416–426.

BIERSACK, E., COTTON, C., FELDMEIER, D., MCAU-
LEY, A., AND SINCOSKIE, W. 1992. Gigabit
networking research at Bellcore. IEEE Net-
work 6, 2 (Mar.), 42–48.

BLACK, U. 1995. ATM Foundation for Broad-
band Networks. Prentice-Hall series in ad-
vanced communications technologies. Pren-
tice-Hall, Inc., Upper Saddle River, NJ.

BORMAN, D., BRADEN, B., AND JACOBSON, V.
1992. TCP extensions for high perfor-
mance. RFC 1323.

BORMANN, C., OTT, J., GEHRCKE, H., AND KERSCHAT,
T. 1994. MTP-2: towards achieving the
s.e.r.o. properties for multicast transport. In
Proceedings of the International Conference on
Computer Communications Networks (San
Francisco, CA, Sept.),

BRADEN, R. 1992a. Extending TCP for transac-
tions -- Concepts. RFC 1379.

BRADEN, R. 1992b. TIME-WAIT assassination
hazards in TCP. RFC 1337.

BRADEN, R. 1994. T/TCP -- TCP extensions for
transactions functional specification. RFC
1644.

BRADEN, R. AND JACOBSON, V. 1988. TCP exten-
sions for long-delay paths. RFC 1072.

BRADEN, R., ZHANG, L., BERSON, S., HERZOG, S.,
AND JAMIN, S. 1997. Resource reservation
protocol (RSVP) -- Version 1 functional speci-
fication. RFC 2205.

BRAKMO, L. S., O’MALLEY, S. W., AND PETERSON, L.
L. 1994. TCP Vegas: New techniques for
congestion detection and avoidance. SIG-
COMM Comput. Commun. Rev. 24, 4 (Oct.),
24–35.

BRAUDES, R. AND ZABELE, S. 1993. Require-
ments for multicast protocols. RFC 1458.

Transport Layer • 401

ACM Computing Surveys, Vol. 31, No. 4, December 1999

BRAUN, T. 1995. Limitations and implementa-
tion experiences of integrated layer processing.
In Proceedings of the Conference on GISI,
Springer-Verlag, New York, 149–156.

BRAUN, T. AND DIOT, C. 1995. Protocol imple-
mentation using integrated layer processing.
SIGCOMM Comput. Commun. Rev. 25, 4
(Oct.), 151–161.

BRAUN, T. AND DIOT, C. 1996. Automated code
generation for integrated layer processing.
In Proceedings of the Conference on Protocols
for High-Speed Networks, V (France, Oct.), W.
Dabbous and C. Diot, Eds. IFIP, 182–197.

BROWN, G. M., GOUDA, M. G., AND MILLER, R. E.
1989. Block acknowledgement: redesigning
the window protocol. SIGCOMM Comput.
Commun. Rev. 19, 4 (Sept.), 128–135.

CHERITON, D. 1988. VMTP: Versatile message
transaction protocol: Protocol specification.
RFC 1045.

CHERITON, D. AND WILLIAMSON, C 1989. VMTP
as the transport layer for high performance
distributed systems. IEEE Commun. Mag.
27, 6 (June), 37–44.

CHIONG, J. 1996. SNA Interconnections: Bridg-
ing and Routing SNA in Hierarchical, Peer,
and High-Speed Networks. McGraw-Hill se-
ries on computer communications. McGraw-
Hill, Inc., New York, NY.

CLARK, D. 1982. Window and acknowlegement
strategy in TCP. RFC 813.

CLARK, D., LAMBERT, M., AND ZHANG, L.
1987. NETBLT: A bulk data transfer proto-
col. RFC 998.

CLARK, D. D. AND TENNENHOUSE, D. L. 1990.
Architectural considerations for a new gener-
ation of protocols. SIGCOMM Comput. Com-
mun. Rev. 20, 4 (Sept.), 200–208.

COLE, R., SHUR, D., AND VILLAMIZAR, C. 1996. IP
over ATM: A framework document. RFC
1932.

CONNOLLY, T., AMER, P., AND CONRAD, P. 1994.
An extension to TCP: Partial order ser-
vice. RFC 1693.

CONRAD, P. 2000. Partial order and partial reli-
ability transport service innovations in a mul-
timedia application context. (In pro-
gress). Ph.D. Dissertation. University of
Delaware, Newark, DE.

CONRAD, P., GOLDEN, E., AMER, P., AND MARASLI, R.
1996. A multimedia document retrieval sys-
tem using partially-ordered/partially-reliable
transport service. In Proceedings of the Con-
ference on Multimedia Computing and Net-
working (San Jose, CA, Jan.).

