Preprint: Paper to appear in ITiCSE 2021, June 26-July 1, 2021

Teaching Testing with Modern Technology Stacks in
Undergraduate Software Engineering Courses

Scott P. Chow
scottpchow@ucsb.edu
Dept. of Computer Science
Santa Barbara, CA, USA

ABSTRACT

Students’ experience with software testing in undergraduate com-
puting courses is often relatively shallow, as compared to the im-
portance of the topic. This experience report describes introducing
industrial-strength testing into CMPSC 156, an upper division
course in software engineering at UC Santa Barbara . We describe
our efforts to modify our software engineering course to intro-
duce rigorous test-coverage requirements into full-stack web de-
velopment projects, requirements similar to those the authors had
experienced in a professional software development setting. We
present student feedback on the course and coverage metrics for
the projects. We reflect on what about these changes worked (or
didn’t), and provide suggestions for other instructors that would
like to give their students a deeper experience with software testing
in their software engineering courses.

CCS CONCEPTS

« Social and professional topics — Software engineering ed-
ucation; - Software and its engineering — Software develop-
ment process management.

KEYWORDS

testing; unit testing; integration testing; continuous integration; test
coverage; web applications; computer science education; software
engineering education

ACM Reference Format:

Scott P. Chow, Tanay Komarlu, and Phillip T. Conrad. 2021. Teaching Testing
with Modern Technology Stacks in Undergraduate Software Engineering
Courses. In 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2021), June 26—July 1, 2021, Virtual Event, Ger-
many. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3430665.
3456352

1 INTRODUCTION

This experience report describes introducing industrial-strength
testing into CMPSC 156, an upper division course in software engi-
neering at UC Santa Barbara (https://ucsb-cs156.github.io). A major
learning goal of our course is to give students authentic experiences
with industrial software development practices. This course had

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2021, June 26-July 1, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8214-4/21/06.

https://doi.org/10.1145/3430665.3456352

Tanay Komarlu
tkomarlu@ucsb.edu

Dept. of Computer Science
Santa Barbara, CA, USA

Phillip T. Conrad
phtcon@ucsb.edu
Dept. of Computer Science
Santa Barbara, CA, USA

previously introduced such practices as coding in teams, working
with legacy code, using version control, and various aspects of the
Agile software design lifecycle methodology. However, one notably
deficient practice was the depth of our students’ understanding of
software testing.

The authors (an instructor, and two TAs) had positive prior
experiences with testing in industry settings where it was seen not
as a burden, but as freeing, in the following sense: a solid test suite
helps to reduce fear. With a solid test suite in place, developers are
more confident about refactoring code to improve maintainability.

We became painfully aware of the gap between what we were
saying to the students about the importance of testing, in contrast
to what we were implicitly teaching about testing by its omission
from our actual practice during the project phase of our course.
We resolved that this needed to change. We wanted our students
to come away, not just with an understanding of state of the art
testing practices, but with a positive attitude towards testing and
their own ability to write tests.

The literature describes many efforts made to improve teaching
practices related to testing [3, 13, 15, 16, 28, 39, 41], but relatively few
of these describe integrating testing into complex applications [21,
29] such as full-stack web applications. Early-career developers
interviewed in [10] noted that the testing taught in courses differs
significantly from that in industry; coursework often comes with
limited scope and/or pre-written tests, while projects in industry
are typically broader in scope and have complex dependencies.

We committed ourselves to the following goal: to transform the
Fall 2020 offering of this course, to the extent possible, to one where
all programming assignments and term projects would incorpo-
rate at least as much testing rigor as we had experienced in our
internships in industry. This paper describes our experience with
this transformation, reports on the feedback from our students, and
makes recommendations for others that might seek to incorporate
more testing into their own software engineering courses.

2 RELATED WORK

A number of articles were published in the early 2000s calling for
testing to be more integrated into computer science curricula. In
2001, an article by Shepard et al. [36] criticized a lack of testing in
undergraduate curricula, citing the famous claim from Fred Brooks’
“The Mythical Man Month” [26]—that 50% of project development
time will be spent on testing. While more recent research in de-
veloper behaviors from Beller [6] puts the fraction of time spent
on testing at 25%, in any case testing makes up a significant por-
tion of the development lifecycle. Articles by Jones [24, 25] and
Christensen [8] suggested that, given the already high saturation
of topics in computer science curricula, testing should instead be

https://doi.org/10.1145/3430665.3456352
https://doi.org/10.1145/3430665.3456352
https://ucsb-cs156.github.io
https://doi.org/10.1145/3430665.3456352
Phillip Conrad
Preprint: Paper to appear in ITiCSE 2021, June 26–July 1, 2021

rolled into every single topic being taught. This would later be
supported by work from Desai et al. [13] in 2008, which demon-
strated it was possible to integrate testing into introductory courses
without severely inflating student coursework.

Work from Sun and Jones [39] demonstrated that it was feasible
to teach students to build and test GUI applications, while work
from Thornton et al. [41] demonstrated that student testing of
GUI programs may have benefited from the visual nature of the
application. Our work serves a similar purpose, but with full stack
web applications instead of GUI applications.

