
TaoStore: Overcoming Asynchronicity in Oblivious
Data Storage

Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, Stefano Tessaro
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, California, USA

{cetin, victorzakhary, amr, rachel.lin, tessaro}@cs.ucsb.edu

Abstract—We consider oblivious storage systems hiding both
the contents of the data as well as access patterns from an un-
trusted cloud provider. We target a scenario where multiple users
from a trusted group (e.g., corporate employees) asynchronously
access and edit potentially overlapping data sets through a trusted
proxy mediating client-cloud communication.

The main contribution of our paper is twofold. Foremost,
we initiate the first formal study of asynchronicity in oblivious
storage systems. We provide security definitions for scenarios
where both client requests and network communication are
asynchronous (and in fact, even adversarially scheduled). While
security issues in ObliviStore (Stefanov and Shi, S&P 2013) have
recently been surfaced, our treatment shows that also CURIOUS
(Bindschaedler at al., CCS 2015), proposed with the exact goal
of preventing these attacks, is insecure under asynchronous
scheduling of network communication.

Second, we develop and evaluate a new oblivious storage
system, called Tree-based Asynchronous Oblivious Store, or
TaoStore for short, which we prove secure in asynchronous
environments. TaoStore is built on top of a new tree-based
ORAM scheme that processes client requests concurrently and
asynchronously in a non-blocking fashion. This results in a
substantial gain in throughput, simplicity, and flexibility over
previous systems.

I. INTRODUCTION

Outsourcing data to cloud storage has become increasingly
popular and attractive. However, confidentiality concerns [9]
make potential users skeptical about joining the cloud. En-
cryption alone is not sufficient to solve all privacy challenges.
Typically, the access patterns are not hidden from the cloud
provider, i.e., it can for example detect whether and when the
same data item is accessed repeatedly, even though it does not
learn what the item actually is. Data access patterns can leak
sensitive information using prior knowledge, as shown e.g. in
the setting of searchable symmetric encryption [24], [7].

This work targets cloud storage where multiple users from
a trusted group (e.g., employees within the same company)
need to access (in a read/write fashion) data sets which may
overlap. To achieve this, users’ accesses are mediated by a
shared (trusted) proxy which coordinates these accesses and,
at the same time, reduces the amount of information leaked
to the cloud. Oblivious RAM (ORAM) – a cryptographic
primitive originally proposed by Goldreich and Ostrovsky [17]
for software protection – is the standard approach to make
access patterns oblivious. Most ORAM solutions [38], [11],

[10], [4] are not suitable for our multi-user scenario, as they
handle operation requests sequentially, i.e., a new request is
not processed until a prior ongoing request is completed,
thus creating a bottleneck under concurrent loads. To date,
only a handful of solutions leverage parallelism to increase
throughput [36], [13], [44], [4]. PrivateFS [44] is based on
hierarchical ORAM and supports parallel accesses from a
limited number of clients. ObliviStore [36] (which is based
on SSS-ORAM [37]) was the first work to consider the proxy
model we also assume in this work. ObliviStore was recently
revisited by Bindschaedler et al. [4], who proposed a new
system called CURIOUS fixing a subtle (yet serious) security
flaw arising in concurrent environments.

Our contributions, in a nutshell: Motivated by [4], this
work initiates a comprehensive study of asynchronicity in
oblivious storage. We make contributions along two axes:

1) We observe that the previous treatment has not cap-
tured crucial security issues related to asynchronicity
in oblivious storage. We develop a comprehensive se-
curity framework, and present an attack showing that
access patterns in CURIOUS are not oblivious in an
asynchronous environment as captured by our model.

2) We design and evaluate a new provably secure sys-
tem, called TaoStore, that fully resists attacks in asyn-
chronous settings and also leverages the benefits of asyn-
chronicity for better performance. Our system follows
a completely different paradigm than previous works –
in particular it departs from the SSS framework and
is completely tree based – with substantial gains in
simplicity, flexibility, and efficiency.

A. Asynchronicity vs Security

Asynchronicity is an important variable in the design of
secure storage systems, and there are at least two ways in
which it can affect them:
• Asynchronous client requests. Multiple client requests can

come at any time point in time (either from the same
client or from different ones), and should be answered
independently of each other, possibly as soon as the data
item is retrieved from the server in order not to slow
down the applications requiring these accesses.

• Asynchronous network communication. The communica-
tion between the clients and the proxy, and the commu-



nication between the proxy and the server, is in general
asynchronous.

Needless to say, we would like our systems to be secure in
such asynchronous environments. The first question we thus
ask is:

Are existing systems secure under arbitrary
scheduling of communication and operations?

