
Computer Networks 56 (2012) 1876–1892
Contents lists available at SciVerse ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Evaluating TCP-friendliness in light of Concurrent Multipath Transfer

Ilknur Aydin a,b,⇑, Janardhan Iyengar c, Phillip Conrad d, Chien-Chung Shen a, Paul Amer a

a Dept. of Computer & Info. Sciences, Univ. of Delaware, Newark, DE, USA
b Dept. of Mathematics and Computer Science, SUNY Plattsburgh College, Plattsburgh, NY, USA
c Dept. of Computer Science, Franklin & Marshall College, Lancaster, PA, USA
d Dept. of Computer Science & College of Creative Studies, Univ. of California, Santa Barbara, CA, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 1 September 2010
Received in revised form 23 December 2011
Accepted 18 January 2012
Available online 10 February 2012

Keywords:
Multihoming
SCTP
Concurrent Multipath Transfer
TCP-friendliness
TCP-friendly
1389-1286/$ - see front matter � 2012 Elsevier B.V
doi:10.1016/j.comnet.2012.01.010

⇑ Corresponding author at: Dept. of Mathem
Science, SUNY Plattsburgh College, Plattsburgh, NY,

E-mail addresses: ilknur.aydin@plattsburgh.edu
fandm.edu (J. Iyengar), pconrad@cs.ucsb.edu (P.
udel.edu (C.-C. Shen), amer@cis.udel.edu (P. Amer).
In prior work, a CMT protocol using SCTP multihoming (termed SCTP-based CMT) was pro-
posed and investigated for improving application throughput. SCTP-based CMT was stud-
ied in (bottleneck-independent) wired networking scenarios with ns-2 simulations. This
paper studies the TCP-friendliness of CMT in the Internet. In this paper, we surveyed his-
torical developments of the TCP-friendliness concept and argued that the original TCP-
friendliness doctrine should be extended to incorporate multihoming and SCTP-based
CMT.

Since CMT is based on (single-homed) SCTP, we first investigated TCP-friendliness of sin-
gle-homed SCTP. We discovered that although SCTP’s congestion control mechanisms were
intended to be ‘‘similar’’ to TCP’s, being a newer protocol, SCTP specification has some of
the proposed TCP enhancements already incorporated which results in SCTP performing
better than TCP. Therefore, SCTP obtains larger share of the bandwidth when competing
with a TCP flavor that does not have similar enhancements. We concluded that SCTP is
TCP-friendly, but achieves higher throughput than TCP, due to SCTP’s better loss recovery
mechanisms just as TCP-SACK and TCP-Reno perform better than TCP-Tahoe.

We then investigated the TCP-friendliness of CMT. Via QualNet simulations, we found
out that one two-homed CMT association has similar or worse performance (for smaller
number of competing TCP flows) than the aggregated performance of two independent,
single-homed SCTP associations while sharing the link with other TCP connections, for
the reason that a CMT flow creates a burstier data traffic than independent SCTP flows.
When compared to the aggregated performance of two-independent TCP connections,
one two-homed CMT obtains a higher share of the tight link bandwidth because of better
loss recovery mechanisms in CMT. In addition, sharing of ACK information makes CMT
more resilient to losses. Although CMT obtains higher throughput than two independent
TCP flows, CMT’s AIMD-based congestion control mechanism allows other TCP flows to
co-exist in the network. Therefore, we concluded that CMT is TCP-friendly, similar to
two TCP-Reno flows are TCP-friendly when compared to two TCP-Tahoe flows.

� 2012 Elsevier B.V. All rights reserved.
. All rights reserved.

atics and Computer
USA.
(I. Aydin), jiyengar@
Conrad), cshen@cis.
1. Introduction

A host is multihomed if the host has multiple network
addresses [1]. We are seeing more multihomed hosts con-
nected to the networks and the Internet. For instance, PCs
with one Ethernet card and one wireless card, and cell
phones with dual Wi-Fi and 3G interfaces are already com-

http://dx.doi.org/10.1016/j.comnet.2012.01.010
mailto:ilknur.aydin@plattsburgh.edu
mailto:jiyengar@fandm.edu
mailto:jiyengar@fandm.edu
mailto:pconrad@cs.ucsb.edu
mailto:cshen@cis.udel.edu
mailto:cshen@cis.udel.edu
mailto:amer@cis.udel.edu
http://dx.doi.org/10.1016/j.comnet.2012.01.010
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

Fig. 1. Example of multihoming (with disjoint paths).

1 Note that, although SCTP has ‘‘similar’’ congestion control mechanisms
as TCP, subtle differences exist between (single-homed) SCTP and TCP.

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1877
mon realities. Nodes with multiple radios and radios oper-
ating over multiple channels are being deployed [2,3]. In
addition, Wi-Fi wireless interface cards are now so inex-
pensive that nodes with multiple Wi-Fi cards and wireless
mesh networks (or testbeds) with multiple radios are prac-
tical [4,5].

A transport protocol supports multihoming if it allows
multihomed hosts at the end (s) of a single transport layer
connection. That is, a multihome-capable transport protocol
allows a set of network addresses, instead of a single net-
work address, at the connection end points. When each
network address is bound to a different network interface
card connected to a different physical network, multiple
physical communication paths become available between
a source host and a destination host (Fig. 1).

A multihome-capable transport protocol can accommo-
date multiple paths between a source host and a destination
host within a single transport connection. Therefore, tech-
nically, a multihomed transport protocol allows simulta-
neous transfer of application data through different paths
from a source host to a destination host, a scheme termed
Concurrent Multipath Transfer (CMT). Network applications
can benefit from CMT in many ways such as fault-toler-
ance, bandwidth aggregation, and increased application
throughput.

The current transport layer workhorses of the Internet,
TCP and UDP, do not support multihoming. However, the
Stream Control Transmission Protocol (SCTP) [6,7] has
built-in multihoming support. Since SCTP supports multih-
oming natively, SCTP has the capability to realize CMT for
the network applications. In this paper, we study TCP-
friendliness of SCTP-CMT in the Internet.

TCP is the de facto reliable transport protocol used in
the Internet. Following the infamous Internet congestion
collapse in 1986, several congestion control algorithms
were incorporated into TCP to protect the stability and
health of the Internet [8]. As a direct response to wide-
spread use of non-TCP transport protocols, the concept of
TCP-friendliness emerged [9]. Briefly, TCP-friendliness
states that the sending rate of a non-TCP flow should be
approximately the same as that of a TCP flow under the
same conditions (RTT and packet loss rate) [10]. In addi-
tion, a non-TCP transport protocol should implement some
form of congestion control to prevent congestion collapse.
Since the 1990s, new developments, such as multihoming
and CMT, challenge this traditional definition of TCP-
friendliness which was originally introduced for single-
path end-to-end connections. For instance, recently, there
is substantial activity in the Internet Engineering Task
Force (IETF) and the Internet Research Task Force (IRTF)
mailing lists (such as tmrg, tsvwg, iccrg, and end2end-inter-
est) discussing the definition of TCP-friendliness and other
related issues (such as compliance with TCP-friendly con-
gestion control algorithms, what can cause congestion col-
lapse in the Internet, Internet-friendly vs. TCP-friendly
algorithms, fairness of ‘‘flow rate fairness’’).

In this paper, we survey the historical development of
TCP-friendliness and argue that the existing definition
should be extended to incorporate SCTP CMT and multih-
oming. Since SCTP CMT is based on (single-homed) SCTP,
we first investigate TCP-friendliness of single-homed
SCTP.1 We then study TCP-friendliness of SCTP CMT accord-
ing to the traditional definition of TCP-friendliness [9] using
QualNet [12] simulations. Note that we developed SCTP and
SCTP-based CMT simulation modules in QualNet [13]. We
also verified the correctness of our SCTP QualNet module
against SCTP ns-2 module [14] before we ran our simula-
tions (see [15] for details).

This paper is organized as follows. Section 2 presents a
primer on SCTP and CMT. Section 3 presents the historical
development and the formal definition of TCP-friendliness.
Section 4 elaborates on the TCP-friendliness of single-
homed SCTP. Section 5 evaluates the TCP-friendliness of
CMT. Section 6 concludes this paper with summary of
our results and future work.
2. Primer on SCTP and CMT

SCTP was originally designed to transport telephony
signaling messages over IP networks. Later on the IETF
reached consensus that SCTP was useful as a general pur-
pose, reliable transport protocol for the Internet. SCTP pro-
vides services similar to TCP’s (such as connection-
oriented reliable data transfer, ordered data delivery, win-
dow-based and TCP-friendly congestion control, flow con-
trol) and UDP’s (such as unordered data delivery, message-
oriented). In addition, SCTP provides other services neither
TCP nor UDP offers (such as multihoming, multistreaming,
protection against SYN flooding attacks) [16]. In the SCTP
jargon, a transport layer connection is called an association.
Each SCTP packet, or SCTP protocol data unit (SCTP-PDU),
contains an SCTP common header and multiple data or con-
trol chunks.
2.1. SCTP multihoming

One of the innovative features of SCTP is its support of
multihoming where an association can be established be-
tween a set of local and a set of remote IP addresses as op-
posed to a single local and a single remote IP address as in a
TCP connection. In an SCTP association, each SCTP endpoint
chooses a single port. Although multiple IP addresses are
possible to reach one SCTP endpoint, only one of the IP ad-
dresses is specified as the primary IP address to transmit
data to the destination endpoint.

4 That is during slow-start, TCP doubles its sending rate per RTT.

1878 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
The reachability of the multiple destination addresses
are monitored by SCTP with periodic heartbeat control
chunks sent to the destination IP addresses. The applica-
tion data is sent only to the primary destination address
of an SCTP endpoint. However, if the primary address of
an SCTP endpoint fails, one of the alternate destination ad-
dresses is chosen to transmit the data dynamically, a pro-
cess termed SCTP failover.

In Fig. 1, both Host A and Host B have two network
interfaces, where each interface has one single IP address
A1, A2 and B1, B2, respectively. Each interface is connected
to a separate (i.e., physically disjoint) network (Network1
and Network2). Therefore, two end-to-end paths exist be-
tween Host A and Host B (A1 to B1 and A2 to B2). One SCTP
association accommodates all of the IP addresses of each
host and multiple paths between the hosts as follows:
ð½A1;A2 : portA�; ½B1;B2 : portB�Þ. Note that, two different
TCP connections are needed to accommodate all the IP ad-
dresses and the two paths in the same figure, namely
ð½A1 : portA1�; ½B1 : portB1�Þ and ð½A2 : portA2�; ½B2 : portB2�Þ.