DABBOUS, W. S. AND DIOT, C. 1997. High-perfor-
mance protocol architecture. Comput. Netw.
ISDN Syst. 29, 7, 735–744.

DEERING, S. 1989. Host extensions for IP multi-
casting. RFC 1112.

DIOT, C. AND GAGNON, F. 1999. Impact of out-of-
sequence processing on the performance of
data transmission. Comput. Netw. J. 31, 5
(Mar.), 475–492.

DIOT, C., HUITEMA, C., AND TURLETTI, T.
1995. Multimedia applications should be
adaptive. In Proceedings of the Workshop on
HPCS (Mystic, CT, Aug.), IFIP.

DOERINGER, W., DYKEMAN, D., KAISERWERTH, M.,
MEISTER, B., RUDIN, H., AND WILLIAMSON, R.
1990. A survey of lightweight transport pro-
tocols for high speed networks. IEEE Trans.
Commun. 38, 11 (Nov.), 2025–2039.

DORLING, B., LENHARD, P., LENNON, P., AND USKOK-
OVIC, V. 1997. Inside APPN and HPR: The
Essential Guide to the New SNA. Prentice-
Hall, New York, NY.

DOSHI, B., JOHRI, P., NETRAVALI, A., AND SABNANI,
K. 1993. Error and flow control perfor-
mance of a high speed protocol. IEEE Trans.
Commun. 41, 5 (May).

DUPUY, S., TAWBI, W., AND HORLAIT, E.
1992. Protocols for high-speed multimedia
communications networks. Comput. Com-
mun. 15, 6 (July/Aug. 1992), 349–358.

FALL, K. AND FLOYD, S. 1996. Simulation-based
comparisons of Tahoe, Reno and SACK TCP.
SIGCOMM Comput. Commun. Rev. 26, 3,
5–21.

FELDMEIER, C. C. 1990. Multiplexing issues in
communication system design. SIGCOMM
Comput. Commun. Rev. 20, 4 (Sept.), 209–
219.

FELDMEIER, D. 1993a. A framework of architec-
tural concepts for high-speed communications
systems. IEEE J. Sel. Areas Commun. 11, 4
(May), 480–488.

FELDMEIER, D. 1993b. An overview of the
TP11 transport protocol project. In High
Performance Networks--Frontiers and Experi-
ence, A. Tantawy, Ed. Kluwer Academic
Publishers, Hingham, MA, 157–176.

FELDMEIER, D. 1993c. A survey of high perfor-
mance protocol implementation techniques.
In High Performance Networks---Technology
and Protocols, A. Tantawy, Ed. Kluwer Ac-
ademic Publishers, Hingham, MA, 29–50.

FELDMEIER, D. AND BIERSACK, E. 1990.
Comparison of error control protocols for high
bandwidth-delay product networks. In Pro-
ceedings of the Conference on Protocols for
High-Speed Networks, II (Palo Alto, CA,
Nov.), M. Johnson, Ed. North-Holland Pub-
lishing Co., Amsterdam, The Netherlands,
271–295.

FLOYD, S. 1996. Issues of TCP with SACK.
Tech. Rep.. Lawrence Livermore National
Laboratory, Livermore, CA.

FLOYD, S. AND JACOBSON, V. 1993. Random
early detection gateways for congestion avoid-
ance. IEEE/ACM Trans. Netw. 1, 4 (Aug.
1993), 397–413.

FLOYD, S., JACOBSON, V., MCCANNE, S., LIU, C.-G.,
AND ZHANG, L. 1995. A reliable multicast
framework for light-weight sessions and ap-
plication level framing. SIGCOMM Comput.
Commun. Rev. 25, 4 (Oct.), 342–356.

402 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

FREEMAN, R. L. 1995. Practical Data Communi-
cations. Wiley series in telecommunications
and signal processing. Wiley-Interscience,
New York, NY.

GOLDEN, E. 1997. TRUMP: Timed-reliability
unordered message protocol. Master’s The-
sis. University of Delaware, Newark, DE.

HAAS, Z. 1999. A communication architecture
for high-speed networking. In Proceedings of
the Conference on IEEE INFOCOM 2000 (San
Francisco, CA), IEEE Computer Society
Press, Los Alamitos, CA, 433–441.

HAAS, Z. AND AGRAWAL, P. 1997. Mobile-TCP:
An asymmetric transport protocol design for
mobile systems. In Proceedings of the IEEE
Conference on Computer Communications,
IEEE Press, Piscataway, NJ.

