
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ncse20

Computer Science Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ncse20

Assessing individual contributions to software
engineering projects: a replication study

C.D. Hundhausen, P.T. Conrad, A.S. Carter & O. Adesope

To cite this article: C.D. Hundhausen, P.T. Conrad, A.S. Carter & O. Adesope (2022) Assessing
individual contributions to software engineering projects: a replication study, Computer Science
Education, 32:3, 335-354, DOI: 10.1080/08993408.2022.2071543

To link to this article: https://doi.org/10.1080/08993408.2022.2071543

Published online: 17 May 2022.

Submit your article to this journal

Article views: 104

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ncse20
https://www.tandfonline.com/loi/ncse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08993408.2022.2071543
https://doi.org/10.1080/08993408.2022.2071543
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ncse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2022.2071543
https://www.tandfonline.com/doi/mlt/10.1080/08993408.2022.2071543
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2071543&domain=pdf&date_stamp=2022-05-17
http://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2071543&domain=pdf&date_stamp=2022-05-17

Assessing individual contributions to software engineering
projects: a replication study
C.D. Hundhausena, P.T. Conradb, A.S. Carterc and O. Adesope d

aSchool of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA;
bDepartment of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA;
cDepartment of Computer Science, Humboldt State University, Arcata, CA, USA; dEducational Psychology
Program, College of Education, Washington State University, Pullman, WA, USA

ABSTRACT
Background and Context: Assessing team members’ indivdiual
contributions to software development projects poses a key pro
blem for computing instructors. While instructors typically rely on
subjective assessments, objective assessments could provide
a more robust picture. To explore this possibility, In a 2020 paper,
Buffardi presented a correlational analysis of objective metrics and
subjective metrics in an advanced software engineering project
course (n= 41 students and 10 teams), finding only two significant
correlations.
Objective: To explore the robustness of Buffardi’s findings and gain
further insight, we conducted a larger scale replication of the
Buffardi study (n = 118 students and 25 teams) in three courses at
three institutions.
Method: We collected the same data as in the Buffardi study and
computed the same measures from those data. We replicated
Buffardi’s exploratory, correlational and regression analyses of
objective and subjective measures.
Findings: While replicating four of Buffardi’s five significant corre
lational findings and partially replicating the findings of Buffardi’s
regression analyses, our results go beyond those of Buffardi by
identifying eight additional significant correlations.
Implications: In contrast to Buffardi’s study, our larger scale study
suggests that subjective and objective measures of individual per
formance in team software development projects can be fruitfully
combined to provide consistent and complementary assessments
of individual performance.

ARTICLE HISTORY
Received 12 November 2020
Accepted 26 April 2022

KEYWORDS
Team software development
projects; individual
contributions; GitHub log
data analysis; peer
evaluation; issues; commits;
user stories

Introduction

Team software development projects are common in undergraduate computing educa
tion. While team projects are most often featured in capstone design courses (e.g.
Herbert, 2018; Murphy, Sheth et al., 2017), they also appear in a variety of upper and
lower division computing courses that involve software development (e.g. Saltz &
Heckman, 2018). Such projects are seen as a crucial component of undergraduate

CONTACT C.D. Hundhausen hundhaus@wsu.edu Human-centered Environments for Learning and
Programming (HELP) Lab, School of Electrical Engineering and Computer Science, Washington State University, P.O.
Box 642752 Pullman, WA 99164,

COMPUTER SCIENCE EDUCATION
2022, VOL. 32, NO. 3, 335–354
https://doi.org/10.1080/08993408.2022.2071543

© 2022 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0003-0620-500X
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08993408.2022.2071543&domain=pdf&date_stamp=2022-07-11

computing education. Studies of software developers in industry underscore the need
for undergraduates to acquire authentic software development experiences in which
they develop solutions to realistic problems within collaborative software development
contexts (see, e.g. Begel & Simon, 2008; Craig et al., 2018; Exter, 2014; Hewner & Guzdial,
2010; Sherriff & Heckman, 2018).

Despite their important educational value, team software development projects prove
challenging for computing educators to implement. Among the many barriers to imple
mentation, the assessment of individual contributions within team projects proves parti
cularly challenging. While some instructors choose to assign all team members the same
grades, this approach may be seen as unfair since it fails to acknowledge the reality that
a team’s work products are the result of varying contributions by individual team
members (Clear, 2009; Farrell et al., 2012; Tafliovich et al., 2015).

Acknowledging the need to be sensitive to individual team members’ contributions
within team projects, computing educators have proposed a variety of assessment
approaches. Most of these are subjective, integrating peer and instructor assessment of
team member contributions, and instructor assessment of individual and team deliver
ables (e.g. Domínguez et al., 2020; Farrell et al., 2012; Tafliovich et al., 2015; Von Konsky &
Ivins, 2008). With the advent of online collaborative software development platforms such
as GitHub (Build software better, together, n.d.), there is an opportunity to augment these
subjective assessment approaches with objective data on students’ contributions to team
projects (Kalliamvakou et al., 2014). These objective data include code commits (instances
of adding new code to a code repository), line contributions (counts of lines added and
removed from a code repository), and issue tracking contributions (instances of creating,
tracking, and closing work items).

Citing the “halo effect” (i.e. the idea that one’s overall impression of a person creates an
assessment bias) observed in instructors’ and students’ assessments of individual student
work, Buffardi (2020) performed an exploratory analysis that compared a set of standard
subjective assessments of individual student work against a set of objective metrics
derived from the above activities on GitHub. While his study found strong correlations
between the subjective assessments and between the objective metrics, the correlation
between subjective assessments and objective metrics was weak. Buffardi’s study lays the
groundwork for future work by proposing a methodology for comparing subjective
assessments and objective metrics, and by providing evidence that current subjective
assessment approaches may be biased and could benefit from triangulation with objec
tive assessment approaches.

We are particularly interested in two research questions raised by the Buffardi study:

RQ 1. Do Buffardi’s results generalize to other software development courses at different
institutions?

RQ 2. What additional findings beyond Buffardi’s can be gleaned from a larger scale
study conducted at multiple institutions?

In this paper, we explore these questions through a replication of the Buffardi study.
Our study focuses on team software development projects in three courses at three
institutions:

336 C. D. HUNDHAUSEN ET AL.

(1) An upper-division web development course (n = 57 students and 12 teams) at
a large research university;

(2) An upper-division mobile application development course (n = 5 students and 2
teams) at a mid-sized undergraduate university; and

(3) An upper-division software projects course (n = 57 students and 11 teams) at
a large research university.

To address our research questions, we collected and analyzed a set of data in our
courses equivalent to the data collected in Buffardi’s study. While replicating all but one of
Buffardi’s major findings, our results identify eight correlations between objective and
subjective measures that Buffardi’s work did not find. Thus, our larger scale study
contributes not only a near complete replication of Buffardi’s study, but also new evi
dence that subjective and objective metrics of individual performance in team software
development projects can furnish consistent and complementary assessments.

