
Evaluating Commit, Issue and Product Quality
in Team Software Development Projects

Christopher Hundhausen
School of EECS

Washington State University
Pullman, WA USA
hundhaus@wsu.edu

Adam Carter
Department of Computer Science

Humboldt State University
Arcata, CA USA

adam.carter@humboldt.edu

Phillip Conrad
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA USA

phtcon@ucsb.edu

Ahsun Tariq
School of EECS, Washington State University

Pullman, WA USA
ahsun.tariq@wsu.edu

Olusola Adesope
Department of Educational Psychology, Washington State University

Pullman, WA USA
olusola.adesope@wsu.edu

ABSTRACT
Providing students with authentic software development
experiences is essential to preparing them for careers in industry.
To that end, many undergraduate courses include a team-based
software development experience in which each team works on a
different software project. This raises significant challenges for
assessing student work and measuring the impact of pedagogical
interventions: What do we measure and how, when each team is
working on a different project? To address this question, we
present a collection of metrics developed using the Goal-Question-
Metric framework from the empirical software engineering
literature, and an empirical study in which we applied those
metrics to assess 23 team software projects involving 94 students
at three institutions. Study results suggest that these metrics,
which gauge commit, issue, and overall product quality, are
sensitive to differences in the quality of teams’ processes and
products. This work contributes a new metric-based approach to
evaluating key aspects of software development processes and
products in a wide variety of computing courses.

CCS CONCEPTS
• Applied computing ~ Education ~ Collaborative learning
• Software and its engineering ~ Software creation and
management ~ Collaboration in software development~
Programming teams • Software and its engineering ~ Software
creation and management ~ Collaboration in software
development ~ Software verification and validation ~ Empirical
software validation

KEYWORDS: Team software development, Empirical
software engineering, Soft skills, Collaboration, Software
development process quality, Software product quality, Metrics

ACM Reference format:
Christopher Hundhausen, Adam Carter, Phillip Conrad, Ashun Tariq, &
Olusola Adesope. 2021. Evaluating Commit, Issue and Product Quality in
Team Software Development Projects. In Proceedings of ACM SIGCSE
Symposium (SIGCSE’21), March 13–20, 2021, Virtual Event, USA ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432362

1 Introduction
Given the prominence of team software development in

industry, computing educators have long been interested in
engaging undergraduate computing students in team software
development projects (e.g., [32, 35]). A key pedagogical goal is to
provide students with software development experiences that
align with those they will encounter in the software industry, thus
giving them opportunities to develop the skills and practices that
are essential to success [6, 11, 37], particularly so-called “soft
skills” [1, 8, 13]. While team software development projects are
most frequently assigned in senior capstone courses (e.g., [20]),
computing educators have explored their use in a variety of
computing courses (e.g., [36]). There has also been great interest in
engaging student teams in projects with “real clients” [31] and in
free and open-source projects [33].

Among the many questions surrounding how to run team
software development projects, one stands out as particularly
important: How do we systematically evaluate the quality of teams’
processes and products, given that each student team works on a
different software project? Answers to this question could lead to
more effective and ecologically valid pedagogical approaches for
team software development projects.

To address this question, we use the Goal-Question-Metric
(GQM) framework [2, 38] from the empirical software engineering
literature to derive a collection of metrics for assessing the quality
of teams’ commits, issues, and final software products. To explore
the use of these metrics in practice, we present an empirical study
of 23 team software development projects involving 96 students in
three computing courses at three institutions. The results
demonstrate that the metrics are sensitive to differences in the
quality of teams’ commits, issues, and products. This work
contributes a new metric-based approach to evaluating key aspects

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8062-1/21/03. https://doi.org/10.1145/3408877.3432362

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

108

https://doi.org/10.1145/3408877.3432362
https://doi.org/10.1145/3408877.3432362
http://creativecommons.org/licenses/by/4.0/

of software development processes and products in computing
courses.

2 Related Work

2.1 Theoretical Foundations
Team software development projects aim to provide students with
authentic learning experiences [39] that will prepare them for the
software industry, where they are likely to work on teams. In
addition to providing authenticity, team software development
projects are a form of cooperative learning, one of the most
effective and widespread instructional practices [23]. Cooperative
learning aligns with a number of social learning theories, which
tout the educational benefits of both community participation [27]
and positive interdependence with others [23]. Our interest in
evaluating commit and issue quality acknowledges that, in team
development settings, commits and issues play a central
communicative role in building a sense of community and
interdependence within teams.