The answer is negative: all existing approaches of handling
concurrent requests on the same data item can leak substantial
information under asynchronous scheduling. The authors of
CURIOUS [4] have already shown that the sequentialization
of accesses to the same block in ObliviStore renders the
system insecure. We will go one step further, and show that
CURIOUS itself has not completely resolved the issue, and is
also insecure when operations are scheduled concurrently and
communication is asynchronous.

Our attack assumes that the adversary learns the timings
of the proxy’s answers back to the client. We find this
assumption reasonable. For example, the attacker may observe
(encrypted) network traffic between the proxy and the clients,
and moreover, a client may only schedule a new access (or
perform some other noticeable action) when a previous access
terminates. These timings were however kept secret in the
original security definition of [36], also used in [4]. Therefore,
our attack does not invalidate any of the claims from [36]. Still,
it motivates us to develop a definitional security framework for
asynchronous oblivious storage systems, which we believe to
be of independent interest.

B. Asynchronicity vs Efficiency

Our security assessment calls for a system which is fully
secure in an asynchronous environment. Instead of simply
fixing existing approaches (e.g., CURIOUS), we first take the
chance to address the following question:

How well do existing systems leverage parallelism
to handle concurrent asynchronous requests?

Indeed, existing systems have some undesirable features. CU-
RIOUS relies on data partitioning, and accesses to the same
partition are sequentialized. In contrast, here, we would like to
develop a system which is “natively” concurrent – we would
like our system to achieve high throughput even when using
a single partition. ObliviStore achieves higher concurrency on
individual partitions, yet, as pointed out in [4], the system
relies on a fairly complex background shuffling process which
is responsible for writing data back to the server and which
significantly affects performance of the system.

TaoStore: Motivated by the above concerns, we develop
and evaluate TaoStore, a fully-concurrent provably secure
multi-user oblivious data store. TaoStore departs from the
traditional partition-based SSS approach [37] used in current
systems. Instead, it relies on a tree based ORAM scheme
aimed at fully concurrent data access. Tree-based ORAMs
organize server storage as a tree, and server access is in form
of retrieving or overwriting data contained in a path from the
root to some leaf. Our new scheme features a novel approach

to manage multiple paths fetched concurrently from the server.
In particular, the write back of updated path contents to the
server occurs in an entirely non-blocking way, i.e., new paths
overlapping with paths being written back can still be retrieved
and updated while the write back operation is under way.

TaoStore is substantially simpler than ObliviStore and en-
ables better concurrency than CURIOUS. We can in particular
dispense with running the expensive background shuffling pro-
cess from the former, and different from the latter, operations
can be executed concurrently even on individual partitions.

Security and correctness: We prove the ORAM scheme
underlying TaoStore secure using our new security frame-
work, which guarantees security against adversaries which can
schedule both operations and network messages. In particular,
a key contribution of our construction is the introduction of a
sequencer module aimed at preventing our attacks affecting
other systems. Correctness (i.e., atomic semantics) remains
guaranteed, regardless of the scheduling of messages sent
over the network, which is asynchronous and can even be
in total adversarial control. Our concurrency handling calls
for a rigorous proof of correctness, which was not necessary
in previous systems due to simpler approaches to accessing
shared objects.

Evaluation: We present two different evaluations of Tao-
Store: (1) A local evaluation (with the same experimental setup
as in [36]) to compare it with ObliviStore, and (2) A cloud-
based evaluation (using Amazon EC2) to test our system in
real-world connectivity scenarios. The first evaluation shows
for example that TaoStore can deliver up to 57% more through-
put with 44% less response time compared to ObliviStore. Our
cloud-based evaluations show that while TaoStore’s throughput
is inherently limited by bandwidth constraints, this remains
its main limitation – our non-blocking write-back mechanism
indeed allows TaoStore’s performance scale very well with
increasing concurrency and decreasing memory availability
at the proxy. That is, the frequency of write backs does not
substantially slow down the system.

We emphasize that we do not implement recent bandwidth-
reducing techniques using server-side computation [33], [14],
[29] – we explicitly target usage on a simple storage server
which only allows for read-write access and no computation
(except for basic time-stamping), and these newer schemes –
while extremely promising – are not relevant for our setting.

Partitioning: Previous works use data partitioning in a
fundamental way. In particular, CURIOUS [4] relies on data
partitioning to ensure concurrency (access to the same partition
are sequentialized). TaoStore does not rely on partitioning –
indeed, the performance of our system is competitive even
without it – yet there are scenarios where partitioning is
desirable, as it can help overcome storage, bandwidth, and
I/O limitations. If desired, our tree-based approach enables
partitioning as a simple add-in – one breaks up the tree into
a forest of sub-trees, maintaining the tree-top in the proxy.

2



C. Overview of TaoStore

Developing an ORAM scheme for a concurrent setting is
indeed far from obvious. To see why this is the case, we first
review the main ideas behind tree-based ORAM schemes, such
as Path ORAM by Stefanov et al. [38].