Related work

The related work cited in the original study (Buffardi, 2020) covers the general context
of incorporating industrial software development practices into software engineering
courses, and the more specific task of assessing the individual contributions of stu
dents who are members of teams. Buffardi opens the argument for including project-
based software engineering work in the computing curriculum by noting its inclusion
in the (ACM/IEEE Joint Task Force on Computing Curricula, 2013) CS curriculum guide
lines (ACM/IEEE Joint Task Force on Computing Curricula, 2013), and noting several
models for such courses, including working on open source projects in general
(G. G. Pinto et al., 2019; G. H. L. Pinto et al., 2017; Smith et al., 2014); working specifically
on humanitarian open source projects (Braught et al., 2018; Ellis & Hislop, 2016;
Murphy, Buffardi et al., 2017); and working with industry and entrepreneurial partners
(Bruegge et al., 2015; Buffardi et al., 2017; Clark et al., 2005; Devadiga, 2017; Garousi
et al., 2016; Mead, 2015; Parker & Holcombe, 1999). Grading a team as a whole avoids
the problem of assessing individual contributions. As reported by Tafliovich et al.
(2015), as students progress in their study and within a course, their preference shifts
from being evaluated as individuals to being evaluated as a team.However, as Buffardi
notes, the problem of “social loafing”, as described by Latané et al. (1979), presents
a challenge to fairness if team members receive the same grade for widely disparate
contributions (or even for no contributions). Gauging student performance is not the
only reason to want to assess individual contributions; we are also interested in
assessing the effectiveness of teaching about teamwork. If a single individual does
the lion’s share of the work, then group work not only fails to teach teamwork skills
that are vital for students to acquire and use in the industry; it may even be
counterproductive.

Peer assessment provides one source of data for assessing individual contributions
(Fagerholm & Vihavainen, 2013). Like Buffardi, we used CATME, a standard peer evaluation
instrument (Layton et al., 2007; Ohland et al., 2005, 2012), to elicit peer evaluations in our
study. However, using peer assessment alone may be unwise, as it is subject to various
biases. Herbert (2007) found that peer assessments can be inaccurate, and are subject to

COMPUTER SCIENCE EDUCATION 337

biases against women and students from underrepresented groups. Another bias in peer
assessments is the so-called “halo effect”, whereby raters are influenced to give higher
ratings to individuals with positive characteristics that may be unrelated to the character
istics being assessed (Abikoff et al., 1993; Schneider et al., 2011). Instructor assessment is
also subject to such biases (Van den Bergh et al., 2010).

To supplement peer evaluations and provide a cross check, Buffardi collected GitHub
log data and analyzed four objective artifacts of the software engineering lifecycle cap
tured through GitHub log data:

● Commits, in which the team’s code repository is updated with code changes
● Line changes, which quantify the number of lines of code that are changed
● Issues, which teams use to describe, and track completion of, “user stories”

(Rehkopf, n.d.) and other software development tasks. Notably, GitHub issues
(About issues, n.d.) can be explicitly assigned to the team members responsible
for completing them.

● Story points (Radigan, n.d.), an integer representing a team’s assessment of the
magnitude or difficulty of completing an issue or user story.

Our study largely replicates Buffardi’s approach to collecting and analyzing these artifacts.
As a potential threat to the validity of assessing individual student work based on

GitHub data, Buffardi cites Campbell’s Law: the principle that assessing quantitative
measures can cause students to modify their behavior to optimize it for the mea
surement, even if that behavior is contrary to the overall project or learning goals
(Campbell, 1979). Buffardi also notes that negative effects of performance appraisals
in Agile software development organizations have been reported by industry practi
tioners of Agile (e.g. Sutherland, 2018). Like Buffardi, we are mindful of this pitfall in
our interpretation of the study’s results.

Another potential threat to the validity of this approach not mentioned by Buffardi is
that students could misrepresent their individual contributions to the GitHub issues com
pleted by their team. To credit individual students for their work, Buffardi looked at the
students to whom the issue was assigned in GitHub. However, the team members assigned
to a given issue may or may not correspond to the team members who contributed to
completing the issue. Indeed, team members are free to assign other team members to an
issue who did not contribute to it. To replicate Buffardi’s study, our study also credits
student contributions based on who is assigned to issues in GitHub, while acknowledging
that this approach may not accurately credit the students who did the work.

Methods

Courses and Team Projects

Whereas Buffardi collected data from a single course at a single institution, our replication
study collected data from three courses taught by three instructors at three universities.
Table 1 presents an overview of the courses and team projects considered in this study,

338 C. D. HUNDHAUSEN ET AL.

including the original course studied by Buffardi. Henceforth, we will use the university
abbreviations shown in this table (Chico, WSU, UCSB, and HSU) to refer to the courses at
these institutions included in this study.

The team projects had differing weights in each course’s overall grading scheme. In the
Chico course, the project was weighted 60%, with each of six sprints weighted equally.
Likewise, in the WSU course, the project was weighted 20%, with each of four sprints
weighted equally. The UCSB and HSU course projects were both weighted 40% of the
overall grade. At UCSB, students could fulfill the project requirement by completing 100
total story points in any combination of the three sprints. The four HSU sprints were
weighted 10% each.

Another key difference across the course projects lies in whether they were graded
individually or as a team. In the Chico and UCSB projects, all members of a given team
were assigned the same grade for each sprint. In the WSU projects, all members of a given
team were assigned the same grade for each sprint, but an individual multiplier derived
from the CATME peer evaluation surveys was applied to team grades to obtain individual
grades. In the HSU projects, the instructor assigned an individual grade to each student
based on the perceived quantity and quality of their contribution to the project.

A third difference among the course projects can be found in their grading schemes,
which are summarized in Table 2. As the table suggests, the Chico and WSU courses had
one grading criterion (software testing) in common, while the HSU and WSU courses
shared five common grading criteria. The UCSB project grading scheme was unique.

Participants

Table 3 presents counts of, and demographic data on, the participants in the study on
a course-by-course basis. The counts include both the total number of students and project
teams in each course, and the total number of students and project teams who consented
to share their data for research purposes. Note that because peer evaluations constituted
one of the forms of data, we could not use any data for a team unless all of its members gave
us informed consent; a single non-consenting student meant that the data for that entire
team had to be excluded from the study. This resulted in a low rate of consent at the team
level for the UCSB offerings. Given the relatively low number of consenting students in the
UCSB courses, and the fact that the courses were run in a consistent manner across the three
offerings, we collapsed the data from the three UCSB courses into a single “UCSB” course for
data analysis purposes.

Table 1. Overview of courses involved in the original and replication study.

