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Abstract
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1 Introduction

The notion of secure multi-party computation allows m mutually distrustful parties to securely
compute (or, realize) a functionality f(x̄) of their corresponding private inputs x̄ = x1, ..., xm, such
that party Pi receives the ith component of f(x̄). Loosely speaking, the security requirements
are that the output of each party is distributed according to the prescribed functionality—this
is called correctness—and that even malicious parties learn nothing more from the protocol than
their prescribed output—this is called privacy. These properties should hold even in case that an
arbitrary subset of the parties maliciously deviates from the protocol.

Soon after the concept was proposed [Yao86], general constructions were developed that ap-
peared to satisfy the intuitive correctness and secrecy for practically any multi-party functionality
[Yao86, GMW87]. These constructions require only authenticated communication and can use any
enhanced trapdoor permutation. However, definitions that capture the security properties of se-
cure multi-party computation protocols (and, in fact, of secure cryptographic protocols in general)
took more time to develop. Here, the simulation paradigm emerged as a natural approach: Orig-
inally developed for capturing the security of encryption and then extended to Zero-Knowledge
[GM84, GMR89]. The idea is to say that a protocol π securely realizes f if running π “emu-
lates” an idealized process where all parties secretly provide inputs to an imaginary trusted party
that computes f and returns the outputs to the parties; more precisely, any “harm” done by a
polynomial-time adversary in the real execution of π, could have been done even by a polynomial-
time adversary (called a simulator) in the ideal process. The simulation paradigm provides strong
security guarantees: It ensures that running the protocols is “as good as” having a trusted third
party computing the functionality for the players, and an adversary participating in the real execu-
tion of the protocols does not gain any “computational advantage” over the simulator in the ideal
process (except from polynomial time advantage). We call this definition basic security.

The original setting in which secure multi-party protocols were investigated, however, only
allowed the execution of a single instance of the protocol at a time; this is the so called stand-alone
setting. A more realistic setting, is one which allows the concurrent execution of protocols. In the
concurrent setting, many protocols are executed at the same time. This setting presents a new risk
of a “coordinated attack” in which an adversary interleaves many different executions of a protocol
and chooses its messages in each instance based on other partial executions of the protocol. To
prevent coordinated attacks, we require the following basic security guarantee:

Concurrent Security: The security properties, correctness and privacy, of the ana-
lyzed protocol should remain valid even when if multiple instance of the protocol are
concurrently executed in a potentially unknown environment.

Another natural desideratum is the capability of supporting modular design of secure protocols.

Modular analysis: The notion of security should support designing composite pro-
tocols in a modular way, while preserving security. That is, there should be a way to
deduce security properties of the overall protocol from security properties of its compo-
nents. This is essential for asserting security of complex protocols.

Unfortunately, these properties are not implied by the basic security. In the literature, the
strongest and also the most realistic formalization of concurrent security is the notion of Univer-
sal Composability (UC) [Can01]: It considers the concurrent execution of an unbounded number
of instances of the analyzed protocol, in an arbitrary, and adversarially controlled, network en-
vironment. It also supports modular analysis of protocols. But, these strong properties come
at a price: Many natural functionalities cannot be realized with UC security in the plain model,
where players only have access to authenticated communication channels; some additional trusted
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set-up is necessary [CF01, CKL03]; furthermore, the need for additional trusted set up extends to
any protocol that only guarantees a concurrent extension of basic security [Lin04]. A large body of
works (e.g. [CLOS02, BCNP04, KLP05, CPS07, GO07, Kat07, CDPW07]) have shown that indeed,
with the appropriate trusted set-ups, UC-security becomes feasible. However, in many situations,
trusted set-up is hard to come by (or at least expensive). It is thus important to have a notion of
concurrent security that can be achieved in the plain model.

Concurrent Security in the Plain model. Security with super-polynomial simulators (SPS) [Pas03a]
is a relaxation of UC security that allows the adversary in the ideal execution to run in super-
polynomial time. Informally, this corresponds to guaranteeing that “any polytime attack that can
be mounted against the protocol can also be mounted in the ideal execution—albeit with super-
polynomial resources.” Although SPS security is sometimes weaker than basic security, it often
provides an adequate level of security. In constrast to basic security, however, SPS directly consid-
ers security in the concurrent setting. Protocols that realize practically any functionality with SPS
security in the plain model were shown based on sub-exponential hardness assumptions [Pas03a,
BS05, LPV09]. Very recently, improved constructions are presented [CLP10, GGJS12, LPV12] that
are based on only standard polynomial-time hardness assumptions.

One drawback of SPS security that it is not closed under composition; thus it is not a convenient
basis for modular analysis of protocols. Angel-based UC security [PS04] is a framework for notions
of security that provides similar security guarantees as SPS and at the same supports modular
analysis. Specifically, angel-based security considers a model where both the adversary and the
simulator have access to an oracle (an “angel”) that allows some judicious use of super-polynomial
resources. Since the angels can be implemented in super-polynomial time, for any angel, angel-based
security implies SPS security. Furthermore, akin to UC security, angel-based UC security, with any
angel, can be used as a basis for modular analysis. Prabhakaran and Sahai [PS04] exhibited an angle
with respect to which practically all functionalities can be securely realized; later another angle is
given by [MMY06]; both constructions, however, rely on some non-standard hardness assumptions.

Recently, Canetti, Lin and Pass [CLP10] proposed a new notion of security, called UC with
super-polynomial time helpers. This notion is very similar to the angel-based security where both
the adversary and the simulator have access to a helper that provides some super-polynomial time
help through a limited interface. Like angel-based security, UC security with super-polynomial
time helpers implies SPS security. But, unlike angel-based security where angels are basically non-
interactive and stateless, the helpers are highly interactive and stateful. Canetti, Lin and Pass
[CLP10] then constructed protocols that realize practically all functionalities with respect to a par-
ticular super-polynomial-time interactive helper, based on the existence of trapdoor permutations.

Summarizing the state-of-the-art, there are constructions [CLP10, GGJS12, LPV12] of protocols
satisfying a meaningful notion of concurrent security—SPS security—in the plain model based on
standard polynomial time hardness assumptions. Furthermore, the construction of [CLP10] also
supports modular analysis (the constructions of [GGJS12, LPV12] are better in terms of round-
complexity—they only require a constant number of communication rounds—but they only acheives
“non-composable” SPS security).

However, all these constructions are non-black-box, that is, the constructed protocols make non-
black-box use of the underlying primitives. In fact, these constructions all follow the ”Feige-Shamir”
paradigm [FS90]: The protocols contain “trapdoors” embedded into the messages of the protocol,
allowing a super-polynomial time simulator to extract the trapdoor and simulate messages in the
protocol by ”proving that it knows the trapdoor”. In general, protocols following this approach
seems hard to turn into a ”practical” protocol for secure computations; as such, there result should
only be viewed as “feasibility results” regarding concurrent secure computation without set-up, but
not candidates for practical purposes.

In contrast, black-box constructions that only use the underlying primitives through their in-
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put/output interfaces, are often much more efficient and are more suitable for implementation.
Therefore, a series of recent works [DI05, IKLP06, IPS08, LP07, Wee10, Goy11] have focused on
constructing black-box construction of secure computation protocols, as an important step towards
bringing secure multi-party computation closer to the practice. However, their constructions are
all in either the stand-alone setting or rely on strong trusted set-ups (e.g., trusted hardware). This
leaves open the following basic question:

Can we obtain a black-box construction of concurrently secure protocols in the plain
model (preferrably based only standard polynomial-time assumptions)?

Can we have such a black-box construction that also satisfies a notion of security sup-
porting composability?

1.1 Our Results

We present a black-box construction of protocols that satisfy UC security with super-polynomial
time helper for a specific helper, based on the existence of a stand-alone semi-honest oblivious
transfer (OT) protocols; that is, the weakest possible assumption. The framework of UC with
super-polynomial time helper of [CLP10] is formalized through the extended UC (EUC) framework
of [CDPW07]; it is identical to the standard UC model [Can00] except that the corrupted parties
(and the environement) have access to an additional super-polynomial time entityH, called a helper
functionality.

Main Theorem (Informally Stated): Assume the existence of stand-alone semi-honest oblivious
transfer protocols. Then there exists a sub-exponential-time computable interactive machine H such
that for any “well-formed” polynomial-time functionality F , there exists a protocol that realizes F
with H-EUC security, in the plain model. Furthermore, the protocol makes only black-box calls to
the underlying oblivious transfer protocol.

As far as we know, this is the first black-box construction of secure multi-party computation
protocols that achieve any non-trivial notion of concurrent security in the plain model (without
any trusted-set up, and without assuming an honest majority).

The main technical tool used in our construction is a new notion of a commitment that is
secure against adaptive chosen commitment attack (CCA security). The notion of CCA secure
commitments was previously introduced in [CLP10]. Roughly speaking, a tag-based commitment
scheme (i.e., commitment scheme that take an identifier—called the tag—as an additional input)
is said to be CCA-secure if the value committed to using the tag id remains hidden even if the
receiver has access to a (super-polynomial time) oracle that “breaks” commitments using any tag
id′ 6= id, where by breaking, it means the oracle returns a decommitment of the commitment. Thus
the oracle is called a decommitment oracle. In [CLP10], a commitment scheme that is CCA-secure
w.r.t. a decommiment oracle is constructed based on the minimal assumption of one-way functions.
However, their construction is non-black-box. In this work, to obtain black-box secure computation
protocols, we need a new black-box construction of a CCA-secure commitment scheme. Towards
this, we weaken the notion of CCA security w.r.t. decommitment oracle to instead consider an
oracle that “breaks” commitments by returning only the unique committed value (and not the
decommitment information) of the commitments (or ⊥ if there is no unique committed value); we
call this the committed-value oracle. We then provide a black-box construction of a commitment
scheme that is CCA-secure w.r.t. the committed-value oracle.

Theorem (Informally Stated): Assume the existence of one-way functions. Then, for every
ε > 0, there exists an O(nε)-round commitment scheme that is CCA-secure w.r.t. the committed-
value oracle and only relies on black-box access to one-way functions (where n is the security
parameter).
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We next show that the notion of CCA-secure commitments intuitively is better behaved than
traditional notions of non-malleability [DDN00] in the context of black-box construction of concur-
rently secure protocol. On a very high-level (and significantly oversimplifying), CCA security of
commitment schemes allow us to deal with “cut-and-choose” techniques (typically used in black-box
constructions) in concurrent executions, while ensuring hiding of commitments in other executions.

1.2 Outline

In Section 2, we define the notion of CCA-security w.r.t. the committed-value oracle. (Notations
and definitions of basic primitives appear in Appendix A.) In Section 4, we present our black-box
robust CCA-secure commitment scheme; and provide the proof of security in Appendix B. We
recall the notion of UC security with super-polynomial time helper in Appendix C, and show how
to achieve this security notion using CCA-secure commitments in a black-box way in Section 3.

2 Definition of CCA-Secure Commitments

We assume familiarity with the definition of commitment schemes and the statistically/computational
binding and statistically/computational hiding properties. Unless specified otherwise, by a com-
mitment scheme, we mean one that is statistically binding and computationally hiding. A tag-based
commitment schemes with l(n)-bit identities [PR05, DDN00] is a commitment scheme where, in
addition to the security parameter 1n, the committer and the receiver also receive a “tag”—a.k.a.
the identity—id of length l(n) as common input.

2.1 CCA-Security w.r.t. Committed Value Oracle

Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities. A committed-value oracle
O of 〈C,R〉 acts as follows in interaction with an adversary A: it participates with A in many
sessions of the commit phase of 〈C,R〉 as an honest receiver, using identities of length l(n), chosen
adaptively by A. At the end of each session, if the session is valid, it reveals the unique committed
value of that session to A; otherwise, it sends ⊥. (If a session has multiple committed values,
the decommitment oracle also returns ⊥. The statistically binding property guarantees that this
happens with only negligible probability.) Loosely speaking, a tag-based commitment scheme
〈C,R〉 is said to be CCA-secure w.r.t. the committed-value oracle, if the hiding property of the
commitment holds even with respect to adversaries with access to the committed-value oracle O.
More precisely, denote by AO the adversary A with access to the committed-value oracle O. Let
INDb(〈C,R〉, A, n, z), where b ∈ {0, 1}, denote the output of the following probabilistic experiment:
on common input 1n and auxiliary input z, AO (adaptively) chooses a pair of challenge values
(v0, v1) ∈ {0, 1}n—the values to be committed to—and an identity id ∈ {0, 1}l(n), and receives a
commitment to vb using identity id. Finally, the experiment outputs the output y of AO; the output
y is replaced by ⊥ if during the execution A sends O any commitment using identity id (that is,
any execution where the adversary queries the decommitment oracle on a commitment using the
same identity as the commitment it receives, is considered invalid). Let

Definition 1 (CCA-secure Commitments.). Let 〈C,R〉 be a tag-based commitment scheme with
l(n)-bit identities. We say that 〈C,R〉 is CCA-secure w.r.t. the committed-value oracle, if for every
PPT ITM A, the following ensembles are computationally indistinguishable:

• {IND0(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

• {IND1(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗
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2.1.1 k-Robustness w.r.t. Committed-Value Oracle

Consider a man-in-the-middle adversary that participates in an arbitrary left interaction with a
limited number of rounds, while having access to a committed oracle. Roughly speaking, 〈C,R〉 is
k-robust if the (joint) output of every k-round interaction, with an adversary having access to the
oracle O, can be simulated without the oracle. In other words, having access to the oracle does not
help the adversary in participating in any k-round protocols much.

Definition 2. Let 〈C,R〉 be a tag-based commitment scheme with l(n)-bit identities. We say that
〈C,R〉 is k-robust w.r.t. the committed-value oracle, if there exists a simulator S, such that, for every
PPT adversary A, the following two conditions hold.

Simulation: For every PPT k-round ITM B, the following two ensembles are computationally
indistinguishable.

•
{

outputB,AO [〈B(y), AO(z)〉(1n, x)]
}
n∈N,x,y,z∈({0,1}∗)3

•
{

outputB,SA [〈B(y), SA(z)〉(1n, x)]
}
n∈N,x,y,z∈({0,1}∗)3

where outputA,B[〈B(y), A(z)〉(x)] denote the joint output of A and B in an interaction between
them, on common input x and private inputs z to A and y to B respectively, with uniformly
and independently chosen random inputs to each machine.

Efficiency: There exists a polynomial t and a negligible function µ, such that, for every n ∈ N ,
z ∈ {0, 1}∗ and x ∈ {0, 1}∗, and every polynomial T , the probability that S with oracle access

to A(z) and on input 1n, x, runs for more than T (n) steps is smaller than t(n)
T (n) + µ(n).

The following proposition shows that to construct a robust CCA-secure commitment scheme
for identities of length n, it suffices to construct one for identities of length `(n) = nε. The same
proposition is established in [CLP10] for robust CCA-security w.r.t. decommitment oracles, and
the proof there also applies to CCA-security w.r.t. committed-value oracles; we omit the proof here.

Proposition 1. Let ε be any constant such that 0 < ε < 1, ` a polynomial such that `(n) = nε, and
〈C,R〉 a k-round robust CCA-secure commitment scheme (w.r.t. the committed-value oracle) with
`-bit identities. Then assuming the existence of one-way functions, there exists a robust k+1-round
CCA-secure commitment scheme 〈Ĉ, R̂〉 (w.r.t. the committed-value oracle) with n-bit identities.

3 Black-Box UC-Secure Protocols with Super-Polynomial Helpers

We consider the model of UC with super-polynomial helper introduced in [CLP10]. At a very high-
level, this model is essentially the same as the UC-model introduced by [Can00], except that both
the adversary and the environment in the real and ideal worlds have access to a super-polynomial
time functionality that acts as a helper. A formal definition of the model is presented in Appendix C.
In this section, we show the following theorem:

Theorem 1. Let δ be any positive constant. Assume the existence of a T ′OT -round stand-alone semi-
honest oblivious transfer protocol. Then there exists a super-polynomial time helper functionality H,
such that, for every well-formed functionality1 F , there exists a O(max(nδ, T ′OT ))-round protocol Π
that H-EUC-emulates F . Furthermore, the protocol Π only uses the underlying oblivious transfer
protocol in a black-box way.

1See [CLOS02] for a definition of well-formed functionalities.
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Towards this theorem, we need to first exhibit a super-polynomial time helper functionality
H. Roughly speaking, H simply acts as the committed-value oracle of a CCA secure commitment
scheme. More precisely, consider the following two building blocks: First, given any T ′OT (n)-
round stand-alone semi-honest OT protocol, it follows from previous works [IKLP06, Hai08] that
there exists an TOT (n)-round OT protocol 〈S,R〉 that is secure against a malicious sender and
a semi-honest receiver—called mS-OT protocol for short—that only relies on black-box access to
the semi-honest OT protocol; furthermore TOT = O(T ′OT (n)). Second, we need a TOT (n)-robust
CCA-secure commitment scheme 〈C,R〉, whose committed-value oracle O can be computed in sub-
exponential time.2 As we will show in the next section (see Theorem 2), such a protocol exists with
O(max(TOT , n

δ)) = O(max(T ′OT , n
δ)) rounds, relying on the underlying OWF in a black-box way.

Since OWFs can be constructed from a semi-honest OT protocol in a black-box way. Therefore,
we have that the second building block can also be based on the semi-honest OT protocols in a
black-box way.

Consider a helper functionality H that “breaks” commitments of 〈C,R〉 in the same way as its
committed-value oracle O does, subject to the condition that player Pi in a protocol instance sid
can only query the functionality on commitments that uses identity (Pi, sid). More precisely, every
party Pi in a secure computation can simultaneously engage with H in multiple sessions of the
commit phase of 〈C,R〉 as a committer using identity Pi, where the functionality simply forwards
all the messages internally to the committed-value oracle O, and forwards Pi the committed value
returned from O at the end of each session. Since the committed-value oracle O can be computed
in sub-exponential time, this functionality can also be implemented in sub-exponential time. A
formal description of the functionality appears in Figure 6 in Appendix D.