2.2 Measuring Process and Product Quality in
the Software Industry

Our goal is to measure the quality of the software products
produced by student teams, and the quality of the processes they
use. Empirical software engineering research has performed such
measurements in industrial settings for decades. In fact, metrics for
software engineering are so well studied that multiple literature
reviews of the research exist [19, 24, 26, 29].

In surveying this work, we struggled to find agreement on how
to measure process and product quality. However, there was some
agreement on how to derive measures of process and product
quality: the Goal-Quality-Metric (GQM) framework [2, 38], which
[29] cites as the most commonly used method. In the GQM
framework, metrics are defined in a top-down manner by
identifying high-level goals, questions about those goals, and
metrics1 to shed light on those questions. In Section 3, we apply
this framework, starting with common learning goals for team
software development projects.

2.3 Measuring Process and Product Quality in
Student Team Software Projects

Fincher et al. [18] describes the challenges of assessing project
work in computing education, in contradistinction to assessment
of other computing course work. These include, among others: (1)
it is larger scale, (2) both processes and products need to be
assessed (3) student teams typically undertake “significantly
different projects from one another,” and (4) collaboration is a
desirable or required objective to be assessed.

Despite these challenges, computing educators have carefully
considered ways to evaluate team software projects (see [34] for a
review). Clear [9, 10] and Herbert [20] provide general guidance.
Other computing educators propose more detailed evaluation

1While some authors make a technical distinction between

“measures” and “metrics,” others use the terms interchangeably.

models, with a focus on software projects in the context of
capstone courses (e.g., [16, 17, 25, 40]).

One issue of concern in the evaluation of team software
projects is the fair distribution of credit across individual team
members. While many approaches rely on self and peer
assessment (see, e.g., [16, 17]), Buffardi [7] gauged individual
contributions using process data from GitHub. In contrast, this
work leverages GitHub data to evaluate how well teams meet
course learning objectives, with an eye towards developing
interventions to improve software engineering education.

In work most closely related to that presented here, computing
educators have developed metrics for assessing team software
projects. For instance, Linhoff and Settle [28] propose metrics
firmly rooted in the specific learning goals of a game development
course. Dubinsky and Hazzan [14] propose metrics based on the
roles that students may play on a software development team.
The metrics presented here, in contrast, are based on software
processes captured through GitHub log data.

2.4 The Industry-Academia Gap
Studies of software developers in industry suggest a significant

gap between students’ undergraduate academic preparation and
the skills they need to be successful software developers. In their
seminal study, Begel and Simon [3, 4] shadowed new hires at
Microsoft, finding that they struggled in five broad areas:
communication, collaboration, technical skills, cognition, and
orientation. They noted that only one of these skills related to the
technical skills emphasized in academia. Subsequent studies of
new software developers in industry have found similar gaps
between the skills of new hires and the skills needed to succeed in
the software industry [12, 15, 21].

The studies cited above motivate our interest in evaluating the
quality of issues and commit messages. Four of the studies
identified version control as a deficient skill [3, 4, 12, 15]; another
two identified a deficiency in defining product requirements [12,
15]. The importance of this latter skill is also backed by a large
survey of industry professionals [30]. Notice that aspects of both
of these skills relate to written communication, a skill explicitly
identified in [21].

3 Deriving Metrics with the GQM Framework
There are six stages in the Goal-Question Metric (GCM)

framework for defining a software engineering metric [2, 38]:
1. Develop a set of goals and associated measurement goals

for productivity and quality
2. Generate questions that define those goals as completely as

possible in a quantifiable way
3. Specify the measures needed to answer those questions and

track process and product conformance to the goals
4. Develop mechanisms for data collection.
5. Collect, validate and analyze the data in real time to provide

feedback to projects for corrective action
6. Analyze the data to assess conformance to the goals and to

make recommendations for future improvements

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

109

In this section, we present our work toward steps 1–3. In
Section 4, we present an empirical study representing steps 4 and
6. Step 5 is left for future work and discussed in Section 7.

3.1 Goals
Our overall goal is to help students learn the professional software
development skills they need to succeed. We made this more
precise by formulating three specific goals:

(1) Students will write commit messages that are consistent with
industry expectations for quality.

(2) Students will specify software requirements (in the form of
issues on a Kanban board) in a way that is consistent with
industry expectations for quality.

(3) Students will produce software products of high quality.

Our motivation for Goals 1 and 2 is supported by the related
work presented in Section 2.4. Goal 3 is fundamental to
computing education: we want to know whether our students can
produce quality software products.

3.2 Questions
Based on Goal 1, we formulated four questions related to

commit quality:

(1a) atomic: Do the code changes in the commit deal with one
and only one concern?