University Type Course Number and Name

Project
Length

(weeks)
Number of

Sprints

Original: Cal State University
Chico (Chico)

Medium
Undergrad

CSCI 430 (“Software Engineering”) 12 6

Washington State University
(WSU)

Large
Research

CptS 489 (“Web Development”) 5 4

University of California Santa
Barbara (UCSB)

Large
Research

CMPSC 156 (“Advanced Application
Development”)

3–4 3

Humboldt State University (HSU) Medium
Undergrad

CS 480 (“Modern Software
Development”)

8 4

COMPUTER SCIENCE EDUCATION 339

Data collection and measures

Buffardi’s (2020) study explored correlations among individuals’ CATME peer evaluations
and course grades (what Buffardi termed “subjective” measures), and “objective” mea
sures derived from data gathered through Github. Our replication study considered the
same data and associated measures, but differed in notable ways, as summarized in
Table 4. Below, we describe the data and measures in further detail.

Demographic data. To obtain a fuller picture of our participants, we collected demo
graphic data through a presurvey, including participants’ gender, ethnicity, and age.
Buffardi did not collect these data in his study.

CATME Peer Evaluation Survey. Buffardi administered the CATME peer evaluation
survey (catme.org, 2021) in weeks 5, 10, and 15 of his team project. The averages of
the Peer Contribution and Peer Interaction ratings in the survey responses were used
in his correlational data analysis. Like Buffardi, our correlational analysis used the
average of the Peer Interaction and Peer Interaction ratings (catme.org, n.d.) pro
vided in multiple survey responses. However, the number of surveys administered,
and the time intervals at which we administered the surveys, differed by course. In

Table 2. Comparison of project grading schemes in courses studied.
Weight (%) in Project Grading Scheme

Original Replication

Grading Criteria Chico WSU UCSB HSU

Software usefulness 30
Software design 35
Software testing 35 10
Software quality 20
Code quality 10 25
Development progress (in sprint) 20 25
Development process: Branches, Commits, PRs, Code Review 15 20
Development process: Tracking, communication, coordination 15 10
Development process: Team retrospective 10 20
Completion of 100 story points 100
Total: 100 100 100 100

Table 3. Number of students and teams in each course offering.

Course Term
Students

enrolled
Teams
enrolled

Students consenting #
TeamsconsentingTotal M F U M Age

Original:
Chico

F18 2 10 42 – – – – 10

Replication:
HSU

S21 12 2 5 4 1 0 23.2 2

WSU F20 57 12 57 48 4 5 23.3 12
UCSB F20 66 12 37 29 8 0 19.9 7

W21 54 10 9 9 0 0 20.7 2
S21 64 12 11 8 3 0 19.7 2
UCSB

Total
186 34 57 46 11 0 20.0 11

Replication
Totals 253 48 119 98 16 5 21.7 25

Note: M = Males, F = Females, U = Unknown or did not report, M Age = Mean Age

340 C. D. HUNDHAUSEN ET AL.

the WSU and HSU courses, four surveys were administered, while the UCSB course
included three surveys. In all courses, the surveys were administered after each
sprint cycle.

Individual grades. Buffardi used the average of four individual quizzes as a basis for
gauging individual student knowledge and skills. We could not replicate this exactly, since
none of our courses included quizzes. Instead, as available, we used the average of
individual assignments given in each course: eight individual web programming assign
ments in the WSU course and the best six of eight individual homework assignments in
the UCSB course. The HSU course did not include any individual assignments – only the
course project.

Table 4. Data sources and associated measures collected in study.
Original Replication

Data Source Description and Associated Measures Chico WSU UCSB HSU

Demographic
Survey

Online pre-survey eliciting student demographic information:
● Gender
● Ethnicity
● Age

⊚ ● ● ●

CATME Peer
Evaluation
Survey

Peer evaluation survey administered periodically during the project.
Two ratings were considered:

● Peer Contribution: Average peer rating of a team member’s con
tributions to the team’s work on a five-point Likert-style scale.

● ● ● ●

● Peer Interaction: Average peer rating of the quality and quantity of
a team member’s interactions on a five point Likert scale.

● ● ● ●

Course Grades ● Project grades: The grade received by the team on the team
project (see, Table 2 for grading schemes)

◐ ◐ ⊚ ◐

● Individual grades: Grades received by students on individual
course assignments outside team project.

○ ○ ○ ⊚

GitHub Log data from teams’ GitHub repositories were used to derive the
following measures for each team member:

● Commit Counts: Number of individual commits merged into the
main branch of the team’s repository.

● ● ● ●

● Relative Commit Shares: Number of individual merged commits
relative to expected commits (i.e. total team commits ÷ # team
members)

● ● ● ●

● Change Counts: Number of lines of code changed by each indivi
dual in merged commits

● ● ● ●

● Relative Change Shares: Number of individual line changes rela
tive to expected line changes (i.e. total team line changes ÷ # team
members)

● ● ● ●

● Story Counts: Number of completed GitHub issues (i.e. “user
stories”) assigned to each team member

◐ ● ● ●

● Relative Story Shares: Number of individual issues relative to
expected issues (i.e. total team issues completed ÷ # team
members).

◐ ● ● ●

● Point Counts: Sum of each team member’s portion of story points
assigned to each completed issue

○ ⊚ ○ ⊚

● Relative Point Shares: Number of individual story points relative to
expected story points (i.e. total team story points ÷ # team
members)

○ ⊚ ○ ⊚

table legend:

● Data measure exactly matches corresponding data measure in at least one other course
◐ Data measure partially matches corresponding data measure in at least one other course
○ Data measure does not match corresponding data measure in any other courses
⊚ Data measure not collected or could not be used in the analysis

COMPUTER SCIENCE EDUCATION 341

Project grades. As indicated in Table 2, the way in which project grades were calculated
varied considerably across courses. As noted in Table 4, there was a partial match between
the Chico and WSU courses, and a more complete match between the HSU and WSU
courses. However, the project grading scheme for the UCSB course was unique: all
students who completed a set number of story points received 100%. In fact, just about
all students met this threshold, making the UCSB project grade metric ineffective in
discriminating student performance. For this reason, we did not include UCSB project
grades in our correlational analyses.

Commit and line change counts. Like Buffardi, we counted commits and line changes
that were ultimately merged into a software repository’s default branch (e.g. main or
master). Like Buffardi, we excluded from our counts commits and line changes asso
ciated with initializing a team’s source repository with base code drawn from another
source, as these tended to be outliers that, if not excluded, would artificially inflate the
contribution of the student making such commits. We also excluded object files that
were checked into the version control system. In our context, the excluded files were
package-lock.json, server.compiled.js, and all files under client/build. We mention this
detail to alert researchers seeking to replicate our study that they may need to devise
similar exclusion criteria for object files appropriate to the framework(s) used in their
courses.

Story counts. To receive credit for completing issues (stories) in Buffardi’s course,
students were asked to move completed GitHub issues (GitHub.com, 2021a) into the
“Done” column of their project (Kanban) boards (About issues, Github.com, 2021b). In
contrast, students in our courses received credit for completing issues when they linked
the issues to pull requests (GitHub.com, 2021b and 2021c) that merged commits into the
team repository’s main branch. Given that our approach to crediting teams for com
pleted stories differed from Buffardi’s, our method for counting stories necessarily
differed as well: Whereas Buffardi counted a story as “complete” only if it appeared in
the “Done” column, we counted a story as complete only if it could be associated with
code changes merged into a project’s main branch. For replication purposes, the
important point is that the story counting method was aligned with the definition of
“done” established in each course.