We show that Theorem 1 holds w.r.t. the helper functionality defined above in two steps.
First, note that to realize any well-formed functionality in a black-box way, it suffices to realize
the ideal oblivious transfer functionality FOT [Rab05, EGL85]. This is because it follows from
previous works [Kil92, BOGW88, GMW91, IPS08] that every functionality can be UC securely
implemented in the FOT -hybrid model, even w.r.t. super-polynomial time environments. Based on
previous works, [CLP10] further shows that by considering only dummy adversaries and treating
environments with access to a super-polynomial functionality H as sub-exponential time machines,
we have that every functionality can be H-EUC securely implemented in the FOT model. Formally,
we have the following lemma from [CLP10].

Lemma 1. Fix any super-polynomial time functionality H. For every well-formed functionality F ,
there exists a constant-round FOT -hybrid protocol that H-EUC-emulates F .

Next we show how to implement the FOT functionality in the H-EUC model. Then combining
with Lemma 1, we conclude Theorem 1.

Lemma 2. Let δ be any positive constant. Assume the existence of a T ′OT -round semi-honest
oblivious transfer protocol. Then there exists a O(max(nδ, T ′OT ))-round protocol ΠOT that H-EUC-
emulates FOT. Furthermore, the protocol ΠOT only uses the underlying oblivious transfer protocol
in a black-box way.

3.1 Overview of the OT Protocol ΠOT

In this section we first provide an overview of our black-box construction of H-EUC secure OT
protocol ΠOT, in comparison with the black-box construction of an OT protocol secure against
both malicious players from a mS-OT protocol of [IKLP06, Hai08]. Roughly speaking, the protocol

2This can be instantiated by simply using a normal TOT -robust CCA secure commitments with an exponential
time committed value O, with a “scaled-down” security parameter.

6



of [IKLP06, Hai08], relying on a stand-alone mS-OT protocol 〈S,R〉, proceeds in the following four
stages:

Stage 1 (Receiver’s Random Tape Generation) The sender and the receiver jointly decide
the receiver’s inputs and random tapes in Stage 2 using 2n parallel “coin tossing in the well”
executions.

Stage 2 (OT with Random Inputs) The sender and the receiver perform 2n parallel OT exe-
cutions of 〈S,R〉 using random inputs (s0

j , s
1
j ) and rj respectively, where the receiver’s inputs

rj ’s (and its random tapes) are decided in Stage 1.

Stage 3 (Cut-and-Choose) A random subset Q ⊂ [2n] of n locations is chosen using a 3-round
coin-tossing protocol where the sender commits to a random value first. (Thus the receiver
knowing that random value can bias the coin-tossing output.) The receiver is then required
to reveal its randomness in Stage 1 and 2 at these locations, which allows the sender to check
whether the receiver behaved honestly in the corresponding OT executions. The randomness
of the receiver at the rest of locations remains hidden.

Stage 4 (OT Combiner) Finally, for these locations j 6∈ Q that are not open, the receiver sends
αj = u⊕cj where u is the receiver’s true input. The sender replies with β0 = v0⊕ (

⊕
j 6∈Q s

αj
j )

and β1 = v1 ⊕ (
⊕

j 6∈Q s
1−αj
j ). The honest receiver obtains s

cj
j ’s through the OT execution,

and thus can always recover vu.

At a very high-level, the protocol of [IKLP06, Hai08] augments security of the mS-OT protocol
〈S,R〉 to handle malicious receivers, by adding the cut-and-choose (as well as the random tape
generation) stage to enforce the adversary behaving honestly in most (Stage 2) OT executions.
(This is in a similar spirit as the non-black-box approach of requiring the receiver to prove that it
has behaved honestly.) Then the security against malicious receivers can be based on that against
semi-honest receivers of 〈S,R〉.

Wee [Wee10] further augmented the stand-alone security of the protocol of [IKLP06, Hai08]
to achieve parallel security, that is, obtaining a protocol that is secure against man-in-the-middle
adversaries that simultaneously acts as sender and receiver in many parallel executions. Towards
this, Wee instantiates the commitments in the coin-tossing sub-protocols of the protocol of [IKLP06,
Hai08], with ones that are satisfy a notion of “non-malleable w.r.t. extraction”. Roughly speak-
ing, non-malleability w.r.t. extraction [Wee10] is a weaker notion than non-malleability of [DDN00,
LPV08]; it guarantees that no matter what values the adversary is receiving commitments to, the
committed values extracted out of the commitments from the adversary (with over-extraction)
are indistinguishable. This guarantees that a simulator can bias the coin-tossing output by ex-
tracting the committed values from the adversary while the adversary cannot, as otherwise, by
non-malleability w.r.t. extraction, it could do so even if the honest player sends a commitment to 0
instead of its true random challenge q. However, this is impossible as in this case no information of q
is revealed. In other words, the coin-tossing protocol when instantiated with a non-malleable w.r.t.
extraction commitment becomes parallel secure, relying which Wee shows that the OT protocol
also becomes parallel secure.

Towards H-EUC-Secure OT protocols, we need to further overcome two problems.
First, we need to go from parallel security to concurrent security. In other words, we need

coin-tossing protocols that are concurrently secure. Informally speaking, non-malleability w.r.t. ex-
traction guarantees that the simulator can extract the committed values of commitments from the
adversary (to bias the output of the coin-tossing) while keeping the commitment to the adversary
hiding amid rewindings (to ensure that the adversary cannot bias the output). However, this only
holds in the parallel setting, as non-malleability only guarantees hiding of a commitment when
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values of the commitments from the adversary are extracted in parallel at the end of the execution.
But, in the concurrent setting, the simulator needs to extract the committed values from the ad-
versary in an on-line manner, that is, whenever the adversary successfully completes a commitment
the committed value is extracted. To resolve this problem, we resort to CCA-secure commitments,
which guarantees hiding of a commitment even when the committed values are extracted (via the
committed-value oracle) concurrently and immediately after each commitment. Now, instantiat-
ing the commitment scheme in the coin-tossing protocols with a CCA-secure commitment yields a
coin-tossing protocol that is concurrently secure.

The second problem is that to achieve H-EUC-security (similar to UC-security), we need to
design a protocol that admits straight-line simulation. The simulator of a OT protocol has three
tasks: It needs to simulate the messages of the honest sender and receiver, extract a choice from the
adversary when it is acting as a receiver, and extract two inputs when it is acting as a sender. To
achieve the first two tasks, the original simulation strategy in [IKLP06, Hai08, Wee10] uses rewind-
ings to breaking the non-malleable commitments from the adversary to bias coin-tossing. When
using CCA-secure commitments, the simulator can extract the committed values in a straight-line,
by forwarding the commitment from the adversary to the helper functionality H that breaks the
CCA commitments using brute force. For the last task, the original simulation strategy uses the
simulator of the mS-OT protocol 〈S,R〉 against malicious senders to extract the adversary’s inputs
sbj ’s in the Stage 3 OT executions, which then allows extraction of the real inputs v0 and v1 from
the last message. However, the simulator of the mS-OT protocol may use rewindings. To solve
this, one way is to simply assume a mS-OT protocol that has a straight-line simulator. We here
however, present a different solution.

In our protocol, the sender and the receiver participate in parallel “coin tossing in the well”
executions to decide the sender’s random inputs sbj (and random tapes) in the Stage 3 OT executions
(besides the receiver’s inputs and random tapes). Since the simulator can bias the coin-tossing in
a straight line, it can determine the sender’s inputs sbj ’s, which allows extraction of the sender’s
true inputs. For this to work, we need to make sure that a malicious sender would indeed uses
the outputs of coin-tossing as inputs in the OT executions. Towards this, we again use the cut-
and-choose technique: After the OT execution, the sender is required to reveal its randomness in
the coin-tossing and OT execution at a randomly chosen subset of locations. The cut-and-choose
technique guarantees that a malicious sender will behave consistently in most OT executions.
Therefore the simulator extracts (through the coin-tossing executions) the inputs sbj ’s correctly at
most locations. However, in the protocol of [IKLP06, Hai08, Wee10], to recover the real inputs v0

and v1, the simulator needs to obtain all sbj ’s correctly. To bridge the gap, we modify the protocol to

have the sender compute a random secret-sharing
{
abj

}
of each input vb and hide each share using

the appropriate sbj , that is, it sends abj ⊕ s
b⊕α
j for every j (that is not open in the cut-and-choose

procedures). Then, the simulator, able to extract most sbj ’s correctly, can recover enough shares
to decode to the real inputs correctly. In contrast, a malicious receiver that is enforced to behave
honestly in most OT executions by the cut-and-choose procedure, cannot obtain enough shares for
both inputs and thus can only recover one of them. Finally, we remark that as in [Wee10], to avoid
over-extraction from the secret shares, we use the technique used in [CDSMW08, CDSMW09],
which adds a another cut-and-choose procedure. A formal description of our OT protocol ΠOT

that implements FOT is provided in Figure 1; a formal proof of security of ΠOT (i.e., Lemma 2)
appears in Appendix D.1.
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OT protocol ΠOT

Inputs: The sender and receiver receive common input a security parameter 1n and private inputs (v0, v1)
and u ∈ {0, 1} respectively.

Stage 1: The sender chooses a random subset ΓR ⊆ [20n] of size n and commits to ΓR using 〈C,R〉.
The receiver chooses a random subset ΓS ⊆ [20n] of size n and another random subset Γ ⊆ [18n] of
size n; it then commits to both ΓS and Γ using 〈C,R〉.

Stage 2 (Coin-Tossing):

Receiver Random-Tape Generation: The receiver chooses 20n random strings (aR1 , . . . a
R
20n) and

commits to them using 〈C,R〉. The sender sends 20n random strings (bR1 , . . . b
R
20n). The receiver

calculates rRi = aRi ⊕ bRi for every i ∈ [20n], and interprets rRi as ci‖τRi , where ci will be used as the
receiver’s input bit, and τRi the random tape in the OT executions below.

Sender Random-Tape Generation: The sender chooses 20n random strings (aS1 , . . . a
S
20n) and commits

to them using 〈C,R〉. The receiver sends 20n random strings (bS1 , . . . b
S
20n). The sender calculates

rSi = aSi ⊕ bSi for every i ∈ [20n], and interprets rSi as s0
i ‖s1

i ‖τSi , where s0
i and s1

i will be used as the
sender’s two input bits, and τSi the random tape in the OT executions below.

Stage 3 (OT with Random Inputs): The sender and the receiver participates in 20n executions of
the OT protocol 〈S,R〉 in parallel, where the sender acts as S and the receiver acts as R. In the ith

execution of 〈S,R〉, the sender uses inputs s0
i , s

1
i and random tape rSi and the receiver uses input ci

and random tape rRi . At the end of the execution, the receiver obtains outputs s̃1 . . . s̃20n.

Stage 4 (Cut-and-Choose—Honesty Checking):

Sender Honesty Checking: The receiver opens ΓS and sender responds as follows: for every j ∈ ΓS ,
the sender opens the jth commitments of 〈C,R〉 in Stage 2 to ãSj . The receiver checks if the openings

are valid, and if for every j ∈ ΓS , the sender acted honestly in the jth OT execution according to
ãSj ⊕ bSj . The receiver aborts if not.

Receiver Honesty Checking: The sender opens ΓR and receiver responds as follows: for every j ∈ ΓR,
the receiver opens the jth commitments of 〈C,R〉 in Stage 2 to ãRj . The sender checks if the openings

are valid and if for every j ∈ ΓR, the receiver acted honestly in the jth OT execution according to
ãRj ⊕ bRj . The sender aborts if not.

Stage 5 (Combiner): Set ∆ = [20n]−ΓR−ΓS (i.e., ∆ is the set of unopened locations). For every i ∈ ∆
The receiver computes αi = u ⊕ ci and sends αi. The sender responds as follows: It computes a
10n-out-of-18n secret-sharing of v0; without loss of generality, we index shares in that secret-sharing
with elements in ∆; let the secret-sharing be ρ0 =

{
ρ0
i

}
i∈∆

. Similarly, it also computes a 10n-out-

of-18n secret-sharing ρ1 =
{
ρ1
i

}
i∈∆

for v1. Then the sender computes βbi = ρbi ⊕ s
b⊕αi
i for every

i ∈ ∆ and sends back all the βbi ’s.

The receiver after receiving all the βbi ’s, computes shares corresponding to the uth input as ρ̃i =
βui ⊕ s̃i for every i ∈ ∆, and sets ρ̃ = {ρ̃i}i∈∆.

Stage 6 (Cut-and-Choose—Consistency Checking): The receiver opens to Γ. Then for every j ∈
Γ ∩∆, the sender reveals the two inputs ŝ0

j and ŝ1
j and random tape τ̂Sj that it uses in the jth OT

execution in Stage 3. The receiver checks if the sender acts honestly according to input (ŝ0
j , ŝ

1
j ) and

random tape τ̂Sj and aborts if not.

Finally the receiver checks whether ρ̃ computed in Stage 5 is 17n-close to a valid codeword w (that

is, it agrees with w at 17n locations), and if for every j ∈ Γ ∩∆, wj is equal to βuj ⊕ ŝ
u⊕αj

j . If so it
outputs the value v encoded in w; otherwise, it aborts.

Figure 1: Our OT protocol ΠOT that implements FOT in the H-EUC model
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4 Black-Box Robust CCA-Secure Commitments

In this section, we present a black-box construction of a robust CCA-secure commitment scheme
w.r.t. committed-value oracle based on one-way functions. For simplicity of exposition, the presen-
tation below relies on a non-interactive statistically binding commitment scheme com; this can be
replaced with a standard 2-round statistically binding commitment scheme using standard tech-
niques3. Our construction makes use of previous black-box constructions of extractable commit-
ments and trapdoor commitment scheme. So let’s start by reviewing them.

Extractable Commitments Intuitively, an extractable commitment is one such that for any
machine C∗ sending a commitment, a committed value can be extracted from C∗ if the commitment
it sends is valid; otherwise, if the commitment is invalid, then no guarantee is provided, that is, an
arbitrary garbage value may be extracted. This is known as the “over-extraction” problem. (See
Appendix A.7 for a formal definition.) As shown in [PW09], the following protocol used in the
works of [DDN00, PRS02, Ros04] (also [Kil88]) yields a black-box extractable commitment scheme
ExtCom: To commit to a value v ∈ {0, 1}m, the committer and receiver on common input a security
parameter 1n, proceed as follows:

Commit: The committer finds n pairs of random shares
{
vi0, v

i
1

}
i∈[n]

that sum up to v, (i.e., vi0⊕
vi1 = v for all i ∈ [n]) and commits to them in parallel using the non-interactive statistically
binding commitment scheme com. Let cib be the commitment to vib.

Challenge: The receiver sends a n-bit string ch ∈ {0, 1}n sampled at random.

Reply: The committer opens commitments cichi for every i ∈ [n].

To decommit, the sender sends v and opens the commitments to all n pairs of strings. The receiver
checks whether all the openings are valid and also v = vi0 ⊕ vi1 for all i.

It is proved in [PW09] that ExtCom is extractable. Furthermore, the commitment scheme has
the property that from any two accepting transcripts of the commit stage that has the same commit
message but different challenge messages, the committed value can be extracted. This property is
similar to the notion of special-soundness for interactive proof/argument systems; here we overload
this notion, and refer to this special extractability property of ExtCom as special-soundness.

In our construction, we will actually need an extractable commitment scheme to a string σ ∈
{0, 1}m for which we can open any subset of the bits in σ without compromising the security (i.e.
hiding) of the remaining bits. As shown in [PW09], we may obtain such a scheme PExtCom by
running ExtCom to commit to each bit of σ in parallel. It is easy to see that PExtCom is also
special-sound in the sense that, given two accepting transcripts of PExtCom that have the same
commit message and two challenge messages that contain a pair of different challenges for every
ExtCom commitment, the committed string σ can be extracted. We call such two transcripts a pair
of admissible transcripts for PExtCom.

Trapdoor Commitments Roughly speaking, a trapdoor commitment scheme is a computation-
ally biding and computationally hiding commitment scheme, such that, there exists a simulator
that can generate a simulated commitment, and later open it to any value. (See Appendix A.8 for
a formal definition.) Pass and Wee [PW09] presented a black-box trapdoor bit commitment scheme
TrapCom. To commit to a bit σ, the committer and the receiver on common input 1n do:

Stage 1: The receiver picks a random string challenge e = (e1, . . . , en) and commits to e using the
non-interactive statistically binding commitment scheme com.

3This can be done by sending a first message of a 2-round commitment scheme at the beginning of the protocol,
and using the second message of the 2-round commitment scheme w.r.t. that first message as a non-interactive
commitment in the rest of the protocol.
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Stage 2: The committer prepares v1, . . . , vn. Each vi is a 2× 2 0,1-matrix given by(
v00
i v01

i
v10
i v11

i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
where ηi is a random bit. The sender commits to v1, . . . , vn using PExtCom (i.e., committing
using ExtCom bit by bit in parallel). In addition, the sender prepares (a0

1, a
1
1), . . . , (a0

n, a
1
n)

where aβi is the opening to vβ0
i , vβ1

i (i.e., either the top or bottom row of vi).

Stage 3: The receiver opens to the challenge e = (e1, . . . , en); the sender responds with ae11 , . . . , a
en
n .

To decommit, the sender sends σ. In addition, it chooses a random γ ∈ {0, 1}, sends γ, sends the

openings to values v0γ
i , v

1γ
i for i = 1, 2, . . . , n (i.e., either the left columns or the right columns of

all the matrices). The receiver checks that all the openings are valid, and also that σ = v0γ
1 ⊕v

1γ
1 =

· · · = v0γ
n ⊕ v1γ

n .
As shown in [PW09], the protocol TrapCom is trapdoor, following a Goldreich-Kahan [GK96]

style proof; moreover, by running TrapCom in parallel, we obtain a trapdoor commitment scheme
PTrapCom for multiple bits. Furthermore, since Stage 2 of the protocol TrapCom is simply an
execution of PExtCom, given any two admissible transcripts of Stage 2, the matrices v1, . . . , vn
prepared in Stage 2 can be extracted; we show that from these matrices, the actual bit committed
in the TrapCom commitment can be extracted, provided that the commitment is valid and has
a unique committed value. We call this, again, the special-soundness of TrapCom. It is easy to
see that the notion of special soundness (and admissible transcripts) can be easily extended for
PTrapCom. The formal definition and proof of special-soundness of TrapCom (and PTrapCom)
appear in Appendix B.1.