HAN, R. AND MESSERSCHMITT, D. 1996.
Asymptotically reliable transport of multime-
dia/graphics over wireless channels. In Pro-
ceedings of the Conference on Multimedia
Computing and Networks (San Jose,
CA), IEEE Computer Society Press, Los
Alamitos, CA, 99–110.

HEIDEMANN, J. 1997. Performance interactions
between P-HTTP and TCP implementations.
SIGCOMM Comput. Commun. Rev. 27, 2, 65–
73.

HENDERSON, T. R. 1995. Design principles and
performance analysis of SSCOP: a new ATM
adaptation layer protocol. SIGCOMM Com-
put. Commun. Rev. 25, 2 (Apr. 1995), 47–59.

IREN, S. 1999. Network-conscious image com-
pression. Ph.D. Dissertation. University of
Delaware, Newark, DE.

IREN, S. AND AMER, D. 2000. SPIHT-NC: Net-
work-conscious zerotree encoding. In Pro-
ceedings of the on 2000 IEEE Data Compres-
sion Conference (Snowbird, Ut., Mar.), IEEE
Computer Society Press, Los Alamitos, CA.

ISO. 1989. International standard 7498-2. In-
formation processing systems, open systems
interconnection, basic reference model, part 2:
Security architecture. International Stan-
dards Organization.

ITU-T. 1994a. Recommendation Q.2110. B-ISDN
ATM adaptation layer-service specific connec-
tion oriented protocol (SSCOP).

ITU-T. 1994b. Recommendation X.200. Infor-
mation technology, open systems interconnec-
tion: Basic reference model.

ITU-T. 1995a. Recommendation I.365.3. B-ISDN
ATM adaptation layersublayers: Service-spe-
cific coordination function to provide the con-
nection-oriented transport service (SSCF-
COTS).

ITU-T. 1995b. Recommendation Q.2144. B-ISDN
signalling ATM adaptationlayer (SAAL)-layer
management for the SAAL at the network
node interface (NNI).

ITU-T. 1995c. Recommendation X.214. Infor-
mation technology, open systems interconnec-
tion, transport service definition.

JACOBSON, V. 1988. Congestion avoidance and
control. SIGCOMM Comput. Commun. Rev.
18, 4 (Aug. 1988), 314–329.

JAIN, R. 1989. A delay-based approach for con-
gestion avoidance in interconnected heteroge-
neous computer networks. SIGCOMM Com-
put. Commun. Rev. 19, 5 (Oct. 1989), 56–
71.delay.ps|.

KARN, P. AND PARTRIDGE, C. 1987. Improving
round-trip time estimates in reliable trans-
port protocols. SIGCOMM Comput. Com-
mun. Rev. 17, 5 (Aug. 1987), 2–7.

KENT, C. A. AND MOGUL, J. C. 1987.
Fragmentation considered harmful. SIG-
COMM Comput. Commun. Rev. 17, 5 (Aug.
1987), 390–401.

KESHAV, S. 1991. A control-theoretic approach
to flow control. SIGCOMM Comput. Com-
mun. Rev. 21, 4 (Sept. 1991), 3–15.

KESHAV, S. 2000. Packet-pair flow control. (To
appear). IEEE/ACM Trans. Netw. 8.

KESHAV, S. AND MORGAN, S. 1997. SMART re-
transmission: Performance with overload and
random losses. In Proceedings of on IEEE
INFOCOM 1997 (Kobe City, Japan,
Apr.), IEEE Computer Society Press, Los
Alamitos, CA.

LA PORTA, T. F. AND SCHWARTZ, M. 1992.
Architectures, features, and implementation
of high-speed transport protocols. In Com-
puter Communications: Architectures, Proto-
cols, and Standards, W. Stallings, Ed. IEEE
Press, Piscataway, NJ, 217–225.

LA PORTA, T. F. AND SCHWARTZ, M. 1993a. The
multistream protocol: A highly flexible high-
speed transport protocol. IEEE J. Sel. Areas
Commun. 11, 4 (May), 519–530.

LA PORTA, T. F. AND SCHWARTZ, M. 1993b.
Performance analysis of MSP: feature-rich
high-speed transport protocol. IEEE/ACM
Trans. Netw. 1, 6 (Dec. 1993), 740–753.

LIN, S. AND COSTELLO, D. 1982. Error Control
Coding. Prentice-Hall, New York, NY.

LISKOV, B., SHRIRA, L., AND WROCLAWSKI, J.
1990. Efficient at-most-once messages based
on synchronized clocks. SIGCOMM Comput.
Commun. Rev. 20, 4 (Sept.), 41–49.