Story point counts. Buffardi asked student teams to assign story points (Radigan, n.d.) to
each completed issue. Those story points were then divided equally among all team
members assigned to the issue. Unfortunately, as Buffardi found in his study, student
teams do not reliably assign story points to issues; he had to exclude two teams from his
story point analysis because they failed to assign story points. In the WSU and HSU
courses, student teams proved even less reliable: Not one team assigned story points to
all completed issues. For this reason, we did not include WSU and HSU story point shares
in our correlational analyses.

In contrast, in the UCSB courses, the responsibility for assigning story points was
delegated to course teaching personnel, who assigned points to every completed issue
as it was code reviewed and merged by course staff (instructors and TAs). This approach
provided a more consistent and reliable means of assigning story points, allowing us to
include UCSB story point shares in our correlational analysis.

342 C. D. HUNDHAUSEN ET AL.

Preregistration

This study was preregistered with the journal. A preliminary version of the study methods
was reviewed before the study was carried out. Subsequent to this review, we made the
following changes to the study methods.

● We originally estimated the number of participants to be 221 students and 42 teams.
Because not all students in the courses included in the study consented to partici
pate, the number of participants fell to 119 students and 25 teams.

● We originally proposed to develop a rubric to assess the quality of team’s software,
issues, and pull requests. The idea was to provide a richer mix of qualitative and
quantitative measures for correlational analysis. This proposal proved to be
beyond the scope of what we could do in the time allotted for the study, so we
dropped it.

● We originally proposed to collect and analyze responses to a pre-/post-survey of
student attitudes, and to incorporate these results into our correlational analysis.
While we collected these data, we did not include them in the analysis presented in
this paper because we wanted to keep the focus on replicating Buffardi’s analyses.

● We originally identified three research questions related to the broader scope we
envisioned for the study (see the previous two points). Because we opted to narrow
the focus of this paper, we retained the first research question, but replaced the final
two research questions with a single research question related to possible new and
expanded findings from a larger replication study.

Results

Buffardi presented an exploratory analysis of his results, beginning with a visual inspec
tion of trends with respect to team and individual GitHub measures, and then shifting to
correlational analyses of objective (GitHub) and subjective (grades and CATME survey)
measures. The analysis presented below mirrors Buffardi’s analysis.

Summary of team activities in GitHub

Table 5 presents summary statistics on student teams’ activities in GitHub for the original
(Chico) course and the replication courses. As this table indicates, student teams’ commits
and stories completed were similar across all courses. However, we observed three
notable differences:

● In the Chico course, which spanned an entire semester, there were substantially
more line changes.

● In the UCSB and HSU courses, the number of stories completed was lower than in the
other two courses.

● The number of commits, line changes, and stories completed was generally lower in
the HSU course than in the other courses.

COMPUTER SCIENCE EDUCATION 343

Summary of GitHub, peer evaluation, and grade measures

We collected the same objective (GitHub) and subjective (CATME peer evaluation
and grade) measures as Buffardi. To support visual exploration of our results,
Figure 1 presents bar charts showing these measures for all 25 teams included in
our study. In this figure, the 12 WSU teams are labeled W1–W12; the 11 UCSB
teams are labeled Sf1–Sf7 (seven teams from the Fall 2020 course offering), Sw1–
Sw2 (two teams from

the Winter 2021 course offering), and Ss1–Ss2 (two teams from Spring 2021
course offering); and the two HSU teams are labeled H1 and H2. Each team
member’s share or rating is represented by a bar whose height indicates its
magnitude. Hollow dots represent team members whose shares were 0. Team
member bars line up vertically to facilitate visual comparisons of teams and team
members across the metrics. For example, as can be seen from the first group in
Figure 1a, team W1 had five team members, three of whom contributed commits.
Of the three who made commits, one team member made about twice as many
commits as the other team members.

As discussed in the Methods section, we were unable to collect a complete set
of data in all courses. This explains the missing values for the Relative Story Point
Share (Figure 1d), Individual Grade (Figure 1g), and Project Grade (Figure 1h)
measures.

Visual inspection of the bar charts in Figure 1 yields some notable observations:

● Nearly half of the teams (11 out of 25, or 44%) had at least one member who did not
contribute any code at all. Three of the teams had two members who did not
contribute any code.

● Over half of the teams (14 of 25, or 56%) had at least one dominant member who
contributed over twice the expected number of commits.

● Roughly one third of the teams (9 of 25, or 36%) stood out for achieving some
measure of equality when it came to contributing code, with all team members
having commit and line change shares clustered below 2.0.

● Team W9 had a dominant team member who stood out for contributing three times
the expected number of commits and line changes, and for receiving credit for all of
the team’s completed stories, despite the fact that other members of the W9 team
also contributed commits and line changes.

● Commit and line share measures suggest that team labor tended to be unbalanced.

Table 5. Summary of team GitHub activity by course.
Course # Students # Teams # Commits # Line Changes # Stories Completed

M SD M SD M SD

Chico 42 10 90.1 40.7 95,402.9 141,945.4 14.0 6.5
WSU 57 12 78.7 41.7 3127.3 2051.6 16.5 7.9
UCSB 57 11 78.0 36.5 11,903.7 8280.4 5.7 3.1
HSU 5 2 27.6 29.1 895.6 818.1 1.6 1.3

344 C. D. HUNDHAUSEN ET AL.

Correlational analysis

Mirroring Buffardi’s study, we ran a correlational analysis of all subjective and objective
measures for all courses using Pearson’s correlation coefficient (rp). Table 6 summarizes
the results; the shaded section highlights the 16 correlations between objective and
subjective measures. In this analysis, we set the threshold value for significance at
p < 0.05. In addition, per the advice of Akoglu (2018), we interpret rp

values of below 0.3 as weak correlations, rp values between 0.3 and 0.6 as moderate
correlations, and rp values above 0.6 as strong correlations.

Mirroring Buffardi’s analysis, we next conducted a multiple regression analysis to deter
mine whether the (objective) GitHub metrics (Relative Commit Share, Relative Line Change
Share, Relative Story Share, and Relative Story Point Share) predict the (subjective) CATME
Peer Contribution Rating. In line with Buffardi’s findings, our regression model was signifi
cant (F(2, 54) = 12.45, p < .001, R2 = .32, R2

Adjusted = .29). However, whereas Buffardi’s analysis
found that Relative Commit Share was the significant predictor in the model, we found that
both Relative Line Change Share (Beta = .51, t(56) = 4.43, p < .001) and Relative Story Point
Share (Beta = .24, t(56) = 2.03, p < .05) were the significant predictors.

To complete our replication of Buffardi’s analyses, we conducted a multiple regression
analysis to examine if Relative Commit Share, Relative Line Change Share, Relative Story
Share, CATME Peer Contribution Rating and CATME Interaction Rating predict Project

Figure 1. Graphical summary of objective (a-d) and subjective (e-h) measures by team and individual.