4.1 Overview of Our Construction

The CLP Construction: At a very high level, the CLP construction proceeds by having the
committer first commit to the value v using a normal statistically binding commitment com, followed
by a sequence of poly(n)WISSP proofs of the committed value. TheWISSP proofs are the non-
black-box component of the CLP construction, but are crucial for achieving CCA-security. Recall
that proving CCA-security w.r.t. O amounts to showing that the views of A in experiments IND0

and IND1 are indistinguishable (when A has oracle access to O). Let us refer to the adversary’s
interaction with C as the left interaction, and its interactions with O as the right interactions.
The main hurdle in showing the indistinguishability of IND0 and IND1 is that the oracle O is not
efficiently computable; if it were, indistinguishability would directly follow from the hiding property
of the left interaction. The main idea of the security proof of [CLP10] is then to implement the
oracle O by extracting the committed values from the adversary, via “rewinding” the special-sound
proofs in the right interactions. The two main technical challenges arises in simulating oracle O.

First, once the simulation starts rewinding the right interactions, A might send new messages
also in the left interaction. So, if done naively, this would rewind the left interaction, which
could violate its hiding property. To solve this problem, the CLP protocol schedules messages
in the special-sound proofs using a special message scheduling (according to the identity of the
commitment), called the CLP scheduling, which is a variant of the message scheduling technique
of [DDN00, LPV08]. The special message scheduling ensures that for every accepting right inter-
action with an identity that is different from the left interaction, there exists many points—called
safe-points—in the interaction, from which one can rewind the right interaction without requesting
any new message in the left interaction.

Second, in the experiment INDb, the adversary A expects to receive the committed value at
the very moment it completes a commitment to its oracle. If the adversary “nests” its oracle
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calls, these rewindings become recursive and the running-time of the extraction quickly becomes
exponential. To avoid the extraction time from exploding, the simulation strategy in CLP rewinds
from safe-points using a concurrent extraction strategy that is similar to that used in the context
of concurrent ZK by Richardson and Killian [RK99].

New Approach: To obtain a black-box construction, our main goal is to replace the WISSP
proofs with an “equivalent” black-box component. The key property that the CLP proof relies
on is that the protocol contains many 3-round constructs satisfying that rewinding the last two
messages reveals the committed value, but rewinding three messages reveals nothing. It seems
that the 3-round commitment scheme PExtCom is a good replacement of WISSP proofs as one
such 3-round construct: The special-soundness property of PExtCom ensures that rewinding the
last two messages reveals the committed value, and the hiding property ensures that rewinding
three messages reveals nothings. It is thus tempting to consider a commitment scheme in which the
committer commits to value v using poly(n) invocations of PExtCom, arranged according to the CLP
scheduling; the CLP extraction strategy guarantees that for every accepting right interaction, (the
last two messages of) one PExtCom commitment is rewound and a committed value is extracted.
Indeed, if a commitment of this scheme is valid, meaning that all the PExtCom commitments
contained in it are valid commitments to the same value, the CLP extraction strategy returns the
unique committed value. However, if the commitment is invalid, there arises the over-extraction
problem: The CLP extraction strategy may extract a garbage value from an invalid PExtCom
commitment or from a valid commitment that is inconsistent with the other commitments.

To solve the over-extraction problem, we use the cut-and-choose technique to enforce the com-
mitter to give valid and consistent PExtCom commitments. Instead of having the committer commit
to v directly, let it commit to a (n + 1)-out-of-10n Shamir’s secret sharing s1, . . . , s10n of v using
many PExtCom invocations, still arranged according to the CLP scheduling; we refer to all the
commitments to the jth share sj the jth column. After all the PExtCom commitments, the receiver
requests the committer to open all the commitments in n randomly chosen columns; the receiver
accepts only if each column contains valid commitments to the same value. It follows from the cut-
and-choose technique that except with negligible probability, at most n columns may contain invalid
or inconsistent commitments. Therefore, when applying the CLP extraction strategy on a commit-
ment of this scheme, it guarantees to extract out a secret-sharing that is .9-close to all the secret-
sharing committed to in this commitment. Then by relying on the error-correcting property of the
secret sharing, a valid committed value can be reconstructed. The formal analysis is actually more
subtle; to avoid over-extraction, we employ the technique used in [CDSMW08, CDSMW09, Wee10],
which involves setting the validity condition of the commitment scheme carefully so that invalid
commitment can be identified. We refer the reader to Appendix B.3 for more details.

Unfortunately, our use of the cut-and-choose technique brings another problem: The above
commitment scheme may not be hiding. This is because, in the last stage, the receiver may request
the committer to open an adaptively chosen subset of commitments of PExtCom, the remaining
unopened commitments may not be hiding, unless PExtCom were secure against selective opening
attack. To resolve this problem, we use the trapdoor commitment scheme PTrapCom to replace
PExtCom. Since PTrapCom is trapdoor, it is secure against selective opening attack, and thus
the hiding property holds. Furthermore, since Stage 2 of PTrapCom is simply a commitment of
PExtCom, we can use Stage 2 of PTrapCom as an implementation of the 3-round construct needed
for the CLP scheduling and extraction strategy. More precisely, the commitment scheme proceeds
as follow: The committer commits to a (n+ 1)-out-of-10n secret sharing of the value v using many
invocations of PTrapCom, where all the invocations share the same Stage 1 message sent at the
beginning, followed by all the 3-round Stage 2 executions arranged according to the CLP scheduling,
and then all the Stage 3 executions performed in parallel; finally, the committer and the receiver
conducts a cut-and-choose consistency check as described above.
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It seems that the security proof of our CCA-secure commitment should follow from that of the
non-black-box construction of [CLP10]. Unfortunately, due to the fact that the “rewinding slots” of
our protocol, that is the commitment of ExtCom, may have over-extraction, whereas the WISSP
proofs in the CLP protocol never has this problem, the technical proof of [CLP10] does not go
through; and in Appendix B we rely on a different analysis to show the security of our protocol. A
formal description of our CCA secure protocol 〈C,R〉 in Figure 2.

The robust CCA-secure protocol 〈C,R〉

Let κ be an arbitrary polynomial, `, η two polynomials such that `(n) = nν and η(n) = nε for ν, ε > 0,
and L a polynomial such that L(n) = max(κ(n)+η(n), 4`(n)η(n)). To commit to a value v, the committer
C and the receiver R, on common input 1n and the identity id ∈ {0, 1}`(n) of the committer C do:

Stage 1: The receiver sends the Stage 1 message of a commitment of PTrapCom. That is, a commitment
of com to a randomly chosen string challenge e = (e1, . . . , en).

Stage 2: The committer C prepares a (n+ 1)-out-of-10n Shamir’s secret sharing s1, . . . , s10n of the value
v, and commits to these shares using Stage 2 of the protocol PTrapCom in parallel, for L(n) times;
we call the ith parallel commitment the ith row, and all the commitments to the ith share si the ith

column.

Messages in the first 4`(n)η(n) rows are scheduled based on the identity id and relies on scheduling
pairs of rows according to schedules design0 and design1 depicted in Figure 3. More precisely, Stage
2 consist of `(n) phases. In phase i, the committer provides η(n) sequential designidi pairs of rows,
followed by η(n) sequential design1−idi pairs of rows. Messages in the rest of the rows are simply
arranged sequentially.

Stage 3: The receiver opens the Stage 1 commitment to the challenge e. The committer completes the
10nL(n) executions of PTrapCom w.r.t. challenge e in parallel.

Stage 4 (cut-and-choose): The receiver sends a randomly chosen subset Γ ∈ [10n] of size n. For every
j ∈ Γ, the committer opens all the commitments in the jth column of Stage 3. The receiver checks
that all the openings are valid, and reveal the same committed values sj .

Decommitment Message: To decommit, the committer sends v, and opens all the commitments in the
first row of Stage 2 to s1, . . . , s10n. The receiver checks all the openings to s1, . . . , s10n are valid;
furthermore, it checks that s1, . . . , s10n is 0.9-close to a valid codeword w = (w1, · · · , w10n), and for
every j ∈ Γ, wj equals to the share sj revealed in Stage 4.

In other words, a commitment of 〈C,R〉 is valid if and only if the first row in Stage 2 of the
commitment contains valid commitments to shares s1, . . . , s10n, such that, s1, . . . , s10n is 0.9 close
to a valid codeword w, and w agrees with all the shares revealed in Stage 4 (i.e., for every j ∈ Γ,
wj = sj).

Figure 2: The formal description of the κ(n)-robust CCA-secure protocol 〈C,R〉
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A General Definitions

A.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 3 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP.

A.2 Indistinguishability

Definition 4 (Computational Indistinguishability). Let Y be a countable set. Two ensembles
{An,y}n∈N,y∈Y and {Bn,y}n∈N,y∈Y are said to be computationally indistinguishable (denoted by
{An,y}n∈N,y∈Y ≈ {Bn,y}n∈N,y∈Y ), if for every PPT “distinguishing” machine D, there exists a
negligible function ν(·) so that for every n ∈ N, y ∈ Y :

|Pr [a← An,y : D(1n, y, a) = 1]− Pr [b← Bn,y : D(1n, y, b) = 1]| < ν(n)

A.3 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89]
and arguments (a.k.a computationally-sound proofs) [BCC88]. Given a pair of interactive Turing
machines, P and V , we denote by 〈P (w), V 〉(x) the random variable representing the (local) output
of V , on common input x, when interacting with machine P with private input w, when the random
input to each machine is uniformly and independently chosen.

Definition 5 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following two
conditions hold :

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr [〈P (w), V 〉(x) = 1] = 1

• Soundness: For every x /∈ L, and every interactive machine B, Pr [〈B, V 〉(x) = 1]
≤ ν(|x|)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.
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A.4 Witness Indistinguishable Proofs

The notion of witness indistinguishability (WI) was introduced by Feige and Shamir in [FS90].
Roughly speaking, an interactive proof is said to beWI if the verifier’s output is “computationally
independent” of the witness used by the prover for proving the statement. In this context, we focus
on languages L ∈ NP with a corresponding witness relation RL. Namely, we consider interactions
in which, on common input x, the prover is given a witness in RL(x). By saying that the output
is computationally independent of the witness, we mean that for any two possible NP-witnesses
that could be used by the prover to prove the statement x ∈ L, the corresponding outputs are
computationally indistinguishable.

Definition 6 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive proof system for a lan-
guage L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for every PPT ITM V ∗

and for every two sequences {w1
n,x}n∈N,x∈L∩{0,1}n and {w2

n,x}n∈N,x∈L∩{0,1}n, such that w1
n,x, w

2
n,x ∈

RL(x) for every x, the following probability ensembles are computationally indistinguishable.

• {〈P (w1
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

• {〈P (w2
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

A.5 Special-sound WI proofs

A 4-round public-coin interactive proof for the language L ∈ NP with witness relation RL is
special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and (δ′, α′, β′, γ′) such that
the initial two messages, δ, δ′ and α, α′, are the same but the challenges β, β′ are different, there is
a deterministic procedure to extract the witness from the two transcripts and runs in polynomial
time. In this paper, we rely on special sound proofs that are also witness indistinguishable (WI)
Special-soundWI proofs for languages inNP can be based on the existence of 2-round commitment
schemes, which in turn can be based on one-way functions [GMW91, FS90, HILL99, Nao91].

A.6 Concurrent ZK Protocols

Let 〈P, V 〉 be an interactive proof for a language L. Consider a concurrent adversarial verifier
V ∗ that on common input a security parameter 1n, a statement x ∈ {0, 1}n and auxiliary input
z, interacts with m(n) independent copies of P concurrently, without any restrictions over the
scheduling of the messages in the different interactions with P .

Definition 7. Let 〈P, V 〉 be an interactive proof system for a language L. We say that 〈P, V 〉 is
black-box concurrent zero-knowledge if for every polynomials q and m, there exists a probabilistic
polynomial time algorithm Sq,m, such that for every concurrent adversary V ∗ that on common input
1n, x and auxiliary input z opens up m(n) executions and has a running-time bounded by q(n),
Sq,m(1n, x, z) runs in time polynomial in n. Furthermore, it holds that the following ensembles are
computationally indistinguishable

• {viewV ∗ [〈P (w), V ∗(z)〉(1n, x)]}n∈N,x∈L∩{0,1}n,w∈RL(x),z∈{0,1}∗

• {Sq,m(1n, x, z)}n∈N,x∈L∩{0,1}n,w∈RL(x),z∈{0,1}∗

A.7 Extractable Commitments

We recall the definition of extractable commitments defined in [PW09]. Let 〈Cs, Rs〉 be a statisti-
cally binding commitment scheme. We say that 〈Cs, Rs〉 is an extractable commitment scheme if
there exists an expected polynomial-time probabilistic oracle machine (the extractor) E that given
oracle access to any PPT cheating sender C∗ outputs a pair (τ, σ∗) such that:
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• (simulation) τ is identically distributed to the view of C∗ at the end of interacting with an
honest receiver Rs in commit phase.

• (extraction) the probability that τ is accepting and valid σ∗ = ⊥ is negligible.

• (binding) if σ∗ 6= ⊥, then it is statistically impossible to open τ to any value other than σ∗.

We will also consider extractable commitment schemes that are computationally binding; the defi-
nition is as above, except if σ∗ 6= ⊥, we only require that it is computationally infeasible to open
τ to any value other than σ∗.

A.8 Trapdoor Commitments

We say that 〈Ct, Rt〉 is a trapdoor commitment scheme if there exists an expected polynomial-time
probabilistic oracle machine S = (S1,S2) such that for any PPT R∗ and all v ∈ {0, 1}n, the output
(τ, w) of the following experiments are computationally indistinguishable:

• an honest sender Ct interacts with R∗ to commit to v, and then opens the com-
mitment: τ is the view of R∗ in the commit phase, and w is the message Ct sends
in the open phase.

• the simulator S generates a simulated view τ for the commit phase, and then opens
the commitment to v in the open phase: formally, SR∗1 (1n, 1k)→ (τ, state),S2(state, v)→
w.

B Proofs for Our Black-Box Robust CCA-Secure Commitments

B.1 Properties of the Trapdoor Commitments TrapCom

Before proving the security properties of our robust CCA-secure commitment scheme, we first
prove a few properties of the trapdoor commitment scheme TrapCom of [PW09], which will be very
instrumental the proof of robust CCA-security.

Special-soundness of TrapCom: Since Stage 2 of the protocol TrapCom is simply a PExtCom
commitment, given any two admissible transcripts of Stage 2, a committed value can be extracted.
Consider the following deterministic polynomial time procedure reconst that on input two admissible
transcripts T1, T2 of Stage 2 extracts a committed value as follows: It first reconstructs all the
matrices v1, · · · , vn from T1, T2 by relying on the extractability of PExtCom; then it checks whether
all the left columns of the matrices sum up to the same bit b, and sets σ0 to b if this is the case
and ⊥ otherwise; it computes σ1 similarly with respect to the right columns; next,

• If σ1 and σ1 equal to two different bits, reconst outputs err.

• Else if σ0 and σ1 both equal to ⊥, it outputs ⊥ as well.

• Finally, if σ0 and σ1 equal to the same bit b, or only one of them equals to b and the other
equals to ⊥, reconst outputs b.

We show below in Lemma 3 that as long as the reconst procedure does not output err, then
the extracted value must be the committed value—we call this the special-soundness property of
TrapCom—and in Lemma 4 that when the reconst procedure outputs err, then the receiver’s chal-
lenge in the TrapCom commitment can be computed efficiently. It follows essentially from Lemma 3
and 4 that TrapCom is computationally hiding. Formally, let T be a commitment of TrapCom, we
say that a pair of admissible transcripts T1, T2 is consistent with TrapCom if the first message in T1

and T2 equals to the first message of Stage 2 in T . Then,
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Lemma 3 (Special-soundness of TrapCom). Let T be a commitment of TrapCom, and T1, T2 a pair
of admissible transcripts of TrapCom that is consistent with T . Then, if reconst(T1, T2) = σ 6= err,
it is statistically impossible to open T to any value other than σ.

Proof. Assume for contradiction that reconst(T1, T2) outputs σ 6= err but there exists a decommit-
ment that opens T to a bit σ′ ∈ {0, 1} different from σ.

It follows from the validity condition of TrapCom that if a commitment can be opened to σ′

there must exist a γ ∈ {0, 1}, such that all the commitments of ExtCom to v0γ
i , v

1γ
i for i = 1, 2, . . . , k

are valid and σ′ = v0γ
1 ⊕ v

1γ
1 = · · · = v0γ

k ⊕ v
1γ
k , where σ is the committed value. That is, either all

the left columns or the right columns are valid commitments to values that sum up to σ′. Since
two admissible transcripts of TrapCom contains a pair of admissible transcripts of ExtCom for each
commitment to a bit vb1b2j . It follows from the extractability of ExtCom that from T1 and T2, values

v0γ
i , v

1γ
i can be extracted correctly, as by the validity condition commitments to vbγi ’s are all valid.

Therefore the procedure reconst will set bit σγ to σ′. Then, conditioned on reconst does not output
err, it must output σ′, which gives a contradiction.

Lemma 4. Let T be an accepting commitment of TrapCom, and T1, T2 a pair of admissible tran-
scripts of TrapCom that is consistent with T . Then, if reconst(T1, T2) = err, the receiver’s challenge
committed to in Stage 1 of T can be computed efficiently and deterministically from T1, T2.