These schemes have their storage space organized as a tree,
with each node containing a certain number of (encrypted)
blocks. A single client keeps a position map mapping each
(real) block address to a path from the root to a leaf in the
tree, together with some local memory containing a (usually
small) number of overflowing blocks, called the stash. To
achieve correctness, the ORAM client maintains a block-path
invariant ensuring that at each point in time, a block is either
on its assigned path or in the stash. Under this invariant,
processing each access (either read or write) for a block
involves three operations—read-path, flushing and write-back.
First, the ORAM client fetches the path P assigned to the
block, and uses it together with the stash to answer the request.
To maintain obliviousness, the block is immediately assigned
to a new random path in the position map, so that a future
access for the same block would fetch an independent random
path (hiding repetition in accesses). Next, the contents of
the path P and stash are re-arranged so that every block
ends up at the lowest possible node on P and also on its
assigned path; only blocks that do not fit remain in the stash.
This re-arrangement is referred to as flushing and is crucial
for ensuring that the stash never “overflows”. Finally, a re-
encrypted version of P is written back to the server, keeping
the server up-to-date.

How do we make Path ORAM concurrent and asyn-
chronous, while retaining both security and correctness? Even
after a first glance, several issues immediately arise. First off,
multiple paths may need to be retrieved simultaneously, as one
request may be made while a path is being retrieved from the
server – however, what if the requests are for the same item?
Second, every path needs to be written back to the server, but
what if just after the contents of a path have been sent back to
the server, one of the items contained in this path needs to be
updated? Finally, if the attacker can observe when the clients
receive responses to their requests, how does one ensure that
the timing of these responses are oblivious? All of this must be
considered in a truly asynchronous setting, where we do not
want to make any timing assumptions on the communication
between the proxy and the server.

Our ORAM scheme – TaORAM – resembles Path ORAM,
but allows multiple paths to be retrieved concurrently, with-
out waiting for on-going flush and write-back operations to
complete. All operations are done asynchronously:

• At the arrival of a request for a certain block, the
appropriate read-path request is sent immediately to the
server.

• Upon the retrieval of a path from the server, the ap-
propriate read/write requests are answered, and the path
is flushed and then inserted into a local subtree data
structure.

• Immediately after flushing a certain number k of paths,
their re-encrypted contents are written back to the server
(and appropriate nodes deleted from the local subtree).

Here, we highlight the fundamentals of our approach, and how
we address the challenges outlined above; see Section IV for
more details.

Consider obliviousness: Path ORAM crucially relies on the
fact that a block is assigned to a fresh new random path
after each access to hide future accesses to the same block.
However, in TaORAM, a request for a block is processed
immediately, without waiting for other concurrent accesses to
the same block to properly complete and “refresh” the assigned
path. If handled naively, this would lead to fetching the same
path multiple times, leaking repetition. TaORAM resolves this
issue by keeping track of all concurrent requests for the same
block (via a data structure called request map) so that at each
point, only one request triggers reading the actual assigned
path, whereas all others trigger fake reads for a random path.

Correctness is potentially jeopardized when there are mul-
tiple on-going read-path and write-back operations to the
server. The most prominent issue is that before all write-back
operations complete, the contents at the server are potentially
out-of-date; hence answering requests using paths read from
the server could be incorrect. To overcome this, TaORAM
keeps a so-called fresh-subtree invariant: The contents on the
paths in the local subtree and stash are always up-to-date,
while the server contains the most up-to-date content for the
remaining blocks. Moreover, every path retrieved from the
server is first “synched up” with the local subtree, and only
then used for finding the requested blocks, which is now
guaranteed to be correct by the fresh-subtree invariant. Several
technical challenges need to be addressed to maintain the
invariant, as the local subtree and the server are constantly
concurrently updated, and read-path and write-back operations
are completely asynchronous.

The stash size analysis of Path ORAM breaks down when
operations are asynchronous. Nevertheless, we show that the
stash size of TaORAM running with a sequence of requests
is the same as that of Path ORAM running with a different
but related sequence of requests, which is permuted from the
actual sequence according to the timing of flushing.

D. Further background and related works

It is impossible to cover the huge body of previous works
on ORAM, and its applications. We have already discussed
works implementing multi-client systems and in particular
ObliviStore and PrivateFS – here, we give a short overview of
other works.

a) Hierarchical ORAMs: Hierarchical ORAMs were
first proposed by Goldreich and Ostrovsky [17] (referred to as
the GO-ORAM henceforth), to store N elements. Hierarchical
ORAMs organize the memory in logN many levels, consisting
of increasingly many 2i buckets. At any time point, each
logical block is assigned to one random bucket per level, and
stored in exactly one of them. Hierarchical ORAMs require
a regular shuffling operation to deal with overflowing levels

3



after oblivious re-insertion of items into the hierarchical data
structure. Subsequent hierarchical ORAMs improve different
aspects of GO-ORAM, such as reduced overhead [32], [25],
[22], [20], [23], [20], faster shuffling [19], [20], [25], [43], and
de-amortizing shuffling [31], [5], [21], [25], [44].