COMPUTER SCIENCE EDUCATION 345

Grade. Again, as in the Buffardi study, our model was significant (F(1, 60) = 15.94, p < .001,
R2 = .21, R2

Adjusted = .20). However, whereas Buffardi identified the (subjective) CATME Peer
Contribution Rating as the significant predictor, we found that the (objective) Relative
Commit Share significantly predicted project grade (Beta = .46, t(61) = 3.99, p < .001).

Figure 1. Continued.

346 C. D. HUNDHAUSEN ET AL.

To address RQ 1, Table 7 summarizes the results of our correlational and regression
analyses vis-a-vis Buffardi’s findings. As the table illustrates, our study replicated all but
one of Buffardi’s five significant findings.

To address RQ2, we observe that Table 6 reveals several additional significant
correlations that were not found in Buffardi’s study. Whereas Buffardi identified just
two significant correlations between the four (objective) GitHub metrics and the four
subjective measures, our results identify statistically reliable, weak to moderate
strength associations (.19 ≤ rp ≤ .46) in 10 of the 16 possible objective-subjective
variable pairs (see shaded area of Table 6)

● Relative Commit Share, Relative Line Change Share, and Relative Story Share are all
significantly correlated with Peer Contribution Rating, Peer Interaction Rating, and
Project Grade.

● Relative Story Point Share is significantly correlated with Individual grade.

Discussion

Our study replicated most of Buffardi’s key results. It also detected more significant
associations between subjective and objective metrics than Buffardi’s study, identifying
10 of 16 (63%) of the possible associations. This was likely due to having a sample size
nearly three times larger than Buffardi’s, thus providing the statistical power necessary to
be sensitive to these correlations. Prior to running our study, we conducted a power
analysis using G*Power (Faul et al., 2007). Using a near moderate target effect size of
0.25, an alpha value of 0.05 and a power of 0.80, the analysis indicated that a sample size of
97 students would be needed to attain this effect size. As predicted, our sample size of 118
students proved adequate to detect statistically significant correlations of weak to moder
ate strength. It was likely the case that Buffardi’s original sample size of 41 was simply not
large enough to reliably detect these correlations. With a larger sample size, we suspect
Buffardi would have detected more significant relationships among these variables.

When attempting to replicate a pedagogical approach such as team software devel
opment projects, educators need to be sensitive to implementation fidelity (Meyers &
Brandt, 2015): the extent to which the pedagogical approach implemented in the replica
tion course matches the approach implemented in the original course. Research shows

Table 6. Descriptive statistics and correlations for study variables.
Variable M SD RCS RLCS RSS RSPS PCR PIR PG IG

RCS 1.00 .813 –
RLCS 1.00 1.054 .79** –
RSS 1.82 1.394 .37** .42** –
RSPS 1.00 .742 .33* .31* .59** –
PCR 4.05 .724 .46** .41** .31** .38 –
PIR 4.13 .688 .33** .29** .19* −.08 .92** –
PG 82.00 13.792 .46** .37** .27* – .38** .29* –
IG 88.96 21.350 .09 .03 .14 .46** .29** .23* .30* –

Note: M and SD represent means and standard deviations. RCS = Relative Commit Share; RLCS = Relative Line Change
Share; RSS = Relative Story Share; RSPS = Relative Story Point Share; PCR = CATME Peer Contribution Rating;
PIR = CATME Peer Interaction Rating; PG = Project Grade; IG = Individual Grade. * indicates p < .05. ** indicates
p < .01. Shaded region highlights correlations between objective and subjective variables.

COMPUTER SCIENCE EDUCATION 347

that poor implementation fidelity can lead to inconsistent results when evaluating
a pedagogical approach. While Buffardi’s original course and the courses included in
this replication study had in common a multi-week team software development project,
there were many notable differences in the details of implementing the project in these
courses. For example, Buffardi’s project spanned an entire semester, whereas our replica
tion projects spanned just a few weeks. Likewise, the evaluation criteria for the projects
varied widely across implementations (see, Table 2), as did the implementation tasks in
the projects themselves.

Despite the poor implementation fidelity of the software development projects con
sidered in this study, we were still able to replicate most of Buffardi’s significant results, as
well as to identify an even larger set of significant correlations within three different
courses at three different universities. The fact that these correlations were present in
a sample that included different courses, universities, and project implementations is
encouraging; it suggests that they may generalize to a broader population.

In addition, the fact that we were able to identify 10 of 16 possible significant correla
tions between subjective and objective measures runs counter to Buffardi’s hunch that
the “halo effect” (Schneider et al., 2011) may have played a role in teammates’ ratings of
each other. In our study, students’ peer evaluations, as well as instructors’ evaluations of
students’ project work, were well aligned with objective measures of students’ software
development activities. Given this, we wonder whether students might base their peer
evaluations in part on an awareness of their teammates’ GitHub activities. Indeed, further
exploration of the basis of student perceptions of their teammates’ contributions would
be an interesting direction for future work.

Along these same lines, we wonder whether Buffardi’s GitHub metrics provide valid
measurements of a team member’s contribution and value to a software team. One
possibility that Buffardi did not discuss, but that seems relevant to this investigation, is
that individuals could provide valuable contributions to a software project through
activities that are not registered through GitHub. For instance, perhaps a team member
takes a leadership role by coordinating daily check-in meetings, summarizing the results,
and following up with team members regarding their progress. While these activities have
value for the team, they may not take place in GitHub. This observation underscores the

Table 7. Summary of our replication of buffardi’s main findings.
Buffardi Significant Result Our Result Replicated?

Relative Commit Share was significantly
correlated with contribution rating

Relative Commit Share was significantly correlated with peer
contribution rating (p < .001). The strength of the
correlation was moderate (rp = .46).

✓

Relative Commit Share was a significant
predictor of Peer Contribution Rating

Relative Commit Share was not a significant predictor of Peer
Contribution Rating (Beta = .20, t(56) = 1.29, p = .201).
Instead, we found that Relative Line Change Share and
Relative Story Point Share were significant predictors.

❌

Relative Story Share was significantly
correlated with Project Grade

Relative Story Share was significantly correlated with Project
Grade (p = .002). The strength of the correlation was
moderate (rp = .39).

✓

Peer Contribution Rating and Peer
Interaction Rating were significantly
correlated

Peer Contribution Rating was significantly correlated with
Peer Interaction Rating (p < .001). The strength of the
correlation was high (rp = .92).

✓

Individual Grade and Project Grade were
significantly correlated

Individual Grade was significantly correlated with project
Grade (p = .017). The strength of the correlation was
moderate (rp = .32).

✓

348 C. D. HUNDHAUSEN ET AL.

inherent limitations of using coding activities in GitHub as a means of measuring indivi
dual contributions. Clearly, we need to consider additional data, both inside of GitHub
(e.g. issue writing and Kanban board activities), and outside of it (e.g. team communica
tion and coordination).