Proof. The reconst procedure, on input T1, T2, reconstructs a tuple of n matrices ṽ1, . . . , ṽn by
relying on the special soundness of ExtCom, and outputs err if and only if all the values ṽ00

j , ṽ
10
j

in the left columns sum up to a bit b whereas all the values ṽ01
j , ṽ

11
j in the right columns sum up

to 1 − b. Furthermore, since T is accepting, in Stage 3 of T , the receiver must successfully open
the stage 1 com commitment to a challenge e and the committer must successfully open the two
commitments in the eth

j row of the jth matrices to the same value ηj for every j ∈ [k]. Thus, by the

special soundness of ExtCom, values extracted from the eth
j row v

ej0
j , v

ej1
j must equal to ηj , which

means the two bits v
(1−ej)0
j , v

(1−ej)1
j extracted from the (1 − ej)th row must differ. Thus from T1

and T2, the receiver’s challenge e in T can be computed efficiently.

Strong Computational Binding: We show that TrapCom enjoys a strong computational binding
property as described in Lemma 5.

Lemma 5 (Strong computational binding). For every PPT machine C∗, the probability that C∗

in interaction with the honest receiver of TrapCom, generates a commitment that has more than
one valid committed values is negligible. 4

Proof. Assume for contradiction that there is a committer C∗ that can generate a commitment that
has two valid committed values with polynomial probability. Then we can construct a machine A
that violates the hiding property of com.

The machine A on input a com commitment c to a random n-bit string e, internally incorporates
C∗ and emulates the messages from the receiver for C∗ honestly, except that: it forwards c to A
at the Stage 1 message; after C∗ completes Stage 2, it repeatedly rewinds C∗ from the challenge
message in Stage 2 by sending C∗ freshly sampled challenges, until another accepting transcript of
Stage 2 is obtained; then it checks whether the pair of transcripts of Stage 2 is admissible and if
so whether reconst outputs err on input these two transcripts; if this is the case, it computes the
challenge e′ from the two admissible transcripts by Lemma 4 and outputs e′; otherwise, it aborts.
Finally, A cuts its execution off after 2n/3 steps.

4Note that the computational binding property only guarantees that it is impossible for an efficient committer to
generate a commitment of TrapCom and opens it to two different values.
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It follows from standard technique that the expected running time of C∗ is bounded by a
polynomial. Furthermore, each challenge in Stage 2 of a TrapCom commitment is a n-tuple of
n-bit strings. Then Since A runs for at most 2n/3 steps, the probability that any n-bit string is
picked for a second time in A is 2n/3/2n; since A picks at most 2n/3 strings, by union bound, the

probability that any n-bit string is picked twice is 1
2n/3

= 2n/3 2n/3

2n . Therefore, except with negligible
probability, the pair of accepting transcripts collected by A is also admissible.

Next, we show that conditioned on that the pair of transcripts collected by A is admissible, A
outputs the value committed to in c with polynomial probability. Since A emulates the execution
of C∗ perfectly, with polynomial probability C∗ in A generates a commitment that can be opened
to both 0 and 1. When this happens, by the validity condition of TrapCom, the commitment
generated by C∗ must have the property that all the commitments of ExtCom in Stage 2 are valid,
and the committed values in the left columns sum up to a bit b whereas the committed values in
the right columns sum up to another bit 1− b. In this case, the procedure reconst fails to extract
a value from the pair of admissible transcripts collected by A and outputs err. The by Lemma 4
the challenge committed to in Stage 1 can be computed. Thus A outputs the committed value of
c with polynomial probability.

Extension to multiple bits. As shown in [PW09], by running the trapdoor bit commitment
scheme TrapCom in parallel, we obtain a trapdoor commitment scheme PTrapCom for multiple bits,
with the additional property that we can open the commitment to any subset of the bits without
compromising the security of the remaining bits. The hiding, binding and trapdoor property of the
commitment remains. Furthermore, Stage 2 of the protocol PTrapCom consists of many parallel
executions of PExtCom. We say that two transcripts of Stage 2 of PTrapCom are admissible if they
contain a pair of admissible transcripts of PTrapCom for each parallel execution in it. Then given
a pair of admissible transcripts of PTrapCom, the committed string can be extracted by running
the following procedure reconst: For each parallel execution, it extracts a value σi using the reconst
procedure; then it outputs err if any σi equals to err, otherwise, it outputs all the extracted bits
σi’s concatenated. Again, we call this property the special-soundness of PTrapCom.

B.2 〈C,R〉 is a Statistically-Binding Commitment Scheme

In this section, we provide formally that that 〈C,R〉 is a statistically binding commitment scheme.

Proposition 2. 〈C,R〉 is a statistically binding commitment scheme.

Proof. The statistically bindng property of 〈C,R〉 follows directly from that of com. We then, focus
on showing the hiding property.

Recall that the commitment scheme TrapCom is trapdoor. In particular, as shown in [PW09],
if the receiver’s challenge is fixed, then there is a straight-line simulator that can generate a sim-
ulated transcript of the commit phase that can be equivocated to both 0 and 1 later. We recall
the simulation strategy. Let R∗ be a malicious receiver using a fixed challenge e, then to simulate
Stage 2 and 3 of TrapCom for R∗, the simulator samples a random bit γ and prepares v1 · · · vn where
each vi is a 2 × 2 0,1-matrix such that, the eth

i row of vi has the form (ηi, ηi) and the (1 − ei)th

row has the form (γ ⊕ ηi, (1− γ)⊕ ηi) with a randomly and independently sampled bit ηi. It then
commits to v1, · · · , vn using PExtCom in Stage 2; later, in Stage 3, upon receiving challenge e, for
every i, it opens commitments to the eth

i row in the ith matrix to (ηi, ηi), yielding an accepting
commitment. To equivocate the simulated commitment to 0, the simulator sends γ and opens all
the commitments in the γth column of the matrices; to equivocate the commitment to 1, it sends
1−γ and opens the (1−γ)th column of the matrices. It follows from the hiding property of ExtCom
(recall that a commitment of PExtCom to v1 · · · vn is simply many commitments of ExtCom to bits
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vb1,b2j in parallel) that, for every b ∈ {0, 1}, the simulated commitment of TrapCom together with
the equivocated opening to b is indistinguishable from an honest commitment and opening to b.
Furthermore, since the simulation is straight-line and thus is composable under concurrent compo-
sition, we have that TrapCom is secure under selective opening attack with concurrent composition
(See [Xia11] for a formal definition) against malicious receivers that always use a fixed challenge.

Next, by relying on the security against selective opening attack of TrapCom, we show that
for every malicious receiver R∗ of 〈C,R〉, there is a simulator S that can generate a simulated
commitment that is indistinguishable from an honest commitment to R∗ to any value v; then
the hiding property follows. More precisely, given a malicious receiver R∗ of 〈C,R〉 (with loss of
generality, deterministic), let c1 be the Stage 1 commitment from R∗ and e the challenge committed
to in c1. The simulator S, on input e, simulates a commitment of 〈C,R〉 to v as follows: In Stage 2
and 3, it simulates the 10nL(n) commitments of PTrapComw.r.t. challenge e by using the simulator
of PTrapCom described above does; finally in Stage 4, upon receiving Γ, for every column j ∈ Γ, it
samples a random string s̃j and equivocate all the simulated commitments of PTrapCom in the jth

column to s̃j . Since R∗ uses a fixed challenge e in all the PTrapCom commitments, it follows from
the security against selective opening attack of TrapCom that in H the simulated commitments of
PTrapCom in Stage 2 and 3, together with the equivocated openings to n random values in Stage
4 is indistinguishable from, the honest commitments and openings to n shares of v in the real
execution (since by the property of the (n+1)-out-of-10n secret-sharing, n shares of v is identically
distributed to n random values). Thus, the simulated commitment by S is indistinguishable to an
honest commitment to v. Since S does not depend on the committed value v, we conclude that
honest commitments to any two values v1 and v2 are indistinguishable.

B.3 Proof of Robust CCA-Security of 〈C,R〉
In this section, we prove the following theorem.

Theorem 2. 〈C,R〉 is κ(n)-robust CCA-secure w.r.t. committed value oracles.

The formal proof of Theorem 2 consists of two parts: in Section B.3.2, we show that 〈C,R〉
is CCA-secure. and in section B.3.3, we show that it is also robust. Towards this, below we first
adapt the definition of safe-points in [CLP10] to work with our protocol 〈C,R〉.

B.3.1 Safe-Points

Our notion of safe-points is almost the same as that in [CLP10] (which in turn is based on the notion
of safe-points of [LPV08] and safe rewinding block of [DDN00]), with the only exception that our
definition considers the 3-round rows in our black-box construction of CCA commitment 〈C,R〉,
instead of the 3-round WISSP proofs in the non-black-box construction in [CLP10]. Recall that,
like a WISSP proof, each row in Stage 3 of the protocol 〈C,R〉 has the 3-round challenge-reply
structure—we call the three messages respectively, the commit, challenge and reply messages—and
has the property that rewinding a complete row reveals nothing about the committed value.

Let ∆ be a transcript of one left and many right interactions of 〈C,R〉. Intuitively, a safe-point ρ
of a right interaction k is a prefix of a transcript ∆ that lies in between the first two messages αr and
βr of a row (αr, βr, γr) in interaction k, such that, when rewinding from ρ to γr, if A uses the same
“scheduling of messages” as in ∆, then the left interaction can be emulated without affecting the
hiding property. This holds, if in ∆ from ρ to where γr is sent, A expects either no message or only
complete rows in the left interaction, as shown in Figure 4 (i) and (ii) respectively, (Additionally,
in both cases, A may request the reply message of some row in the left, as shown in Figure 4 (iii).
This is because, given the first two messages of a row, the reply message is deterministic, and hence
can be emulated in the rewinding by replaying the reply in ∆.)
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Figure 4: Three characteristic safe-points.
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Figure 5: Prefix ρ that is not a safe point.

Definition 8. Let ∆ be any transcript of one left interaction, and many right interactions, of
〈C,R〉. A prefix ρ of a transcript ∆ is called a safe-point for right interaction k, if there exists an
accepting row (αr, βr, γr) in the right interaction k, such that:

1. αr occurs in ρ, but not βr (and γr).

2. for any row (αl, βl, γl) in the left interaction, if αl occurs in ρ, then βl occurs after γr.

3. messages in Stage 1, 3, and 4 of the left interaction occur either before ρ or after γr.

If ρ is a safe-point, let (αρ, βρ, γρ) denote the canonical “safe” right row associated with ρ. Note
that the only case a right-interaction row is not associated with any safe-point is if it is “aligned”
with a left-execution row, as shown in Figure 5. In contrast, in all other cases, a right-interaction
row has a safe-point, as shown in Figure 4.

It follows from exactly the same proof in [CLP10] that in any transcript of one left and many
right interactions of 〈C,R〉, every accepting right interaction that has a different identity from the
left interaction, has at least η(n) safe-points. This technical lemma will be very instrumental in the
proof of CCA-security in the next section.

Lemma 6 (Safe-point Lemma). Let ∆ be any transcript of one left interaction, and many right
interactions, of 〈C,R〉. Then, in ∆, for every successful right interaction that has a different
identity from the left interaction, there exist at least a number of Ω(η(n)) non-overlapping rows
that are associated with a safe-point.

B.3.2 Proof of CCA Security

We show that for every PPT adversary A, the following ensembles are computationally indistin-
guishable.

• {IND0(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗
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• {IND1(〈C,R〉, A, n, z)}n∈N,z∈{0,1}∗

Towards this, we consider new commitment scheme 〈Ĉ, R̂〉 (similar to the “adaptor” schemes of
[DDN00, LPV08, CLP10]), which is a variant of 〈C,R〉 where the receiver can ask for an arbitrary

number of designs in Stage 2. Furthermore, 〈Ĉ, R̂〉 does not have a fixed scheduling in Stage 2; the
receiver instead gets to choose which design to execute in each iteration (by sending bit b to select

designb). Note that, clearly, any execution of 〈C,R〉 can be emulated by an execution of 〈Ĉ, R̂〉 by
simply requesting the appropriate designs. It follows using essentially the same proof for the hiding
property of 〈C,R〉 in Proposition 2 that 〈Ĉ, R̂〉 is computationally hiding; we omit the proof here.

Now assume for contradiction that there exists an adversary A, a distinguisher D, and a poly-
nomial p, such that for infinitely many n ∈ N , there exists z ∈ {0, 1}∗, such that,∣∣Pr [D(IND0(〈C,R〉, A, n, z)) = 1]− Pr [D(IND1(〈C,R〉, A, n, z)) = 1]

∣∣ ≥ 1

p(n)

We reach a contradiction by exhibiting a (stand-alone) adversary B∗ that distinguishes com-

mitments using 〈Ĉ, R̂〉. Let STAb(〈Ĉ, R̂〉, B∗, n, z) denote the output of B∗(1n, z) after receiving a

commitment of 〈Ĉ, R̂〉 to value vb, where as in experiment INDb the challenges v0 and v1 are chosen
adaptively by B∗. We show that the following two claims hold w.r.t B∗.

Lemma 7. There exists a polynomial function t and a negligible function µ, such that for every
b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, and every function p, the probability that B∗ in experiment

STAb(〈Ĉ, R̂〉, B∗, n, z) takes more than p(n) steps is less than or equal to t(n)
p(n) + µ(n).

Lemma 8. Let b ∈ {0, 1}. The following ensembles are computationally indistinguishable.

•
{

STAb(〈Ĉ, R̂〉, B∗, n, z)
}
n∈N,z∈{0,1}∗

•
{

INDb(〈C,R〉, A, n, z)
}
n∈N,z∈{0,1}∗

By Lemma 8, it thus follows that for infinitely many n ∈ N , there exists z ∈ {0, 1}∗, such that,∣∣∣Pr
[
D(STA0(〈Ĉ, R̂〉, B∗, n, z)) = 1

]
− Pr

[
D(STA1(〈Ĉ, R̂〉, B∗, n, z)) = 1

]∣∣∣ ≥ 3

4p(n)

Furthermore, by Lemma 7, the probability that B∗ runs for more than T (n) = 4t(n)p(n) steps is
smaller than 1/4p(n). Therefore, the execution of B∗ can be truncated after T (n) steps, while only
affecting the distinguishing probability by at most 1

4p(n) , which means there exists a PPT machine

that distinguishes commitments with probability 1
2p(n) ; this contradicts the hiding property of

〈Ĉ, R̂〉.

Construction of B∗. On a high-level, B∗ in interaction with an honest committer Ĉ on the
left emulates the committed-value oracle O for A by extracting the committed values of the right
interactions from the rows in Stage 2 of 〈C,R〉. Recall that Stage 2 of 〈C,R〉 contains multiple
rows; each in turn contains commitments to secret shares of the committed value (more precisely,
shares of a decommitment of Stage 2 of 〈C,R〉), using Stage 2 of PTrapCom. It follows from the
special soundness of PTrapCom that, given a pair of transcripts of a row that are admissible for
each commitment of TrapCom contained in that row, the secret shares committed in that row can
be reconstructed using the reconst procedure (provided that it does not output err)—we say that
such a pair of transcripts of a row is admissible. Then the committed value can be recovered.
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The construction of B∗ contains two parts, a rewinding procedure and a reconstruction pro-
cedure. The rewinding procedure recursively rewinds the rows of the right integrations and guar-
antees that at the end of every accepting right interaction with different identity from the left
interaction, a pair of admissible transcripts (of one row) of that right interaction is collected. The
reconstruction procedure, on the other hand, on input a pair of admissible transcripts of one right
interaction, reconstructs the committed value of that interaction. The rewinding procedure that
we use here is essentially the same as that used in the CLP extraction procedure, except from the
superficial difference that in [CLP10], pairs of accepting transcripts ofWISSP proofs are collected.
However, in [CLP10] given two different accepting transcripts of aWISSP proof in one right inter-
action, a committed value can be extracted directly using the special-soundness property without
over-extraction. In this work, in order to avoid the over-extraction problem, the procedure for
reconstructing the committed value from two admissible transcripts is much more involved; we em-
ploy the technique used in [CDSMW08, CDSMW09, Wee10] and formalize it in the reconstruction
procedure REC.

Next, we formally describe the rewinding procedure, which invokes the reconstruction procedure
REC whenever it obtains a pair of admissible transcripts; readers who are familiar with the CLP
extraction procedure can skip this part and jump to the description reconstruction procedure REC.

The Rewinding Procedure At a high-level, the rewinding procedure rewinds A only from safe-
points. This ensures that we do not have to rewind the external left execution; rather, it suffices
to request an additional design on the left to handle these rewindings. But, as the simulator
needs to provide the committed values in a “on-line” fashion (i.e., as soon as a right-interaction
completes, the simulator needs to provide A with decommitment information for this interaction),
these rewindings might become recursive (if the right interactions are nested). And, if we were
to perform these rewindings naively, the running-time quickly grows exponentially (just as in the
context of concurrent zero knowledge [DNS04]). To make sure that the recursion depth is constant,
we instead only rewind from safe-points ρ such that the number of new right-rows that start between
ρ and the last message γρ of the right-row associated with ρ, is “small”; here, “small” is defined
appropriately based on the recursion level. More precisely, we say that a safe-point ρ is d+ 1-good
for a transcript ∆ if less than kd = M/η′d right-rows start between ρ and γρ, where M is an upper-

bound on the total number of messages that A sends or receives, and η′ = nε
′

for some constant ε′

such that 0 < ε′ < ε. On recursion level d, B∗ then only rewinds A from d+ 1-good safe-points.
Formally, we describe the rewinding procedure using a recursive helper procedure EXT. EXT,

on input an integer d (the recursion level), a partial joint view V of A and the (emulated) right
receivers, the index s of a right-row, a “repository” R of pairs of admissible transcripts of the right
interactions that have been previously collected, proceeds as follows.

Procedure EXT(d,V, s,R): Let ρ be the (partial) transcript contained in V. If d = 0, EXT will
emulates a complete execution of IND with the adversary A. If d > 0, it will instead extends the
partial view V to the completion of the right-row s; if at any point in the emulation, ρ is not a
d+ 1-good safe-point for s, EXT aborts and returns ⊥. Finally, EXT returns the the view VA of A
in the emulation (generated so far). We now turn to describe how EXT emulates the left and the
right interactions.