2.2. Concurrent Multipath Transfer (CMT)

Although the standard SCTP [6] supports multiple IP ad-
dresses to reach a destination host, only one of the IP ad-
dresses, named the primary IP address, is used as a
destination at any time, to originally transmit application
data to a destination host. The IP addresses other than
the primary IP address are only used for retransmitting
data during failover for the purpose of fault tolerance.
Therefore, in reality, the standard SCTP does not fully uti-
lize its potential to facilitate CMT for applications. Research
efforts on the concurrent use of the multiple paths within
an SCTP association continue [17–22]. The SCTP-based
CMT2 proposed by Iyengar et al. [19,23] is the first SCTP re-
search effort aiming to increase application throughput
through concurrency.

Because paths may have different end-to-end delays,
naively3 transmitting data to multiple destination addresses
(over different paths) within an SCTP association will often
result in out-of-order arrivals at a multihomed SCTP recei-
ver. Out-of-order arrivals have negative effects on SCTP
throughput due to spurious fast retransmissions, and pre-
vent congestion window growth even when ACKs continue
arriving at the sender. CMT [23] proposed algorithms
namely Split Fast Retransmit (SFR), Cwnd Update for CMT
(CUC), and Delayed ACK for CMT (DAC) to mitigate the ef-
fects of reordering at the receiver.

The availability of multiple destination addresses in an
SCTP association allows an SCTP sender to select one desti-
nation address for the retransmissions. However, in stan-
dard SCTP since only the primary destination address is
used to send new data, there is no sufficient information
about the condition of all other paths. On the other hand,
since CMT simultaneously uses all the paths, a CMT sender
maintains accurate information regarding the condition of
all the paths. Therefore, a CMT sender can better select a
2 From now on, any mention of CMT, SCTP-based CMT, or SCTP CMT refers
to the CMT proposed in [19,23].

3 That is, simply using the standard SCTP without any modifications.
path to send retransmissions. CMT proposed and evaluated
several retransmission policies. RTX-CWND is one of the
proposed policies and sends a retransmission to the active
destination address with the highest cwnd value. In this
paper, we used RTX-CWND as the retransmission policy
of CMT in our simulation studies.
3. TCP-friendliness: background and definition

In a computer network, congestion occurs when the de-
mand (load or traffic the data sources pump into the net-
work) is close to or larger than the network capacity. As
a result of congestion, (i) the network throughput, in terms
of what the traffic sinks receive, decreases even though the
load in the network increases, (ii) the packet delay in the
network increases (as the router queues become longer),
and (iii) packet loss increases (since router queues become
full and start dropping packets). When no action is taken to
prevent or reduce congestion, the network can be pushed
into a state called congestion collapse, where little or no
useful end-to-end communication occurs.

Congestion collapse was first defined and described as a
possible threat for TCP/IP-based networks by Nagle in 1984
[24]. The first congestion collapse of the Internet was ob-
served in 1986 when data throughput between Lawrence
Berkeley Lab to UC Berkeley significantly dropped to pa-
thetic levels [8]. The original TCP specification [25] only in-
cluded a flow control mechanism to prevent a transport
sender from overflowing a transport receiver. TCP did not
have any mechanism to reduce the (total traffic) load in
the network, when network is yielding signs of congestion.
In 1988, V. Jacobson et al. proposed several algorithms
(including slow start and congestion avoidance) based on
the conservation of packets principle and AIMD (Additive In-
crease, Multiplicative Decrease) mechanisms to address the
TCP flaws to prevent congestion collapse [8].

The conservation of packets principle states that ‘‘once
the system is in equilibrium (i.e., running stably with full data
transit rate), a new packet will not be put into the network
unless an old packet leaves the network’’ [8]. Jacobson used
ACK clocking to estimate if an old packet has left the net-
work so that a new packet can be put into the network.
TCP’s slow start algorithm helps TCP come to an equilib-
rium point (i.e., starting the ACK clocking) quickly by
increasing the sending rate of the data source by 1MSS
per received T-ACK.4 Once the system is in equilibrium,
the congestion avoidance algorithm takes over. During con-
gestion avoidance, if there is no sign of congestion (i.e., no
packet losses), a TCP source increases its sending rate by
ð1�MSS=cwndÞ per received ACK5 (what is called additive
increase). When there is a sign of congestion though, the
TCP source reduces its sending rate to half of the previous
sending rate (what is called multiplicative decrease). In their
seminal paper [26], Chiu and Jain explain that if all the traffic
sources in the network obey the AIMD principle, the net-
Therefore, in contrast to its name, during slow start TCP’s congestion
window opens up exponentially.

5 Note that during the congestion avoidance phase, TCP congestion
window is incremented a total of 1 MSS per RTT, i.e., a linear increase.

Fig. 2. History of events that led to the doctrine of TCP-friendliness.

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1879
work will not have congestion collapse and the bandwidth
in the network will be ‘‘equally’’ shared among the flows
in the network. The TCP’s congestion control algorithms
developed by Jacobson were later revised and standardized
by the IETF as RFCs 2581 [27] and 2582 [28].6

In 1980s the traffic in the Internet was mostly com-
posed of applications running over TCP. Therefore, the con-
gestion control mechanisms of TCP (as explained above)
were sufficient to control the congestion in the Internet.
However, as the Internet evolved, non-TCP traffic (such
as streaming and multimedia applications running over
UDP) began consuming a larger share of the overall Inter-
net bandwidth, competing unfairly with the TCP flows,
and essentially threatening the Internet’s health and stabil-
ity. As a response, the notion of TCP-friendliness emerged
[9].

Definition 1. The TCP-friendliness doctrine [10] states
that a non-TCP flow should not consume more resources
(bandwidth) than what a conforming TCP flow would
consume under the same conditions (segment size, loss, and
RTT). In addition, a non-TCP transport protocol should
implement some form of congestion control to prevent
congestion collapse.

In 1997, Floyd and Mahdavi introduced the TCP-friendly
equation7 [9] (Eq. (1)) which roughly calculates the band-
width consumed by a TCP flow (conforming with the TCP
congestion control algorithms). In 1998, Padhye et al.
extended this equation to include timeout events [31].
Fig. 2, summarizes the chronology of events that led to the
doctrine of TCP-friendliness.

bandwidth consumed ¼ 1:22 �MSS

RTT �
ffiffiffiffiffiffiffiffi
loss
p ð1Þ
4. TCP-friendliness of single-homed SCTP

This section investigates TCP-friendliness of single-
homed SCTP via QualNet simulations. SubSection 4.1
emphasizes our contributions and motivation to study
TCP-friendliness of single-homed SCTP. Subsection 4.2
elaborates the differences between the protocol specifica-
6 Note that RFC 2582 is obsoleted by RFC 3782 [29] in 2004.
7 Note that [30] defined another term called TCP-compatible flow.

However, based on the definition given in the document, TCP-compatible
flow is the same as what was earlier defined as TCP-friendly in [9].
tions of TCP and SCTP as well as the conformance of Qual-
Net TCP and SCTP simulation models with respect to the
protocol specifications. Subsections 4.3 and 4.4 describe
our experimental framework and results and analysis,
respectively.

4.1. Motivation and contributions

This section investigates TCP-friendliness of single-
homed SCTP. The experiments conducted considers the
basic case where only one competing pair of TCP and sin-
gle-homed SCTP8 flows exist in the network. As mentioned
earlier, one of our main goals in this paper is to investigate
‘‘TCP-friendliness’’ of SCTP CMT [19,23]. Since CMT is based
on single-homed SCTP, we believe that the first step in
understanding TCP-friendliness of CMT is to understand
TCP-friendliness of single-homed SCTP. Therefore, the re-
sults in this section serve as the first step of the experimen-
tal framework in Subsection 5.1. In addition, there exists
little research about SCTP vs. TCP in the context of
TCP-friendliness. This work also intends to bridge this gap.
Furthermore, the comparison work in this section can also
be considered as a model for the question of ‘‘how to compare
two transport protocols (especially from a congestion control
perspective)?’’. In this section, we consider a topology where
a single tight link [32] is shared by the flows in the network.

4.2. SCTP vs. TCP mechanics

SCTP’s congestion control algorithms are designed to be
‘‘similar’’ to TCP’s. However, there are subtle differences
between the two that can make one transport protocol be-
have more aggressively than the other under certain cir-
cumstances. A few reports provide the similarity and the
differences between SCTP and TCP mechanisms [16,33–
35]. In this section, we highlight some of such subtle differ-
ences between single-homed SCTP (based on RFC 4960 [6])
and TCP flavors (based on RFCs 2581 [27], 2582 [28], and
2018 [36]) that we believe are directly related to the dis-
cussion of TCP-friendliness.

4.2.1. Comparing transport protocol overheads

� Transport PDU headers– A TCP-PDU has 20 bytes of
header (without any options), whereas, an SCTP-PDU
has 12 bytes of common header plus (data and/or con-
trol) chunk headers. For example, an SCTP data chunk
header has 16 bytes. If an SCTP-PDU carries a single data
chunk, the total header size will be 28 bytes, which is
40% larger than the header of TCP-PDU (without any
options).
� Message-based vs. byte-based transmission– For SCTP, a

chunk is the basic unit of transmission. SCTP sender
wraps each A-PDU in one chunk.9 SCTP receiver delivers
each received A-PDU in the same way to the receiving
8 In this paper, unless otherwise stated, SCTP refers to single-homed and
single-stream SCTP associations as in [6].

9 Note that, if the size of A-PDU is bigger than MTU, then an SCTP sender
fragments the A-PDU into multiple chunks. Then, the SCTP receiver
reassembles the A-PDU before delivering it to the receiving application.

Fig. 3. Simulation topology for single-homed SCTP experiments.

1880 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
application. That is, SCTP preserves message (A-PDU)
boundaries between sender and receiver. In contrast,
TCP does byte-based transmission. A TCP sender does
not maintain message (A-PDU) boundaries, and for
example can concatenate the end portion of one A-PDU
with the beginning portion of another A-PDU as the bytes
fit into one single TCP-segment (TCP-PDU) during trans-
mission. In the same way, a TCP receiver delivers some
or all of an A-PDU to the receiving application, with
one system call.
The impact of message-based vs. byte-based transmis-
sion on the relative performance of SCTP vs. TCP is that,
as A-PDU size decreases, the overhead of SCTP per
A-PDU will increase compared to TCP.10 However, for
the simulations in this section, we try to make the SCTP
and TCP to be as similar as possible for the sake of TCP-
friendliness discussion. Therefore, we do not consider
the impact of A-PDU size.11

� Transport protocol ACKs– SACK12 is a built-in feature in
SCTP while TCP needs to use SACK option [36]. SCTP
defines a special SACK chunk to report gaps in the
received data. There are two issues with SCTP’s SACK
chunk compared to TCP’s SACK option. (i) SACK chunk
has a relatively large size compared to TCP SACK option.
The size of a SACK chunk header without any gap ACK
blocks is 12 bytes. For example, if there is no gap
observed in the received data, SCTP-PDU carrying only
a single SACK chunk will be 24 bytes.13 On the other
hand, TCP-PDU carrying no data (and options) will be
20 bytes. (ii) TCP SACK option can have at most 4 SACK
blocks14 (limiting the size of TCP header to 60 bytes in
total), while SCTP SACK chunk can have larger number
of gap ACK blocks, as long as the size of the SCTP-PDU
is smaller than Path MTU. Hence, as the path loss (espe-
cially in a high bandwidth path) gets higher, SCTP SACK
can better inform the SCTP sender about the missing data
compared to TCP, at the expense of increased overhead.
� In addition to the differences of protocol overhead

between the basic SCTP and TCP specifications, as men-
tioned above, we note that QualNet 4.5.1 implements
RFC 1323 [38] for high performance TCP. Therefore,
the TCP window scaling option,15 is implemented
together with the TCP timestamps option, which adds 12
extra16 bytes to the TCP header of every TCP-PDU, mak-
ing the TCP header 32 bytes.
10 Assuming that SCTP does no bundling, and application over TCP
connection does not use PUSH flag in TCP header.