Tree ORAMs: Tree ORAMs have been proposed rela-
tively recently, first by Shi et al. [35] and then soon extended
in a number of works [38], [16], [11], [10]. The current state-
of-the-art construction is Path ORAM [38] which was briefly
reviewed above and will be reviewed in detail below. Other
tree ORAMs share the same overall structure but differ in
important details, for instance, the absence of stash in [35],
[11], [16], varying heights and degrees of the tree in [16],
[10], applying flushing on randomly chosen paths in [11],
[10], or on paths in a fixed deterministic order [16], [33],
reducing the frequency of flushing and changing the tree
bucket structure [33], varying the size of the blocks [38],
[40], and achieving constant communication size by moving
computation to the server [14], [29].

Recent practical constructions: In the past several years,
many practical ORAM schemes have been constructed and
implemented for real-world applications, like secure (co-
)processor prototypes [15], [26], [27], [34] and secure cloud
storage systems [5], [39], [26], [44], [37], [36], [13]. While
classical ORAM schemes with small client memory apply
directly to the former setting, in cloud applications where a
client wishes to outsource the storage of a large dataset to
a remote server and later access it in an oblivious way, the
client typically has more storage space, capable of storing
O(
√
N) blocks or even some per-block meta-data of total size

O(N logN). The availability of large client storage enables
significantly reducing the computation overhead of ORAM
to O(logN) [20], [23], [42], [41], [44], [37], [36], and
furthermore, reduces the number of client-server interactions
per access to O(1) (instead of O(logN)).

Other works on multi-client ORAM: A problem super-
ficially related to ours (but technically different), is that of
Oblivious Parallel RAM (OPRAM), recently introduced by
Boyle, Chung, and Pass [6]. Even though Path ORAM-like
OPRAM schemes have also been proposed [8], OPRAM
clients coordinate their access to the server without a proxy. To
achieve this, they can communicate synchronously with each
other. The resulting schemes are however fairly unpractical.

A recent work by Maffei et al. [28] also considers ORAM in
conjunction with multi-user access, developing a new primitive
called Group ORAM. Their work considers a scenario where
a data owner enforces access-control restrictions on data,
whereas we consider a common address space which can be
accessed by a group of mutually-trusting users. The efficiency
of their solution compares to that of single-client, sequential,
ORAM schemes (like Path ORAM), and they do not address
efficient, high-throughput, concurrent access, which is the
focus of our work.

II. ASYNCHRONOUS ORAM SCHEMES: DEFINITIONS AND
ATTACKS

This section addresses the security of ORAM schemes in
asynchronous settings. We give both a formal security model,
and attacks against existing implementations.

A. Security Model

Traditional ORAM security definitions consider syn-
chronous and non-concurrent (i.e., sequential) systems. Here,
we introduce the new notion of adaptive asynchronous obliv-
iousness, or aaob-security, for short. The attacker schedules
read/write operation requests (which are possibly concurrent)
at any point in time, and also controls the scheduling of
messages. Moreover, the attacker learns when requests are
answered by the ORAM client (i.e., the client returns an
output), which as we see below, is very crucial information
difficult to hide in practice. Note that the definition of [36]
(which is also used in [4]) does consider asychronicity, but it
is inherently non-adaptive and, even more importantly, does
not reveal response times.

We give an informal (yet self-contained) overview of the
definition – further formal details are deferred to Appendix A.
We stress that we do not differentiate, at the formal level,
between multi- and single-client scenarios – an ORAM scheme
is what is run by the proxy in our application scenario, but we
think more generally this of it as a single “client” answering
asynchronous requests. Whether these come from multiple
parties or not is orthogonal to our treatment.

b) ORAM Schemes: We think of an asynchronous
ORAM scheme as a pair ORAM = (Encode,OClient), where
Encode takes an initial data set D of N items with a certain
block size B, and produces an encrypted version D̂ to initialize
an untrusted storage sever SS, together with a corresponding
secret key K. In particular, SS gives basic read/write access to
a client accessing it, together with timestamping, i.e., writing
a new item in some location on SS overwrites the current item
only if the timestamp of the new item is larger. OClient is the
actual (stateful) client algorithm which is given K, and can
be invoked at any time with requests for read/write operations,
and eventually answers these requests, after interacting with
SS. Concretely, OClient processes read requests for a certain
block address bid ∈ [N ] to retrieve the value stored in this
block, and write requests to overwrite the value of a certain
block bid (and possibly retrieve the old value). These requests
are denoted as (op, bid, v) where op ∈ {read,write} and
v = ⊥ when op = read. Every such request is terminated
at the point in time by either returning the retrieved value
or (for write operations) simply an acknowledgement to the
caller, and possibly the value which was overwritten.