It is worth noting that the flavor of testing being advocated
for was “test-first” or test driven development (TDD), which is
defined by Kent Beck [4, 5]. The claimed benefits of TDD include (1)
increased confidence in code behavior, (2) easier and more confident
refactoring, and (3) more thorough understanding of design choices.

Tinkham and Kaner [42] found evidence that their students
struggled to adhere to TDD when the tasks defined were too sim-
ple, but that student work improved as a result of it. On the other
hand, Kollanus and Isométtonen [29] found that making the task
too complex hampered students’ ability to adhere to TDD, as they
became confused on how to test the different components. Kol-
lanus and Isométtonen also found that the testing tools’ ease of use
played a key role in helping students adhere to TDD. In addition, a
more recent study from Kazerouni et al. [28] suggests that, while
incremental testing is positively correlated with code coverage,
“test-first” TDD is negatively correlated with coverage. This work
suggests that not only is there a balancing act with regards to com-
plexity and adherence to TDD, but that "test-first" TDD might also
be incompatible with the metric of code quality we pursue in this
work.

The conclusion about the relationship between testing tools’ ease
of use and adoption are further supported by more recent work
from Wrenn and Krishnamurthi [43], which explores encouraging
student adoption of testing practices via prompting students to pro-
duce high quality input-output examples prior to implementing an
assignment through their IDE. While not definitive, Wrenn and Kr-
ishnamurthi produce promising results demonstrating that students
were more willing to engage in example creation prior to imple-
mentation without instructor coercion when they are prompted to
do so by their IDE.

Furthermore, a paper by Avellar et al. [3] provides evidence that
correctness of student submissions increases significantly when
students are encouraged to test as opposed to not. While the value
of teaching testing to students has been reproduced multiple times
over the past two decades, getting students to adhere to testing can
represent a significant challenge.

As an aside, gamification was also explored as an avenue to help
students test and comply with TDD. While findings from Fraser [18]
primarily focus on gamifying testing as a pedagogical tool, they do
briefly explore the potential of gamifying software testing practices
via achievement systems.

Hand in hand with testing comes the concept of automated feed-
back and grading, such as Edwards’ work on Web-CAT, an online
submission system that provides automated feedback and grading
on student programming assignments [15]. The initial student feed-
back on Web-CAT was largely positive, with students generally
recognizing it as a useful tool in their development workflow. Later

work from Buffardi, Edwards, and Pérez-Quifiones (7, 16] further
supports this claim. Edwards and Shams [17] introduced an “all-
pairs” method of evaluating the quality of tests, where a student’s
test suite is run against all other student submissions in an attempt
to screen other students’ submissions for bugs. Work from Hu et
al. [21] also suggests that students are amenable to receiving auto-
mated feedback from bots. A majority of students in that paper felt
that the bot’s feedback helped improve their contributions.

Our work is most similar to that of Krutz et al. [30] which de-
scribes an undergraduate course focused on software testing; we
share the motivation of providing students with an authentic and
deep encounter with software testing. The key difference between
their work and ours is that in our course, testing is one topic among
many, while their work describes an entire course centered around
testing.

Another paper with similar themes to our work is that of Hu and
Gehringer [21]; like us, their work describes the use of a continuous
integration (CI) pipeline for automating feedback to students on as-
pects of their code. In their work, the CI pipeline provided feedback
from both linting and style checking through static analysis, as
well as results from running a test suite. Two differences between
their work and ours is that they studied a graduate rather than
undergraduate course, and they did not report on code coverage;
only on passed vs. failed tests.

3 PRE-MODIFICATION COURSE OVERVIEW

This course is split into two phases: (1) a class with traditional as-
signments and labs to prepare students with basic Java and software
engineering skills, and (2) developing and extending one of several
legacy code projects.

Topics covered in the first half of the course include:

e Fundamental concepts of Java

o Basic testing and test coverage tools for Java

e Running and deploying a Spring Boot (Java) application

e Basics of web application development (communicating with
a database, frontend-backend communication, etc.)

During the first half of the course, most programming assign-
ments were autograded using JUnit [27] test suites written by course
staff, while others were graded by interactive manual testing and
code inspection. During the second half of the course, students were
assigned to work on legacy code projects in teams of 4-6 students,
each working on an epic—a term used in Agile for a group of related
user stories organized around a theme. In this phase, when teams
completed work on a user story, they would make a pull request
(PR) from a feature branch into the default branch (i.e. master or
main); PRs would trigger a round of code review and testing by
course staff. Points towards their project grade were earned only
when code review suggestions were made, and a PR was accepted
and merged into the default branch.

Prior to the curriculum modifications described in this report, it
was common that students would be unable to write any automated
tests to verify the functionality of their features. Even if they were
inclined to do so, often the course staff (the instructor and TAs)
would struggle to provide guidance due to a lack of knowledge.
The codebase contained few examples of tests that could be used
as models. As a result, it was common to give credit for testing by

requiring students to make only token efforts at testing (i.e writing
a single unit test for one component of their code). In practice, the
only significant testing that was done was manual testing via live
demos.

In a later section, we describe how we modified this course to
utilize more autograding, teach students to write more meaningful
tests, as well as how to test complex applications with multiple
interdependent components, such as a full-stack web application.