11 Interested readers can look into [37] for the impact of A-PDU size on
SCTP vs. TCP throughput.

12 In addition to the cumulative ACK, transport receiver also selectively
sends other missing TSNs.

13 12 bytes for common header, 12 bytes for SACK chunk.
14 Note that, when the TCP PDU also carries a TCP timestamp option, the

limit of SACK blocks within a TCP SACK option becomes 3. Time stamp
option is activated in our simulations for TCP.

15 Which let us to have send and receive buffer sizes P64 K.
16 10 bytes for the timestamps option, 2 bytes for two TCP no operation

options.
4.2.2. Comparing congestion control mechanisms

� How to increase cwnd: Per RFC 2581, a TCP sender
increases its congestion window (cwnd) based on the
number of ACK packets received.17 In contrast, SCTP
counts the number of bytes acknowledged within each
received ACK packet. Counting the number of ACK pack-
ets received rather than the number of bytes acknowl-
edged within each ACK packet causes bigger
performance issues for TCP especially when delayed
ACKs [1] are used. Note that, we used delayed ACKs in
our simulations.
� When to increase cwnd: During congestion avoidance,

SCTP increases its cwnd only if the cwnd is in full use.
This can make SCTP less aggressive in sending data.
� Initial cwnd size: Initial TCP cwnd size is 1–2 segments

according to RFC 2581.18 SCTP’s initial cwnd size at slow
start or after long idle periods is set to minð4�
MTU;maxð2 �MTU;4380bytesÞÞ, which will be larger than
TCP’s initial window size.
� When to apply slow start vs. congestion avoidance: SCTP

increases its cwnd according to the slow start algorithm
when cwnd 6 ssthresh, and applies the congestion
avoidance algorithm, otherwise. On the other hand,
RFC 2581 let an implementation choose between slow
start and congestion avoidance when cwnd ¼ ssthresh.19

In summary, messaging overhead of SCTP might be
higher compared to TCP (especially if no TCP options used).
However, SCTP is a newer protocol compared to TCP;
hence, some of TCP’s enhancements (such as SACKs, ABC
[39], initial congestion window size [40]) that came after
RFCs 2581 and 2582 are already built-in features in SCTP.
Therefore, it should not be surprising to see that SCTP
throughput may be better than TCP’s under identical con-
ditions (further on this issue in Subsection 4.4).

4.3. Experimental framework

In the following sub-sections, we describe different as-
pects of the simulation framework used in this section.

4.3.1. Topology
We designed an experimental framework to explore

TCP-friendliness of SCTP in a single shared tight link topol-
ogy as depicted in Fig. 3. In the figure, two edge links use
17 Note that the ABC (Appropriate Byte Counting) enhancement for TCP is
later introduced with RFC 3465 [39]. However, QualNet 4.5.1 does not
implement ABC in TCP.

18 Note that, RFC 3390 [40] later on updated TCP’s initial cwnd size to be
up to 4 K; however, QualNet 4.5.1 does not implement RFC 3390 and keeps
TCP initial cwnd size at 2 segments.

19 QualNet 4.5.1 applies the congestion avoidance algorithm when
cwnd ¼ ssthresh. Hence, this is the same behavior as in the SCTP
specification.

Table 1
Transport protocol parameters and their values used in the simulations.

Scheme Parameter Value

TCP specific Window scaling optiona YES
Timestamps optionb YES
Other TCP parameters QualNet 4.5.1 default

values

SCTP specific SCTP-RTO-INITIAL 3 s
SCTP-RTO-MIN 1 s
SCTP-RTO-MAX 60 s
SCTP-RTO-ALPHA 0.125
SCTP-RTO-BETA 0.25
Heartbeats OFF
Bundling NO

SCTP & TCP Send Buffer unlimited
Receive Buffer unlimited
Clock Granularity 500 ms
Initial ssthresh 65,535 ⁄ 214

Delayed ACKs [27,1] YESc

a The window scaling option is required for TCP to have a receiver buffer
size bigger than 64 K. We activated the window scaling option for TCP
flows so that TCP sending rate is not limited by the receiver buffer size.

b This parameter is automatically activated by QualNet, since QualNet
4.5.1 implements both window scaling and timestamps options (i.e., [38])
together.

c The transport receiver sends a T-ACK for every other in-sequence TSN
received or when the delayed ACK timer expires. The delayed ACK timer is
set to 200 ms.

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1881
fast Ethernet (with 100 Mbps bandwidth capacity and 1
micro second one-way propagation delay). The tight link
is modeled as a full-duplex point-to-point link, with a
45 ms one-way propagation delay. This way, RTT of the
paths in the network is 90 ms, similar to US coast-to-coast
[41] values. Three tight link bandwidth values (5, 10, and
20 Mbps) were tested for all the cases in Section 4. How-
ever, the tight link bandwidth did not influence the results.
No artificial packet losses are introduced in the tight link or
the edge links. Therefore, all the losses in the simulations
are due to buffer overflows of congested traffic at routers
R1 and R2. The buffer size at routers R1 and R2 is set to
the bandwidth-delay product of the path. We use drop tail
queues at the routers. We run simulations with QualNet.20

4.3.2. Network traffic
The traffic in the network is composed of two flows. The

flows are applications transmitting data over an SCTP asso-
ciation or a TCP connection from S1 to D1 and S2 to D2,
respectively. The traffic flows are greedy (i.e., the applica-
tions at the sending hosts S1 and S2 always have data to
send). In addition, the receiving applications at hosts D1

and D2 are always ready to consume whatever the trans-
port layer protocol can deliver. Therefore, the sending rate
of the traffic sources is not limited by the application but
by the network. The size of each application message (or
A-PDU) is 1200 bytes. Similarly, TCP-MSS (maximum seg-
ment size) is set to 1212 bytes21.

4.3.3. Transport protocol parameters
While comparing SCTP and TCP (Subsection 4.2), we

tried our best to make the transport protocol parameters
as close as possible in the simulations. Table 1 lists what
parameters are used in common and per transport layer
protocol, respectively. For TCP, we studied both TCP SACK
(TCPS) [36] and TCP NEWRENO (TCPNR) [28]. We assumed
unlimited send and receiver buffer22 size at the transport
layer so that buffer size is not a limiting factor for the trans-
port protocol throughput.

4.3.4. The framework
Our goal is to understand how two flows (TCP and/or

SCTP) share the available bandwidth in the network. We
investigate two cases.

Case-I: The two flows in the network are started at the
same time23. We use Case-I to investigate how
two flows grow together by looking into all possible
TCP-SCTP combinations.
20 Using svn revision 10 of the SCTP module in QualNet 4.5.1. Note that,
QualNet’s TCP model uses code converted from the FreeBSD 2.2.2 source
code implementation of TCP.

21 Note that, QualNet 4.5.1 complies with Section 4.2.2.6 of RFC 1122 [1]
and calculates the maximum data that can be put into an TCP-PDU based on
the effective-MSS. Since every TCP-PDU included timestamps option (extra
12 bytes) in our simulations, we set the TCP-MSS to 1212, to let TCP
effectively send 1200 bytes of data in each PDU, similar to SCTP.

22 Send buffer size of each transport protocol is set to 2xbandwidth � delay
product. Receiver buffer size of each transport protocol is set to a large
value such as, 65535⁄214 bytes.

23 In the simulations, we started the two flows at random times within
½0 . . . RTT� to get different randomized results with the repetition of the
experiments.
(i) Start two TCP flows at the same time
(ii) Start two SCTP flows at the same time
(iii) Start one SCTP and one TCP flow at the same
time

Case-II: Initially only one flow is started24. Then, we
introduce another flow when the earlier flow oper-
ates at steady-state25. Hence, we explore how one
flow gives way to another flow. We simulated four
combinations in Case II.
(i) Start one TCP flow then start another TCP flow
(ii) Start one SCTP flow then start another SCTP flow
(iii) Start one SCTP flow then start one TCP flow
(iv) Start one TCP flow then start one SCTP flow

The simulation time for Case-I is 720 s, and the simula-
tion time for Case-II is 2140 s. For Case-I, we looked into
performance metrics between 60th and 660th seconds.
For Case-II, we looked into performance metrics between
10th and 70th seconds (when there is only one flow in
the network) as well as between 280th and 2080th seconds
(when both flows operate at steady-state). Note that, we
used both TCPS and TCPNR for the TCP-SCTP combinations
above.
4.3.5. Performance metrics
The performance metrics we measured in the simula-

tions are presented below. We looked into the long-term
(steady-state) values of these metrics. In addition, we
looked into the throughput metric over short time dura-
24 At a random time between ½0 . . . RTT�.
25 In the simulations, the latter flow is started at a random time between

80sec þ ½0::RTT�.

(a) 100 RTT

(b) 10 RTT

(c) 1 RTT

(d) 1 RTT, 60-90 seconds

Fig. 5. Throughput of TCPS (green or light color) and SCTP (red or dark
color), starting at the same time, for different time intervals. (For
interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

TC
PS

-T
C

PS

TC
PN

R
-T

C
PN

R

SC
TP

-S
C

TP

SC
TP

-T
C

PS

SC
TP

-T
C

PN
R

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

TC
PS

-T
C

PS

TC
PN

R
-T

C
PN

R

SC
TP

-S
C

TP

SC
TP

-T
C

PS

SC
TP

-T
C

PN
R

N
or

m
al

iz
ed

 T
-L

oa
d

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

TC
PS

-T
C

PS

TC
PN

R
-T

C
PN

R

SC
TP

-S
C

TP

SC
TP

-T
C

PS

SC
TP

-T
C

PN
R

N
or

m
al

iz
ed

 G
oo

dp
ut

(c)

Fig. 4. (a) Normalized throughput, (b) T-Load, and (c) Goodput when both
flows start at the same time.

1882 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
tions (1, 10, and 100 RTT) – see Figs. 5, 7, and 8. The long-
term metric values in Figs. 4 and 6 and Tables 2,3 are aver-
ages of 30 runs with 95% confidence intervals.