c) Security definition: We now proceed with our defini-
tion of aaob security, which is an indistinguishability-based
security notion. Given an attacker A and an ORAM scheme
ORAM = (Encode,OClient), we consider an experiment
ExpaaobORAM(A) where OClient accesses a storage server SS
via an asynchronous link. The experiment initially samples

4



a random challenge bit b $← {0, 1}, and then proceeds as
follows:
• The attacker A initially chooses two equally large

data sets D0, D1. Then, the game runs (D̂b,K)
$←

Encode(Db). As a result, D̂b is stored on SS, and the
key K is given to OClient.

• The attacker A can, at any point in time, invoke OClient
with a pair of operation requests (opi,0, opi,1), where
both requests can be for arbitrary read/write operations.
Then, operation request opi,b is handed over to OClient.
When the operation completes, the adversary A is noti-
fied, yet it is not told the actual value returned by this
operation.1

• When processing operation requests, OClient commu-
nicates with SS over a channel whose scheduling is
controlled by A. Concretely, when ORAM sends a read or
write request to SS, A is notified (and given the message
contents), and A can decide to deliver this message to SS
at any point in time. Similarly, A controls the scheduling
of the messages sent back from SS to ORAM, and also
learns their contents. There are no ordering constraints
– A can deliver messages completely out of order, and
even drop messages.

• Finally, when the adversary A is ready, it outputs a guess
b′ for b, and the experiment terminates. In particular, if
b = b′, we way that the experiments outputs true, and
otherwise it outputs false.

We define the aaob-advantage of the adversary A against
ORAM as

AdvaaobORAM(A) = 2 · Pr
[
ExpaaobORAM(A)⇒ true

]
− 1 .

We say that ORAM is aaob-secure (or simply, secure) if
AdvaaobORAM(A) is negligible for all polynomial-time adversaries
A (in some understood security parameter λ).

d) Remarks: One key point of our definition is that the
adversary learns the response times – this was not the case
in [36]. This information is crucial, and in particular it is very
hard to argue an adversary has no access to it. Not only in our
deployment scenario this information is visible by a potential
network intruder (the actual ORAM client is run by a proxy
with network connectivity to its users), but also ORAM users
will most likely have different behaviors triggered by these
responses.

We also note that (out of formal necessity) we do not leak
the contents of operation responses, and only their timing.
Otherwise, A can easily recover the challenge bit b. In the full
version, we discuss stronger simulation-based security notions
allowing this information to be revealed.

e) Correctness: The above discussion did not address the
issue of correctness of the scheme, which is quite subtle given
the concurrent nature of the system. Following the classical
literature on distributed systems, Appendix C defines atomic
semantics for an asynchronous ORAM scheme as our target

1This restriction is necessary, for otherwise an adversary A could easily
guess the value of b.

Server

Client

op1 = (read, 1,⊥)

op2 = (read, 1,⊥)

rep1 = D[1] rep2 = D[1]

Server

Client

op1 = (read, 1,⊥)

op2 = (read, 2,⊥)

rep1 = D[1]

rep2 = D[2]

Fig. 1: Attack against ObliviStore. Comparison of event tim-
ing for repeated access (above) and distinct accesses (below).
Here, we assume constant delays in delivering messages.

Server

Client

op1 = (read, 1,⊥) op2 = (read, 1,⊥) rep1 = rep2 = D[1]

Server

Client

op1 = (read, 1,⊥) op2 = (read, 2,⊥) rep2 = D[2] rep1 = D[1]

Fig. 2: Attack against CURIOUS’s fake-read logic: The
upper figure represents the timing of the communication
between the client and the server when accessing the same
item twice, and the second access is a “fake read” (in blue).
The figure below represents the execution when the accesses
are for two distinct items (both “real reads”). The timings of
the responses differ, as in the above case, the client needs to
wait for the actual value to arrive.

correctness notion. This in particular means that operations
appear to take place atomically at some point between their
invocation and their response.

B. Attacks

We present two attacks – one against ObliviStore, one
against CURIOUS – breaking their aaob-security. We note
that the former attack is just a re-iteration of the key idea

5



presented in [4]. In contrast, our second attack is novel. We
give a high-level explanation of the attacks, but a formalization
in our framework (given an appropriate formalization of the
scheme) can be obtained easily.

f) Attack against ObliviStore: An attack against Oblivi-
Store can be derived from the weakness already observed
in [4]. In particular, ObliviStore sequentializes accesses on
the same item, and thus an adversary requesting the same
item twice (e.g., issuing two subsequent requests op1,0 =
op2,0 = (read, 1,⊥)) will see only one request being made
to the storage server, with a second request being scheduled
only after the response to the first one returns to the client.
In contrast, scheduling requests op1,1 = (read, 1,⊥) and
op2,1 = (read, 2,⊥) for two different addresses will have the
adversary see the client immediately schedule two requests
to retrieve information from the server. This leads to easy
distinguishing. Figure 1 gives two diagrams presenting the two
situations in detail.