The left interaction is emulated by simply requesting the appropriate messages from the external
committer. At the top level (i.e., d = 0), A participates in a complete 〈C,R〉 commitment on the

left, which can be easily emulated by simply requesting the appropriate designs from Ĉ. At lower
levels (i.e., d > 0), EXT cancels every execution in which ρ is not a safe-point. Hence it only needs
to emulate the left interaction when ρ is a safe-point. In this case, as previously discussed, A either
does not request any new messages on the left, or only asks for complete new rows; the former
case can be trivially emulated (by simply doing nothing or replaying old messages if A asks for the
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third message of a left row again), in the latter case, EXT emulates the left interaction by asking

for more designs from Ĉ.
On the other hand, in the right interactions EXT follows the honest receiver strategy of 〈C,R〉.

Furthermore, whenever A completes a row (αr, βr, γr) in a right interaction j, EXT attempts to
extract a decommitment for this interaction, if the row (αr, βr, γr) is associated with a d+ 1-good
safe-point ρ′. To extract, EXT invokes itself recursively on input (d + 1,V ′, s′,R), where V ′ is the
(partial) joint view of A and the right receivers corresponding to the transcript ρ′, and s′ is the
index of the right-row (αr, βr, γr). It continues invoking itself recursively until one of the recursive
invocations returns a view containing another accepting transcript (αr, β

′
r, γ
′
r) of the s′th row. When

this happens, if (αr, βr, γr) and (αr, β
′
r, γ
′
r) are a pair of admissible transcripts, EXT records them

in the repository R. Later, whenever A expects the committed value for a right interaction j, it
simply checks the repository R for a matching pair of admissible transcripts T1, T2, and invokes
REC with T1, T2 and the transcript T of the right integration j to obtain the committed value u; it
aborts and outputs fail if no pair of admissible transcripts is available or the REC procedure returns
err—we say that EXT “gets stuck” on interaction j in this case. (If A expects the committed value
of a right interaction that fails or has the same identity as the left, it simply sends ⊥ to A.)

The Reconstruction Procedure Let T1 = (αr, βr, γr) and T2 = (αr, β
′
r, γ
′
r) be a pair of ad-

missible transcripts of one row of a right commitment T . Recall that Stage 2 in T contains a
com commitment to the committed value v, and each row in T commits to the 10n secret shares
of a decommitment (v, d) of the com commitment, using Stage 2 of PTrapCom. Since T1 and T2

are admissible, they contain a pair of admissible transcripts of PTrapCom for each commitment to
one of the 10n share. Therefore, by the special-soundness property of PTrapCom, a value can be
reconstructed from each pair of admissible transcripts of PTrapCom using the reconst procedure;
if the extracted value is not err, then either the corresponding commitment is invalid, or it is and
the reconstructed value is the committed share. At a high-level, the reconstruction procedure REC
uses this property to try to extract shares of the decommitment (v, d) and then decode the shares
to obtain the committed value; it utilizes the final cut-and-choose Stage in the right commitment
T to avoid over-extraction. Formally,

Procedure REC(T1, T2, T ): For every j ∈ [10n], REC sets T j1 , T
j
2 to the pair of admissible tran-

scripts of PTrapCom for the commitment to the jth secret share contained in T1, T2, and yj to the

output of reconst(T j1 , T
j
2 ); it aborts and outputs err if yj equals to err; otherwise, it sets the jth share

s̃j to yj . After extracting all the shares π̃ = (s̃1, . . . , s̃10n), it recovers a valid codeword w that is
0.8-close to π̃; then, it checks whether w agrees with all the shares revealed in the cut-and-choose
stage in the right commitment T (that is, for every i ∈ [Γ], it checks whether wi equals to the share
ŝi revealed for the ith column in the cut-and-choose stage in T ); if this holds, it decodes w to a
tuple (v′, d′), and outputs v′ if (v′, d′) is a valid decommitment of the Stage 2 com commitment
in T . It aborts and outputs ⊥ whenever any of the following events happens: (1) the extracted
shares π̃ is not 0.8-close to any valid codeword, or (2) the codeword w does not agree with any of
the shares revealed in the cut-and-choose stage, or (3) the tuple (v′, d′) decoded from w is not a
valid decommitment of the Stage 2 com commitment.

We now return to the description of B∗. B∗ in interaction with Ĉ, simply invokes EXT on
inputs (0,V, null, ∅), where V is the initial joint states of A and honest right receivers. Once EXT
returns a view VA of A, B∗ return the output of A in this view if A never used the identity of the
left interaction in any of the right interactions, and returns ⊥ otherwise. Furthermore, to simplify
our analysis, B∗ cuts-off EXT whenever it runs for more than 2n steps. If this happens, B∗ halts
and outputs fail.
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Proof of Lemma 7 and 8: Next we proceed to show that B∗ runs in expected polynomial time
(Lemma 7) and the output of B∗ is correctly distributed (Lemma 8).5 Towards this, we consider
another machine B̃ that proceeds identically to B∗ except that it has access to an oracle Õ that on
input an accepting transcript T of a commitment of 〈C,R〉, returns the unique committed value of
that commitment if it is valid, and returns ⊥ if it is invalid or has more than one valid committed

value; furthermore, B̃ runs a variant ẼXT of the recursive helper procedure EXT that B∗ runs.

ẼXT proceeds identically to EXT except that whenever A during the rewindings in ẼXT expects
the committed value of a right commitment T (that is accepting and has an identity different from
that of the left commitment), it queries the oracle Õ on T and feeds A the value v returned by

Õ. ẼXT still reconstructs a value v′ for that right interaction as EXT does, but, it does abort and
outputs fail as EXT does when reconstruction fails; instead it continues the execution and simply

outputs f̃ail on a special output tape; additionally, it outputs f̃ail on a special output tape if the
reconstructed value v′ is different from the value v returned by O∗. Finally, as B∗, B̃ cuts the

execution of ẼXT after 2n steps and outputs fail. Below we show that the expected running time
of B̃ is bounded by a polynomial and the output of B̃ in experiment STAb is statistically close to
the view of A in the experiment INDb.

Claim 1. There exists a polynomial function t, such that for every b ∈ {0, 1}, n ∈ N and z ∈
{0, 1}∗, B̃ in experiment STAb(〈Ĉ, R̂〉, B̃Õ, n, z) takes t(n) steps in expectation.

Claim 2. Let b ∈ {0, 1}. The following ensembles are statistically close.

•
{

STAb(〈Ĉ, R̂〉, B̃Õ, n, z)
}
n∈N,z∈{0,1}∗

•
{

INDb(〈C,R〉, A, n, z)
}
n∈N,z∈{0,1}∗

Furthermore, we show that except with negligible probability the, during the execution of B̃,

the probability that B̃ outputs f̃ail on the special output tape is negligible.

Claim 3. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, the probability that B̃ during the execution

of STAb(〈Ĉ, R̂〉, B̃Õ, n, z) outputs f̃ail on its special output tape is negligible.

By construction, B̃ outputs f̃ail only when during the rewindings in ẼXT, it fails to reconstruct
a committed value for a right interaction (that is accepting and has an identity different from
that of the left commitment), or a value is reconstructed but is different from that returned by
Õ. By Claim 3, the above event happens with negligible probability. In other words, during the
execution of B̃, except with negligible probability, the value B̃ reconstructs is always identical to
that extracted by O∗. Thus, except with negligible probability, it is equivalent to replace the values
returned by the oracle Õ with the values B̃ reconstructs. Then since the only difference between
B̃ and B∗ lies in which values they use to feed the adversary A when it expects a committed value,
we have that except with negligible probability, the running time and output distributions of B̃ are
identical to that of B∗. Therefore, combining Claim 2, we directly have that for every b ∈ {0, 1},
the output of B∗ in experiment STAb(〈Ĉ, R̂〉, B̃Õ, n, z) is statistically close to INDb(〈C,R〉, A, n, z),
which concludes Lemma 8. Furthermore, By Claim 1, the expected running time of B̃ is bounded
by a polynomial t; therefore, for every function T , the probability that B̃ runs for more than T (n)
steps is no more than p(n) = t(n)/T (n); then, the probability that B∗ runs for more than T (n)

5Though the rewinding strategy of B∗ is very similar to that in [CLP10], due to the difference in the reconstruction
procedure, the analysis of the running time and output distribution of B∗ is quite different from that in [CLP10].
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steps must be bounded by p(n) plus a negligible amount, which concludes Lemma 7. Now it remains
to prove Claim 1, 2 and 3.

Proof of Claim 1—Running-time Analysis of B̃.
To bound the expected running time of B∗, it suffices to bound the expected running time of

the procedure ẼXT. Below in Subclaim 1 we first show that the recursive depth of ẼXT is always

a constant, and then bound the running time of ẼXT in Subclaim 2.

Subclaim 1. There exists a constant D such that for every n ∈ N , and every V, s, and R,

ẼXT(D,V, s,R) does not perform any recursive calls.

Proof. Recall that at recursion level d, the procedure ẼXT terminates and returns ⊥ whenever more
than kd = M(n)/η′(n)d new right-rows has started in its execution, where M(n) is an upper bound
on the total number of messages that the adversary A may send and receive, and η′(n) equals to
nε
′

for some constant 0 < ε′ < ε < 1. Let nc be an upper bound on M(n); set D to dlogη′(n) n
ce,

which is a constant. When d = D, kD < 1, which means the execution terminates whenever A

starts a new right-row. On the other hand, ẼXT only makes a recursive call at the completion of a

new right-row. Therefore at recursion level D, ẼXT never makes any recursive calls.

Next, we show that the expected number of queries that ẼXT makes to A at every recursion
level d ≤ D is always bounded by a polynomial.

Subclaim 2. For every 0 ≤ d ≤ D, it holds that for every n ∈ N , V, s, and R, the expected

number of queries that ẼXT(d,V, s,R) makes to A is bounded by θ(d) = M(n)3(D−d+1).

Proof. Consider some fixed V, s and R. We prove the subclaim by induction on d. When d = D,

the claim follows, since ẼXT does not perform any recursive calls and the number of queries made

by ẼXT can be at most the total number of messages, which is M = M(n).
Assume the claim is true for d = d′ + 1. We show that it holds also for d = d′. The procedure

ẼXT simulates an execution with A in a straight-line on recursion level d′, until it encounters the
completion of a right-row s that has a d′ + 1-good safe-point ρ, then it tries to obtain another

transcript of s, by repeatedly invoking ẼXT on recursion level d′+1 from (the partial transcript) ρ.

Hence, the number of queries made by ẼXT is bounded by the sum of the number of queries made
on level d′, and the queries made by the recursive calls: the former is at most the total number of
messages, that is, M , while the latter is bounded by the sum of the queries made by those recursive
calls invoked for every right-row s. Furthermore we compute the expected number of queries made
by the recursive calls for a right-row s by taking expectation over all partial transcript that is
potentially a d′-good safe-point for s. let Γi denote the set of all partial transcripts of length i that
are consistent with V; for every ρ ∈ Γi, we denote by Pr [ρ occurs on level d′] the probability that
ρ occurs (in the simulation) on level d′, and E[Qsd′(ρ)|ρ] the expected number of queries made by
the recursive calls started from ρ for the right-row s, conditioned on ρ occurring on level d′. Then

E[number of queries by ẼXT] = M +
∑
s

∑
i

∑
ρ∈Γi

Pr[ρ occurs on level d′] E[Qsd′(ρ)|ρ]

Next we bound E[Qsd′(ρ)|ρ] in two steps: the first step bounds the expected number of recursive
calls started from ρ for proof s, and the second step uses the induction hypothesis to derive a bound
on E[Qsd′(ρ)|ρ].

Step 1: Given a partial transcript ρ from Γi, let psd′(ρ) denote the probability that conditioned on

ρ occurring on level d′, ẼXT starts recursive calls from ρ for the right-row s, which happens if and
only if ρ is a d′ + 1-good safe-point for proof s, that is,

psd′(ρ) = Pr
[
ρ is d′ + 1-good at level d′ | ρ

]
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When this happens, ẼXT repeatedly calls itself on recursion level d′+1, until an invocation succeeds
without cancelling. Let qsd′(ρ) denote the probability that conditioned on ρ occurring on level d′, a

recursive call to ẼXT on level d′ + 1 succeeds without cancelling. Since an invocation is cancelled
if and only if ρ fails to be a d′ + 1-good safe-point for s in the invocation on level d′ + 1, we have

qsd′(ρ) = Pr
[
ρ is d′ + 1-good at level d′ + 1 | ρ

]
We claim that qsd′(ρ) ≥ psd′(ρ). This is because, conditioned on ρ occurring, the view of A on levels

d′ and d′ + 1 are simulated identically: on both levels d′ and d′ + 1, ẼXT emulates messages in the
commitments of 〈C,R〉 for A perfectly; and furthermore, whenever A expects a committed value of

a right interaction, ẼXT sends it the value returned by the oracle O∗, which is deterministic; thus
A always receives the same value on both level d′ and d′ + 1.

Then conditioned on ρ occurring on level d′, the expected number of recursive invocations

to level d′ + 1 before encountering a successful one is 1/qsd′(ρ). Since ẼXT only starts recursive
invocations from ρ with probability psd′(ρ), we have that the expected number of recursive calls
from ρ for proof s, conditioned on ρ occurring on level d′, is at most psd′(ρ)/qsd′(ρ) ≤ 1.

Step 2: From the induction hypothesis, we know that the expected number of queries made by an

invocation of ẼXT on level d′+1 is at most θ(d′+1). Therefore, if u recursive invocations are made
from ρ for a right row s, the expected number of queries made is bounded by uθ(d′ + 1). Then we
bound E[Qsd′(ρ)|ρ] as follow:

E[Qsd′(ρ)|ρ] ≤
∑
u∈N

Pr [u recursive calls are made from ρ for s] u θ(d′ + 1)

= θ(d′ + 1)
∑
u∈N

Pr [u recursive calls are made from ρ for s] u

≤ θ(d′ + 1)

Therefore,

E[number of queries by ẼXT] ≤ M +
∑
s

∑
i

∑
ρ∈Γi

Pr
[
ρ occurs on level d′

]
θ(d′ + 1)

= M + θ(d′ + 1)
∑
s

∑
i

∑
ρ∈Γi

Pr
[
ρ occurs on level d′

]
= M + θ(d′ + 1)M2

≤ M3(D−d′+1) = θ(d′)

Combining Subclaim 1 and 2, we conclude that the expected running time of machine B̃ is
bounded by a polynomial t′(n). This concludes Claim 1.

Proof of Claim 2—Correctness of the Output distribution of B̃. We show that for every

b ∈ {0, 1}, the output of B̃ in STAb(〈Ĉ, R̂〉, B̃Õ, n, z) is statistically close to INDb(〈C,R〉, A, n, z).
Towards this, we show that conditioned on that B̃ does not output fail in STAb(〈Ĉ, R̂〉, B̃Õ, n, z),
the output of B̃ is identically distributed to INDb(〈C,R〉, A, n, z). By construction, B̃ invokes the

recursive helper procedure ẼXT (at the top recursion level d = 0) and outputs fail if ẼXT runs for
more than 2n steps. Conditioned on B̃ not outputting fail, B̃ returns the output of A contained in

the simulated view VA returned by ẼXT. As in INDb(〈C,R〉, A, n, z), the output is replaced with ⊥
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if A copies the identity of the left interaction in any right interaction. Hence it suffices to show that

in the case where A does not copy the identity of the left interaction, ẼXT simulates the messages in

the left and right interactions for A perfectly. By construction of ẼXT, all the messages belonging
to the commitments of 〈C,R〉 (both on the left and right) are simulated perfectly; furthermore,

ẼXT emulates the committed values of the right commitments using the values returned by the
oracle Õ, which are identical to the values extracted by the committed-value oracle O of 〈C,R〉.
Therefore, the simulated view of A output by ẼXT is identically distributed to the real view of A in
INDb. Finally, by Claim 1, the probability that B̃ runs for more than 2n steps is exponentially small.

Therefore we conclude that STAb(〈Ĉ, R̂〉, DÕ, n, z) is statistically close to INDb(〈C,R〉, A, n, z).

Proof of Claim 3—B̃ almost never outputs f̃ail. Assume for contradiction that there exist
a polynomial p, b ∈ {0, 1} and an infinitely number of n ∈ N and z ∈ {0, 1}∗ such that B̃ in

experiment STAb(〈Ĉ, R̂〉, B̃Õ, n, z) outputs f̃ail with probability 1/p(n). Fix a b, n, and z for which
this holds. Then by Claim 1, the probability that B̃ runs for more than T (n) = 2t(n)p(n) steps
is no more than 1/2p(n), where t(n) is the expected running time of B̃. Then consider another
machine B̃T that proceeds identically to B̃ except that it cuts-off the execution after T (n) steps.
We have that B̃T takes a strict polynomial number T (n) of steps and the probability that B̃T
outputs f̃ail is at least 1/2p(n).

Now consider another machine B∗T that proceeds identically to B∗ except that it also cuts-
off the execution after T (n) steps. We claim that in the experiment STAb, B

∗
T outputs fail or

reconstructs a value for a right interaction that is not the valid committed value with polynomial
probability. Assume for contradiction that this is false, that is, except with negligible probability,
B∗T always succeeds in reconstructing a valid committed value whenever the adversary expects a
committed value during the rewindings. Then except with negligible probability, the committed
values emulated by B∗T are identical to that emulated by B̃T . Therefore, the simulated view of

A in B∗T is statistically close to that in B̃T . This implies that except with negligible probability,

B̃T also always succeeds in reconstructing a valid committed value whenever the adversary expects

one. Thus B̂T outputs f̃ail only with negligible probability, which contradicts with our hypothesis.
Therefore with polynomial probability, B∗T fails to extract a valid committed value for some right
interaction during its execution.

Below we reach a contradiction by showing that the probability thatB∗T outputs fail (Subclaim 3)
and the probability that B∗T reconstructs a value that is not the value committed value are negligible.