� Throughput – Transport layer data (including original,
fast-retransmitted, and re-transmitted data that can
be potentially lost) sent to the network by the transport
protocol of the sending host per unit time. Throughput
of a transport flow is shown as a fraction of the tight link
bandwidth obtained by the flow in the graphs (i.e.,
throughput per flow is normalized with the tight link
bandwidth).
� Load by the transport protocol or Transport Load (T-Load)

– The actual number of bits sent to the network by the
transport protocol per unit time. This includes all the
transport layer headers, original, fast-retransmitted,
and re-transmitted transport layer data and transport
layer ACKs that can be potentially lost. T-Load per
transport flow is normalized with the tight link
bandwidth.
� Goodput – The application layer throughput measured

at the receiving host. That is the number of bits deliv-
ered to the application layer of the receiving host by
the transport layer per unit time. Goodput per transport
flow is normalized with the tight link bandwidth.
While the metrics above (throughput, t-load, and good-
put) are measured per flow in the network, the following
metrics (fairness index, link utilization, and system utiliza-
tion) are aggregated metrics and measured per
configuration.

� Fairness Index – This metric is defined by Jain [42] to
show fairness (i.e., the ‘‘equality’’ of resource sharing)
in a system. Fairness index is a value between 0 and
1, with 1 showing the most fair (equal) allocation of
the resources in the system. Assuming ki is the rate
(throughput) of transport flow i, the fairness index of
the network is given by Eq. (2), where n is the total
number of flows in the network.
FIndex ¼ ð
Pn

i¼1kiÞ2

n � ð
Pn

i¼1k
2
i Þ

ð2Þ
� Link Utilization – We use Eq. (3) to calculate link utiliza-
tion (for the tight link), where ki is throughput of trans-
port flow i and n is the total number of flows in the
network. Our aim in using this metric is to see if the
transport flows pump enough data traffic into the net-

(a) 100 RTT

(b) 10 RTT

(c) 1 RTT

(d) 1 RTT, 75-115 sec

Fig. 7. Throughput of SCTP (red or dark color) followed by TCPS (green or
light color), for different time intervals. (For interpretation of the
references to colour in this figure legend, the reader is referred to the
web version of this article.)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

TC
PS

 fb
 T

C
PS

TC
PN

R
 fb

 T
C

PN
R

SC
TP

 fb
 S

C
TP

SC
TP

 fb
 T

C
PS

SC
TP

 fb
 T

C
PN

R

TC
PS

 fb
 S

C
TP

TC
PN

R
 fb

 S
C

TPN
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

(a)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

TC
PS

 fb
 T

C
PS

TC
PN

R
 fb

 T
C

PN
R

SC
TP

 fb
 S

C
TP

SC
TP

 fb
 T

C
PS

SC
TP

 fb
 T

C
PN

R

TC
PS

 fb
 S

C
TP

TC
PN

R
 fb

 S
C

TP

N
or

m
al

iz
ed

 T
-L

oa
d

(b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

TC
PS

 fb
 T

C
PS

TC
PN

R
 fb

 T
C

PN
R

SC
TP

 fb
 S

C
TP

SC
TP

 fb
 T

C
PS

SC
TP

 fb
 T

C
PN

R

TC
PS

 fb
 S

C
TP

TC
PN

R
 fb

 S
C

TPN
or

m
al

iz
ed

 G
oo

dp
ut

(c)

Fig. 6. (a) Normalized throughput, (b) T-Load, and (c) Goodput when one
flow is followed by (fb) another flow. The first (blue) bar refers to the first
flow in steady state when there is no other flow in the network, second
(green) bar refers to the first flow in steady state after the second flow is
introduced into the network, and third (red) bar refers to the second flow
in steady state. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1883
work. We want the link utilization to be high so that the
network operates close to its capacity26.
26 Tha
LinkUtil ¼ ð
Pn

i¼1kiÞ
Tight Link Bandwidth

ð3Þ
� System Utilization – This metric is calculated using Eq.
(4), where n is the number of flows in the network, ai

is the goodput, and ci is the t-load of the transport flow
i. Essentially, this metric shows how much of the total
load in the network is converted to useful work (i.e.,
t is close to the ‘‘knee’’ as Chiu and Jain suggested [26].
the data received by the applications). One of the signs
of congestion collapse is, although there is traffic (load)
in the network, the load is not converted into useful
work and the network is busy transmitting unnecessary
data traffic. Therefore, the higher the system utilization,
the further away the system is from congestion
collapse.
SysUtil ¼ ð
Pn

i¼1aiÞ
ð
Pn

i¼1ciÞ
ð4Þ
4.4. Simulation results and analysis

In this section we present the results from two sets of
experiments we performed. Subsections 4.4.1 and 4.4.2
discuss the results (i) when both flows in the network start
at the same time, and (ii) when one flow starts after the
other flow at steady-state, respectively.
4.4.1. Flows starting at the same time
Results for the flows starting at the same time are pre-

sented in Figs. 4 and 5 and Table 2.

Table 3
Fairness index, link utilization, and system utilization when one flow is
followed by (fb) another flow.

Scheme FI LinkUtil SysUtil

TCPS fb TCPS 0.998 0.938 0.961
TCPNR fb TCPNR 0.998 0.937 0.961
SCTP fb SCTP 1.0 0.941 0.966
SCTP fb TCPS 0.975 0.939 0.964
SCTP fb TCPNR 0.976 0.939 0.964
TCPS fb SCTP 0.976 0.939 0.964
TCPNR fb SCTP 0.974 0.939 0.964

(a) 100 RTT

(b) 10 RTT

(c) 1 RTT

(d) 1 RTT, 75-95sec

Fig. 8. Throughput of TCPS (green or light color) followed by SCTP (red or
dark color), for different time intervals. (For interpretation of the
references to colour in this figure legend, the reader is referred to the
web version of this article.)

1884 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
� Two TCP flows start together: From Fig. 4 and Table 2, we
observe that two TCP flows (for both TCPS and TCPNR
flavors) share the link bandwidth pretty as depicted
with close individual throughput values per flow in
the network as well as the high fairness index values.
TCP congestion control algorithms allow aggregated
flows to pump enough traffic into the network (where
link utilization values are more then 93%). In addition,
the system utilization is high confirming that TCP is
busy sending useful data traffic (i.e., no signs of conges-
tion collapse).
� Two SCTP flows start together: Similar to the two TCP

flow case, we observe that two SCTP flows starting at
the same time also share the bandwidth equally
Table 2
Fairness index, link utilization, and system utilization when both flows start
at the same time.

Scheme FI LinkUtil SysUtil

TCPS-TCPS 0.996 0.937 0.961
TCPNR-TCPNR 0.993 0.937 0.961
SCTP-SCTP 0.999 0.941 0.966
SCTP-TCPS 0.972 0.939 0.964
SCTP-TCPNR 0.977 0.939 0.964
(Fig. 4). The transport load values for the two SCTP flows
are also close to the transport loads of the two TCP
flows, showing that SCTP and TCP protocol overheads
are similar for the configurations we have in the simu-
lations. The link and system utilities are high (>94% and
>96%, respectively) proving that SCTP congestion con-
trol algorithms causing the network to operate at high
capacity without any threat of congestion collapse.
� One SCTP and one TCP flows start together: From Fig. 4,

we observe that on average SCTP gets 35–41% larger
share of the bandwidth compared to TCPS (or TCPNR).
However, the link and the system utility values are
still high showing a stable network (see Table 2). We
looked further into how the throughput of SCTP and
TCPS changes over 1, 10, and 100 RTT intervals –
Fig. 5. We picked the worst case simulation run where
SCTP throughput is largest27 compared to TCPS among
all 30 runs. Fig. 5 validates that although SCTP is able
to achieve higher throughput than TCPS, even in the
worst case, SCTP responds to TCP traffic by increasing
and decreasing its throughput. That is, even in the most
aggressive and imbalanced case of 30 runs, SCTP does
not simply take as much bandwidth as it can get; rather,
over time SCTP gives and takes in a sharing with TCP.
Therefore, the figure helps arguing for SCTP being TCP-
friendly.

4.4.2. Latter flow starts after earlier flow is at steady-state
Results for Case II, where one flow starts earlier and the

latter flow starts after the earlier flow is at steady state, are
depicted in Figs. 6–8 and Table 3.

� One TCP flow followed by another TCP flow: By examining
Fig. 6, we first observe that as expected, the throughput
of the first TCP flow drops after the second TCP flow is
introduced to (more or less) half of its previous value
(for both TCPS followed by (fb) TCPS and TCPNR fol-
lowed by TCPNR cases). The fairness index of the system
is also high for both TCPS fb TCPS and TCPNR fb TCPNR
(more than 0.99) cases, suggesting that even when the
TCP flows start at different times, they still share the
link fairly.
27 In this particular run SCTP gets for about 62% more bandwidth than
TCPS.

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1885
� One SCTP flow followed by another SCTP flow: By examin-
ing Fig. 6 and comparing the results with those of the
TCP flows, we observe that the earlier SCTP flow gives
way to the latter SCTP flow, and both share the link
fairly (see fairness index values in Table 3).
� One SCTP flow followed by a TCP flow: In contrast, SCTP

does not give a way in an ‘‘equally-shared’’ manner to
a later TCP flow (Fig. 6). Although, the SCTP flow’s
throughput drops after a TCP flow is introduced, on
average SCTP ends up getting a 36–39% larger share of
the bandwidth than TCPS or TCPNR. We believe that
the proposed TCP improvements that have been
added28 into the SCTP’s congestion control mechanism
are responsible for a (faster and) better loss recovery in
SCTP and hence SCTP’s larger share of the throughput
compared to TCP [34,43–45]. Fig. 7 shows the evolution
of throughputs when an SCTP flow is followed by a TCPS
flow. For this figure, we plotted the worst simulation
result out of 30 runs where SCTP vs TCP throughput
was most imbalanced29. The graph helps argue for SCTP
being TCP-friendly as although SCTP gets higher through-
put compared to TCP, SCTP still gives way to TCP and
shares the bandwidth with the newly introduced TCPS
in a give-and-take manner.
� One TCP flow followed by an SCTP flow: When it comes to

SCTP getting its share of bandwidth from an already sta-
bilized TCP flow (Fig. 6), SCTP again achieves higher
throughput than an existing TCP flow. Moreover, the
bandwidth obtained is put into useful work by SCTP,
as the high system utility values in Table 3 suggest.
The evolution of throughput for TCPS and SCTP flows
for different time intervals for the most imbalanced
run out of 30 runs where SCTP achieves 61% more band-
width than TCPS is depicted in Fig. 8. The figure shows
how TCPS gives way to SCTP and how SCTP shares the
bandwidth with TCPS in give-and-take manner. The fig-
ure again helps argue for SCTP being TCP-friendly.