(1b) accurate: Does the commit message describe all changes,
and only those changes, made in the commit?

(1c) precise: Does the commit message unambiguously describe
the changes made, situating the commit in the context of the
code base or project?

(1d) justified: Does the commit message describe why the
change was made from the perspective of the end user?

Goal 2 led to five questions related to issue quality:

(2a) atomic: Does the issue deal with one and only one
concern?

(2b) descriptive title: Is the issue title short and descriptive?
(2c) identifies impact: Does the issue identify who is impacted

by the change?
(2d) clearly described: Does the issue clearly describe the

changes to be made?
(2e) justified: Does the issue describe the reason for the change

from the perspective of the end user?

Finally, Goal 3 prompted four questions related to software
product quality:
(3a) complexity: To what degree does the software product

demonstrate mastery of the technologies, knowledge and
skills covered in the course?

(3b) reliability: To what degree is the software free of bugs?
(3c) usefulness: To what degree does the software product meet

its target users’ needs?
(3d) overall quality: If you were the course instructor, what

grade would you give the software product if you knew how
long the team had to work on it?

In formulating the questions in this subsection, we had hoped
to find guidance from the literature on empirical software
engineering, and from the CS education literature on evaluating
software engineering products. However, we failed to identify
evaluation criteria and techniques in that literature that could
readily address our specific goals.

Instead, for commits and issues, since our main concern was
preparing students for the expectations they would encounter in
industry, we were guided by industry discussions of good practices
for commits and issues (e.g., [22, 41]). For product quality, we
worked toward a set of criteria that (a) was general enough to
apply to a variety of software products (our courses spanned
mobile and web apps in various domains), and (b) could be applied
within a reasonable time frame (within 20-30 minutes). Given
that team projects provide opportunities for students to apply
what they have learned so far, we adopted complexity to capture
the extent to which a team project made use of the tools and
technologies learned so far. Because team software products are
presumably intended to be used by real-world users, we identified
reliability and usefulness as two key concerns of real users. Finally,
we added an overall quality category to acknowledge that
instructors must ultimately assign a final grade to an academic
project. We wanted to include a metric that gave multiple
instructors the opportunity to discuss and converge on an overall
quality rating, despite differences in the grading criteria used in
their own courses.

3.3 Metrics
For questions 1a–1d and 2a–2e, we defined corresponding metrics
in terms of the percentage of commits and issues for which we
could answer “yes” to the question. In contrast, for questions 3a-
3d, we defined the corresponding metrics in terms of a four-point
quality scale where 1 = “Poor,” 2 = “Deficient,” 3 = “Acceptable”
and 4 = “Excellent.” We reserved a rating of 0 (“Failure”) for
software that could not be launched.

4 Empirical Study
To explore the value of the metrics in evaluating student teams’
processes and software products, we now present a multi-
institutional empirical study that addresses steps 4 and 6 of the
GQM framework.

4.1 Courses and Participants
The study focused on team projects in courses at three universities
(see Table 1): Humboldt State University (HSU), University of
California, Santa Barbara (UCSB), and Washington State
University (WSU).

Table 1. Key Attributes of the Courses Studied
Course Attribute HSU UCSB WSU

Course Level Upper Div. Lower Div. Upper Div.
Course Topic Mobile apps Soft. Eng. Web Dev.
Course enrollment 15 80 65
Participants 15 39 42
Participant Teams 5 9 9

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

110

Project teams used GitHub for version control and project
collaboration. Participants at HSU and WSU signed an informed
consent form to release their GitHub data to the study. In contrast,
participants at UCSB were part of teams that agreed to do their
project work in public GitHub repositories, thus providing this
study with access to their data.

4.2 Materials and Procedure
Table 2 presents key attributes of the team software development
projects implemented in each course. The projects ranged in
duration from 4 to 9 weeks, with sprints ranging from one to three
weeks. Projects varied in terms of who defined them, how teams
were formed, and how students were graded.

Table 2. Key attributes of the Projects Studied
Project Attribute HSU UCSB WSU

Projects defined by Students Students Instr./Students

Teams chosen by Instructor Instructor Students

Team size 2-3 4-6 1-5

Sprint duration 1 week 3 weeks 1 week

Sprints in project 5 3 4

Grading method Individual Team Team w/ind.
multipliers

4.3 Data Collection and Sampling
We developed a web application that mined GitHub for the
commits and issues in teams’ repositories. Since, in some cases,
multiple teams worked on the same repository, we mapped
commits and issues to teams based on their authorship.