We note two things. First off, this attack breaks ObliviStore
even in the model in which it was claimed to be secure,
as response times are not needed to distinguish between the
repeated-access scenario. Also, the attack does not require the
network to be asynchronous – only the ability to schedule
overlapping operations. Second, if response times can be mea-
sured, then the attack is very easy to mount: An independent
experimental validation (with the ObliviStore implementation
provided to us) shows that repeatedly accessing the same item
over and over leads to a performance degradation of up to
50% compared to accessing well-spread loads.

g) Attack against CURIOUS: The overcome this, [4]
suggested an alternative approach based on the idea that a
concurrent operation on the same item should trigger a “fake
read”. We show that this idea, by itself, is not sufficient
to achieve aaob-security. We note that our attack does not
contradict security claims in [4], since the model of [36] is
used, which does not leak the timing of responses. (As argued
above, we believe that it is extremely hard to hide these timings
in actual deployment.)

To start with, recall that when two concurrent requests for
the same item are made in CURIOUS (think of these as read
requests for simplicity), the first request results in the actual
“real read” access to the server fetching the item, whereas the
second results in a fake access to the storage server SS (a
so-called “fake read”) to hide the repeated access. This “fake
read” looks like an access to an unrelated, independent item
(the details are irrelevant).

The key issue – ultimately allowing us to distinguish –
concerns the timings of the responses given by the ORAM
client. When the fake read operation terminates (i.e., the
corresponding data is received by the ORAM client from the
server), the client always returns the item fetched in the real
read if it is available. If the item is not available, then it
needs to wait for the real read to terminate. Note that in the
asynchronous setting, the latter situation can occur – we have
no guarantee whatsoever that the real read terminates before

Trusted Proxy

C1 C2 C3 Ci

Fig. 3: Deployment model of TaoStore

the fake read.2 This is in contrast to the case where the reads
are for two distinct items (and hence both “real”), and the
second request can be answered right away even if the client
has not received the data from the server associated with the
second request.

This gives the attacker a simple mean to break aaob
security, and distinguish the b = 0 from the b =
1 case, by simply scheduling two pairs of operations
(op1,0, op1,1), (op2,0, op2,1), where op1,0 and op2,0 are two
read requests for the same item, whereas op1,1 and op2,1 are
read requests for distinct items. Concretely, the adversary A
first issues the request pair (op1,0, op1,1), delays the messages
sent by OClient right after the first operation pair is processed,
schedules the second request pair (op2,0, op2,1), and delivers
the associated messages to SS, and its replies back to OClient
immediately. If this results in an answer to the second opera-
tion being triggered immediately, the attacker guesses b = 1,
otherwise it guesses b = 0. The outcome of the attack is
depicted in Figure 2.

h) Remarks: We note that to prevent the same attack
affecting CURIOUS, our system TaoStore will introduce the
notion of an operation sequencer, a module catching out-of-
order early replies from the ORAM client back to the caller,
for instance by ensuring that in our attack scenario from above,
also in the setting with two real reads, the final response to
the second real read will not be sent before the response to
the first real read. In other words, we will not happen to
modify the fake-read logic. Rather, we make sure that real
reads have response timings consistent with the behavior one
would observe if some of these are fake.

III. OVERVIEW OF TAOSTORE

This section provides a high-level overview of TaoStore and
its goals, including the deployment scenario and architecture
of our system.

High-level goal: The goal of TaoStore is to allow multi-
ple clients (or users) to securely and obliviously access their
shared data on an untrusted storage server (a “public cloud”).
Informally, the security guarantee is that the contents of the

2CURIOUS in fact envisions the fake read going with high probability to a
partition different than the real read – this partition may even be on a different
machine, and thus out-of-order responses are quite likely.

6



shared data and of the accesses from the multiple clients are
kept hidden against any honest-but-curious entity3 observing
traffic to and from the server and being able to schedule
messages. This is formalized via the notion of aaob security
introduced above.

Concretely, users issue read requests for a certain block
address bid to retrieve the value stored in this block, and write
requests to overwrite the value of a certain block bid (and
possibly retrieve the old value). These requests are denoted
as (type, bid, v) where type ∈ {read,write} and v = ⊥ when
type = read. The block address bid belongs to some logical
address space {1, . . . , N}, and blocks have some fixed size
B. (In our system, B = 4 KB.) Every such request is invoked
at some point in time by a client process, and terminates at
the point in time by either returning the retrieved value or (for
write operations) simply an acknowledgement to the caller.