LUNDY, G. M. AND TIPICI, H. A. 1994.
Specification and analysis of the SNR high-
speed transport protocol. IEEE/ACM Trans.
Netw. 2, 5 (Oct. 1994), 483–496.

MARASLI, R. 1997. Performance analysis of par-
tially ordered and partially reliable transport
services. Ph.D. Dissertation. University of
Delaware, Newark, DE.

MARASLI, R., AMER, P., AND CONRAD, P. 1996.
Retransmission-based partially reliable ser-
vices: An analytic model. In Proceedings of
on IEEE INFOCOM 1996 (San Francisco, Ca-
lif., Mar.), IEEE Computer Society Press,
Los Alamitos, CA.

MARASLI, R., AMER, P. D., AND CONRAD, P. T.
1997. An analytic study of partially ordered

Transport Layer • 403

ACM Computing Surveys, Vol. 31, No. 4, December 1999

transport services. Comput. Netw. ISDN
Syst. 29, 6, 675–699.

MARTIN, J. AND LEBEN, J. 1992. DECnet Phase
V: An OSI Implementation. Prentice-Hall,
Inc., Upper Saddle River, NJ.

MATHIS, M., MAHDAVI, J., FLOYD, S., AND ROMANOW,
A. 1996. TCP selective acknowledgment
options. RFC 2018.

MCAULEY, D. 1990. Protocol design for high
speed networks. Ph.D. Dissertation. Uni-
versity of Cambridge, Cambridge, UK.

MCCANNE, S., JACOBSON, V., AND VETTERLI, M.
1996. Receiver-driven layered multi-
cast. SIGCOMM Comput. Commun. Rev. 26,
4, 117–130.

MCNAMARA, J. E. 1988. Technical Aspects of
Data Communication. 3rd ed. Digital
Press, Newton, MA.

NAGLE, J. 1995. Congestion control in IP/TCP
internetworks. SIGCOMM Comput. Com-
mun. Rev. 25, 1 (Jan. 1995), 61–65.

NETRAVALI, A., ROOME, W., AND SABNANI, K.
1990. Design and implementation of a high
speed transport protocol. IEEE Trans. Com-
mun. 38, 11, 2010–2024.

PARTRIDGE, C., HUGHES, J., AND STONE, J.
1995. Performance of checksums and CRCs
over real data. SIGCOMM Comput. Com-
mun. Rev. 25, 4 (Oct.), 68–76.

PARULKAR, G. AND TURNER, J. 1989. Towards a
framework for high speed communication in a
heterogeneous networking environment. In
Proceedings of on IEEE INFOCOM 1989 (Ot-
tawa, Ont., Canada, Apr.), IEEE Computer
Society Press, Los Alamitos, CA, 655–667.

PISCITELLO, D. AND CHAPIN, A. 1993. Open Sys-
tems Networking, TCP/IP and OSI. 1st
ed. Addison-Wesley, Reading, MA.

POSTEL, J. 1980. User datagram protocol.
RFC 768.

POSTEL, J. 1981. Transmission control protocol.
RFC 793.

PRUE, W. AND POSTEL, J. 1987. Something a
host could do with source quench: The source
quench introduced delay (SQuID). RFC
1016.

RAMAKRISHNAN, K. K. AND JAIN, R. 1988. A bi-
nary feedback scheme for congestion avoid-
ance in computer networks with a connection-
less network layer. SIGCOMM Comput.
Commun. Rev. 18, 4 (Aug. 1988), 303–313.

ROBERTSON, D. 1996. Accessing Transport Net-
works: MPTN and AnyNet Solutions.
McGraw-Hill series on computer communica-
tions. McGraw-Hill, Inc., Hightstown, NJ.

ROSE, M. AND CASS, D. 1987. ISO transport ser-
vice on top of the TCP, version: 3. RFC 1006.

SANDERS, R. AND WEAVER, A. 1990. The Xpress
transfer protocol (XTP): A tutorial. SIG-
COMM Comput. Commun. Rev. 20, 5 (Oct.),
67–80.

SANGHI, D. AND AGRAWALA, A. K. 1993. DTP: An
efficient transport protocol. In Proceedings
of the IFIP TC6 Working Conference on Com-

puter Networks, Architecture and Applications
(NETWORKS ’92, Trivandrum, India, Oct.
28–29), S. V. Raghavan, G. V. Bochmann, and
G. Pujolle, Eds. Elsevier Sci. Pub. B. V.,
Amsterdam, The Netherlands, 171–180.