Confounds and threats to validity

Our study is subject to several confounds and threats to validity:

● Instructor bias. The instructors of the courses involved in the study were also the
authors of this paper. Since they were privy to the design of this research, their
teaching of the course may have biased the results. Clearly, a better approach
would be to study courses whose instructors are not involved in the design of the
research.

● Variations in pedagogy implementation. As mentioned in the above discussion,
our study considered different courses taught by different instructors at differ
ent institutions. There were significant variations in the ways in which the
collaborative software development project was implemented across the
courses. These variations contributed to differences in students’ team project
performance and collaboration, as well as to differences in the data we were
able to collect in each course. One notable difference was that, in the UCSB
course, the teaching personnel assigned story points to each issue, whereas the
students themselves assigned points to issues in the WSU and HSU courses. As
was the case in the original Buffardi study, we found that students often forgot
to assign story points, leading to our inability to analyze the story point data in
the WSU and HSU courses

● Variations in projects. Our study focused on team software development projects in
which each student team works on a different project or a different piece of a project.
Projects necessarily varied with respect to their level of difficulty, the opportunities
they afforded for collaboration, and other dimensions. While improving the external
validity of our study, these differences across software projects may have influenced
the extent to which student perceptions captured through the CATME survey
aligned with performance metrics derived through GitHub data.

● Variations in teams. In the WSU and HSU courses, teams were formed based on
individuals’ common interests in the available projects. In contrast, in the UCSB
course, students were assigned to teams based on a team formation process that
prioritized (a) ensuring women were on teams with at least one other woman, and
(b) ensuring students were on teams with others in the same time zone. Variations in
team composition and aptitude could have certainly influenced team performance
and collaboration. By studying a broad range of teams and projects, this study aimed
to mitigate this potential confound.

COMPUTER SCIENCE EDUCATION 349

Summary, conclusions and future work

Team software development projects play a valuable role in computing education by
providing computing students with authentic learning experiences. However, assessing
individual performance in such projects is challenging, and often relies exclusively on
subjective measures such as peer and instructor evaluation. Buffardi (2020) explored the
possibility that objective measures of individual performance might enhance the subjec
tive measures traditionally used to assess individual performance. His main result proved
discouraging: Objective measures derived from GitHub log data yielded assessments that
tended to be inconsistent with more traditional subjective assessments.

In this study, we set out to test the robustness of Buffardi’s findings through a larger
scale replication involving multiple software engineering courses at three different uni
versities. While replicating all but one of Buffardi’s significant findings, our study detected
ten of 16 possible significant positive correlations between objective and subjective
measures – eight more than Buffardi’s original study. In demonstrating that objective
measures derived from GitHub log data align with traditional peer and instructor evalua
tion, our work contributes an empirical foundation for more valid and comprehensive
assessment strategies that incorporate both objective and subjective data.

While incorporating objective data into the assessment of individual performance in team
software projects appears promising, one needs to keep in mind the limitations of the
objective data considered in this work. As we have argued, GitHub data on students’
commits, line changes, and issue involvement cannot tell a complete story about an
individual’s value or contribution to a team. Team members may take on roles and tasks
that add value to a team without being directly involved in writing code. In future work, we
would like to obtain a more nuanced understanding of individual student contributions by
considering log data on a broader range of GitHub activities, including writing issues,
updating and commenting on issues, participating in code reviews, and moving issues within
a Kanban board. All of these tasks can make potentially valuable contributions to a team and
are readily traceable through GitHub. In addition, we would like to consider individuals’
communication and coordination activities in the online chat tools (e.g. Slack, Discord,
Microsoft Teams) commonly used in collaborative software development. We have in fact
collected such data as part of this work and are eager to incorporate it into future analyses.

Another aspect of individual performance not considered in this work is the quality of
students’ GitHub artifacts. In fact, in prior work (Hundhausen et al. 2021), we developed
principled metrics for assessing the quality of issues, commit messages, and overall
software product quality. In the future, we would like to explore correlations between
these and other quality metrics and the GitHub metrics considered in this study.

Finally, while this work focused on using objective GitHub data as a basis for summative
assessment, in future work we would like to explore the value of using GitHub data as
a basis for formative assessment. To that end, we are developing visual analytics dashboards
(e.g. Verbert et al., 2014) that present metrics that student software development teams
and their instructors can use to dynamically monitor team processes and progress. We
suspect that the greatest value of GitHub measures such as the ones explored in this work
may lie not in their ability to more accurately assign grades, but in their ability to stimulate
individual and team reflection and discussion on software development processes and pro
gress. If students and teams are given the tools to monitor and reflect on their processes

350 C. D. HUNDHAUSEN ET AL.

and progress relative to best practices, they should be in a better position to make course
corrections that enable them to improve their individual and team performance.

Acknowledgments

This research is supported by the National Science Foundation under grant no. DUE 1915196. We
are grateful to all our student participants who consented to share their data for research purposes,
and to Kevin Buffardi for supplying us with additional data from his study and helping us to better
understand what he did.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Science Board [DUE 1915196]; National Science
Foundation [DUE 1915196]; National Science Foundation [DUE 1915196]; National Science
Foundation [DUE 1915196].

ORCID

O. Adesope http://orcid.org/0000-0003-0620-500X

References

Abikoff, H., Courtney, M., Pelham, W. E., & Koplewicz, H. S. (1993). Teachers’ ratings of disruptive
behaviors: the influence of halo effects. Journal of Abnormal Child Psychology, 21(5), 519–533.
https://doi.org/10.1007/BF00916317

About issues. (n.d.). GitHub Docs. Retrieved November 19, 2021, https://docs.github.com/en/issues/
tracking-your-work-with-issues/about-issues

ACM/IEEE Joint Task Force on Computing Curricula. (2013). Computer science curricula 2013: curri
culum guidelines for undergraduate degree programs in computer science (p. 518). ACM and IEEE
Computer Society. https://doi.org/10.1145/2534860

Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18
(3), 91–93. https://doi.org/10.1016/j.tjem.2018.08.001 PubMed

Begel, A., & Simon, B. (2008). Struggles of new college graduates in their first software development
job. SIGCSE Bull, 40(1), 226–230. https://doi.org/10.1145/1352322.1352218

Braught, G., Maccormick, J., Bowring, J., Burke, Q., Cutler, B., Goldschmidt, D., Krishnamoorthy, M.,
Turner, W., Huss-Lederman, S., Mackellar, B., & Tucker, A. (2018). A multi-institutional perspective
on H/FOSS projects in the computing curriculum. ACM Transactions on Computing Education
(TOCE), 18(2), 1–31. https://doi.org/10.1145/3145476

Bruegge, B., Krusche, S., & Alperowitz, L. (2015). Software engineering project courses with industrial
clients. ACM Transactions on Computing Education (TOCE), 15(4), 1–31. https://doi.org/10.1145/
2732155

Buffardi, K. (2020). Assessing individual contributions to software engineering projects with Git Logs
and user stories. Proceedings of the 51st ACM technical symposium on computer science education
(pp. 650–656). New York: ACM. https://doi.org/10.1145/3328778.3366948