In addition to the GitHub data, we collected team’s final
software products. Two of the three courses also required final
software demo videos. We collected those as well.

Given the large number of commits and issues logged by teams
in this study, we analyzed, for each team, either (a) a 20% random
sample of their commits and issues, or (b) 20 of each—whichever
was greater. For teams with fewer than 20 commits or issues, we
sampled all available commits or issues.

Table 3 presents, by course, counts of the data considered in
this study. For analysis purposes, we excluded some of the commits
prior to drawing our samples: (a) those that were made by
students who did not provide informed consent (unless the
commit was to a public repository); (b) those that involved only
documentation (.md files), not code, and (c) those that were
automatically generated by GitHub (e.g., to merge a pull request).
Likewise, we excluded some of the issues: (a) those that were not
closed or in the “Done” column of the team’s Kanban board; and
(b) those authored by students who did not provide informed
consent (unless the issue was in a public repository).

4.4 Data Analysis
4.4.1 Commits and Issues. After iteratively developing a detailed

evaluation manual, we employed a three-phase process to evaluate
the sampled commits against questions 1a–1d, and the sampled
issues against questions 2a–2e (see Section 3.2). The percent
agreement and Cohen’s Kappa (inter-rater reliability) values
attained at the end of each phase are shown in Table 4.

Table 3. Counts of Included (Inc.) and Sampled (Sam.) Data
Items by Course

 HSU UCSB WSU

Data Item Inc. Sam. Inc. Sam. Inc. Sam.

Issues 55 44 250 176 155 127
Commits 187 92 1019 228 266 165
Software 5 5 9 9 9 9
Video Demo 5 5 9 9 0 0

Table 4. Percent Agreement (% ag.) and Cohen’s Kappa ()

after Each Phase of Commit and Issue Evaluation
 Phase 1 Phase 2 Phase 3
Commit Metric % ag,  % ag.  % ag. 
(1a) atomic 80 .35 95 .85 100 1.0
(1b) accurate 73 .37 94 .86 100 1.0
(1c) precise 73 .30 91 .76 99 .98
(1d) justified 79 .32 97 .89 100 1.0
Issue Metric

(2a) atomic 93 .61 98 .91 100 1.0
(2b) descript. title 84 .65 97 .94 100 .99
(2c) identifies impact 93 .86 97 .94 100 1.0
(2d) clearly described 77 .41 87 .70 95 .89
(2e) justified 90 .78 98 .95 100 1.0

In the first phase, the first three coauthors independently

evaluated the sample of commits and issues. We assigned two
evaluators to each item such that no one evaluated the commits
and issues of their own students. For each item, evaluators were
asked to formulate a brief rationale for their decisions. In the
second phase, each evaluator inspected the items where there
were disagreements, changing their evaluations in cases where
they thought their original evaluation was wrong. In the final
phase, all three evaluators discussed the remaining disagreements.
In cases where disagreements remained after this discussion, the
third evaluator resolved the disagreement.

 4.4.2 Software Products. After iteratively developing a detailed
evaluation manual, we evaluated teams’ software products in three
phases. In Phase 1, the co-author who was the course instructor
first debriefed the two co-authors who were not the course
instructor (the evaluators) on the scope and goals of each team
project. Next, the instructor led a live demo of the project’s final
software product. The two evaluators were invited to ask
questions and to request interaction sequences for the instructor to
attempt. In cases where the product failed to launch, the team’s
video demo, if available, was also consulted. This debrief and demo
period was capped at 10 minutes for each project. To conclude
Phase 1, the two evaluators independently rated the software
product along the four quality dimensions, writing a rationale for
each rating. The first column of Table 5 presents the percent
agreement attained by the two evaluators after Phase 1.2 Notably,
no Phase 1 ratings differed by more than one point.

In Phase 2, the two evaluators revealed their ratings and
rationales to each other. In cases of disagreement, the evaluators

2We opted not to compute Cohen’s Kappa in our product evaluation process
because of the low number of ratings involved (one per team per metric), and
because the evaluations were scalar and not categorical.

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

111

were invited to discuss and change their ratings. Column 2 of
Table 5 shows the percent agreement attained after this phase. In
cases where disagreements remained after Phase 2, the course
instructor resolved them in Phase 3. The total time for Phases 1, 2,
and 3 was capped at 30 minutes.