System architecture: As in previous works [36], [4],
TaoStore relies on a trusted proxy, who acts as a middle
layer between users and the untrusted storage. (See Figure 3
for an illustration of the architecture.) The proxy coordinates
accesses from multiple users to the untrusted storage, which
it makes oblivious, and stores locally secret key material used
to encrypt and decrypt the data stored in the cloud. We also
assume that the communication between users and the proxy
is protected by end-to-end encryption. This is often referred
to as the ”hybrid cloud” model [36].

TaoStore’s proxy will effectively run the Oblivious RAM
scheme, TaORAM (briefly discussed above in the introduction
and presented below in Section IV), which is particularly
well suited at processing requests in a highly concurrent
way, as opposed to traditional ORAM schemes which would
force request processing to be entirely sequential.4 We assume
that network communication, most importantly between the
proxy and the untrusted storage, is completely asynchronous.
Furthermore, in contrast to classical applications, the ORAM
scheme here can effectively use large memory on the proxy,
even up to N logN (e.g., to store a full position map). (Large
proxy memory was also exploited in ObliviStore already.)

IV. OUR ASYNCHRONOUS ORAM

In this section, we present the asynchronous ORAM scheme
underlying TaoStore – which we refer to as TaORAM. In
particular, TaORAM is run by the trusted proxy, which acts as
the “single client” interacting with the storage server, handling
queries concurrently. Therefore, in the following, we refer to
the entity running the ORAM algorithm (the trusted proxy
here) as the ORAM client.

TaORAM is based on the non-recursive version of Path
ORAM, but processes client requests concurrently and asyn-
chronously. We focus on the non-recursive version, since in

3While not addressed in this paper, enhancing security to an actively
malicious server can be achieved via fairly standard techniques.

4The number of clients is irrelevant for our system, as all clients are allowed
to access the same data and each client can issue multiple queries concurrently,
and thus effectively an arbitrary number of clients can be seen as one single
client accessing the proxy without loss of generality.

our deployment model the trusted proxy has reasonably large
memory, able to hold some meta-data for each data block. (The
same recursive technique as in Path ORAM can be applied to
reduce the memory overhead if needed.) Below, we first briefly
review Path ORAM, and then describe TaORAM.

A. A Review of Path ORAM

To implement a (logical) storage space for N data blocks
(stored in encrypted form) the basic Path ORAM scheme
organizes the storage space virtually as a complete binary tree
with at least N leaves, where each node of the tree is a small
storage bucket that fits Z = 4 data blocks. To hide the logical
access pattern, each data block is assigned to a random path
pid from the root to the leaf (so we can equivalently think
of pid as being the identifier of a leaf, or of such a path) and
stored at some node on this path; the assignment is “refreshed”
after each access for this block (either for a read or for a
write operation) to a new random path pid′ to hide future
accesses to the same block. The ORAM client keeps track of
the current assignment of paths to blocks using a position map,
pos.map, of size O(N logN) bits,5 overflowing blocks (see
below) in an additional data structure, called the stash, and
denoted stash, of fixed a-priori bounded size (the size can be
set to some function of the order ω(logN), even only slightly
super-logarithmic).

For each client request (typei, bidi, vi) with typei =
read/write, Path ORAM performs the following operations:

1) Request Processing (Read-Path): Upon receiving the
request, Path ORAM sends a read request to the server
for the path pid = pos.map[bid] assigned to block bid.
When the path is retrieved, it decrypts the path and finds
block bid on the path or in stash, and either returns its
value if typei = read, or updates it to vi if typei = write.
Path ORAM then assigns block bid to a new random
path pid′ and updates pos.map[bid] = pid′ accordingly.

2) Flushing: In a second phase, it iterates over each block
bid on the path pid or in the stash, and inserts it into
the lowest non-full node (i.e., containing less than Z
nodes) on pid that intersects with its assigned path
pos.map[bid]. If no such node is found, the block is
placed into the stash.

3) Writing-back: Then Path ORAM encrypts the path with
fresh randomness, and writes path pid back to the server.

Initializing the remote storage. To initialize the contents
of the remote storage server, the ORAM client can simply run
the ORAM algorithm locally, inserting elements one by one.
The resulting storage tree can be safely sent to the server to
store and accessed later. Since this approach can be applied
universally to any ORAM scheme, we omit a discussion on
encoding the initial data set below.

B. TaORAM

TaORAM internally runs two modules, the Processor and
the Sequencer. (See Figure 4 for an illustration.) The Processor

5The full Path ORAM scheme recursively outsources the position map to
the server to reduce the ORAM client’s local storage to poly log(N).