Application Testing Coverage
wof
TR e o0
Frontend ’) ’
React Jest React Testing Library Jest
JACOCO
Backend @ Jun ‘te Tava Code Coverage
JUnit Jacoco
Spring Boot
y
Infrastructure h ,
GitHub Actions CodeCov

Heroku

Figure 1: Tech Stack for Modified Course

4 TECH STACK OVERVIEW

We now provide an overview of the technology stack (see Fig-
ure 1) we use in this course in order to demonstrate how these
technologies facilitate our goal of introducing students to testing
technologies and practices.

4.1 Spring Boot and Maven

Spring Boot [37] is a Java framework for building complex appli-
cations that is capable of orchestrating a web server, application
server, and database with little or no boilerplate or configuration
code required. In this course, Spring Boot serves as our application’s
backend, publishing a RESTful API for our frontend to communicate
with. This framework facilitates testing by eliminating the need for
large swathes of boilerplate and connection code. The elimination
of that code helps reduce both the amount and complexity of testing
required, allowing students to focus on testing the behavior of the
application. We use Maven [2] as our build tool.

4.2 React

React [33] is a “JavaScript library for building user interfaces.” In this
course, React is responsible for building a single page application
(SPA) that communicates to the RESTful API published by our
Spring Boot backend. React facilitates testing by providing well
documented and maintained testing libraries such as React Testing
Library [34] that simplify frontend testing. React Testing Library
does this by abstracting away many of the complexities involved in
testing frontend applications, such as the Document Object Model
(DOM) as well as DOM Events. Furthermore, we have found React
and its libraries to be well documented, with significant community
presence on StackOverflow. This documentation and community

presence help both students and instructional staff get up to speed
on React as well as debug any issues that arise.

4.3 GitHub Actions

GitHub [19] is an online development platform that can, among
many things, host code and facilitate project management. We uti-
lize GitHub as an online repository and project management tool
for student assignments and legacy code projects. In the modified
version of the course, we take advantage of GitHub’s Actions fea-
ture to provide continuous improvement (CI) workflows which
automatically run tests on feature branches and pull requests, and
calculated test coverage. This facilitates adherence to testing by
serving as a continuous check that tests are passing and coverage
is being maintained.

4.4 Testing and Coverage

For backend Java code we use JUnit [27] as our testing framework
for Java code while using Jacoco [22] to generate code coverage re-
ports. For the frontend JavaScript code, we use Jest [23], an industry
standard testing framework that comes pre-configured with most
React apps. Jest provides features for test automation and comput-
ing test coverage. Finally, we use CodeCov [9] to aggregrate results
of the separate JUnit and Jest reports, and publish code coverage
reports as comments and checks on pull requests.

It is worth noting that while work performed by Shams and
Edwards [35] suggests alternatives to code coverage as a testing
quality metric (such as checked coverage) we use code coverage
as our primary metric for both testing quality and adherence to
testing as a practice. This is primarily due to a lack of mature
resources—such as Jacoco, and Jest—for implementing alternative
testing coverage metrics in both Java and JavaScript.

Another available technique that measures test quality is muta-
tion testing [12], which measures a test suite’s ability to identify and
kill mutants, or versions of the code with mutations (e.g. replacing
a > with <=.) In the modified version of the course, we incorporated
mutation testing using Pitest [32] into two of the traditional Java
assignments. For the legacy code projects, we have so far incorpo-
rated only code coverage; incorporating mutation testing is left as
future work.

There are limitations to relying on code coverage as the sole
metric for measuring the quality of a test suite. In the extreme, it
is possible to have 100% test coverage with no meaningful testing
by not actually asserting any behaviors about the exercised code.
Dijkstra said “program testing can be used very effectively to show
the presence of bugs but never to show their absence” [14]. In the
same spirit, a lack of coverage shows the absence of testing, but the
presence of coverage does not guarantee the presence of testing.
Furthermore, it can sometimes be detrimental to pursue 100% code
coverage; it is not always possible to achieve and, in the extreme,
can even be detrimental to the quality of the implementation code.

Thus, we do not rely on code-coverage alone, but also depend
on instructional staff to code review every pull request; we verify
that the test coverage is meaningful and that any gaps in coverage
truly represent code that is unfeasible to test, rather than simply a
lack of effort.

4.5 Heroku

Heroku [20] serves as the deployment and hosting platform for our
web applications. Utilizing the no-cost tier of Heroku, we are able
to create many independent deployments of our web applications
by linking them to repositories on GitHub. We can then use these
multiple deployments to create different levels of quality assurance
between production and qa deployments. This facilitates manual
testing of a live deployment by allowing students and staff to test
new changes in a deployed environment that is not production.

4.6 Codebase Organization

We organized the code repositories with testing in mind. The
project root follows the standard Maven directory structure (i.e.
a top level src directory, with subdirectories src/main/java and
src/test/java for application and test code respectively. Code for
the JavaScript frontend is stored under a top level javascript direc-
tory; the files under javascript follow the directory conventions of a
React application. While not required by the frameworks we used,
we chose to also make a javascript/src and javascript/test
division here for consistency.