Table 5. Percent Agreement at the End of the First Two
Phases of Software Product Evaluation

Product Metric Phase 1 Phase 2

(3a) complexity 58 96

(3b) reliability 71 100

(3c) usefulness 88 100

(3d) overall quality 75 96

4.5 Results
Table 6 presents metric values corresponding to commit and issue
quality—that is, the percentages of sampled commits and issues
that satisfied questions 1a–1d and 2a–2e (Section 3.2).
Additionally, the table presents the percentages of perfect (i.e.,
atomic, accurate, precise and justified) commits and perfect (i.e.,
(atomic, has descriptive title, identifies impact, is clearly described
and is justified) issues. Table 7 presents metric values
corresponding to product quality. In Tables 6 and 7, values with
superscript (a) are significantly different (Pearson’s chi-squared, p
< 0.05) from values in the same row with superscript (b).

Table 6. Commit and Issue Metric Values by Course
Commit Metric HSU UCSB WSU

(1a) atomic 80% 80% 72%

(1b) accurate 64% 65% 50%

(1c) precise a45% b14% b25%

(1d) justified a38% b20% b15%

perfect commit a22% b5% b3%

Issue Metric

(2a) atomic a94% a95% b75%

(2b) descriptive title 70% a80% b36%

(2c) identifies impact b27% a88% b28%

(2d) clearly described 55% 86% 60%

(2e) justified 18% a50% b8%

perfect issue b2% a21% b1%

Table 7. Product Quality Metric Values by Course
Product Metric HSU UCSB WSU*

(3a) complexity 2.4 3.2 2.0

(3b) reliability 2.4 a3.3 b1.4

(3c) usefulness 1.8 3.1 2.0
(3d) overall quality 2.2 a3.2 b2.0

*Averages for WSU do not include evaluations from two teams whose
projects would not run and therefore could not be evaluated.

Table 6 indicates there are differences in team proficiency
based on the metrics. An analysis of variance detected significant

differences between both the commit quality metrics
(F(3,92)=59.90, p < 0.001, η2 = 0.66) and the issue quality metrics
(F(4,115)=10.36, p < 0.001, η2 = 0.26). A post-hoc Bonferroni test on
the commit quality metrics identified statistically significant
differences between atomic and all other commit quality metrics (p
< 0.05). In addition, a significant difference was detected between
accurate and both precise and justified (p < 0.05). A post-hoc
Bonferroni test on issue quality detected statistically significant
differences between atomic and justified (p < 0.01), and between
descriptive title and justified (p < 0.01).

We also tested for differences in metric values among teams in
the same course. One HSU team exhibited significantly higher
commit quality than their peers (χ2 = 23.50, df = 4, p < 0.001,
V=0.26). This team scored 4’s in all product metrics. Conversely,
one WSU team had significantly lower commit quality than their
peers (χ2 = 26.23, df = 9, p = 0.002, V=0.21). Notably, this team
scored 1’s in all product metrics.

In addition, we considered whether a statistical relationship
existed between the process and product metrics. To reduce the
likelihood of detecting false significance, we established that any
true relationship between process and product metrics needed to
be significant across all three courses. Using this standard, we did
not detect statistically significant correlations between any process
and product metrics. That is, no relationship was found between
adherence to good process and final product quality.

5 Discussion
Inspection of Tables 6 and 7 suggests that the greatest strength of
the teams in this study was their creation of atomic issues, and, to a
lesser degree, their creation of atomic commits. In all three courses,
teams scored significantly higher on the atomic metric than on most
or all other quality metrics. Thus, creating issues and commits that
focus on a single concern may come relatively easily to students.
Instructors may be able to teach this behavior with minimal effort.

In contrast, our data show that students have much room for
improvement when it comes to (a) clearly, accurately, and
precisely describing commits and issues, and (b) justifying
commits and issues. We suspect that teaching these best practices
will require instructors to make the case that, even if they seem
like a waste of time in smaller software projects, these practices
are important and valuable in larger software projects. Frequent
formative assessments, especially if they can be automated or
streamlined, could also help in this regard.

With respect to the quality of commits and issues between
courses, we found that HSU teams had higher-quality commits,
and UCSB teams had higher-quality issues. While there are several
possible explanations for this difference, the most obvious relates
to the pedagogical choices made by the course instructors. The
HSU instructor made it clear to students that their grades would
be based in part on the quality of their commit messages, although
the instructor’s definition of commit quality differed from the
definition of commit quality presented in Section 3.3. The UCSB
instructor provided an issue template for students to use. This
template aligned with the issue quality metrics defined in Section
3.2. However, even with these course incentives, the percentage of
“perfect” commits and issues across all courses remained below

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

112

22%. These observations suggest that there is much room for
improvement when it comes to these practices, and that carefully
designed pedagogical practices have the potential to positively
influence students’ behaviors around issues and commits.