COMPUTER SCIENCE EDUCATION 351

https://doi.org/10.1007/BF00916317
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://doi.org/10.1145/2534860
https://doi.org/10.1016/j.tjem.2018.08.001
https://doi.org/10.1145/1352322.1352218
https://doi.org/10.1145/3145476
https://doi.org/10.1145/2732155
https://doi.org/10.1145/2732155
https://doi.org/10.1145/3328778.3366948

Buffardi, K., Robb, C., & Rahn, D. (2017). Learning agile with tech startup software engineering
projects. Proceedings of the 2017 ACM conference on innovation and technology in computer
science education (pp.28–33). New York: ACM. https://doi.org/10.1145/3059009.3059063

Build software better, together. (n.d.). GitHub. Retrieved December 29, 2021, https://github.com
Campbell, D. T. (1979). Assessing the impact of planned social change. Evaluation and Program

Planning, 2(1), 67–90. https://doi.org/10.1016/0149-7189(79)90048-X
catme.org. (2021). Welcome to CATME - smarter teamwork. CATME. https://info.catme.org/
catme.org. (n.d.). Peer Evaluation. Retrieved December 29, 2021, https://www.catme.org/help/stu

dent/student3.html
Clark, N., Davies, P., & Skeers, R. (2005). Self and peer assessment in software engineering projects.

Proceedings of the 7th australasian conference on computing education - volume 42 (pp. 91–100).
New York: ACM. https://dl.acm.org/doi/10.5555/1082424.1082436

Clear, T. (2009). Thinking issues: the three p’s of capstone project performance. ACM SIGCSE Bulletin,
41(2), 69–70. https://doi.org/10.1145/1595453.1595468

Craig, M., Conrad, P., Lynch, D., Lee, N., & Anthony, L. (2018). Listening to early career software
developers. Journal of Computing Science and Engineering Coll, 33(4), 138–149. https://dl.acm.org/
doi/10.5555/3199572.3199591

Devadiga, N. M. (2017). Software engineering education: converging with the startup industry. 2017
IEEE 30th Conference on Software Engineering Education and Training (CSEE&T), 192–196. https://
doi.org/10.1109/CSEET.2017.38

Domínguez, C., Jaime, A., García-Izquierdo, F. J., & Olarte, J. J. (2020). Factors considered in the
assessment of computer science engineering capstone projects and their influence on discre
pancies between assessors. ACM Transactions on Computing Education, 20(2), 14:1–14:23. https://
doi.org/10.1109/CSEET.2017.38

Ellis, H. J., & Hislop, G. W. (2016). Pathways to student learning within HFOSS. Proceedings of the 17th
annual conference on information technology education, 168.

Exter, M. (2014). Comparing educational experiences and on-the-job needs of educational software
designers. Proceedings of the 45th ACM technical symposium on computer science education,
355–360. https://doi.org/10.1145/2538862.2538970

Fagerholm, F., & Vihavainen, A. (2013). Peer assessment in experiential learning assessing tacit and
explicit skills in agile software engineering capstone projects. 2013 IEEE frontiers in education
conference (FIE) (pp. 1723–1729). Piscataway, NJ: IEEE. https://doi.org/10.1109/FIE.2013.6685132

Farrell, V., Ravalli, G., Farrell, G., Kindler, P., & Hall, D. (2012). Capstone project: fair, just and
accountable assessment. Proceedings of the 17th ACM annual conference on innovation and
technology in computer science education (pp.168–173). New York: ACM. https://doi.org/10.
1145/2325296.2325339

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis
program for the social, behavioral, and biomedical sciences. Berhavior Research Methods, 39(2),
175–191. https://doi.org/10.3758/BF03193146

Garousi, V., Petersen, K., & Ozkan, B. (2016). Challenges and best practices in industry-academia
collaborations in software engineering: A systematic literature review. Information and Software
Technology, 79, 106–127. https://doi.org/10.1016/j.infsof.2016.07.006

GitHub.com. (2021a). About issues. GitHub Docs. https://docs.github.com/en/issues/tracking-your-
work-with-issues/about-issues

GitHub.com. (2021b). About project boards. GitHub Docs. https://docs.github.com/en/issues/organiz
ing-your-work-with-project-boards/managing-project-boards/about-project-boards

GitHub.com. (2021c). About pull requests. GitHub Docs. https://docs.github.com/en/pull-requests
/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-
pull-requests

Herbert, N. (2007). Quantitative Peer Assessment: Can students be objective. Proceedings of the 9th
Australasian Computing Education Conference (ACE2007). 30 Jan–2 Feb 2007. Ballarat, Victoria.
https://eprints.utas.edu.au/4889/

352 C. D. HUNDHAUSEN ET AL.

https://doi.org/10.1145/3059009.3059063
https://github.com
https://doi.org/10.1016/0149-7189(79)90048-X
https://info.catme.org/
https://www.catme.org/help/student/student3.html
https://www.catme.org/help/student/student3.html
https://dl.acm.org/doi/10.5555/1082424.1082436
https://doi.org/10.1145/1595453.1595468
https://dl.acm.org/doi/10.5555/3199572.3199591
https://dl.acm.org/doi/10.5555/3199572.3199591
https://doi.org/10.1109/CSEET.2017.38
https://doi.org/10.1109/CSEET.2017.38
https://doi.org/10.1109/CSEET.2017.38
https://doi.org/10.1109/CSEET.2017.38
https://doi.org/10.1145/2538862.2538970
https://doi.org/10.1109/FIE.2013.6685132
https://doi.org/10.1145/2325296.2325339
https://doi.org/10.1145/2325296.2325339
https://doi.org/10.3758/BF03193146
https://doi.org/10.1016/j.infsof.2016.07.006
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://docs.github.com/en/issues/organizing-your-work-with-project-boards/managing-project-boards/about-project-boards
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://eprints.utas.edu.au/4889/

Herbert, N. (2018). Reflections on 17 years of ICT capstone project coordination: effective strategies
for managing clients, teams and assessment. Proceedings of the 49th ACM technical symposium on
computer science education (pp. 215–220). New York: ACM. https://doi.org/10.1145/3159450.
3159584

Hewner, M., & Guzdial, M. (2010). What game developers look for in a new graduate: interviews and
surveys at one game company. Proceedings of the 41st ACM technical symposium on computer
science education (pp. 275–279). New York: ACM. https://doi.org/10.1145/1734263.1734359

Hundhausen, C. D., Carter, A. C., Conrad, P., Tariq, A., & Adesope, O. (2021). Evaluating Commit, Issue
and Product Quality in Team Software Development Projects. Proceedings of the 51st ACM
Technical Symposium on Computer Science Education (pp. 108–114). New York: ACM. https://doi.
org/10.1145/3408877.3432362

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D. (2014). The promises
and perils of mining GitHub. Proceedings of the 11th working conference on mining software
repositories (pp. 92–101). New York: ACM. https://doi.org/10.1145/2597073.2597074

Latané, B., Williams, K., & Harkins, S. (1979). Many hands make light the work: the causes and
consequences of social loafing. Journal of Personality and Social Psychology, 37(6), 822. https://doi.
org/10.1037/0022-3514.37.6.822

Layton, R., Ohland, M., & Pomeranz, H. (2007). Software for student team formation and peer
evaluation: CATME incorporates team-maker. Faculty Publications - Mechanical Engineering.
https://scholar.rose-hulman.edu/mechanical_engineering_fac/485

Mead, N. R. (2015). Industry/university collaboration in software engineering education: refreshing
and retuning our strategies. Proceedings of the 37th international conference on software engineer
ing - volume 2 (pp. 273–275). Piscataway, NJ: IEEE.