In summary of all the results in this Subsection (4.4), we
discovered that although SCTP’s congestion control mech-
anisms were intended to be ‘‘similar’’ to TCP’s, being a
newer protocol, SCTP has some of the proposed TCP
enhancements already incorporated which results in SCTP
performing better than TCP. Therefore, SCTP can obtain lar-
ger share of the bandwidth when competing with a TCP
flavor that does not have similar enhancements (as in the
case of QualNet’s TCP implementation). We conclude that
SCTP is TCP-friendly but achieves higher throughput than
TCP, due to SCTP’s better loss recovery mechanisms30 just
as TCP-SACK or TCP-Reno perform better than TCP-Tahoe.
Note that, TCP-Reno enhances the fast recovery mechanism
of TCP-Tahoe by sending additional data for the continuing
duplicate ACKs following a fast retransmission of the data
that is assumed lost. The rationale behind this enhancement
is that duplicate ACKs show that the subsequent data pack-
ets still get across the network and reach to the receiver. As a
28 Refer to Subsection 4.2.
29 In this particular run, SCTP gets 53% more share of the bandwidth than

TCPS.
30 Reports in [34,43–45] also support our conclusion.
result of this enhancement, TCP-Reno performs better than
TCP-Tahoe but is still considered TCP-friendly31.
4.5. Related work

Although SCTP has been standardized by the IETF in
2000, there is little work comparing the performance of
(single-homed) SCTP with competing TCP flavors. Refer-
ence [35] used the Opnet simulator to perform initial simu-
lation studies to find possible flaws in the early version of
SCTP specification and implementation in 2001. Reference
[37] looked into the throughput of competing SCTP and
TCP connections in a shared link topology using SCTP refer-
ence implementation from 1999 on a test-bed (with Linux
machines and NIST network emulator). Reference [37] fo-
cused on the impact of the message (A-PDU) size in com-
paring TCP and SCTP throughputs and showed that SCTP
is not more aggressive than TCP when sharing a link. Refer-
ence [34] studied competing SCTP and TCP flows over a sa-
tellite (high bandwidth-delay product) link using ns-2.
Reference [34] found out that the subtle enhancements
in the SCTP congestion control mechanism help SCTP to re-
cover faster after a loss and hence increase the throughput
of SCTP compared to TCP. The results of [34], although for
higher bandwidth-delay product links, align with our simula-
tion results presented in this section.
5. TCP-friendliness of CMT

This section investigates the TCP-friendliness of CMT. In
Section 3, we described the definition and the goals of the
TCP-friendliness doctrine. Traditionally, the notion of TCP-
friendliness was defined for end-to-end transport connec-
tions over a single path. Our goal is to understand and
characterize the TCP-friendliness of SCTP-based CMT for
transport connections over multiple paths.

The design goal of CMT was to achieve a performance
similar to the aggregated performance of multiple, inde-
pendent, single-homed SCTP associations (called App-
Stripe). Iyengar et al. showed that the throughput of CMT
can be similar or greater32 (especially when the receiver
buffer is unconstrained and the paths are showing similar
characteristics) than AppStripe [19]. They studied the per-
formance of CMT under the assumption that the network
paths which CMT subflows run over are bottleneck-indepen-
dent. Since we are interested in the TCP-friendliness of CMT,
we revise this assumption and investigate how CMT behaves
when a tight link33 is shared among the CMT subflows and
together with other TCP flows.

In the following subsections we describe our experi-
mental framework (Subsection 5.1), simulation results
and analysis (Subsection 5.2), followed by the reviews of
related work and the recent controversies over the TCP-
friendliness doctrine (Subsection 5.3).
31 Interested readers can see [11] for a comparison of the congestion
control mechanisms of Tahoe, Reno, NewReno, and SACK TCP.

32 Due to the sharing of the TSN space, CMT is more robust to ACK losses.
33 We prefer to use the term tight link [32] rather than bottleneck, in this

paper.

Fig. 9. Simulation topology for the TCP-friendliness of CMT.

1886 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
5.1. Experimental framework

In the following sub-sections, we describe different as-
pects of the experimental framework used this section.
Experiments are simulated in QualNet34.

5.1.1. Topology
We designed an experimental framework to explore the

TCP-friendliness of CMT in a single shared tight link topol-
ogy35 as depicted in Fig. 9. The tight link has 100 Mbps
bandwidth capacity and 2 ms one-way propagation delay.
Each edge link has 100 Mbps bandwidth capacity and
14 ms one-way propagation delay. This way RTT of the paths
in the network is 60 ms, similar to US coast-to-coast [41]. No
artificial packet losses are introduced in the tight link or the
edge links. Therefore, all the losses in the simulations are
due to buffer overflows at routers R1 and R2 caused by net-
work traffic. We used RED queues [47] in our simulations.
Note that, when a group of TCP flows share a tight link with
drop-tail queues, global synchronization and phase effects can
cause the TCP flows not to get ‘‘equal’’ share of the band-
width [47–51] (i.e., TCP becomes TCP-unfriendly). Introduc-
ing randomness to the network helps reducing the impact of
global synchronization and phase effects [47]. We calibrated
RED parameters in our simulations so that TCP flows show
TCP-friendly behavior (i.e., all TCP flows in the network get
‘‘equal’’ share of the tight link). As recommended by refer-
ences [47,52], minth is set to 5 packets, maxth is set to three
times minth, wq is set to 0.002, and maxp is set to 0.02 in our
simulations. The buffer size at routers R1 and R2 is set to the
bandwidth-delay product (BDP).

5.1.2. Network traffic
In our experimental topology (Fig. 9), nodes A and B are

multihomed hosts while nodes Si and Di are single-homed
hosts. We first run n TCP flows, from source nodes Si to des-
tination nodes Di;1 6 i 6 n. We then add one of the follow-
ing traffic loads into the network.

� Flows TCP1 and TCP2: Two additional TCP flows running
over the network paths A1-R1-R2-B1 and A2-R1-R2-B2,
respectively.
� Flows SCTP1 and SCTP2: Two single-homed SCTP flows

running over the network paths A1-R1-R2-B1 and A2-
R1-R2-B2, respectively.
34 In this section, simulations run with svn revision 10 of the SCTP module
in QualNet 4.5.1.

35 Our topology is similar to the access link scenario in [46].
� CMT flow: a two-homed CMT flow from host A to host B,
with two subflows CMT-sub1 and CMT-sub2, running
over the network paths A1-R1-R2-B1 and A2-R1-R2-
B2, respectively.

For our experiments, n is varied as 8, 16, 32, 48, and 64
yielding a total of 10, 18, 34, 50, and 66 network flows36.
All flows in the network are greedy (i.e., the applications
at the sending hosts always have data to send). In addition,
the receiving application at each host is always ready to con-
sume whatever the transport layer protocol can deliver.
Therefore, the sending rates of the traffic sources are not
limited by the applications but by the network. The size of
each application message (or A-PDU) is 1200 bytes. Simi-
larly, TCP-MSS is set to 1212 bytes.

5.1.3. Transport protocol parameters
Single-homed SCTP associations and TCP37 connections

are using parameters similar to what has been described
in Subsubsection 4.3.3 and Table 1. The CMT association
uses DAC and RTX-CWND as retransmission policy. Both
sender and receiver buffers at the transport connections
are unlimited.

5.1.4. The framework
We first started n TCP flows from nodes Si to Di ran-

domly between the 0th and the 5th seconds of the simula-
tion. Then, at the 10th second, we introduced either
(i) TCP1 and TCP2 flows, (ii) SCTP1 and SCTP2 flows, or
(iii) the CMT flow into the network. For each case, we mea-
sured the performance (mainly the sending rate) of the TCP
flows from nodes Si to Di, and the performance of the new-
ly introduced flows. Our goal in this framework is to see if
CMT behaves more or less aggressively than the two inde-
pendent TCP connections or SCTP associations. We explore
answers to the following questions.

� TCP’s congestion control algorithms aim to achieve an
‘‘equal’’ share of the tight link bandwidth. How much
of the bandwidth sharing an CMT flow could achieve
compared to two independent TCP or SCTP flows?
� What is the cost of introducing one CMT flow into the

other network flows compared to introducing two inde-
pendent TCP or SCTP flows?

5.1.5. Metrics
We measured the following metrics in our simulations.

� Per flow throughput – similar to the definition given in
Subsubsection 4.3.5, we defined throughput (sending
rate) of a transport flow as the amount of transport
layer data (including the original, the fast-retransmit-
ted, and the re-transmitted data, that may potentially
be lost) put on the wire by the transport protocol sender
per unit time.
36 We counted each CMT subflow as one flow.
37 All the TCP flows in this section are TCP-SACK connections.

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1887
� Average (avg.) flow throughput – is calculated using Eq.
(5), where ki is the throughput (sending rate) of trans-
port flow i 2 ½1::ðnþ 2Þ� . While calculating the avg. flow
throughput, we counted each CMT subflow as one flow.
We expected the avg. flow throughput to be close to the
equal share of the available bandwidth in the network.
Fig. 10
togethe
avg: flow throughput ¼
Pnþ2

i¼1 ki

nþ 2
ð5Þ
� Fairness Index – as defined by Eq. (2) in Subsubsection
4.3.5. We measured the fairness index of all the flows
in the network (each CMT subflow is counted as one
flow) to understand how equally flows in the network
actually share the available bandwidth.

We run simulations for 36 min. The result for each con-
figuration is averaged over 30 runs with a 95% confidence
 0

 5

 10

 15

 20

 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

TCP1+TCP2
TCP1
TCP2

avg
bw/(n+2)

2*bw/(n+2)

(a) two-TCP

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

SCTP1+SCTP2
SCTP1
SCTP2

avg
bw/(n+2)

2*bw/(n+2)

(b) two-SCTP

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

CMT
CMTsub-1
CMTsub-2

avg
bw/(n+2)

2*bw/(n+2)

(c) CMT

. Throughputs of (a) two-TCP, (b) two-SCTP, and (c) CMT flow
r with the avg. flow throughputs.
interval. We measured the metrics between the 3rd and
33rd minutes.

5.2. Simulation results and analysis

Before analyzing the simulation results, we have the
following hypotheses for each case.

� Introducing two TCP flows: After TCP1 and TCP2 have
been introduced into the network, we expect all the
flows (including the newly introduced TCP flows) to
get an equal share of the available bandwidth.
� Introducing two SCTP flows: After SCTP1 and SCTP2 have

been introduced into the network, we expect the SCTP
flows to get similar or higher throughput than the exist-
ing TCP flows in the network. As elaborated in Section 4,
the proposed TCP improvements that have been incor-
porated into the SCTP’s congestion control mechanism
facilitate better loss recovery and hence improved
throughput of SCTP compared to TCP [34,43–45].
� Introducing the CMT flow: In a tight-link-independent

topology (with drop-tail queues), CMT achieves higher
throughput than the independent SCTP flows (espe-
cially when the receiver buffer is unconstrained and
the paths have similar characteristics), as CMT shares
the TSN space and hence is more resilient to losses
[19]. Similarly, in a tight-link-dependent topology (with
RED queues) as in Fig. 9, we expect CMT to obtain
higher throughput (i.e., higher share of the tight link
bandwidth) compared to two TCP or two SCTP flows.