We failed to detect a statistically significant relationship
between the process and product metrics. This was not a surprise.
We suspect that the benefits of superior processes might require
longer project durations to materialize than were present in our
study. Yet, we did identify a single HSU team that was statistically
more likely to produce high quality commits, and that also excelled
in our product metrics. Likewise, we identified a single UCSB
team that was statistically less likely to produce good quality
commits, and that also scored poorly in our product metrics. We
suspect that a follow-up qualitative investigation of these teams’
processes could provide insight into the possible relationships
between process and product metrics.

6 Threats to Validity
The threats to the validity of this work include threats to

internal, external, and construct validity.
Internal validity reflects the degree to which the data collected

in the study robustly applied our metrics to gauge student teams’
commit, issue and product quality. One threat to internal validity
is that we may not have collected a representative sample of these
items. We have attempted to mitigate this threat by using random
sampling, but there is no guarantee that our samples were truly
representative. A second threat is that we may not have robustly
applied our metrics. We mitigated this threat in three ways. First,
by iteratively developing a detailed evaluation manual to guide the
application of the metrics, we increased the chances that
evaluators uniformly applied the metrics. Second, by ensuring that
course instructors did not evaluate the work of their own students,
we mitigated potential instructor bias—what Buffardi [7] identifies
as the Halo Effect. Third, by breaking the process into three stages,
we encouraged evaluators to be deliberative in their evaluations,
reducing the chances of capricious decisions.

External validity reflects the degree to which our metrics are
relevant to real-world software development. Given that version
control and issue tracking are crucial to modern collaborative
software development, our measurements of commit and issue
quality are relevant to real-world contexts. However, software
developers have mixed opinions about what makes for good
commits and issues. Likewise, end users have mixed opinions
about what makes for good software products. Thus, the external
validity of our metrics is threatened by the reality that there is no
clear consensus on these matters. We have tried to mitigate this
threat by deriving the metrics from published sources.

Finally, construct validity has to do with the extent to which
our metrics gauge the intended construct. A clear threat to the
construct validity of our metrics is that they require human
judgment of a complex entity (e.g., a commit spanning many lines)
within a limited time frame, making the judgment prone to error.
We have attempted to mitigate this threat by having multiple
evaluators perform each judgment and by having them resolve
disagreements through deliberative discussion.

7 Conclusions and Future Work
Using the GQM framework from the empirical software

engineering literature, we have developed a collection of metrics
for evaluating two aspects of process (commits and issues) and
overall product quality in a wide variety of team software projects.
Through an empirical study, we have demonstrated not only that
these metrics are sensitive to differences in the quality of teams’
processes and products, but also that teams performed better on
some quality metrics than they did on others.

This work contributes a new metric-based approach to
evaluating key aspects of software development processes and
products in a wide variety of computing courses. Future work
could build on this contribution by implementing Step 5 in the
GQM process—that is, by adopting the metrics for formative
assessment. Since it may not be feasible to assess every commit or
issue, instructors could assess a randomly chosen sample at
various points in the course and offer feedback on how to
improve. Effectiveness could be measured by examining whether
the process and product metrics improve over time.

In the current study, we did not establish a uniform set of
criteria for process and product quality across all three courses,
nor did we share our process and product quality with students.
In future work, we could study the impact of sharing the metrics
up front—a practice Biggs calls “constructive alignment” [5].

Like issues and commits, pull requests and code reviews are
important avenues of communication within a software team. In
future work, we would like to apply the GQM process to develop
metrics for these, and to perform empirical studies that use them
for formative and summative assessment. Similarly, the use of an
online communication tool (e.g., Slack) is increasingly essential for
collaboration in team software development projects. In future
work, we would like to apply the GQM to derive metrics for
measuring the extent to which students develop professional
communications skills aligned with the learning goals of courses
with team software development projects.

How to evaluate student and team success in software projects
remains an important open question. We believe that leveraging
data from online software development tools such as GitHub
provides a promising way forward. We are optimistic that future
research can leverage these data in increasingly sophisticated
ways both to gain new insights into the relationships between
teams’ development processes and products, and to advance
pedagogy through improved formative and summative
assessment.

ACKNOWLEDGMENTS
This work is supported by a grant from the National Science
Foundation (DUE-1915196).

REFERENCES
[1] Abernethy, K. and Treu, K. 2009. Teaching Computing Soft Skills: An

Experiential Approach. J. Comput. Sci. Coll. 25, 2 (Dec. 2009), 178–186.
[2] Basili, V.R. 1992. Software Modeling and Measurement: The

Goal/Question/Metric Paradigm. University of Maryland at College Park
Computer Science Technical Report UMIACS-TR-92-96. (1992), 1–24.