Subclaim 3. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, the probability that B∗T outputs fail

during the execution of STAb(〈Ĉ, R̂〉, B∗T , n, z) is negligible.

Subclaim 4. For every b ∈ {0, 1}, n ∈ N and z ∈ {0, 1}∗, the probability that there exists a right
interaction that is accepting and has an identity different from that of the left interaction, for which
B∗T reconstruct a value that is not the valid committed value in STAb(〈Ĉ, R̂〉, B∗T , n, z) is negligible.

Proof of Subclaim 3. Consider a fixed b ∈ {0, 1}. By construction, B∗T outputs fail if and only if
one of the following cases occurs (in which B∗ outputs fail).

Case 1: None of the rows in the right interaction is rewound.

Case 2: Some row is rewound and a pair of accepting transcripts of that row is collected, but that
pair of transcripts is not admissible.

Case 3: A pair of admissible transcripts is collected, but the REC construction invoked with them
outputs err.
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Below we analyze the probabilities that each of the above cases occurs. We show that all these
events occur with only negligible probability. Therefore, overall the probability that B∗T outputs

f̃ail is negligible.

Analysis of Case 1: We show that Case 1 never happens. More precisely, for every accepting
right interaction j with a different identity from the left interaction, one of its rows must
be rewound. By Lemma 6, there exist a number of Ω(η(n)) non-overlapping rows in the

right interaction j that has a safe-point. Recall that in B∗T (more precisely, in ẼXT), a right
interaction may be carried out at multiple different recursion levels (through recursive calls);
and at level d, B∗T rewinds every row in this interaction that has a d+ 1-good safe-point. By
Subclaim 1, the recursion depth is only a constant; hence there must be a level d, on which
a number of Ω(η(n)) non-overlapping rows with a safe-point start in interaction j. Since the
total number of right-rows that start on level d is bounded by kd = M/η′(n)d (otherwise,
the simulation is cancelled) and η′(n) = o(η(n)), there must exist one right-row that has a
safe-point ρ, such that there are less than M/η′(n)d+1 right-rows starting in between ρ and
the last message of the row. Therefore ρ is a d+ 1-good safe-point for this right-row, and will
be rewound.

Analysis of Case 2: Recall that a transcript of one row consists of a polynomial number of par-
allel commitments using Stage 2 of PTrapCom, each of which consists of a polynomial number
of parallel commitments using ExtCom. For a pair of transcripts of one row to be admissible,
it must hold that all the pairs of transcripts it contains for each commitment of ExtCom
are admissible w.r.t. ExtCom, that is, the two n-bit challenges in that pair of transcripts are
different. Therefore, a pair of transcripts of a row is admissible if and only if the two chal-
lenge messages it contains, which are two tuples of a polynomial number q of n-bit strings
α = (α1, . . . , αq), β = (β1, . . . , βq), are different at every location, that is, αi 6= βi for every
i ∈ [q].

We bound the probability that any n-bit challenge message is picked twice in whole execution
of B∗T to be negligible. Then since conditioned on this not happening, every two accepting
transcripts of a row are admissible, we conclude that this case happens with negligible prob-
ability. Since B∗T runs for at most T (n) steps, it picks at most T (n) n-bit challenges during
the whole execution. By applying the union bound, we obtain that, the probability that a

challenge β is picked again is at most T (n)
2n , and hence, using the union bound again, the

probability that any challenge in the execution is picked twice is at most T (n)T (n)
2n . Hence,

overall, the probability that this case occurs is negligible.

Analysis of Case 3: Let T1, T2 be a pair of admissible transcripts of one row of an accepting
commitment T of 〈C,R〉. The REC procedure, on input T1, T2, T , outputs err if and only if
one of the invocations to the reconst procedure returns err. Then by Lemma 4, the receiver’s
challenge in T , which is shared among all the TrapCom commitments in T , can be computed
efficiently and deterministically from T1 and T2.

Then, suppose for contradiction that, there exists a polynomial g, such that for infinitely
many n ∈ N and z, case 3 occurs with probability at least 1/g(n) during the execution of B∗T .
Then the probability that case 3 occurs in a randomly chosen right interaction in B∗T is at
least 1/g(n)T (n). In other words, with polynomial probability, for a randomly chosen right
interaction in B∗T , REC is invoked and outputs err; then by the argument above, the receiver’s
challenge in this randomly chosen right interaction can be computed efficiently from the pair
of admissible transcripts collected for this interaction (as input to REC). Furthermore, we
note that in B∗T , a pair of admissible transcripts is collected (if at all) for a right interaction,
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before Stage 3 of that right interaction starts, and thus before the com commitment to the
receiver’s challenge is opened. Therefore we can use B∗ to violate the hiding property of com.

More precisely, we construct a machine A∗ that violates the hiding property of com. A∗ on
input a com commitment c to a random n-bit string e, internally emulates an interaction
between Ĉ and B∗T , except that it picks a random right interaction (in simulation by B∗T )
and feeds c as the Stage 1 message of that interaction; furthermore, after a pair of admissible
transcripts T1, T2 is collected for this right interaction, A∗ computes a challenge e′ as described
above; then, it aborts and outputs e′. Since A∗ emulates an interaction between Ĉ and
B∗T perfectly before it aborts, the probability case 3 happens in a randomly chosen right
interaction in A∗ is identical to that in a randomly chosen right interaction in B∗T , which
is 1/g(n)T (n). Thus with polynomial probability, the challenge computed by A∗ is the real
challenge committed to in c. Thus A∗ violates the hiding property of com.

Proof of Subclaim 4. Consider a fixed b ∈ {0, 1}, n, z and a fixed right interaction j ∈ [T (n)], we
show that the probability that B∗T reconstructs a value for the jth right interaction that is not
the valid committed value is negligible. Then it follows from a union bound that the probability
that B∗T reconstructs a value that is not the valid committed value in any right interaction is also
negligible. If a value is reconstructed successfully for the jth right interaction T , it must be the
case that interaction j is accepting, and a pair of admissible transcripts T1, T2 is collected and
REC(T1, T2, T ) = x 6= err in B∗T . Then we show that except with negligible probability, x must be
the committed value in T .

Each row of a commitment of 〈C,R〉 contains 10n commitments of TrapCom. It follows from
the strong computational binding property (see Lemma 5) of TrapCom that the probability that
any of the TrapCom commitments generated by machine B∗T has two valid committed value is
negligible.6 Therefore, the shares committed to using TrapCom in the jth right interaction T are
uniquely defined; let si1, · · · , si10n be the committed shares in the ith row of T (sik is set to ⊥ if
the kth commitment in the ith row is invalid). We say a column k is inconsistent if it contains
a ski equals to ⊥ or two ski1 , s

k
i2

that are different; we claim that the probability that there are

more than n inconsistent columns in the jth right interaction is negligible. Recall that in the cut-
and-choose stage of the right interaction j, B∗T emulates the honest receiver’s message by sending
a randomly chosen subset Γ of size n; since the jth right interaction is accepting, the adversary
A must successfully reveal all the commitments in each column in Γ to the same value; therefore
all the columns in Γ are consistent. Since Γ is chosen at random, the probability that the jth

right interaction contains more than n inconsistent columns, but none of them is chosen in Γ
is exponentially small. Therefore, except with negligible probability, at least 0.9 fraction of the
columns are consistent.

Now we are ready to show that the value x returned by the procedure REC on input a pair
of admissible transcripts T1, T2 of the kth row of the right commitment T is the valid committed
value. From T1, T2, the procedure RECextracts 10n values s̃k1, · · · , s̃k10n corresponding to the 10n
shares committed to in the kth row of T . Then consider the following two possible cases:

In the first case, the shares s1
1, · · · , s1

10n committed to in the first row of T is 0.9-close to a
valid code w. Since except with negligible probability, at least 0.9 fraction of the columns
are consistent, by the special soundness of TrapCom, the extracted shares s̃k1, · · · , s̃k10n and
with s1

1, · · · , s1
10n agree with each other at no less than 0.9 fraction of positions. Therefore

6This also relies on the fact that TrapCom is a generalized public-coin protocol, in the sense, that given a partial
transcript of a commitment of TrapCom, messages from the honest receiver continuing from that partial transcript
can be emulated efficiently, by simply sending random strings.
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s̃k1, · · · , s̃k10n is 0.8-close to w. Therefore the procedure REC will recover w uniquely. Then if w
agrees with all the shares opened in the cut-and-choose stage in T , the valid committed value
is the value v encoded in w; in this case, REC also performs the same check and will output
v as the committed value correctly. On the other hand, if w disagrees with one of the shares
opened in the cut-and-choose stage in T , the commitment is invalid and the committed value
is set to ⊥; in this case REC performing the same check, will also return ⊥ correctly.

In the second case, the shares s1
1, · · · , s1

10n committed to in the first row of T is 0.1-far away
from every valid code w. In this case, the commitment T is invalid and the committed value is
set to ⊥. We show that in this case, the probability that the procedure REC does not output
⊥ is negligible. If REC outputs a value v′ 6= ⊥, it must be the case that s̃k1, · · · , s̃k10n is 0.8-close
to a valid codeword w′ that encodes v′. By our hypothesis, s1

1, · · · , s1
10n is 0.1-far away from

w′. Since T is accepting, all the columns in Γ are consistent, and thus the shares revealed
in the cut-and-choose stage equals to

{
s1
i

}
i∈Γ
6= ⊥. By construction of REC, it outputs v′

only if w′ agrees with all the shares revealed in the cut-and-choose stage, that is, s1
i = w′i for

every i ∈ Γ. However, since the set Γ is chosen at random by the honest receiver (emulated
by B∗T ), the probability that w′ disagrees with s1

1, · · · , s1
10n at more than n locations but none

of them is selected in Γ is exponentially small. Therefore, except with negligible probability,
REC outputs ⊥ correctly.

Combining the above two cases, we conclude that, except with negligible probability, the values
reconstructed by REC must be the valid committed value.

B.3.3 Proof of Robustness

In this section, we extend the proof in the last section to show that 〈C,R〉 is also robust w.r.t.
the committed-value oracle O. Towards this, we need to show that for every k ≤ κ(n), and every
PPT adversary A, there exists a simulator S, such that, for every PPT k-round ITM B, the
interaction between B and A with access to O is indistinguishable from that between B and S.
The construction of the simulator is similar to that in [CLP10], but the correctness follows from a
proof similar to the proof of CCA in the last section. For completeness, we provide the construction
of S below; but omit the proof.

Given an adversary A, and a constant k, the construction of the simulator S is very similar to
that of B∗ in the last section. On a high-level, S externally interacts with an arbitrary k-round
ITM B, and internally simulates an execution between B and AO, by forwarding messages from B
internally to A, while concurrently extracting the committed values of the right interactions from A
to simulate O. The extraction strategy of S is essentially the same as that used by B∗: it recursively
rewinds A over the rows in Stage 2 of the protocol to extract the committed values, except that, here
the goal is to make sure that the left interaction with B is never rewound, (instead of the goal of
ensuring that the left interaction remains hiding (in B∗)). This is achieved by rewinding only those
right-rows that do not interleave with any messages in the left interaction, and cancelling every
rewinding in which the right-row interleaves with a left-message. More precisely, consider the notion
of R-safe-point (which is in analogous to the notion of safe-point)—a prefix ρ of a transcript ∆ is a
R-safe-point for a right-row (α, β, γ) if it includes all the messages in ∆ up to α (inclusive), and that
no left-message is exchanged in between ρ and γ. Then S simply runs the procedure EXTdefined in
the last section internally, except that it replaces the notion of safe-point with R-safe-point, and that
it simulates the left interaction with A by forwarding the messages between A and B; everything
else remains the same. Then it follows from the fact that S always rewinds A from a R-safe-point ρ,
and cancels every rewindings in which ρ is not a R-safe-point, the left interaction is never rewound.
Furthermore, since the left interaction with B consists of only k ≤ κ(n) rounds, and the protocol
〈C,R〉 contains at least κ(n)+η(n) rows, there exist at least η = nε R-safe-point in every successful
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right interaction. Then, it follows from the same proof as in Claim 7 and Claim 8 that there is a
polynomial t, such that the probability that S takes more than T (n) steps is smaller than t(n)/T (n)
plus a negligible amount, and that the joint output of S and B is indistinguishable from that of
AO and B.

C Model of Security

C.1 UC and Global UC security

We briefly review UC and externalized UC (EUC) security. For full details see [Can00, CDPW07].
The original motivation to define EUC security was to capture settings where all ITMs in the system
have access to some global, potentially trusted information (such as a globally available public key
infrastructure or a bulletin board) [CDPW07]. Here however we use the EUC formalism to capture
the notion of global helper functionalities that are available only to the corrupted parties.

We first review the model of computation, ideal protocols, and the general definition of securely
realizing an ideal functionality. Next we present hybrid protocols and the composition theorem.

The basic model of execution. Following [GMR89, Gol01], a protocol is represented as an
interactive Turing machine (ITM), which represents the program to be run within each participant.
Specifically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine
output tapes model the inputs from and the outputs to other programs running within the same
“entity” (say, the same physical computer), and the incoming communication tapes and outgoing
communication tapes model messages received from and to be sent to the network. It also has an
identity tape that cannot be written to by the ITM itself. The identity tape contains the program
of the ITM (in some standard encoding) plus additional identifying information specified below.
Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is
an ITM along with an identifier that distinguishes it from other ITIs in the same system. The
identifier consists of two parts: A session-identifier (SID) which identifies which protocol instance
the ITI belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol
instance. Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent
some administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes
in certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI
in the system. With one exception (discussed within) we assume that all ITMs are probabilistic
polynomial time.7

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed
to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process

7An ITM is PPT if there exists a constant c > 0 such that, at any point during its run, the overall number of
steps taken by M is at most nc, where n is the overall number of bits written on the input tape of M in this run. In
fact, in order to guarantee that the overall protocol execution process is bounded by a polynomial, we define n as the
total number of bits written to the input tape of M , minus the overall number of bits written by M to input tapes of
other ITMs; see [Can01].
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for that ideal functionality. Below we overview the model of protocol execution (called the real-life
model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running
an instance of a protocol π, an adversary A that controls the communication among the parties, and
an environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter k ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol π. That is, all the ITMs invoked by the
environment must have the same SID and the code of π. In the context of EUC security the
environment can in addition invoke an additional ITI that interacts with all parties. We call this
ITI the helper functionality, denoted H.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on
the party’s incoming communication tape or report information to Z by writing this information
on the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we
assume authenticated communication; that is, the adversary may deliver only messages that were
actually sent. (This is however not essential since authentication can be realized via a protocol,
given standard authentication infrastructure [Can04].)

Once a protocol party (i.e., an ITI running π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.

Let execπ,A,Z(k, z, r) denote the output of the environment Z when interacting with parties
running protocol π on security parameter k, input z and random input r = rZ , rA, r1, r2, ... as
described above (z and rZ for Z; rA for A, ri for party Pi). Let execπ,A,Z(k, z) denote the
random variable describing execπ,A,Z(k, z, r) when r is uniformly chosen. Let execπ,A,Z denote
the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of
F is null.)) In addition, F can interact with the adversary according to its code. Whenever F
outputs a value to a party, the party immediately copies this value to its own output tape. We call
the parties in the ideal protocol dummy parties. Let π(F) denote the ideal protocol for functionality
F .
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Securely realizing an ideal functionality. We say that a protocol π emulates protocol φ if
for any adversary A there exists an adversary S such that no environment Z, on any input, can
tell with non-negligible probability whether it is interacting with A and parties running π, or it
is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol π is ‘just as good’ as interacting with φ. We say that π securely
realizes an ideal functionality F if it emulates the ideal protocol π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 9. Let π and φ be protocols. We say that π UC-emulates (resp., EUC-emulates) φ if for
any adversary A there exists an adversary S such that for any environment Z that obeys the rules
of interaction for UC (resp., EUC) security we have execφ,S,Z ≈ execπ,A,Z .

Definition 10. Let F be an ideal functionality and let π be a protocol. We say that π UC-realizes
(resp., EUC-realizes) F if π UC-emulates (resp., EUC-emulates) the ideal protocol π(F).

Security with dummy adversaries. Consider the adversary D that simply follows the instruc-
tions of the environment. That is, any message coming from one of the ITIs running the protocol
is forwarded to the environment, and any input coming from the environment is interpreted as a
message to be delivered to the ITI specified in the input. We call this adversary the dummy adver-
sary. A convenient lemma is that UC security with respect to the dummy adversary is equivalent
to standard UC security. That is:

Definition 11. Let π and φ be protocols. We say that π UC-emulates (resp., EUC-emulates) φ w.r.t
the dummy adversary D if there exists an adversary S such that for any environment Z that obeys
the rules of interaction for UC (resp., EUC) security we have execφ,S,Z ≈ execπ,D,Z .

Theorem 3. Let π and φ be protocols. Then π UC-emulates (resp., EUC-emulates) φ if and only if
π UC-emulates (resp., EUC-emulates) φ with respect to the dummy adversary.

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual
as in the standard model of execution, the parties also have access to (multiple copies of) an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying primitives,
or alternatively make trust assumptions on the underlying network. They are also instrumental in
stating the universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid
protocol with access to an ideal functionality F), the parties may give inputs to and receive outputs
from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated,
nor does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by
them. These tasks are left to the protocol. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.
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The universal composition operation. We define the universal composition operation and state
the universal composition theorem. Let ρ be an F-hybrid protocol, and let π be a protocol that
securely realizes F . The composed protocol ρπ is constructed by modifying the code of each ITM
in ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy
of π with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of π, with the contents of that message given to π as new input. Each output value generated
by a copy of π is treated as a message received from the corresponding copy of F . The copy of π
will start sending and receiving messages as specified in its code. Notice that if π is a G-hybrid
protocol (i.e., ρ uses ideal evaluation calls to some functionality G) then so is ρπ.