The simulated results are depicted in Figs. 10 and 11.
We observed the following from the figures.

� two-TCP case: From Fig. 10(a), TCP shows TCP-friendly
behavior, where TCP1, TCP2 and an average TCP flow
in the network all get ‘‘equal’’ throughput, which is less
than the ideal bandwidth share, bw

ðnþ2Þ. The high fairness
index values (close to 1) in Fig. 11 for the two-TCP case
also confirm the equal sharing of the bandwidth among
the TCP flows. We also checked the throughput of all the
individual TCP flows in the network for all the n values
and again confirmed that all the TCP flows in the net-
work obtained ‘‘equal’’ throughputs (results not shown
here due to space constraints).
� two-SCTP case: From Fig. 10(b), SCTP1 and SCTP2 get

‘‘equal’’ throughput, and the achieved throughput is
higher than both the throughput of an average TCP flow
and the ideal share of bandwidth. The low fairness
index values in Fig. 11 for the two-SCTP case result from
SCTP flows obtaining higher throughput than the TCP
flows in the network. However, as we investigated fur-
ther, adding the SCTP flows into the network does not
‘‘starve’’ any of TCP flows in the network (note that,
we have obtained graphs showing the individual flow
throughputs, but did not include them in this paper
due to space constraints). Such behavior is due to the
fact that SCTP implements a congestion control mecha-
nism, and a sender does not frivolously send as much as
it can. As a result, we see other TCP flows co-existing
(without being starved) with two SCTP flows in the net-

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

CMT
SCTP1+SCTP2

TCP1+TCP2
2*bw/(n+2)

(a)

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

avg. w/ CMT
avg. w/ SCTP1+SCTP2

avg. w/ TCP1+TCP2
bw/(n+2)

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

Fa
irn

es
s

In
de

x

n (greedy TCP flows in the background)

avg. w/ CMT
avg. w/ SCTP1+SCTP2

avg. w/ TCP1+TCP2

(c)

Fig. 11. (a) Throughput of two-TCP vs. two-SCTP vs. CMT flows, (b)
Average flow throughputs, and (c) Fairness index of all the flows in the
network.

 0

 10

 20

 30

 40

 50

 2 4 6 8 10 12 14

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

CMT
SCTP1+SCTP2

2*bw/(n+2)

(a)

 0

 10

 20

 30

 40

 50

 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

n (greedy TCP flows in the background)

CMT
SCTP1+SCTP2

2*bw/(n+2)

(b)

Fig. 12. Throughputs of two-SCTP and CMT flows for smaller n values (a)
wq = 0.002 (b) wq = 0.001.

1888 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
work (although SCTP’s throughput is higher). Referring
back to the definition of TCP-friendliness in Section 3,
we conclude that SCTP is TCP-friendly but achieves
higher throughput than TCP, due to SCTP’s better loss
recovery mechanisms [34,43–45], just as TCP-SACK or
TCP-Reno performs better than TCP-Tahoe.
� the CMT case: From Fig. 10(c), each CMT subflow obtains

‘‘equal’’ throughput, but the achieved throughout is
higher than the throughput of an average TCP flow in
the network. We also checked the individual subflow
throughputs and confirmed that CMT subflows perform
better than the TCP flows in the network (results not
shown in this paper due to space constraints). As
depicted in Fig. 11(a), CMT performance is better than
the total performance of TCP1 and TCP2. We had also
expected CMT to perform better than two SCTP flows.
However, CMT is actually showing similar or worse
(for n ¼ 8) performance than two SCTP flows, which
contradicts our earlier hypothesis. To further investi-
gate this issue, we run another set of experiments with
n values set to 4, 6, 8, 10, and 12. We observed that the
performance of CMT gets worse than two SCTP flows as
n gets smaller, as depicted in Fig. 12(a). To investigate
the worse performance of CMT compared to two SCTP
flows as n gets smaller, we have the following hypoth-
esis.
hypothesis*: CMT subflows share the same TSN space
and ACK information, unlike independent SCTP flows.
Therefore, one ACK can simultaneously trigger all the
CMT subflows to send data to the network. Conse-
quently, one CMT flow (containing two CMT subflows)
can create burstier data traffic compared to two SCTP
flows. The burstiness causes more packets of the CMT
subflows to be marked by the RED queues. Therefore,
the CMT flow does not perform as well as we expected
(i.e., better than two SCTP flows).
To validate hypothesis*, we examined the RED parame-
ter wq that can be adjusted to alter RED’s responses to
burstiness. The rationale is that if we can make RED to
react burstiness less aggressively, then we should
observe CMT not performing as bad compared to two
SCTP flows.
As suggested by [47,48], we changed wq to be 0.001
(instead of 0.002 used in other simulations in this sec-
tion), in order for making RED queue to react less
aggressively to bursty traffic. The simulation results
for wq ¼ 0:001 are depicted in Fig. 12(b). Comparing

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1889
Figs.38 12(a) and (b), in the latter figure, CMT still per-
forms similarly or worse than SCTP for small n’s, but
not as badly as in the former figure. Therefore, we have
reason to believe that hypothesis* holds. One last ques-
tion on the comparative performance of CMT and two
SCTP flows is why CMT performs worse for smaller n val-
ues? Intuitively, as n gets smaller the marking probability
at the bottleneck RED queue for each flow in the network
increases, and hence burstiness affects each flow more.
After this detour to explain the performance difference
between CMT and two SCTP flows, let’s get back to the
discussion of TCP-friendliness. As stated earlier, one
CMT flow (with two subflows) has better throughput
than two TCP flows and each CMT subflow has better
throughput than TCP1 and TCP2, because of the better
loss recovery mechanisms implemented in CMT (note
that, since CMT is based on SCTP, CMT inherits all the
built-in TCP enhancements in SCTP such as appropriate
byte counting – ABC) and CMT being more resilient to
losses due to sharing of the TSN space and ACK informa-
tion. We perceive this situation to be similar to two TCP-
Reno flows outperforming two TCP-Tahoe flows. CMT
also incorporates a TCP-like (AIMD-based) congestion
control mechanism and TCP flows can co-exist with
CMT in the network (though CMT throughput is higher).
Therefore, we conclude a two-homed CMT to be TCP-
friendly.

5.3. Related work

As explained in Section 3, the notion of TCP-friendliness
emerged in the late 1990s as a reaction to the increase of
non-TCP traffic in the Internet. Given the enormous eco-
nomic, social, and political importance of the Internet, it
is easy to justify a conservative approach, such as TCP-
friendliness, to address the increasing non-TCP traffic in or-
der not to upset the health and stability of the Internet.
However, a lot has changed since the late 1990s. Newer
developments (one of them being CMT) demand that we
re-consider the notion of TCP-friendliness. In the following
sub-sections, we discuss proposals similar to CMT and crit-
icisms against TCP-friendliness.
5.3.1. Other CMT-like schemes
Seminal documents related to the notion of TCP-friend-

liness [10,30,53] discuss the appropriate level of granular-
ity for a ‘‘flow’’ (i.e., end-to-end connection subject to
congestion control). Although the IETF allows an HTTP
application to open up to two TCP connections [54], appli-
cations opening multiple TCP connections or splitting one
TCP connection into multiple TCP connections (i.e., a flow
granularity other than one source IP address-destination
IP address pair) have been frowned upon as they get more
aggressive share of the bandwidth compared to a single
TCP connection. Running between a set of source and a
set of destination IP addresses, and over multiple paths,
38 Each data point in both figures is an average of six runs, where the error
bars are almost invisible.
clearly, a CMT flow does not conform to the suggested
granularity of a flow in the context of TCP-friendliness.

However, other proposals, similar to CMT, such as CP
[55], MulTFRC [56], mulTCP [57], MPAT [58], and PA-MulT-
CP [59], also aim to achieve aggregated flow rates (i.e.,
rates similar to aggregated rate of a group of TCP connec-
tions). Some of these proposals are based on a window-
based AIMD39 mechanism, while some are based on the
TCP-Friendly Rate Control (TFRC) [60,61] protocol. TFRC uses
Padhye’s TCP-friendly equation [31] to adjust its sending
rate. AIMD responds to every congestion indication (packet
drop) by multiplicatively decreasing its sending rate. On
the other hand, TFRC does not respond to a single packet loss
but instead responds to the (measured) average loss rate –
or loss events that can include one or multiple packets losses.
Therefore, TFRC aims to achieve a smoother sending rate
compared to window-based TCP, making TRFC more suitable
for streaming or multimedia applications.

� CP (Coordination Protocol) defines ‘‘flowshare’’ as the
rate of a single TCP flow and aims to obtain multiple
flowshares. CP uses TFRC and estimates a single flow-
share (i.e., the available bandwidth for a single TCP
flow). Then, CP multiplies the estimated flowshare
bandwidth with N to emulate an aggregated flow rate
similar to N flowshares.
� Similar to CP, MulTFRC aims to emulate the behavior of

N TFRC protocols for providing smoother aggregated
sending rate. Unlike CP, instead of naively multiplying
the TFRC rate by N, MulTFRC implicitly estimates the
loss event per flow in the aggregate flow. MulTFRC
extends the TCP-friendly equation to support multiple
TCP flows and uses estimated per aggregate-flow loss
rate in the equation [62]. It is shown that MulTFRC pro-
duces smoother sending rates than CP [56].
� MPAT is based on mulTCP [57] which in turn is based on

AIMD. MulTCP takes N as an input parameter and aims
to behave like N TCP flows. Standard TCP uses the AIMD
(a = 1, b = 1/2) algorithm. That is, if there is a sign of
congestion, the congestion window (cwnd) is decreased
by b = 1/2 of the current congestion window value,
while cwnd is increased by a = 1 in every RTT if there
is no congestion (during steady-state). MulTCP assigns
AIMD (a = N, b = 1/2 N) to the aggregate flow to emulate
N TCP flows. However, it is shown in [58] that the loss
rate experienced by mulTCP ends up being smaller than
the loss rate experienced by N TCP flows. This makes
mulTCP more aggressive than N TCP flows, especially
as N grows. MPAT is proposed to provided better fair-
ness than mulTCP. MPAT maintains congestion control
states as many as the number of flows it manages.
Therefore, as N grows, the overhead of MPAT increases.
� Like MPAT, PA-mulTCP is also based on mulTCP. How-

ever, unlike MPAT, PA-mulTCP maintains a single con-
gestion window state for the entire aggregate flow
(which reduces the overhead) and yet achieves fairer
aggregated flow than mulTCP. PA-mulTCP adds an addi-
39 We explained AIMD earlier in Section 3.

1890 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
tional probe window to detect the sending rate of a real
TCP connection and uses this rate to adjust the rate of
the aggregated flow.