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

113

[3] Begel, A. and Simon, B. 2008. Novice software developers, all over again.
Proceedings of the Fourth International Workshop on Computing Education
Research. ACM. 3–14.

[4] Begel, A. and Simon, B. 2008. Struggles of new college graduates in their first
software development hob. SIGCSE Bull. 40, 1 (Mar. 2008), 226–230.
DOI:https://doi.org/10.1145/1352322.1352218.

[5] Biggs, J.B. 2011. Teaching for Quality Learning at University: What the Student
Does. McGraw-Hill Education (UK).

[6] Bridging the Academia-Industry Gap in Software Engineering: A Client-
Oriented Open Source Software Projects Course: 1AD. https://www.igi-
global.com/gateway/chapter/121869. Accessed: 2020-08-20.

[7] Buffardi, K. 2020. Assessing Individual Contributions to Software Engineering
Projects with Git Logs and User Stories. Proceedings of the 51st ACM Technical
Symposium on Computer Science Education (New York, NY, USA, Feb. 2020),
650–656.

[8] Carter, L. 2011. Ideas for Adding Soft Skills Education to Service Learning and
Capstone Courses for Computer Science Students. Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education (New York, NY, USA,
2011), 517–522.

[9] Clear, T. 2010. Managing mid-project progress reviews: a model for formative
group assessment in capstone projects. ACM Inroads. 1, 1 (Mar. 2010), 14–15.
DOI:https://doi.org/10.1145/1721933.1721938.

[10] Clear, T. 2009. Thinking Issues: the three p’s of capstone project performance.
ACM SIGCSE Bulletin. 41, 2 (Jun. 2009), 69–70.
DOI:https://doi.org/10.1145/1595453.1595468.

[11] Coppit, D. and Haddox-Schatz, J.M. 2005. Large Team Projects in Software
Engineering Courses. SIGCSE Bull. 37, 1 (Feb. 2005), 137–141.
DOI:https://doi.org/10.1145/1047124.1047400.

[12] Craig, M., Conrad, P., Lynch, D., Lee, N. and Anthony, L. 2018. Listening to early
career software developers. J. Comput. Sci. Coll. 33, 4 (2018), 138–149.

[13] Damian, D. and Borici, A. 2012. Teamwork, coordination and customer
relationship management skills: As important as technical skills in preparing
our SE graduates. 2012 First International Workshop on Software Engineering
Education Based on Real-World Experiences (EduRex) (2012), 37–40.

[14] Dubinsky, Y. and Hazzan, O. 2006. Using a role scheme to derive software
project metrics. Journal of Systems Architecture. 52, 11 (Nov. 2006), 693–699.
DOI:https://doi.org/10.1016/j.sysarc.2006.06.013.

[15] Exter, M. 2014. Comparing educational experiences and on-the-job needs of
educational software designers. Proceedings of the 45th ACM Technical
Symposium on Computer Science Education (New York, NY, USA, 2014), 355–360.

[16] Farrell, V., Farrell, G., Kindler, P., Ravalli, G. and Hall, D. 2013. Capstone project
online assessment tool without the paper work. Proceedings of the 18th ACM
conference on Innovation and technology in computer science education (New
York, NY, USA, Jul. 2013), 201–206.

[17] Farrell, V., Ravalli, G., Farrell, G., Kindler, P. and Hall, D. 2012. Capstone project:
fair, just and accountable assessment. Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science education (New
York, NY, USA, Jul. 2012), 168–173.

[18] Fincher, S., Petre, M. and Clark, M. 2001. Computer Science Project Work:
Principles and Pragmatics. Springer Science & Business Media.

[19] Gómez, O., Oktaba, H., Piattini, M. and García, F. 2008. A Systematic Review
Measurement in Software Engineering: State-of-the-Art in Measures. Software
and Data Technologies (Berlin, Heidelberg, 2008), 165–176.

[20] Herbert, N. 2018. Reflections on 17 Years of ICT Capstone Project Coordination:
Effective Strategies for Managing Clients, Teams and Assessment. Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (New York,
NY, USA, 2018), 215–220.

[21] Hewner, M. and Guzdial, M. 2010. What game developers look for in a new
graduate: Interviews and surveys at one game company. Proceedings of the 41st
ACM Technical Symposium on Computer Science Education (New York, NY, USA,
2010), 275–279.