Meyers, C. V., & Brandt, W. C. (Eds.). (2015). Implementation fidelity in education research: designer and
evaluator considerations. Routledge.

Murphy, C., Buffardi, K., Dehlinger, J., Lambert, L., & Veilleux, N. (2017). Community engagement with
free and open source software. Proceedings of the 2017 ACM SIGCSE technical symposium on
computer science education (pp. 669–670). New York: ACM.

Murphy, C., Sheth, S., & Morton, S. (2017). A two-course sequence of real projects for real customers.
Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education (pp. 417–
422). New York: ACM. https://doi.org/10.1145/3017680.3017742

Ohland, M. W., Loughry, M. L., Carter, R. L., Bullard, L. G., Felder, R. M., Finelli, C. J., Layton, R. A., &
Schmucker, D. G. (2005). Developing a peer evaluation instrument that is simple, reliable, and
valid. In 4th ASEE/aaee global colloquium on engineering education (pp. 302). Washington, DC:
American Socieity for Enginnering Education.

Ohland, M. W., Loughry, M. L., Woehr, D. J., Bullard, L. G., Felder, R. M., Finelli, C. J., Layton, R. A.,
Pomeranz, H. R., & Schmucker, D. G. (2012). The comprehensive assessment of team member
effectiveness: development of a behaviorally anchored rating scale for self-and peer evaluation.
Academy of Management Learning & Education, 11(4), 609–630. https://doi.org/10.5465/amle.
2010.0177

Parker, H., & Holcombe, M. (1999). Campus-based industrial software projects: risks and rewards.
Proceedings of the 4th annual SIGCSE/SIGCUE ITiCSE conference on innovation and technology in
computer science education (pp. 189). New York: ACM.

Pinto, G., Ferreira, C., Souza, C., Steinmacher, I., & Meirelles, P. (2019). Training software engineers
using open-source software: the students’ perspective. 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET)
(pp. 147–157). Piscataway, NJ: IEEE.

Pinto, G. H. L., Figueira Filho, F., Steinmacher, I., & Gerosa, M. A. (2017). Training software engineers
using open-source software: the professors’ perspective. 2017 IEEE 30th conference on software
engineering education and training (CSEE&T) (Piscataway, NJ: IEEE), 117–121.

Radigan, D. (n.d.). What are story points and how do you estimate them? atlassian. Retrieved
December 29, 2021, https://www.atlassian.com/agile/project-management/estimation

Rehkopf, M. (n.d.). User stories | examples and template. Atlassian. Retrieved December 29, 2021,
https://www.atlassian.com/agile/project-management/user-stories

COMPUTER SCIENCE EDUCATION 353

https://doi.org/10.1145/3159450.3159584
https://doi.org/10.1145/3159450.3159584
https://doi.org/10.1145/1734263.1734359
https://doi.org/10.1145/3408877.3432362
https://doi.org/10.1145/3408877.3432362
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1037/0022-3514.37.6.822
https://doi.org/10.1037/0022-3514.37.6.822
https://scholar.rose-hulman.edu/mechanical_engineering_fac/485
https://doi.org/10.1145/3017680.3017742
https://doi.org/10.5465/amle.2010.0177
https://doi.org/10.5465/amle.2010.0177
https://www.atlassian.com/agile/project-management/estimation
https://www.atlassian.com/agile/project-management/user-stories

Saltz, J. S., & Heckman, R. R. (2018). A scalable methodology to guide student teams executing
computing projects. ACM Transactions on Computing Education, 18(2), 1–9. https://doi.org/10.
1145/3145477

Schneider, F. W., Gruman, J. A., & Coutts, L. M. (2011). Applied Social Psychology: Understanding and
Addressing Social and Practical Problems. Thousand Oaks, CA: SAGE.

Sherriff, M., & Heckman, S. (2018). Capstones and Large Projects in Computing Education. ACM Trans.
Comput. Educ, 18(2), 2. https://doi.org/10.1145/3229882

Smith, T. M., McCartney, R., Gokhale, S. S., & Kaczmarczyk, L. C. (2014). Selecting open source
software projects to teach software engineering. Proceedings of the 45th ACM technical sympo
sium on computer science education (New York: ACM), 397–402. https://doi.org/10.1145/2538862.
2538932

Sutherland, J. (2018, July 17). Performance appraisals update. Scrum Inc. https://www.scruminc.com/
performance-appraisals/

Tafliovich, A., Petersen, A., & Campbell, J. (2015). On the evaluation of student team software
development projects. Proceedings of the 46th ACM technical symposium on computer science
education (pp. 494–499). New York: ACM. https://doi.org/10.1145/2676723.2677223

Van den Bergh, L., Denessen, E., Hornstra, L., Voeten, M., & Holland, R. W. (2010). The implicit
prejudiced attitudes of teachers: Relations to teacher expectations and the ethnic achievement
gap. American Educational Research Journal, 47(2), 497–527. https://doi.org/10.3102/
0002831209353594

Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2014). Learning
dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing,
18, 1499–1514. https://doi.org/10.1007/s00779-013-0751-2

von Konsky, B. R., & Ivins, J. (2008). Assessing the capability and maturity of capstone software
engineering projects. Proceedings of the tenth conference on australasian computing education -
volume 78 (pp. 171–180). Australia: Australian Computer Society.

354 C. D. HUNDHAUSEN ET AL.

https://doi.org/10.1145/3145477
https://doi.org/10.1145/3145477
https://doi.org/10.1145/3229882
https://doi.org/10.1145/2538862.2538932
https://doi.org/10.1145/2538862.2538932
https://www.scruminc.com/performance-appraisals/
https://www.scruminc.com/performance-appraisals/
https://doi.org/10.1145/2676723.2677223
https://doi.org/10.3102/0002831209353594
https://doi.org/10.3102/0002831209353594
https://doi.org/10.1007/s00779-013-0751-2

	Abstract
	Introduction
	Related work
	Methods
	Courses and Team Projects
	Participants
	Data collection and measures
	Preregistration

	Results
	Summary of team activities in GitHub
	Summary of GitHub, peer evaluation, and grade measures
	Correlational analysis

	Discussion
	Confounds and threats to validity

	Summary, conclusions and future work
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