In addition to the proposals above, in the tsv working
group, IETF has started Multipath-TCP (MPTCP) [63]. Simi-
lar to SCTP and SCTP-based CMT, MPTCP aims to achieve
TCP connections over multiple paths (IP addresses), an
ability to move data traffic to a less congested path when
needed, and to use multiple paths simultaneously to utilize
available capacity in the network.
5.3.2. Criticism against TCP-friendliness
The most explicit and blunt criticism on TCP-friendli-

ness came from B. Briscoe starting in his controversial
and seminal paper ‘‘Flow-Rate Fairness: Dismantling a
Religion’’ [64] in 2007. Briscoe, referring TCP-friendliness
as flow-rate fairness, instead proposed what he called cost
fairness. Considering social, real-world, and economic
examples, cost fairness (which takes its roots from Kelly’s
work on weighted proportional fairness [65]) is a more
realistic measure of fairness than flow-rate fairness. Bris-
coe refuses the dogma that equal flow rates are fair. Instead,
in a system where cost fairness is established, each ‘‘eco-
nomic entity’’ would be accountable for the costs they
caused to others. Cost fairness allocates cost to bits instead
of flows; hence, cost fairness is immune to the problems
such as splitting flow identifiers or opening multiple con-
nections as flow-rate fairness is. Representing the view-
point of flow-rate fairness, a ‘‘rebuttal’’ [66] not only
states the usefulness of flow-rate fairness but also accepts
the limitations of flow-rate fairness. Following Briscoe, M.
Mathis published an Internet draft [67] arguing that we
have to rethink the notion TCP-friendliness to keep up with
an evolving Internet.

The views from both sides, one clinging onto the flow-
rate fairness and the other asking flow-rate fairness to be
dismantled, are now being heavily discussed in the IETF
mailing lists such as end2end-interest, iccrg, tsvwg, and
tmrg. In addition, workshops such as [68] discuss the com-
pelling reasons to replace or renew TCP and its congestion
control algorithms. Moreover, bigger research activities
and agendas that will change and redesign the entire Inter-
net architecture are underway, [69–72]. We are going to-
wards a world where TCP and TCP-friendliness might not
set the standards any longer. However, the authors believe
that it will be at least a decade or more before any other
view becomes an alternative or displaces TCP-friendliness.
6. Summary of conclusions and future work

TCP-friendliness in the Internet has been traditionally
studied in the context of single-path or single-homed
transport connections. We designed an experimental
framework to investigate TCP-friendliness of CMT, which,
unlike standard TCP, uses multiple paths simultaneously.
In our experimental framework, we first explored TCP-
friendliness of single-homed SCTP (Section 4). We showed
that although SCTP’s congestion control mechanisms are
intended to ‘‘be similar to’’ TCP’s, being a newer protocol,
SCTP has already incorporated several TCP’s enhance-
ments. Therefore, SCTP obtains higher share of the band-
width when competing with TCP that does not have
similar enhancements. We conclude that SCTP is TCP-
friendly but achieves higher throughput than TCP, due to
SCTP’s better loss recovery mechanisms [34,43–45], just
as TCP-SACK and TCP-Reno outperform TCP-Tahoe.

In Section 5, we investigated the TCP-friendliness of
CMT. We measured the sending rate of one two-homed
CMT flow and two SCTP flows, and also the impact of
CMT and two SCTP flows on the other TCP flows in the net-
work while sharing a tight link. We found that while shar-
ing a tight link with other TCP flows, CMT’s performance is
similar or worse than two SCTP flows mainly because of
the burstier data traffic that CMT creates compared to
two SCTP flows. We also discovered that one two-homed
CMT flow obtains higher share of the tight link bandwidth
compared to two TCP flows, because of better loss recovery
mechanisms in CMT (as CMT inherits built-in TCP
enhancements in SCTP). In addition, sharing of ACK infor-
mation makes CMT more resilient to losses [19]. Although
CMT obtains higher throughput than two independent TCP
flows, CMT’s AIMD-based congestion control mechanism
allows other TCP flows to co-exist in the network. We con-
clude that CMT to be TCP-friendly, just as two TCP-Reno
flows are TCP-friendly compared to two TCP-Tahoe flows.

The experimental framework designed in this paper can
be extended to have more rigorous study of TCP-friendli-
ness of both single-homed SCTP and CMT. We expect to ob-
tain more insights by investigating (i) an increase in the
number of SCTP and CMT flows in the network, (ii) an in-
crease in the number of CMT subflows (hence, concurrency
of one CMT flow), (iii) the impact of asymmetric RTTs and
edge links, and (iv) the existence of unresponsive flows
(similar to UDP) and short-lived TCP flows in the back-
ground traffic similar to the testing suite in [46]. In addi-
tion to simulations, it will be worth developing the
experimental framework in a network emulator to work
with SCTP and CMT kernel implementations.

Our final word on TCP-friendliness of CMT is that
although this paper investigates the TCP-friendliness of
CMT in accordance with the current TCP-friendliness doc-
trine, we witness hot debates in the IETF that questioned
the very foundation of the TCP-friendly Internet. We argue
that multihoming and CMT are two of the developments
that support a research agenda to pursue alternative fair-
ness criteria for the Internet.
References

[1] R. Braden, Requirements for Internet Hosts – Communication Layers,
RFC 1122, Internet Engineering Task Force, October 1989.

[2] DARPA’s Wireless Network After Next (WNAN) Program.
www.darpa.mil/sto/solicitations/WNaN.

[3] BBN’s PIRANA project. www.ir.bbn.com/�ramanath.
[4] Y. Liu, Y. Xiong, Y. Yang, P. Xu, Q. Zhang, An Experimental Study on

Multi-channel Multi-radio Multi-hop Wireless Networks, in: IEEE
Globecom, 2005.

[5] J. Robinson, K. Papagiannaki, C. Diot, X. Guo, L. Krishnamurthy,
Experimenting with a multi-radio mesh networking testbed, in:
Testbed Workshop on Wireless Network Measurements (Winmee),
2005.

[6] R. Stewart, Stream control transmission protocol, RFC 4960, Internet
Engineering Task Force, September 2007.

http://www.darpa.mil/sto/solicitations/WNaN

I. Aydin et al. / Computer Networks 56 (2012) 1876–1892 1891
[7] R. Stewart, I. Arias-Rodriguez, K. Poon, A. Caro, M. Tuexen, Stream
Control Transmission Protocol (SCTP) Specification Errata and Issues,
RFC 4460, Internet Engineering Task Force, April 2006.

[8] V. Jacobson, Congestion Avoidance and Control, in: ACM SIGCOMM,
Stanford, CA, 1988, pp. 314–329.

[9] J. Mahdavi, S. Floyd, TCP-friendly unicast rate-based flow control,
Techical note sent to end2end-interest mailing list, January 8, 1997.

[10] S. Floyd, K. Fall, Promoting the use of end-to-end congestion control
in the internet, IEEE/ACM Transactions on Networking 7 (1999) 458–
472.

[11] K. Fall, S. Floyd, Simulation-based comparisons of Tahoe, Reno, and
SACK TCP, Computer Communications Review 26 (1996) 5–21.

[12] Scalable Network Technologies, Inc. www.scalable-networks.com.
[13] I. Aydin, sCTP QualNet Simulation Module. degas.cis.udel.edu/SCTP.
[14] A. Caro, J. Iyengar, sCTP ns-2 Simulation Module. pel.cis.udel.edu.
[15] I. Aydin, C.-C. Shen, SCTP QualNet Simulation Module: Details and a

Comparison with SCTP ns-2 Module, Technical Report, 2009/336,
University of Delaware, Newark, DE, April 2009.

[16] R. Stewart, P.D. Amer, Why is SCTP needed given TCP and UDP are
widely available? ISOC MEMBER BRIEFING 17, www.isoc.org/
briefings/017/index.shtml, June 2004.

[17] C. Casetti, W. Gaiotto, Westwood SCTP: load balancing over
multipaths using bandwidth-aware source scheduling, in: IEEE
VTC2004-Fall, vol. 4, 2004, pp. 3025–3029.

[18] A.A. El, T. Saadawi, M. Lee, LS-SCTP: a bandwidth aggregation
technique for stream control transmission protocol, Computer
Communications 27 (2004) 1012–1024.

[19] J. Iyengar, End-to-end Concurrent Multipath Transfer Using
Transport Layer Multihoming, Ph.D. thesis, University of Delaware,
Newark, DE, USA, April 2006.

[20] J. Liao, J. Wang, X. Zhu, cmpSCTP: An Extension of SCTP to Support
Concurrent Multi-Path Transfer, in: IEEE ICC, 2008, pp. 5762–5766.

[21] F. Perotto, C. Casetti, G. Galante, SCTP-based Transport Protocols for
Concurrent Multipath Transfer, in: IEEE WCNC 2007, Hong Kong,
2007, pp. 2969–2974.

[22] G. Ye, T. Saadawi, M. Lee, IPCC-SCTP: an enhancement to the
standard SCTP to support multi-homing efficiently, in: IEEE
International Conference on Performance, Computing, and
Communications, 2004, pp. 523–530.

[23] J. Iyengar, P. Amer, R. Stewart, Concurrent multipath transfer using
SCTP multihoming over independent end-to-end paths, IEEE/ACM
Transactions on Networking 14 (5) (2006) 951–964.

[24] J. Nagle, Congestion Control in TCP/IP internetworks, RFC 896,
Internet Engineering Task Force, January 1984.

[25] J. Postel, Transmission Control Protocol, RFC 793, Internet
Engineering Task Force, September 1981.

[26] D.-M. Chiu, R. Jain, Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks, Computer
Networks and ISDN Systems 17 (1) (1989) 1–14.

[27] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control, RFC 2581,
Internet Engineering Task Force, April 1999.

[28] S. Floyd, T. Henderson, The NewReno Modification to TCP’s Fast
Recovery Algorithm, RFC 2582, Internet Engineering Task Force,
April 1999.

[29] S. Floyd, T. Henderson, A. Gurtov, The NewReno Modification to
TCP’s Fast Recovery Algorithm, RFC 3782, Internet Engineering Task
Force, April 2004.

[30] B. Braden, D. Clark, J. Crowcroft, S. Deering, D. Estrin, V. Jacobson, G.
Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J.
Wroclawski, L. Zhang, RFC 2309, Internet Engineering Task Force,
April 1998.

[31] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, Modeling TCP Throughput:
A Simple Model and its Empirical Validation, ACM SIGCOMM (1998)
303–314.

[32] M. Jain, C. Dovrolis, End-to-End Available Bandwidth: Measurement
methodology, Dynamics, and Relation with TCP Throughput, IEEE/
ACM Transactions on Networking 11 (4).