Under both src/main/java and javascript/src, we further
divide the code into different subdirectories depending on the code’s
general purpose. For example, for code that uses the Model-View-
Controller design pattern, we have separate directories for Java
classes representing models, views, and controllers. Similarly the
Javascript code is divided among code for top level pages, reusable
React components, and utility libraries of non-React JavaScript
code.

We follow the usual Maven convention that each file under the
src/main/java directory is in a 1-to-1 correspondence with a cor-
responding test file under src/test/java. While not a requirement
of Jest, we imitate this convention under the javascript/src and
javascript/test directories. The result is that there is a clear ex-
pectation that every source code file in the project has a corresponding
file of tests. Further, since the code is divided functionally, when
looking for an example of how to write or test a certain type of
code (e.g. the controller code for the backend of a RESTful API, or
the code for validation of a React form), the developer can typically
find examples of similar code in the src or test directory to which
they are contributing.

When writing tests, we use mocking and stubbing to test Java
classes and React components independently of one another. For
Java, we use the Mockito [31] framework for mocks, while for the
JavaScript code, mocking is built into the Jest framework.

5 POST-MODIFICATION COURSE OVERVIEW

The first of our project goals was to modify the curriculum to
include industry practices for testing. To achieve this goal, we:

o Created instructional materials to familiarize students with
testing in both Java and JavaScript.

o Created an example application using the technology stack
as a proof of concept.

e Re-implemented a minimal viable product of all legacy code
projects using the new technology stack to incorporate test-
ing and test coverage metrics. This includes updating pull
request workflows to enforce testing and test coverage.

It should be noted that the course’s shift to the new technology
stack was happening independently of this project; we simply en-
hanced this change by adding testing and test coverage tools as a
part of this shift.

5.1 Instructional Materials

To introduce students to testing and test coverage, we created a
series of labs that began with students extending and testing a
rational number calculator built in React. The goals of this lab were
(1) introducing students to JavaScript and React and (2) teaching
students how to run and test React applications. Students were
provided with some unit tests examples, but were required to write
additional tests in order to achieve the required level of coverage.
It was straightforward to create an autograder for this assignment.

Another assignment involved developing "Plain Old Java Objects
(POJOs) to represent items on a restaurant menu, and the menu
itself. The goal of this lab was to have students learn about testing,
code coverage, and mutation testing in Java. This lab was already
part of the course, but the test coverage and mutation testing aspects
were new with this course iteration; we based 70% of the students
grade on instructor tests, and 30% on the fraction of mutants killed.

Finally, we assigned two labs to introduce students to running
and deploying web applications. The first web application was a
simple “Hello World” Spring Boot web application and the second
one was a Todo application developed by the teaching staff. The
goals of these labs were to introduce students to the steps required
to run an application locally on their machines and the steps re-
quired to deploy those applications to Heroku. These steps included
configuring their applications to authenticate using Google login
credentials. We were able to introduce testing and code coverage—
and therefore autograding—to these applications using JUnit and
Jacoco, leveraging the same techniques from the previous labs.

To demonstrate the technology stack, we created a todo list
manager web app; this app allowed each user to maintain a single
todo list, unique to that user. This app demonstrated basic fea-
tures common to many webapps, including simple Create/Read/Up-
date/Destroy operations, authentication using OAuth, application
navigation, and techniques for writing tests for each of these func-
tions. This app served several purposes: (1) It provided the course
staff an opportunity to acquaint themselves with the new technol-
ogy stack. (2) It provided an opportunity to make certain decisions
about how we would organize the codebase so as to maintain con-
sistency across assignments and projects. (3) It became the basis
for future labs and projects.

Basing the class materials and projects on a common codebase
allowed us to develop them significantly faster than starting each
project from scratch, and promote consistency among the various
legacy code projects.

This application’s code is open source and can be found on
GitHub [1].

5.2 Reimplementing Legacy Code Projects

In order to transition our previous legacy code projects to the new
technologies we were using, we decided to restart the development
of these applications in the new technology stack.

We did this because we could not see a clear way to adapt the
previous application stack to the new technology stack over the
course of the quarter. In addition, the previous application had few
if any tests. This meant that, if we did not restart the applications
from scratch, much of the work students would have to do this
quarter would only be writing tests for the existing code. While
we want to provide an authentic experience that mirrors industry,
we did not want to risk student engagement by forcing them to
only write tests to pay down the accumulated technical debt of past
quarters. We could also afford to develop these applications anew
because we had the benefit of developing from a starter application.
This allowed the course staff to present students with three different
functioning applications with 100% test coverage to work on.

Because we adopted the new technology stack in each of our
legacy applications, we were able to instrument them to track and
enforce testing and code coverage; we used GitHub Actions to run
the entire test suite on every push to the repository, and every pull
request. The CodeCov’s bot flags any changes that reduce code
coverage as a "failing test". This mirrors industry practices and
raises student’s awareness of testing while writing code.

This enforcement of test coverage throughout all programming
assignments in the course is the key difference that we examine in
this experience report.