[22] Hutterer, P. 2009. Who-T: On commit messages. Who-T.
[23] Johnson, D.W. and Johnson, R.T. 2009. An Educational Psychology Success

Story: Social Interdependence Theory and Cooperative Learning. Educational
Researcher. 38, 5 (2009), 365–379.
DOI:https://doi.org/10.3102/0013189X09339057.

[24] Kitchenham, B. 2010. What’s up with software metrics? – A preliminary
mapping study. Journal of Systems and Software. 83, 1 (Jan. 2010), 37–51.
DOI:https://doi.org/10.1016/j.jss.2009.06.041.

[25] von Konsky, B.R. and Ivins, J. 2008. Assessing the capability and maturity of
capstone software engineering projects. Proceedings of the tenth conference on
Australasian computing education - Volume 78 (AUS, Jan. 2008), 171–180.

[26] Kupiainen, E., Mäntylä, M.V. and Itkonen, J. 2015. Using metrics in Agile and
Lean Software Development – A systematic literature review of industrial
studies. Information and Software Technology. 62, (Jun. 2015), 143–163.
DOI:https://doi.org/10.1016/j.infsof.2015.02.005.

[27] Lave, J. and Wenger, E. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press.

[28] Linhoff, J. and Settle, A. 2009. Motivating and evaluating game development
capstone projects. Proceedings of the 4th International Conference on Foundations
of Digital Games (New York, NY, USA, Apr. 2009), 121–128.

[29] Meidan, A., García-García, J.A., Ramos, I. and Escalona, M.J. 2018. Measuring
Software Process: A Systematic Mapping Study. ACM Computing Surveys. 51, 3
(Jun. 2018), 58:1–58:32. DOI:https://doi.org/10.1145/3186888.

[30] Misic, M.M. and Russo, N.L. 1999. An assessment of systems analysis and design
courses. Journal of Systems and Software. 45, 3 (Mar. 1999), 197–202.
DOI:https://doi.org/10.1016/S0164-1212(98)10078-X.

[31] Murphy, C., Sheth, S. and Morton, S. 2017. A Two-Course Sequence of Real
Projects for Real Customers. Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education (New York, NY, USA, 2017), 417–422.

[32] Perkins, T.E. and Beck, L.L. 1980. A Project-Oriented Undergraduate Course
Sequence in Software Engineering. SIGCSE Bull. 12, 1 (1980), 32–39.
DOI:https://doi.org/10.1145/953032.804607.

[33] Postner, L., Ellis, H.J.C. and Hislop, G.W. 2018. A Survey of Instructors’
Experiences Supporting StudentLearning using HFOSS Projects. Proceedings of
the 49th ACM Technical Symposium on Computer Science Education (New York,
NY, USA, Feb. 2018), 203–208.

[34] Richards, D. 2009. Designing Project-Based Courses with a Focus on Group
Formation and Assessment. ACM Transactions on Computing Education. 9, 1
(Mar. 2009), 2:1–2:40. DOI:https://doi.org/10.1145/1513593.1513595.

[35] Robillard, P.N. 1996. Teaching Software Engineering through a Project-Oriented
Course. Proceedings of the 9th Conference on Software Engineering Education
(USA, 1996), 85.

[36] Saltz, J.S. and Heckman, R.R. 2018. A Scalable Methodology to Guide Student
Teams Executing Computing Projects. ACM Trans. Comput. Educ. 18, 2 (Jul.
2018). DOI:https://doi.org/10.1145/3145477.

[37] Sherriff, M. and Heckman, S. 2018. Capstones and Large Projects in Computing
Education. ACM Trans. Comput. Educ. 18, 2 (Jul. 2018).
DOI:https://doi.org/10.1145/3229882.

[38] Solingen, R. van, Basili, V., Caldiera, G. and Rombach, H.D. 2002. Goal Question
Metric (GQM) Approach. Encyclopedia of Software Engineering. John Wiley &
Sons.

[39] Stein, S.J., Isaacs, G. and Andrews, T. 2004. Incorporating authentic learning
experiences within a university course. Studies in Higher Education. 29, 2 (Apr.
2004), 239–258. DOI:https://doi.org/10.1080/0307507042000190813.

[40] Vasilevskaya, M., Broman, D. and Sandahl, K. 2015. Assessing Large-Project
Courses: Model, Activities, and Lessons Learned. ACM Transactions on
Computing Education. 15, 4 (Dec. 2015), 20:1–20:30.
DOI:https://doi.org/10.1145/2732156.

[41] Writing a proper GitHub issue: 2018. https://medium.com/nyc-planning-
digital/writing-a-proper-github-issue-97427d62a20f. Accessed: 2020-08-27.

Paper Session: Software Engineering / Capstone SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

114