[33] R. Alamgir, M. Atiquzzaman, W. Ivancic, Impact of retransmission
mechanisms on the performance of SCTP and TCP, in: AMCOS’05:
Proceedings of the 4th WSEAS International Conference on Applied
Mathematics and Computer Science, World Scientific and
Engineering Academy and Society (WSEAS), Rio de Janeiro, Brazil,
2005.

[34] R. Alamgir, M. Atiquzzaman, W. Ivancic, Effect of Congestion Control
on the Performance of TCP and SCTP over Satellite Networks, in: In
NASA Earth Science Technology Conference, 2002.

[35] R. Brennan, T. Curran, SCTP congestion control: Initial simulation
studies, in: International Teletraffic Congress (ITC 17), Brazil, 2001.
[36] M. Mathis, J.Mahdavi, S.Floyd, A.Romano, TCP Selective
Acknowledgment Options (SACK), RFC 2018, Internet Engineering
Task Force, October 1996.

[37] A. Jungmaier, M. Schopp, M. Tuxen, Performance Evaluation of the
Stream Control Transmission Protocol, in: IEEE Conference on High
Performance Switching and Routing (HPSR), Germany, pp. 141–148,
2000.

[38] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High
Performance, RFC 1323, Internet Engineering Task Force, May 1992.

[39] M. Allman, TCP Congestion Control with Appropriate Byte Counting
(ABC), RFC 3465, Internet Engineering Task Force, February 2003.

[40] M. Allman, S. Floyd, C. Partridge, Increasing TCP’s Initial Window,
RFC 3390, Internet Engineering Task Force, October 2002.

[41] S. Shakkottai, R. Srikant, N. Brownlee, A. Broido, K. Claffy, The RTT
distribution of TCP flows in the Internet and its impact on TCP-based
flow control, Tech. Rep. 2004-02, CADIA, 2004.

[42] R. Jain, W. Hawe, D. Chiu, A Quantitative measure of fairness and
discrimination for resource allocation in Shared Computer Systems,
Tech. Rep. 301, DEC, September 1984.

[43] P. Natarajan, Leveraging Innovative Transport Layer Services for
Improved Application Performance, Ph.D. thesis, University of
Delaware, Newark, DE, USA, February 2009.

[44] P. Natarajan, P.D. Amer, R. Stewart, Corrections on: Improving file
transfers using SCTP multistreaming, Originally published in the
proceedings of IEEE IPCCC 2004 but the corrected version is available
at www.cis.udel.edu/ amer/PEL/poc.

[45] P. Natarajan, P.D. Amer, R. Stewart, Multistreamed Web Transport
for Developing Regions, in: ACM SIGCOMM Workshop on Networked
Systems for Developing Regions (NSDR), Seattle, 2008.

[46] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang, L.
Eggert, S. Ha, I. Rhee, Towards a Common TCP Evaluation Suite, in:
Proceedings of the International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet), Manchester, United Kingdom,
2008.

[47] S. Floyd, V. Jacobson, Random Early Detection gateways for
Congestion Avoidance, IEEE/ACM Transactions on Networking 1 (4)
(1993) 397–413.

[48] S. Floyd, V. Jacobson, On Traffic Phase Effects in Packet-Switched
Gateways, Internetworking: Research and Experience 3 (1992) 115–
156.

[49] I. Psaras, V. Tsaoussidis, Why TCP Timers (still) Don’t Work Well,
Computer Networks Journal (COMNET), Elsevier Science 51 (2007)
2033–2048.

[50] L. Qiu, Y. Zhang, S. Keshav, Understanding the performance of many
tcp flows, Computer Networks 37 (2001) 277–306.

[51] S. Shenker, L. Zhang, D.D. Clark, Some observations on the dynamics
of a congestion control algorithm, ACM CCR (1990) 30–39.

[52] S. Floyd, RED: Discussions of Setting Parameters, www.icir.org/floyd/
REDparameters.txt (November 2007).

[53] S. Floyd, Congestion Control Principles, RFC 2914, Internet
Engineering Task Force (September 2000).

[54] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, RFC 2616,
Internet Engineering Task Force (June 1999).

[55] D. Ott, T. Sparks, K. Mayer-Patel, Aggregate Congestion Control for
Distributed Multimedia Applications, in: IEEE INFOCOM, 2004.

[56] D. Damjanovic, M. Welzl, MulTFRC: Providing Weighted Fairness for
Multimedia Applications (and others too!), SIGCOMM Comput.
Commun. Rev. 319 (2009) 5–12.

[57] J. Crowcroft, P. Oechslin, Differentiated end-to-end Internet Services
using a Weighted Proportional Fair Sharing TCP, SIGCOMM Comput.
Commun. Rev. 28 (3) (1998) 53–69.

[58] M. Singh, P. Pradhan, P. Francis, MPAT: Aggregate TCP Congestion
Management as a Building Block for Internet QoS, in: IEEE
International Conference on Network Protocols, 2004, pp. 129–138.

[59] F.-C. Kuo, X. Fu, Probe-Aided MulTCP: an Aggregate Congestion
Control Mechanism, SIGCOMM Comput. Commun. Rev. 38 (1) (2008)
17–28.

[60] S. Floyd, M. Handley, J. Padhye, J. Widmer, TCP Friendly Rate Control
(TFRC): Protocol Specification, RFC 5348, Internet Engineering Task
Force (September 2008).

[61] S. Floyd, M. Handley, J. Padhye, J. Widmer, Equation-Based
Congestion Control for Unicast Applications, in: ACM SIGCOMM,
2000.

[62] D. Damjanovic, M. Welzl, M. Telek, W. Heiss, Extending the TCP
Steady-State Throughput Equation for Parallel TCP Flows, Tech. Rep.
DPS NSG Technical Report 2, University of Innsbruck, Institute of
Computer Science, August 2008.

http://www.scalable-networks.com

1892 I. Aydin et al. / Computer Networks 56 (2012) 1876–1892
[63] Multipath TCP (MPTCP), trac.tools.ietf.org/area/tsv/trac/wiki/
MultipathTcp.

[64] B. Briscoe, Flow Rate Fairness: Dismantling a Religion, SIGCOMM
Computer Communication Review 37 (2) (2007) 63–74.

[65] F. Kelly, Charging and Rate Control for Elastic Traffic, European
Transactions on Telecommunications 8 (1997) 33–37.

[66] S. Floyd, M. Allman, Comments on the Usefulness of Simple Best-
Effort Traffic, RFC 5290, Internet Engineering Task Force (July 2008).

[67] M. Mathis, Rethinking the TCP-friendly Paradigm, IETF Internet-
Draft: draft-mathis-iccrg-unfriendly-pre00 (work in progress)
(December 2008).

[68] The Future of TCP: Train-wreck or Evolution? yuba.stanford.edu/
trainwreck.

[69] Clean Slate Design for the Internet, cleanslate.stanford.edu.
[70] International Conference Re-Architecting the Internet (ReArch),

conferences.sigcomm.org/co-next/2009/workshops/rearch.
[71] NSF’s FIND (Future Internet Design) Program, www.nets-find.net.
[72] Trilogy Project – Architecturing the Future Internet, www.trilogy-

project.org.

Ilknur Aydin is an Assistant Professor at the
Computer Science department of SUNY
Plattsburgh, NY, USA. Her research interests
are in the area of wired, wireless, and mobile
networking with a focus on transport layer
issues. Dr. Aydin holds a Masters and Ph.D in
Computer and Information Sciences from
University of Delaware, Newark, DE, USA and
received her B.S. in Computer Engineering
from Marmara University, Istanbul, Turkey.
Janardhan Iyengar is an Assistant Professor
at Franklin & Marshall College, an under-
graduate liberal-arts college in Lancaster,
Pennsylvania. Dr. Iyengar has worked in past
on transport layer and end-to-end issues, and
his current interests lie in Internet architec-
ture, and in protocols and mechanisms to
support increased flexibility and evolvability
of the network.
Phillip T. Conrad is a faculty member in the
Computer Science Department of the Univer-
sity of California, Santa Barbara, with a joint
appointment in UCSB’s College of Creative
Studies. His job title is ‘‘Lecturer with Poten-
tial Security of Employment’’, a University of
California designation that corresponds in
rank to a tenure-track Assistant Professor, but
with a focus on undergraduate education. He
previously held faculty positions at Temple
University and the University of Delaware. His
research interests include computer science

education, and computer networks, with a particular focus on transport
protocols, and multimedia computing. Dr. Conrad’s degrees include a
Ph.D. in Computer Science from the University of Delaware, an M.S. in

Computer Science from West Virginia University, and a B.S. in Computer
Science from West Virginia Wesleyan College.

Chien-Chung Shen received his B.S. and M.S.
degrees from National Chiao Tung University,
Taiwan, and his Ph.D. degree from UCLA, all in
computer science. He was a senior research
scientist at Bellcore (now Telcordia) Applied
Research working on control and manage-
ment of broadband networks. He is now an
associate professor in the Department of
Computer and Information Sciences of the
University of Delaware. His research interests
include ad hoc and sensor networks, dynamic
spectrum management, control and manage-

ment of broadband networks, distributed object and peer-to-peer com-
puting, and simulation. He is a recipient of NSF CAREER Award, and his
research has been sponsored by NSF, NASA, Army Research Lab, RAND,

and industrial companies. He is a member of both ACM and IEEE.

Paul D. Amer received the BS degree summa
cum laude in Math from SUNY Albany in
1974, and the MS and PhD degrees in CIS in
1976 and 1979, respectively, from The Ohio
State University. Since 1979, he has been at
the University of Delaware where currently he
is Alumni Distinguished Professor of Com-
puter Science. Professor Amer’s research
focuses on innovative transport layer proto-
cols such as SCTP, and data compression in
multimedia.

	Evaluating TCP-friendliness in light of Concurrent Multipath Transfer
	1 Introduction
	2 Primer on SCTP and CMT
	2.1 SCTP multihoming
	2.2 Concurrent Multipath Transfer (CMT)

	3 TCP-friendliness: background and definition
	4 TCP-friendliness of single-homed SCTP
	4.1 Motivation and contributions
	4.2 SCTP vs. TCP mechanics
	4.2.1 Comparing transport protocol overheads
	4.2.2 Comparing congestion control mechanisms

	4.3 Experimental framework
	4.3.1 Topology
	4.3.2 Network traffic
	4.3.3 Transport protocol parameters
	4.3.4 The framework
	4.3.5 Performance metrics

	4.4 Simulation results and analysis
	4.4.1 Flows starting at the same time
	4.4.2 Latter flow starts after earlier flow is at steady-state

	4.5 Related work

	5 TCP-friendliness of CMT
	5.1 Experimental framework
	5.1.1 Topology
	5.1.2 Network traffic
	5.1.3 Transport protocol parameters
	5.1.4 The framework
	5.1.5 Metrics

	5.2 Simulation results and analysis
	5.3 Related work
	5.3.1 Other CMT-like schemes
	5.3.2 Criticism against TCP-friendliness

	6 Summary of conclusions and future work
	References