6 EVALUATION AND REFLECTIONS

In this section we describe the kinds of data we gathered for evalu-
ation purposes, and then what worked well, and what didn’t, citing
our data where appropriate. We conclude the paper with advice for
practitioners that may want to adopt all or part of our work.

6.1 Evaluation Data

We instrumented and tracked code coverage and test count across
the three legacy code projects both before (Winter 2020) and after
the course modifications (Fall 2020). All projects began Fall 2020
with 100% code coverage; we required students to maintain 100%
test coverage in order to contribute to the projects throughout the
quarter, except in cases where a good argument could be made
for an exception. We provide these results in Table 1. In total, 707
new tests were added by 66 students, making for an average of 10.9
tests per student. This is compared to 0.2 tests per student from
the Winter 2020 offering of this course, where writing automated
tests was encouraged but not required. Due to a significant amount
of group programming and students not listing group members as
co-authors in their commits, we were unable to accurately attribute
tests to students and determine the distribution of these tests across
individual students in the class.

Test Count | Test Coverage
Pre | Post | Pre Post
Courses Search 71 394 | 30% | 99.53%
CS Tutor Program 2 368 | 2% | 100.00%
Mapache Search 6| 341 | 1% | 100.00%
Table 1: Test Statistics from Winter 2020 (Pre) and Fall 2020
(Post)

Project

In addition, we conducted an anonymous survey of students (58
out of 66 students responded, an 87.9% response rate) that had just
completed the Fall 2020 offering of the modified course, where we
asked "What impact has this course had on how you view testing?".

We also conducted a focus group of five students from this class,
asking them (1) what impact the course had on their attitudes
towards testing, and (2) what suggestions they had for changes to
the course in the future, specifically with respect to testing.

6.2 What Worked

The modified course succeeded in achieving our primary goal,
which was to introduce testing with the same rigor that the au-
thors had experienced in industry settings. This can be observed
in how all but one legacy code project was able to maintain 100%
code coverage with student contributions. To be clear, 100% code
coverage does not mean that all code was covered, but that all code
that was not excluded from coverage was covered. One example
of code that was excluded was code that leveraged a third party
package to manage authentication and redirection on the frontend.
We excluded this code from coverage because the library’s func-
tionality failed when executed in a testing environment, and we
were unable to find a work around.

The modified course represents a significant improvement over
the previous iteration of the course. We acknowledge that this is
not an apples-to-apples comparison, since we did not make testing
a strict requirement in the previous iteration of the course. Nev-
ertheless, we demonstrated that we were able to achieve our goal
of introducing automated testing as a significant and meaningful
aspect of the software development lifecycle.

In achieving that goal, we were also able to clarify how testing
is achieved in a complex web applications, as well as provide an
authentic experience with testing. In the post-course survey, one
student described how "Before this class, I had a vague idea about
testing C++ programs, but was unsure about how that would translate
to real-world web applications... However, I feel more comfortable
writing my own test cases for Java functions and React components
now, after practicing a lot in the group project and programming
assignments. It certainly has made me view testing as a larger aspect
of the software development cycle than I had realized before." Another
student explained that "This course has shown me that testing is a
necessary feature when working with larger programs and code bases.
I have only worked with smaller programs in the past where a test
suite seems needless."

Furthermore our efforts with code organization also yielded
benefits, with students able to identify testing examples and test
locations based on a file’s location. In the focus group, one student
describes how "the actual directory structure matched the files we’re
looking for so that was definitely very helpful” because "it was ...
helpful that ... if I borrowed a table from some component that I knew
exactly where to go to look for the corresponding tests for that table."
Another student in the focus group followed up with how "the way
that information was like structured like just the code that we were
given was super helpful for both implementation and testing because
sometimes... if I didn’t understand how like a component was being
used or like I didn’t understand like what data do I need to pass here
in this prop, I could go take a look at how that’s been done in the

past.” These comments from the focus group also align with our
experiences with teaching students to write tests for their projects:
our first step would often be to pull up an example test from the
layer under test or another related layer.

6.3 Areas for Improvement (What didn’t work)

The biggest area for potential improvement is more effectively
teaching testing before students encounter it in their projects. We
required students to complete programming assignments involving
testing before entering the project phase, however the tests we
asked them to write were for relatively straightforward methods of
"plain old Java Objects (POJOs)", and very simple React components.
Students had difficulty applying what they had learned to a more
authentic application development context, e.g. being assigned to
add a particular feature to an application, where the feature was
described only by a user story.

When asked how they might change the curriculum, three stu-
dents from the focus group said they would include more program-
ming assignments to teach testing in the context of the projects. A
student from the focus group confessed that "if I was trying to test
[the project] on my own and if I didn’t have the examples I wouldn’t
have been able to come up with [the course staff’s] methods of do-
ing what they did." While we made an effort to explain in lecture
the testing methods students would encounter in the projects, this
feedback demonstrates that delivery via lecture alone is insufficient
for student learning. Furthermore, a student from the focus group
pointed out that they felt the programming assignments were too
"cookbook," suggesting instead to modify the assignments to allow
for more "learning by doing"

This student’s feedback aligns with our anecdotal experience
when helping students with testing their projects, as referencing
steps from a programming assignment was often insufficient to jog
the memory of a student of a particular concept.