SCHULZRINNE, H. 1996. RTP profile for audio
and video conferences with minimal control.
RFC 1890.

SCHULZRINNE, H., CASNER, S., FREDERICK, R., AND

JACOBSON, V. 1996. RTP: A transport pro-
tocol for real-time applications. RFC 1889.

SHENKER, S., PARTRIDGE, C., AND GUERIN, R.
1997. Specification of guaranteed quality of
service. RFC 2212.

SHENKER, S. AND WROCLAWSKI, J. 1997. General
characterization parameters for integrated
service network elements. RFC 2215.

SMITH, W. AND KOIFMAN, A. 1996. A distributed
interactive simulation intranet using RAMP,
a reliable adaptive multicast protocol. In
Proceedings of the 14th Workshop on Stan-
dards for the Interoperability of Distributed
Simulations (Orlando, FL, Mar.).

STALLINGS, W. 1997. Data and Computer
Communications. 5th ed. Prentice-Hall,
Inc., Upper Saddle River, NJ.

STALLINGS, W. 1998. High-Speed Networks:
TCP/IP and ATM Design Principles. Pren-
tice-Hall, Inc., Upper Saddle River, NJ.

STEVENS, W. R. 1994. TCP/IP Illustrated: The
Protocols (Vol. 1). Addison-Wesley Longman
Publ. Co., Inc., Reading, MA.

STEVENS, W. R. 1996. TCP/IP Illustrated: TCP
for Transactions, HTTP, NNTP, and the Unix
Domain Protocols (Vol. 3). Addison-Wesley
Professional Computing Series. Addison-
Wesley Publishing Co., Inc., Redwood City,
CA.

STEVENS, W. 1997. TCP slow start, congestion
avoidance, fast retransmit, and fast recovery
algorithms. RFC 2001.

STEVENS, W. R. 1990. UNIX Network Program-
ming. Prentice-Hall, Inc., Upper Saddle
River, NJ.

STRAYER, W. T., DEMPSEY, B. J., AND WEAVER, A. C.
1992. XTP: The Xpress Transfer Protocol.
Addison-Wesley Publishing Co., Inc., Red-
wood City, CA.

STRAYER, T. AND WEAVER, A. 1988. Evaluation
of transport protocols for real-time communi-
cations. Tech. Rep. TR-88-18. Department
of Computer Science, University of Virginia,
Charlottesville, VA.

TANENBAUM, A. S. 1996. Computer Networks.
3rd. ed. Prentice-Hall, Inc., Upper Saddle
River, NJ.

THAI, K., CHASSOT, C., FDIDA, S., DIAZ, M., AND

DIAZ, M. 1994. Transport layer for coopera-
tive multimedia applications. Tech. Rep.
94196. Editions du CNRS, Paris, France.

WALRAND, J. 1991. Communication Networks: A
First Course. Richard D. Irwin, Inc., Burr
Ridge, IL.

404 • S. Iren et al.

ACM Computing Surveys, Vol. 31, No. 4, December 1999

WATSON, R. 1989. The Delta-T transport proto-
col: Features and experience. In Proceedings
of the 14th Conference on Local Computer
Networks (Minneapolis, MN, Oct. 1989),

WEAVER, A. 1994. The Xpress transfer protocol.
Comput. Commun. 17, 1 (Jan.), 46–52.

WILLIAMSON, C. AND CHERITON, D. 1989. An
overview of the VMTP transport protocol. In
Proceedings of the 14th Conference on Local
Computer Networks (Minneapolis, MN, Oct.
1989),

WROCLAWSKI, J. 1997. Specification of the con-
trolled-load network element service. RFC
2211.

YANG, C. AND REDDY, A. 1995. A taxonomy for
congestion control algorithms in packet
switching networks. IEEE Network, 42–48.

YAVATKAR, R. AND BHAGWAT, N. 1994.
Improving end-to-end performance of TCP
over mobile internetworks. In Proceedings of
the Workshop on Mobile Computing Systems
and Applications (Mobile ’94, Dec.).

ZHANG, L 1986. Why TCP timers don’t work well.
In Proceedings of the ACM Conference on
Communications Architecture and Protocols
(SIGCOMM ’86, Stowe, VT, Aug. 5–7), W.
Kosinsky, J. J. Garcia-Luna, and F. F. Kuo,
Eds. ACM Press, New York, NY, 397–405.

Received: May 1997; revised: October 1998; accepted: November 1998

Transport Layer • 405

ACM Computing Surveys, Vol. 31, No. 4, December 1999