The universal composition theorem. Let F be an ideal functionality. In its general form, the
composition theorem basically says that if π is a protocol that UC-realizes F (resp., EUC-realizes
F) then, for any F-hybrid protocol ρ, we have that an execution of the composed protocol ρπ

“emulates” an execution of protocol ρ. That is, for any adversary A there exists a simulator S such
that no environment machine Z can tell with non-negligible probability whether it is interacting
with A and protocol ρπ or with S and protocol ρ, in a UC (resp., EUC) interaction. As a corollary,
we get that if protocol ρ UC-realizes F (resp., EUC-realizes F), then so does protocol ρπ.8

Theorem 4 (Universal Composition [Can01, CDPW07]). Let F be an ideal functionality. Let ρ
be a F-hybrid protocol, and let π be a protocol that UC-realizes F (resp., EUC-realizes F). Then
protocol ρπ UC-emulates ρ (resp., EUC-emulates ρ).

An immediate corollary of this theorem is that if the protocol ρ UC-realizes (resp., EUC-realizes)
some functionality G, then so does ρπ.

C.2 UC Security with Super-polynomial Helpers

We modify the definitions of UC security by giving the corrupted parties access to an external
“helper” entity, in a conceptually similar way to [PS04]. This entity, denoted H, is computationally
unbounded, and can be thought of as providing the corrupted parties with some judicious help.
(As we’ll see, this help will be used to assist the simulator to “reverse engineering” the adversary
in order to extract relevant information hidden in its communication.)

The definition uses the formalism of EUC security [CDPW07]. Specifically, we model the
helper entity as an ITM that is invoked directly by the environment, and that interacts with the
environment and the corrupted parties. More formally, let H be an ITM. An environment Z is
called aided by H if: (a) Z invokes a single instance H immediately after invoking the adversary;
(b) As soon as a party (i.e., an ITI) P is corrupted (i.e., P receives a corrupted message), Z lets
H know of this fact; (c) H interacts only with the corrupted parties. Then:

Definition 12. Let π and φ be protocols, and let H be a helper functionality (i.e., an ITM). We
say that π H-EUC-emulates φ if for any adversary A there exists an adversary S such that for any
environment Z that’s aided by H we have execφ,S,Z ≈ execπ,A,Z .

The meaningfulness of relativized UC security of course depends on the particular helper ITM
in use. Still, it is easy to see that if protocol π H-EUC-emulates protocol φ where H obeys the
above rules and runs in time T (n), then π UC-emulates φ according to a relaxed notion where
the adversary S can run in time poly(T (n)). As noted in the past, for many protocols and ideal

8The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system. In [CDPW07] the theorem is extended to
protocols that share subroutines with arbitrary other protocols, as long as the composed protocol, ρπ, realizes F with
EUC security.
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functionalities, this relaxed notion of security suffices even when T (n) = exp(n) [Pas03b, PS04,
BS05, MMY06].

Universal Composition with super-polynomial helpers. The universal composition theorem
generalizes naturally to the case of EUC, even with super-polynomial helper functionalities:

Theorem (universal composition for relativized UC). Let F be an ideal functionality, let H be a
helper functionality, let π be an F-hybrid protocol, and let ρ be a protocol that H-EUC-realizes F .
Then protocol πρ H-EUC-emulates π.

Proof. The proof of Theorem C.2 follows the same steps as the proof of Theorem 4 (see e.g. the
proof in [Can00]). The only difference is in the construction of the distinguishing environment Zπ
(see there). Recall that Zπ takes an environment Z that distinguishes between an execution of π
and an execution of πρ, and uses it to distinguish between an execution of ρ and an ideal evaluation
of F . For this purpose, Zπ emulates for Z an execution of πρ.

Now, in the presence of the helper H, Zρ must emulate for Z also the interaction with H. Note
that Zπ cannot run H on its own, since H may well be super-polynomial in complexity. Instead,
Zπ will forward to the external instance of H each message sent to H by Z. Similarly, whenever
any of the corrupted parties that Zπ locally runs sends a message to H, Zπ externally invokes a
party with the same ID and code, corrupts it, and instructs it to send the query to the external
instance of H. The responses of H are handled analogously.

Note that the proof uses the fact that the helper functionality H does not take messages directly
from the adversary. Indeed, Zπ cannot emulate for the external instance of H messages coming
from the adversary.

D Black-Box UC-Secure Protocols in H-EUC Model

In this work, we consider UC-security with the a super-polynomial time helper that help breaks
commitments of our black-box robust CCA secure commitment scheme 〈C,R〉. More precisely, it
proceeds as described in Figure 6

Functionality H

Corrupted Parties: Upon receiving an input (Corrupt, Pi, sid) from the environment, record (Corrupt,
Pi, sid).

Initialization: Upon receiving an input (Init,Pi, sid, k) from party Pi in the protocol instance
sid, if there is no previously recorded tuple (Corrupt, Pi, sid) or there is a previously recorded session
(Pi, sid, k), ignore this message; otherwise, initialize a session of 〈C,R〉 with O using identity (Pi, sid),
and record session (Pi, sid, k).

Accessing O: Upon receiving an input (Mesg,Pi, sid, k,m) from party Pi in the protocol instance
sid, if there is no previously recorded session (Pi, sid, k), ignore the message; otherwise, forward m to O
in the kth session that uses identity (Pi, sid), obtain a reply m′, and return (Mesg,Pi, sid, k,m

′) to Pi.

Figure 6: The ideal functionality H

D.1 Proof of Lemma 2

In this section, we first recall the protocol ΠOT that H-EUC emulates FOT and then prove its
security. The construction relies on the TOT-round mS-OT protocol 〈S,R〉 and the CCA-secure
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commitment scheme 〈C,R〉. On common input 1n, the sender and the receiver of the protocol ΠOT

on private inputs (v0, v1) and u respectively proceed as follow:

Stage 1: The sender chooses a random subset ΓR ⊆ [20n] of size n and commits to ΓR using
〈C,R〉.
The receiver chooses a random subset ΓS ⊆ [20n] of size n and another random subset
Γ ⊆ [18n] of size n; it then commits to both ΓS and Γ using 〈C,R〉.

Stage 2 (Coin-Tossing):

Receiver Random-Tape Generation: The receiver chooses 20n random strings (aR1 , . . . a
R
20n)

and commits to them using 〈C,R〉. The sender sends 20n random strings (bR1 , . . . b
R
20n). The

receiver calculates rRi = aRi ⊕ bRi for every i ∈ [20n], and interprets rRi as ci‖τRi , where ci will
be used as the receiver’s input bit, and τRi the random tape in the OT executions below.

Sender Random-Tape Generation: The sender chooses 20n random strings (aS1 , . . . a
S
20n) and

commits to them using 〈C,R〉. The receiver sends 20n random strings (bS1 , . . . b
S
20n). The

sender calculates rSi = aSi ⊕ bSi for every i ∈ [20n], and interprets rSi as s0
i ‖s1

i ‖τSi , where
s0
i and s1

i will be used as the sender’s two input bits, and τSi the random tape in the OT
executions below.

Stage 3 (OT with Random Inputs): The sender and the receiver participates in 20n execu-
tions of the OT protocol 〈S,R〉 in parallel, where the sender acts as S and the receiver acts
as R. In the ith execution of 〈S,R〉, the sender uses inputs s0

i , s
1
i and random tape rSi and the

receiver uses input ci and random tape rRi . At the end of the execution, the receiver obtains
outputs s̃1 . . . s̃20n.

Stage 4 (Cut-and-Choose—Honesty Checking):

Sender Honesty Checking: The receiver opens ΓS and sender responds as follows: for every
j ∈ ΓS , the sender opens the jth commitments of 〈C,R〉 in Stage 2 to ãSj . The receiver checks

if the openings are valid, and if for every j ∈ ΓS , the sender acted honestly in the jth OT
execution according to ãSj ⊕ bSj . The receiver aborts if not.

Receiver Honesty Checking: The sender opens ΓR and receiver responds as follows: for every
j ∈ ΓR, the receiver opens the jth commitments of 〈C,R〉 in Stage 2 to ãRj . The sender checks

if the openings are valid and if for every j ∈ ΓR, the receiver acted honestly in the jth OT
execution according to ãRj ⊕ bRj . The sender aborts if not.

Stage 5 (Combiner): Set ∆ = [20n] − ΓR − ΓS (i.e., ∆ is the set of unopened locations). For
every i ∈ ∆ The receiver computes αi = u⊕ ci and sends αi. The sender responds as follows:
It computes a 10n-out-of-18n secret-sharing of v0; without loss of generality, we index shares
in that secret-sharing with elements in ∆; let the secret-sharing be ρ0 =

{
ρ0
i

}
i∈∆

. Similarly, it

also computes a 10n-out-of-18n secret-sharing ρ1 =
{
ρ1
i

}
i∈∆

for v1. Then the sender computes

βbi = ρbi ⊕ s
b⊕αi
i for every i ∈ ∆ and sends back all the βbi ’s.

The receiver after receiving all the βbi ’s, computes shares corresponding to the uth input as
ρ̃i = βui ⊕ s̃i for every i ∈ ∆, and sets ρ̃ = {ρ̃i}i∈∆.

Stage 6 (Cut-and-Choose—Consistency Checking): The receiver opens to Γ. Then for ev-
ery j ∈ Γ ∩∆, the sender reveals the two inputs ŝ0

j and ŝ1
j and random tape τ̂Sj that it uses

in the jth OT execution in Stage 3. The receiver checks if the sender acts honestly according
to input (ŝ0

j , ŝ
1
j ) and random tape τ̂Sj and aborts if not.
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Finally the receiver checks whether ρ̃ computed in Stage 5 is 17n-close to a valid codeword
w (that is, it agrees with w at 17n locations), and if for every j ∈ Γ ∩ ∆, wj is equal to

βuj ⊕ ŝ
u⊕αj
j . If so it outputs the value v encoded in w; otherwise, it aborts.

Next we proceed to show that ΠOT is indeed a secure realization of FOT. Below we describe the
technique for simulating the protocol execution of ΠOT in the ideal-world, where parties have access
to the ideal commitment functionality FOT, and give a proof that the simulation in the ideal-world
setting is indistinguishable from a real-world execution of ΠOT. Recall that we only need to prove
that ΠOT H-EUC-emulates FOT; hence in both the ideal and real worlds, the environment and the
adversary have access to the H functionality.

Let A be any PPT adversary and Z any PPT environment. The simulator Sim for A in the
ideal world internally simulates a real-world execution with A on auxiliary input z: it simulates A’s
interaction with the environment Z and the functionality H, by simply forwarding the communi-
cations between A and Z or H; furthermore, it simulates messages belonging to the OT protocol
ΠOT for A as follows:

Strategy 1: If the Sender (Pi) is honest and the Receiver (Pj) is corrupted, the simula-
tor needs to be able to extract the choice u of the receiver (controlled by A) so that it can
send u to the ideal OT functionality FOT to obtain an input vu, and simulate the view of A
without knowing the other input v1−u.

Towards this, the simulator Sim first acts honestly in Stage 1 to 4 except the following: It
forwards all the commitments of 〈C,R〉 from A in Stage 1 and 2 to the helper functionality H.
Since the receiver Pj is corrupted, H accepts commitments with identity Pj from Sim, and
returns Sim the unique committed value if the commitment is valid and ⊥ otherwise. These
committed values include ΓS and Γ committed to by A in Stage 1 and all the random strings
aRi for i ∈ [20n] committed to by A in Stage 2, which allows Sim to recover the inputs and
random tapes

{
ci, τ

R
i

}
i∈[20n]

that A is supposed to use in the Stage 3 OT executions. Then

for every j ∈ [20n], Sim checks whether A behaves honestly according to cj , τ
R
j in the jth

OT execution in Stage 3, and sets Φ to be the set of locations in which A cheats. Next, if A
successfully completes the first 4 stages, Sim needs to extract its input choice u and simulate
the Stage 5 sender’s message. To do so, it first extracts u by counting how many shares out
of the 18n shares ρ0 =

{
ρ0
i

}
i∈∆

and ρ1 =
{
ρ1
i

}
i∈∆

that A will get (in Stage 5 and 6) for each
input v0 and v1 as follows:

• For every location j ∈ ∆ and also in Γ, since the sender’s inputs s0
j and s1

j will be

revealed in stage 6, Sim counts that A obtains one more share for both ρ0 and ρ1.

• For every location j ∈ ∆ and also in Φ, A has cheated in the jth OT in Stage 3 and
thus may obtain both of the sender’s inputs s0

j and s1
j in that OT execution; recall that

in Stage 5 of the protocol, the two shares ρ0
j and ρ1

j will be covered using the sender’s

inputs s0
j and s1

j as one-time pads. Therefore, after receiving the Stage 5 message (which

contains βbj = ρbj ⊕ s
b⊕αj
j ), A will be able to recover both shares. Thus Sim counts that

A again obtains one more share for both ρ0 and ρ1.

• For the rest of locations j ∈ ∆−Φ−Γ, since A acts honestly using input cj and the two
sender’s inputs s0

j and s1
j will not be revealed in Stage 6, A obtains s

cj
j through the OT

execution while s
1−cj
j remains computationally hidden. Thus A later can only recover

the share ρ
cj⊕αj
j . Therefore, Sim counts that A gets one more share of ρcj⊕αj .

Then to simulates the sender’s Stage 5 message, Sim proceeds as follows: If for both inputs A
gets more than 10n shares, the simulator Sim outputs fail and aborts. Otherwise, if for only
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one input A gets more than 10n shares, Sim sends its index b∗ to the ideal functionality FOT

and receives a value w; it then sets vb∗ = w and sets v1−b∗ to a random bit, and complete the
rest of the simulation by following the honest sender’s strategy using vb∗ and v1−b∗ as inputs.
Finally, if for none of the inputs A gets more than 10n shares, then Sim simply sets both v0

and v1 to random bits and complete the simulation honestly according to these two values.

Strategy 2: If the Sender (Pi) is corrupted and the Receiver (Pj) is honest, the simula-
tor needs to simulate the view of the sender (controlled by A) without knowing the choice of
the receiver and extracts the two inputs from A.

Towards this, first note that during the whole execution of ΠOT, the only message that
depends on the receiver’s choice u is the Stage 5 receiver’s message, consisting of {αj}j∈∆
that are supposed to be set to αj = u ⊕ cj . The simulator Sim simulates the αj ’s by
simply sending random bits (and emulates the rest of the receiver’s messages for A honestly).
Furthermore, to extract the two inputs of the sender (controlled by A), Sim proceeds as
follows: It forwards all the commitments of 〈C,R〉 from A in Stage 1 and 2 to the helper
functionality H. Since the sender Pi is corrupted, H accepts commitments with identity Pi
from Sim, and returns Sim the unique committed value if the commitment is valid and ⊥
otherwise. These committed values include ΓR committed to by A in Stage 1 and all the
random strings aSi for i ∈ [20n] committed to by A in Stage 2, which allows Sim to recover
the inputs and random tapes

{
s0
i , s

0
i , τ

R
i

}
i∈[20n]

that A is supposed to use (as a sender) in the

Stage 3 OT executions. Next, if A completes the execution of ΠOT successfully, Sim extracts

shares of the sender’s inputs by computing ρ̂b =
{
ρ̂bj = βbj ⊕ s

b⊕αj
j

}
j∈∆

for b ∈ {0, 1} (The

rationale behind this extraction strategy is that, for every input b, the sender of the protocol

ΠOT is supposed to send “encryption”
{
βbj

}
of the shares

{
ρbj

}
of that input in Stage 5,

hidden using the appropriate inputs
{
s
b⊕αj
j

}
of the OT executions). Given the shares ρ̂0 and

ρ̂1, Sim reconstructs inputs v̂0 and v̂1 as follows: For every b, it checks whether ρ̂b is 16n-close
to a valid codeword ŵb, and whether ŵb passes the consistency check in the last stage, that

is, if ŵb agrees with βbj ⊕ ŝ
b⊕αj
j for all j ∈ Γ; If so, then it sets v̂b to the value encoded in ŵb;

otherwise it sets v̂b = ⊥. Finally Sim sends the two values v̂0 and v̂1 externally to the OT
functionality.

Strategy 3: If both the Sender (Pi) and the Receiver (Pj) are honest, the simulator needs
to simulate the transcript of an honest execution of ΠOT for A without knowing the inputs
of the honest players. To do so, it simply generates the transcript of an honest execution of
ΠOT using inputs all 0.

Below we analyze each of the simulation strategies above, and show that the environment Z’s
interactions with S in the ideal-world is indistinguishable from that with A in the real-world in
each of the cases.

Analysis of the first case: Consider the following five hybrids:

Hybrid H1: Hybrid H1 proceeds identically to the ideal execution, except that: In Stage 2,
for every location j that the sender would not need to reveal the randomness, that is, j 6∈
ΓS∪Γ (recall that the simulator obtains ΓS and Γ by forwarding A’s commitments to the
helper functionalityH at the end of Stage 1), the simulator simulates the jth commitment
of 〈C,R〉 to A by committing to 0 instead of aSj . Since these commitments all have
identities belonging to an honest player, and the helper functionality H only breaks
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commitments with identities of corrupted parties, it follows from the CCA-security of
〈C,R〉 that the ideal-execution is indistinguishable from H1.

Hybrid H2: Hybrid H2 proceeds identically to H1 except that in Stage 5, instead of always
using the sender’s inputs s0

j and s1
j for j ∈ ∆ to hide the shares ρ0 =

{
ρ0
i

}
i∈∆

and

ρ1 =
{
ρ1
i

}
i∈∆

, the simulator replace those inputs sbj ’s that are computationally hidden
from A with random strings to hide the shares. More precisely, recall that in every
location j ∈ ∆ − Φ − Γ, A acts honestly in the OT execution (using input cj) and

the sender’s inputs are not revealed in Stage 6; thus the input s
1−cj
j is computationally

hidden. Then, instead of using s
1−cj
j as a one-time pad to hide one of the jth shares ρ0

j

or ρ1
j in Stage 5, Sim uses a truly random string.