In future iterations, we intend to provide examples of the entire
process of developing tests starting from a user story, and in the
context of one of our legacy code projects. This should be presented
in multiple forms: in code, in a written narrative, and in video. Our
testing assignments also need to better teach and explain the me-
chanics of the testing libraries and testing techniques that they will
observe and use in their projects; while these assignments may start
with simple POJOs and React Components, they need to progress
to the complexity students will encounter in the course projects so
that students gain both technical skills and self-confidence in their
ability to write tests.

Anecdotally, the authors noticed that students seemed to struggle
more with frontend testing than backend testing. The focus group
feedback aligned with this observation; while describing testing
of the behavior of a button in the frontend, one student explained
"it was a little bit annoying to have to go in and add tests for things
that seemed inconsequential or kind of just obvious that it works".
We conclude that we could do a better job teaching that the goal of
testing is not only verifying that a behavior functions at the time
of creation but for ensuring that behavior continues to function in
a reproducible and automated manner.

6.4 Future Work and Recommendations

In this section we outline our intentions for future work and rec-
ommendations to practitioners that may wish to adopt part of all
of the practices described in this paper.

Besides addressing the previously outlined areas for improve-
ment, there are two directions for future work: (1) adding mutation
testing and (2) end to end testing to the projects. Adding mutation
testing to the projects, using tools such as Stryker Mutator [38] for
JavaScript and Pitest [32] for Java, would complement code cover-
age in providing greater insight into the quality of our projects’ test
suites, by ensuring that the coverage does enforce some behaviors
about the projects’ functionality. Adding end to end testing to the
projects, using tools such as Cypress [11] or TestCafe [40], would
provide greater confidence in the functionality of the projects as a
whole. Given that much of the testing done in modified version of
the course was white box testing, this also provides an opportunity
for students to engage in black box testing and allow students to
experience the differences between the two.

For instructors that wish to adopt these practices, the most im-
portant thing they can do is to create an example project of their
own, using the technologies and practices they want to adopt. This
example project serves two purposes: (1) it provides the instructors
and their teaching staff an opportunity to learn an experience the
technology and practices themselves and (2) the example project
can be used to create a baseline project from which instructors can
create assignments and students can use as a basis for their own
projects.

We also suggest instructors and their teams to pursue 100% code
coverage when creating their example projects. While we have
previously discussed the issues with pursuing 100% code coverage,
the goal in this case is not necessarily to achieve it. Instead, the
goal is to learn where achieving coverage becomes difficult and to
develop patterns and policies for dealing with those difficulties. In
the case where achieving complete coverage can be shown to not be
the best course of action, it provides an example of the weaknesses
of code coverage that students can learn from. In our projects, for
example, we excluded library boilerplate code dealing with frontend
authentication from coverage due to behaviors such as third-party
OAuth authentication being difficult to mock in tests.

Finally, we would recommend performing this transition over
multiple course iterations, beginning with the example application,
then adding testing and code coverage to the assignments, and
finally enforcing testing and code coverage on projects. While we
are glad to have completed the transition quickly, it made for a
stressful experience for both the teaching staff and the students.
Performing the transition over multiple iterations may have yielded
better results, with a more robust curriculum and thorough testing
practices. It is certainly what we strive for in future iterations of
this course.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-
dation, awards 1915196 and 1915198. We also thank the students
of UCSB’s CMPSC 156, Fall 2020, the course staff: Mara Downing,
Andrew Lu, Bryan Terce, Gabriel Soule, and Darragh Burke.

REFERENCES

[1] 2020. GitHub Repo: demo-spring-react-todo-app.

[9
[10

[11

[12

(13

[14

(15

[16

[17

[18

[19
[20
[21

]
]

]

]

]

]

]
]

https://github.com/ucsb-
¢s156-f20/demo- spring-react-todo-app

Apache Maven Project 2020. Apache Maven Project. https://maven.apache.org/
Gustavo M. N. Avellar, Rogério F. da Silva, Lilian P. Scatalon, Stevdo A. Andrade,
Marcio E. Delamaro, and Ellen F. Barbosa. 2019. Integration of Software Testing
to Programming Assignments: An Experimental Study. In 2019 IEEE Frontiers
in Education Conference (FIE). IEEE, 1-9. https://doi.org/10.1109/FIE43999.2019.
9028519 ISSN: 2377-634X.

Beck. 2002. Test Driven Development: By Example. Addison-Wesley Longman
Publishing Co., Inc., USA.

K. Beck. 2001. Aim, fire [test-first coding]. IEEE Software 18, 5 (Sept. 2001), 87-89.
https://doi.org/10.1109/52.951502 Conference Name: IEEE Software.

Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. 2015.
When, how, and why developers (do not) test in their IDEs. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE
2015). Association for Computing Machinery, New York, NY, USA, 179-190.
https://doi.org/10.1145/2786805.2786843

Kevin Buffardi and Stephen H. Edwards. 2014. A formative study of influences on
student testing behaviors. In Proceedings of the 45th ACM technical symposium on
Computer science education (SIGCSE ’14). Association for Computing Machinery,
New York, NY, USA, 597-602. https://doi.org/10.1145/2538862.2538982

Henrik Beerbak Christensen. 2003. Systematic testing should not be a topic in
the computer science curriculum!. In Proceedings of the 8th annual conference on
Innovation and technology in computer science education (ITiCSE *03). Association
for Computing Machinery, New York, NY, USA, 7-10. https://doi.org/10.1145/
961511.961517

Codecov 2020. Code Coverage Done Right. https://codecov.io

Michelle Craig, Phill Conrad, Dylan Lynch, Natasha Lee, and Laura Anthony.
2018. Listening to Early Career Software Developers. J. Comput. Sci. Coll. 33, 4
(April 2018), 138-149.

Cypress 2020. Cypress: JavaScript End to End Testing Framework.
//www.cypress.io

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34-41. https:
//doi.org/10.1109/C-M.1978.218136 Conference Name: Computer.

Chetan Desai, David S. Janzen, and John Clements. 2009. Implications of inte-
grating test-driven development into CS1/CS2 curricula. ACM SIGCSE Bulletin
41, 1 (March 2009), 148-152. https://doi.org/10.1145/1539024.1508921

Edsger W. Dijkstra. n.d.. EW. Dijkstra Archive: On the reliability of programs.
(EWD303). (n.d.). http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
circulated privately.

Stephen H. Edwards. 2003. Improving student performance by evaluating how
well students test their own programs. Journal on Educational Resources in
Computing 3, 3 (Sept. 2003), 1-es. https://doi.org/10.1145/1029994.1029995
Stephen H. Edwards and Manuel A. Pérez-Quifiones. 2007. Experiences using
test-driven development with an automated grader. Journal of Computing Sciences
in Colleges 22, 3 (Jan. 2007), 44-50.

Stephen H. Edwards and Zalia Shams. 2014. Comparing test quality mea-
sures for assessing student-written tests. In Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion 2014). As-
sociation for Computing Machinery, New York, NY, USA, 354-363. https:
//doi.org/10.1145/2591062.2591164

Gordon Fraser. 2017. Gamification of Software Testing. In 2017 IEEE/ACM 12th
International Workshop on Automation of Software Testing (AST). 2-7. https:
//doi.org/10.1109/AST.2017.20

GitHub 2020. GitHub: Where the world builds software. https://github.com/
Heroku 2020. Cloud Application Platform | Heroku. https://www.heroku.com/
Zhewei Hu and Edward F. Gehringer. 2019. Improving Feedback on GitHub Pull
Requests: A Bots Approach. In 2019 IEEE Frontiers in Education Conference (FIE).
1-9. https://doi.org/10.1109/FIE43999.2019.9028685 ISSN: 2377-634X.

https:

[22] JaCoCo 2020. JaCoCo Java Code Coverage Library. https://jacoco.org/jacoco
[23] Jest 2020. Jest: Delightful JavaScript Testing. https://jestjs.io/

[24

[25

[29

[30

[41

[42]

[43]

Edward L. Jones. 2000. Software testing in the computer science curriculum —
a holistic approach. In Proceedings of the Australasian conference on Computing
education (ACSE "00). Association for Computing Machinery, New York, NY, USA,
153-157. https://doi.org/10.1145/359369.359392

Edward L. Jones. 2001. Integrating testing into the curriculum — arsenic
in small doses. In Proceedings of the thirty-second SIGCSE technical symposium on
Computer Science Education (SIGCSE ’01). Association for Computing Machinery,
New York, NY, USA, 337-341. https://doi.org/10.1145/364447.364617

Fredrick P. Brooks Jr. 1982. The Mythical man-month : essays on software en-
gineering. Reading, Mass. : Addison-Wesley Pub. Co., 1982. ©1975. https:
//search.library.wisc.edu/catalog/999550146602121

JUnit5 2020. JUnit 5. https:/junit.org/junit5/

] Ayaan M. Kazerouni, Riffat Sabbir Mansur, Stephen H. Edwards, and Clifford A.

Shaffer. 2019. Student Debugging Practices and Their Relationships with Project
Outcomes. In Proceedings of the 50th ACM Technical Symposium on Computer

Science Education (SIGCSE ’19). Association for Computing Machinery, New York,
NY, USA, 1263. https://doi.org/10.1145/3287324.3293794

Sami Kollanus and Ville Isométténen. 2008. Understanding TDD in academic
environment: experiences from two experiments. In Proceedings of the 8th In-
ternational Conference on Computing Education Research (Koli 08). Association
for Computing Machinery, New York, NY, USA, 25-31. https://doi.org/10.1145/
1595356.1595362

Daniel E. Krutz, Samuel A. Malachowsky, and Thomas Reichlmayr. 2014. Using
a real world project in a software testing course. In Proceedings of the 45th ACM
technical symposium on Computer science education (SIGCSE ’14). Association
for Computing Machinery, New York, NY, USA, 49-54. https://doi.org/10.1145/
2538862.2538955

Mockito 2020. Mockito: Tasty mocking framework for unit tests in Java. https:
//site.mockito.org/

Pitest 2020. PIT Mutation Testing. https://pitest.org/

React 2020. React — A JavaScript library for building user interfaces.
//reactjs.org/

React Testing Library [n.d.]. React Testing Library | Testing Library. https:
//testing-library.com/docs/react-testing-library/intro

Zalia Shams and Stephen H. Edwards. 2015. Checked Coverage and Object
Branch Coverage: New Alternatives for Assessing Student-Written Tests. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education
(SIGCSE ’15). Association for Computing Machinery, New York, NY, USA, 534-539.
https://doi.org/10.1145/2676723.2677300

Terry Shepard, Margaret Lamb, and Diane Kelly. 2001. More testing should be
taught. Commun. ACM 44, 6 (June 2001), 103-108. https://doi.org/10.1145/
376134.376180

Spring Boot 2020. Spring Boot. https://spring.io/projects/spring-boot

Stryker 2020. Stryker Mutator. https://stryker-mutator.io/

Yanhong Sun and Edward L. Jones. 2004. Specification-driven automated testing
of GUI-based Java programs. In Proceedings of the 42nd annual Southeast regional
conference (ACM-SE 42). Association for Computing Machinery, New York, NY,
USA, 140-145. https:/doi.org/10.1145/986537.986570

TestCafe 2020. TestCafe: A node.js tool to automate end-to-end web testing.
https://devexpress.github.io/testcafe/

Matthew Thornton, Stephen H. Edwards, Roy P. Tan, and Manuel A. Pérez-
Quirlones. 2008. Supporting student-written tests of gui programs. In Proceedings
of the 39th SIGCSE technical symposium on Computer science education (SIGCSE
’08). Association for Computing Machinery, New York, NY, USA, 537-541. https:
//doi.org/10.1145/1352135.1352316

A. Tinkham and C. Kaner. 2005. Experiences teaching a course in programmer
testing. In Agile Development Conference (ADC’05). 298-305. https://doi.org/10.
1109/ADC.2005.25

John Wrenn and Shriram Krishnamurthi. 2020. Will Students Write Tests
Early Without Coercion?. In Koli Calling "20: Proceedings of the 20th Koli Call-
ing International Conference on Computing Education Research (Koli Calling
’20). Association for Computing Machinery, New York, NY, USA, 1-5. https:
//doi.org/10.1145/3428029.3428060

https:

https://github.com/ucsb-cs156-f20/demo-spring-react-todo-app
https://github.com/ucsb-cs156-f20/demo-spring-react-todo-app
https://maven.apache.org/
https://doi.org/10.1109/FIE43999.2019.9028519
https://doi.org/10.1109/FIE43999.2019.9028519
https://doi.org/10.1109/52.951502
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/2538862.2538982
https://doi.org/10.1145/961511.961517
https://doi.org/10.1145/961511.961517
https://codecov.io
https://www.cypress.io
https://www.cypress.io
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/1539024.1508921
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD303.PDF
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/2591062.2591164
https://doi.org/10.1145/2591062.2591164
https://doi.org/10.1109/AST.2017.20
https://doi.org/10.1109/AST.2017.20
https://github.com/
https://www.heroku.com/
https://doi.org/10.1109/FIE43999.2019.9028685
https://jacoco.org/jacoco
https://jestjs.io/
https://doi.org/10.1145/359369.359392
https://doi.org/10.1145/364447.364617
https://search.library.wisc.edu/catalog/999550146602121
https://search.library.wisc.edu/catalog/999550146602121
https://junit.org/junit5/
https://doi.org/10.1145/3287324.3293794
https://doi.org/10.1145/1595356.1595362
https://doi.org/10.1145/1595356.1595362
https://doi.org/10.1145/2538862.2538955
https://doi.org/10.1145/2538862.2538955
https://site.mockito.org/
https://site.mockito.org/
https://pitest.org/
https://reactjs.org/
https://reactjs.org/
https://testing-library.com/docs/react-testing-library/intro
https://testing-library.com/docs/react-testing-library/intro
https://doi.org/10.1145/2676723.2677300
https://doi.org/10.1145/376134.376180
https://doi.org/10.1145/376134.376180
https://spring.io/projects/spring-boot
https://stryker-mutator.io/
https://doi.org/10.1145/986537.986570
https://devexpress.github.io/testcafe/
https://doi.org/10.1145/1352135.1352316
https://doi.org/10.1145/1352135.1352316
https://doi.org/10.1109/ADC.2005.25
https://doi.org/10.1109/ADC.2005.25
https://doi.org/10.1145/3428029.3428060
https://doi.org/10.1145/3428029.3428060

	Abstract
	1 Introduction
	2 Related Work
	3 Pre-modification Course Overview
	4 Tech Stack Overview
	4.1 Spring Boot and Maven
	4.2 React
	4.3 GitHub Actions
	4.4 Testing and Coverage
	4.5 Heroku
	4.6 Codebase Organization

	5 Post-modification Course Overview
	5.1 Instructional Materials
	5.2 Reimplementing Legacy Code Projects

	6 Evaluation and Reflections
	6.1 Evaluation Data
	6.2 What Worked
	6.3 Areas for Improvement (What didn't work)
	6.4 Future Work and Recommendations

	Acknowledgments
	References