We claim that H2 is indistinguishable from H1. Towards showing this, we first show
that it follows from the security of the OT protocol 〈S,R〉 against semi-honest receiver
that the views of a malicious receiver R∗ in the following two experiments are indistin-
guishable.

In both experiments, the receiver R∗ on input a choice u, random input τ and
auxiliary input z, first engages in an execution with the honest sender S with
inputs s0 and s1 chosen at random. After the execution with S completes, R∗

receives the two inputs s0 and s1 in the first experiment. On the other hand,
what R∗ receives in the second experiment depends on whether it has acted
honestly according to inputs u and τ : If it is dishonest, then it still receives s0

and s1; otherwise, if it is honest, it receives su and a random bit s′.

It follows from the security against semi-honest receivers that when R∗ acts honestly
according to a choice u, the sender’s input s1−u that is not chosen is computationally
hidden, and thus R∗ cannot tell apart later whether it receives s1−u or a random bit.
Therefore its views in the above two experiments are indistinguishable. It further fol-
lows from a simple hybrid argument that, no malicious receiver can tell apart the two
experiment even if they are executed in parallel.

Then, since the only difference between hybrid H1 and H2 lies in whether the sender’s

message in Stage 5 is generated using honest inputs s
1−cj
j or random strings, for those

locations j ∈ ∆ − Φ − Γ where the adversary A acts honestly in the OT execution
according to the inputs and random tapes decided in Stage 2. It then follows from the
indistinguishability of the above two experiments (executed in parallel) that the sender’s
messages in Stage 5 in H1 and H2 are indistinguishable. Then, by the 1-robustness of
the CCA-secure commitment 〈C,R〉, we have that the view of A in the two hybrids are
indistinguishable. Thus H1 and H2 are indistinguishable.

Hybrid H3: This hybrid proceeds identically to H2 except the following: The ideal func-
tionality FOT does not expect to receive a choice from the simulator and instead directly
discloses both of the sender’s inputs v0 and v1 to the simulator; then after the simulator
extracts the adversary’s choice u, instead of using inputs vu and a random bit to simulate
the Stage 5 message as in H2, the simulator uses v0 and v1.

To show that H3 is indistinguishable from H2, we first prove that due to the cut-and-
choose procedure in Stage 4, the probability that A cheats in a large number of—more
than n—OT executions in Stage 3 without being caught is negligible.

Claim 4. In hybrid H4, the probability that A cheats in more than n OT executions in
Stage 3, and successfully passes the receiver’s honesty check in Stage 4 is negligible.

We remark that this claim holds, even if A receives a commitment to the set of locations
ΓR to be opened in the cut-and-choose procedure in Stage 1. This is because the CCA-
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security of the commitment guarantees that ΓR remains hidden even if all the values
that A commits to in Stage 2 are extracted via a committed-value oracle (since these
commitments use identities of corrupted parties, different from the identity of the com-
mitment to ΓR, which is the identity of the honest sender.) Then since we can identify
the locations where A cheats using these committed values efficiently, these locations
must be computationally independent of ΓR. Thus if A cheats in a large number of OT
executions, one of them will be selected by ΓR to check with overwhelming probability,
causing A to fail in Stage 4. A formal proof of this claim is presented at the end of this
section.

It follows directly from Claim 4 that except with negligible probability, if A completes
Stage 4 successfully, then the total number of shares that it gets is at most 20n; then,
by the pigeon hold principle, it gets more than 10n shares for at most one input. This
implies that the probability that the simulator outputs fail is negligible. Assume that
S4 does not output fail. Then the only difference between the simulation in hybrid H2

and H3 lies in how the Stage 5 sender’s message is simulated. In H2, for the input
that A gets more than 10n shares, the simulator obtains the true value through the OT
functionality and thus simulate the corresponding part of the sender’s message perfectly.
On the other hand, for the inputs that A gets no more than 10n shares, it simulates
shares of these inputs using shares of random bits. However, since A gets at most 10n
shares of these random bits and the rest of shares are all covered by truly random strings
in H2, switching the random bits to true inputs does not change the distribution of the
simulated message (of Stage 5). Thus we conclude that the views of A in H3 and H4 are
statistically close, and so are the executions of H3 and H4.

Hybrid H4: Hybrid H4 proceeds identically to H3 except that in Stage 5, the simulator
switches back to using the sender’s inputs s0

j and s1
j in the OT executions to hide the

shares ρ0 =
{
ρ0
j

}
j∈∆

and ρ1 =
{
ρ1
j

}
j∈∆

(instead of using random strings to hide part of

the shares). In other works, H4 reverses the changes done in H2. Then it follows from
the same argument as in H2 that, by the 1-robustness of the commitment 〈C,R〉, the
hybrid H4 proceeds indistinguishably from H3.

Hybrid H5: Hybrid H5 proceeds identically to H4 except that, in Stage 2, for every location
j that the sender do not need to reveal the randomness, that is, j 6∈ ΓS∪Γ, the simulator
switches the jth commitment of 〈C,R〉 to A from committing to 0 back to committing to
aSj . That is, H4 reverses the changes done in H1. Then it follows from the same argument
as in H1 that by the CCA-security of 〈C,R〉, the hybrid H5 proceeds indistinguishably
from H4.

Finally note that in H5, the simulator receives from FOT both inputs v0 and v1, and internally
emulates the real-execution with A perfectly. Therefore, by a hybrid argument, we have that
the real execution is indistinguishable from an execution of H1, which in turn is indistinguish-
able from from the ideal execution. Thus we concludes that the simulator Sim is constructed
correctly.

Analysis of the second case: Consider the following sequence of hybrids.

Hybrid H̃1: This hybrid proceeds identically to the ideal execution, except the following:
In Stage 2, for every location j that the receiver do not need to reveal the randomness,
that is, j 6∈ ΓR (recall that the simulator obtains ΓR by forwarding A’s commitments
to the helper functionality H at the end of Stage 1), the simulator simulates the jth

commitment of 〈C,R〉 from the receiver to A, by committing to 0 instead of aRj . Since
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these commitments all have the identity of the honest receiver, and the helper function-
ality H only breaks commitments with identities of corrupted parties, it follows from the
CCA-security of 〈C,R〉 that the ideal-execution is indistinguishable from H̃1.

Hybrid H̃2: This hybrid proceeds identically to H̃1 except the following: the ideal func-
tionality FOT discloses the external receiver’s choice u to the simulator; furthermore, in
Stage 5, instead of simulating all the αj ’s using random bits, the simulator computes
them honestly as αj = u ⊕ cj (where cj ’s are the inputs that the receiver uses in the
Stage 3 OT executions).

We claim that H̃2 is indistinguishable from H̃1. Towards showing this, we first show that
it follows from the security of the OT protocol 〈S,R〉 against malicious senders that the
views of a malicious sender S∗ in the following two experiments are indistinguishable.

In both experiments, the sender S∗ first participates in an interaction with an
honest receiver R using a random inputs u. After the execution with R, in the
first experiment, S∗ receives the input u, whereas in the second experiment, it
receives another independently sampled random bit u′.

It follows from the security against malicious senders of the OT protocol that the views
of the malicious sender S∗ in the above two experiments are indistinguishable. Further-
more, it follows from a simple hybrid argument that, no malicious receiver can tell apart
the above two experiments even if they are executed in parallel.

Then, note that the only difference between hybrid H̃1 and H̃2 lies in whether in Stage
5, the αj ’s (for j ∈ ∆) from the receiver are simulated using random bits or generated
honestly as u ⊕ cj ; in other words, the differenece is whether the αj ’s are computed as
the sum of u and a random bit (yielding a random bit) or cj (yielding u ⊕ cj). It then
follows from the indistinguishability of the above two experiments (executed in parallel)
that the receiver’s messages in Stage 5 in H̃1 and H̃2 are indistinguishable. Thus, by
the 1-robustness of the CCA-secure commitment 〈C,R〉, we have that the view of A
and the output of the external OT receiver (which will be v̂u) in the two hybrids are
indistinguishable. Hence H̃1 and H̃2 are indistinguishable.

Hybrid H̃3: This hybrid proceeds identically to H̃2 except that, in Stage 2, for every location
j that the receiver do not need to reveal the randomness, that is, j 6∈ ΓR, the simulator
switches the jth commitment of 〈C,R〉 from the receiver to A from a commitment to
0 back to a commitment to aSj . That is, H̃3 reverses the changes done in H̃1. Then it

follows from the same argument as in H̃1 that by the CCA-security of 〈C,R〉, the hybrid
H̃3 proceeds indistinguishably from H̃2. We remark that in H̃3 the simulator essentially
emulates the execution of ΠOT for A perfectly as an honest receiver (using the external
receiver’s true input u that it gets from FOT), except that it tries to extract the two
sender’s inputs from A at the end of the execution.

Hybrid H̃4: This hybrid proceeds identically to H̃3 except the following: The external re-
ceiver no longer interacts with FOT, and instead, simply outputs a value that the sim-
ulator feeds it. On the other hand, the simulator internally emulates the execution of
ΠOT for A by following the honest receiver’s strategy (as in H̃3), obtaining an output
v; it then skips extracting the sender’s inputs v̂0 and v̂1 and simply feeds the external
receiver the value v as the its output.

We show that the output of the environement in H̃4 is statistically close to that in
H̃3. Since the only difference between the two hybrids lies in how the outputs of the
external receiver are derived, it suffices to show that except with negligible probability,
the outputs of the external receiver in the two hybrids are the same. In H̃4, the external
receiver directly outputs the value v the simulator feeds it, which is just the output of
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an honest receiver of ΠOT with input u (emulated by the simulator for A). In H̃3, the
external receiver obtains the uth input from FOT, which is v̂u extracted by the simulator
from A. Recall that both v and v̂u are derived in two steps:

• In the first step, shares of the two values are recovered. The honest receiver obtains
shares of v by computing ρ̃ = {ρ̃j = βui ⊕ s̃i}j∈∆, where s̃j ’s are the outputs it
obtains in the Stage 3 OT executions with inputs cj ’s. On the other hand, the

simulator extracts shares of v̂u as ρ̂u =
{
ρ̂uj = βuj ⊕ s

u⊕αj
j

}
j∈∆

, where the sbj ’s are

the inputs that A is supposed to use in the OT executions.

• In the second step, a codeword is recovered from the shares: The honest receiver
recovers w that is 17n-close to ρ̃, whereas the simulator recovers ŵu that is 16n-
close to ρ̂u. Then both codewords are checked for consistency, that is whether they

agrees with βuj ⊕ ŝ
u⊕αj
j at locations j ∈ Γ, where the ŝbj ’s are A’s actual inputs in

the OT executions revealed in the last stage. If w (or ŵu respectively) passes the
consistency check, then v (or v̂u resp.) is set to the value encoded in w (or ŵu resp.);
otherwise, it is set to ⊥.

Towards showing that v and v̂u are (almost) always the same, Consider the following
two possible cases: ρ̃ is 17n-close to a valid codeword w or not.

• If it is, (in H̃4) the honest receiver will recover w from ρ̃. We show that the simulator
will recover the same codeword w from ρ̂u (i.e., ŵu = w). This relies on the following
claim:

Claim 5. Let ρ̃ and ρ̂u be defined as above. Then, except with negligible probability,
the shares ρ̃ and ρ̂u are 17n-close to each other.

This claim essentially follows from the fact that due to the cut-and-choose procedure,
the probability that A cheats in more than n OT executions in Stage 3, and yet,
passes the sender’s honesty check in Stage 4 is negligible. (This follows from the
same proof as Claim 4). Therefore, there are at least 17n locations where A acted
honestly (in the OT executions), meaning that the output s̃j of the honest receiver

in these OT executions equals to s
cj
j , which in turn equals to s

u⊕αj
j since α = u⊕ cj

in H̃3 and H̃4. This implies that ρ̃ and ρ̂u agree with each other at at least 17n
locations.
Therefore, except with negligible probability, ρ̂u is 16n-close to w. Then the sim-
ulator will uniquely recover w as well (i.e., ŵu = w). After that, both the honest
receiver and the simulator conduct the same consistency check against w, leading
to the same outputs v = v̂u.

• Otherwise, if ρ̃ is n-far away from any valid codeword, the honest receiver sets v to
⊥. We need to show that the simulator will also set v̂u to ⊥ with overwhelming
probability. Suppose not, then the simulator must have recovered a codeword ŵu

from ρ̂u. By our hypothesis, ŵu is n-far away from ρ̃; let Ψ be the set of locations
j at which ŵu and ρ̃ differ. Then we show that the probability that ŵu passes the
consistency check is negligible. Formally,

Claim 6. Let Ψ be defined as above. Then, the probability that |Ψ| > n and A
successfully passes the consistency check in Stage 6 is negligible.

This claim essentially follows from the fact that due to the cut-and-choose procedure,
the probability that Ψ is large but none of the locations j in Ψ is checked in the last
stage (i.e., Ψ ∩ Γ = ∅) is negligible. (This follows from a similar proof as Claim 4).
With overwhelming probability there is a location j in Ψ being checked, forcing A
to reveal the inputs ŝ0

j and ŝ1
j it uses in that OT execution, which also reveals the
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difference between ρ̃j and ŵuj . That is,

ρ̃j = βuj ⊕ s̃j = βuj ⊕ ŝ
cj
j = βuj ⊕ ŝ

u⊕αj
j 6= ŵuj

Thus, except with negligible probability, the adversary fails to pass the consistency
check, and v̂u is set to ⊥ as claimed.

By construction, in the last hybrid H̃4, the view of A is emulated perfectly according
to ΠOT and the output of the external OT receiver is the same as that of the honest
receiver of ΠOT. Therefore, the output of the environment in hybrid H̃4 is identically
distributed to the real-execution. Then by a hybrid argument, we have that the real
execution is indistinguishable to H̃1, and thus the ideal execution. Thus the simulator
Sim is constructed correctly.

Analysis of the third case: Consider the following sequence of hybrids:

Hybrid Ĥ1: This hybrid proceeds identically to the ideal execution except the follow-
ing: The ideal FOT functionality discloses the inputs (v0, v1) and u of the external
sender and receiver to A, and furthermore, the simulator switches the sender’s and
receiver’s inputs that it uses for simulating the transcript of ΠOT (for A) from all
0 to (0, v1) and 0. It follows from the analysis of the first case above that when
considering a semi-honest adversary acting as the receiver of ΠOT and using input
0, the adversary cannot tell apart if the honest sender is using inputs (0, 0) or (0, v1).

Thus the simulated transcripts in Ĥ1 and the ideal execution must be indistinguish-
able. Furthermore since no player is corrupted, the helper functionality H would
not accept any query from the adversary, the indistinguishability of the simulated
transcripts directly implies the indistinguishability of Ĥ1 and the ideal execution.

Hybrid Ĥ2: This hybrid proceeds identically to Ĥ1 except that the simulator switches
the receiver’s input that it uses for simulating the transcript of ΠOT from 0 to 1.
It follows from the analysis of the second case above that when considering a semi-
honest adversary acting as the sender of ΠOT, the adversary cannot tell apart if the
honest receiver is using inputs 0 or 1. Thus the simulated transcripts in Ĥ1 and Ĥ2

must be indistinguishable. Therefore, it follow from a similar argument as in Ĥ1

that Ĥ1 and Ĥ2 are indistinguishable.

Hybrids Ĥ3 and Ĥ4: These two hybrids proceed identically to Ĥ2 except that the
simulator switches the inputs that it uses for simulating the transcript of ΠOT from
((0, v1), 1) in Ĥ2 to ((v0, v1), 1) in Ĥ3 and to ((v0, v1), u) in Ĥ4. It follows from the

same argument as in Ĥ1 that hybrid Ĥ3 is indistinguishable to Ĥ2, and from the
same argument as in Ĥ2 that hybrid Ĥ4 is indistinguishable to Ĥ3.

Finally, in the last hybrid, A receives the transcript of the execution of ΠOT using true
inputs as in the real execution. Furthermore, since the outputs of the honest receiver in
Ĥ4 is identical to that in the real execution (both equal to vu), we have that the output

of the environment in Ĥ4 is identically distributed to that in the real execution. Then by
a hybrid argument we conclude that the real and ideal executions are indistinguishable.

Proof of Claim 4. Let Φ be the set of locations where A cheats in Stage 3. We note that Φ can
be computed efficiently given the values that A commits to using 〈C,R〉 in Stage 2. Recall that
the receiver’s honesty check in Stage 4 requires the receiver to open all the commitments it sends
in Stage 2 at locations in ΓR. Therefore if Φ ∩ ΓR 6= ∅, by the statistically binding property of
〈C,R〉, A would have been caught cheating. Thus if A successfully completes Stage 4, it must hold
that Φ ∩ ΓR = ∅. Now assume for contradiction that A cheats in more than n OT executions, but
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successfully completes Stage 4 in H4 (i.e., |Φ| > n and Φ ∩ ΓR = ∅) with polynomial probability.
Then we show that A can be used to violate the CCA-security of 〈C,R〉.

Consider a machine B that acts as a receiver of 〈C,R〉 externally with access to the committed-
value oracle O; internally, it emulates an execution of hybrid H4 with A, by using O to implement
the helper functionality H, except the following: It forwards messages from the external committer
C to A as the sender’s commitment in Stage 1; then after Stage 3, it computes the set Φ using the
values that A commits to in Stage 2 obtained through the helper functionality H as in H4; finally,
it simply outputs Φ and aborts. It follows from the construction that, when B externally receives
a commitment to ΓR—a randomly chosen set of size n—using the identity of the honest sender,
it internally emulates the execution of H4 perfectly up to Stage 3; then by our hypothesis, with
polynomial probability, it outputs a set Φ of size greater than n, disjoint with ΓR. However, on
the other hand, if B externally receives a commitment to 0 (still using the identity of the honest
sender), then the probability that B outputs a set of size greater than n that is disjoint with the
randomly chosen ΓR is exponentially small. Finally since all the commitments that B queries to
the committed-value oracle O have identities belonging to a corrupted party, different from the
identity of the honest sender, we have that B violates the CCA security of 〈C,R〉.
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