7



interacts with the server, prepares answers to all logical
requests, and returns answers to the Sequencer. The Sequencer
merely forwards logical requests to the Processor, and when
receiving the answers, enforces that they are returned in the
same order as the requests arrive, as we explain in more detail
below.

Processor

Sequencer

Server

TaORAM requests replies

requests replies serialized

read/write paths

Fig. 4: TaORAM Structure

We present TaORAM in steps. Step 1-3 describe the design
of the Processor, each step enabling a higher degree of con-
currency. In this description, when obliviousness is concerned,
it is convenient to focus only on the communication between
the Processor and the server. Then, in Step 4, we show how
to prevent additional information leakage through the timing
of replies, and in particular explain the functionality of the
Sequencer. A complete pseudocode description of TaORAM
is provided in Figure 5.

1) Step 1 – Partially Concurrent Requests: For any k ≥ 1,
Path ORAM can naturally be adapted to support partial “k-
way” concurrent processing of logical requests when the
k logical requests are non-repetitive (i.e., accessing distinct
blocks).6 In this case, the Processor implement a variant of
Path ORAM to first (1’) simultaneously fetch k paths from
the server to find the requested blocks, and store all paths in
local memory, forming a subtree we refer to as subtree; after
assigning these k blocks to k new random paths, (2’) it flushes
along the subtree, and (3’) writes back the entire subtree to the
server. Note that since the server is not updated during step
(1’), the read-path requests for the k logical requests can be
issued concurrently and asynchronously, without further coor-
dination. Furthermore, when logical requests are for distinct
blocks, the k paths fetched in step (1’) are independent and
random, and this ensures obliviousness.

However, when there are repetitive logical requests, obliv-
iousness no longer holds. This is because multiple accesses
to the same block cause the Processor to fetch the same
path multiple times, leaking the existence of repetition. To
solve this issue, TaORAM maintains a request map, de-
noted as request.map, that maps each block bid to a queue,
request.map[bid], of (unanswered) logical requests for this

6A similar observation was made for hierarchical ORAMs in the design of
PrivateFS [44], which supports partial concurrent processing of requests from
multiple clients.

block. To avoid leaking repetitions, only the first logical
request in the queue triggers reading the actual assigned path—
termed a “real read”, whereas all following requests trigger
reading a random path—termed a “fake read”. Later, when
the assigned path is retrieved, responses to all requests in
request.map[bid] are created in sequence to ensure logical
consistency. (See Step 2 in algorithm READ-PATH and Step 3
in algorithm ANSWER-REQUEST in Figure 5.)

2) Step 2 – Fully Concurrent Request Processing: In the
above scheme, flush and write-back operations (i.e., Step
2’ and 3’) implicitly “block” the processing new requests,
imposing an undesirable slow down. In the following, we
enhance the Processor to enable fully concurrent processing:
Each incoming request is immediately inserted into the request
map and the appropriate path is fetched from the server, even
if flushing and writing back of previously retrieved paths are
in progress.

Such modification brings a number of challenges for ensur-
ing correctness. For example, before a write-back operation is
completed, part of the contents on the server are potentially
stale, and hence reading a path from the server at the same
time may lead to an incorrect answer to some logical request.
To ensure correctness, TaORAM will maintain the following,

Fresh-Subtree Invariant: The blocks in the local
subtree and stash are always up-to-date, whereas
the tree at the server contains the most up-to-date
contents for the remaining blocks.

The invariant is strongly coupled with our subtree synching
procedure: Whenever the Processor retrieves a path from the
server, it discards the part that intersects with the local subtree,
and only inserts the rest of the nodes into subtree. Under the
fresh-subtree invariant, after “synching”, the path in subtree is
guaranteed to be up-to-date, and can safely be used to answer
logical requests. (See Step 1 of algorithm ANSWER-REQUEST
in Figure 5.)

Maintaining the invariant is, however, subtle, and one of
the core technical challenges in our algorithm. If nodes in
subtree were never deleted, the invariant would be trivially
maintained, as all updates are first performed on subtree. But,
this eventually leads to a huge subtree. Therefore, whenever
the server confirms that some k paths has been written back,
the Processor deletes some nodes from subtree.

Unfortunately, naively deleting the entire k paths would
violate the fresh-subtree invariant. This is because between
the time t1 when the write-back operation starts and t2 when
it completes (receiving confirmation from the server), the
subtree is potentially updated. Hence, at t2, the Processor must
keep all nodes updated after t1, or else new contents would
be lost. Another issue is that between t1 and t2, new logical
requests may trigger reading a path pid from the server; to
ensure that when the path is retrieved (after t2), it can be
correctly “synched” with subtree, the Processor must keep all
nodes on path pid (for the content retrieved from the server
may be stale since the path is requested before t2).

In summary, the Processor must not delete any nodes that
have been more recently (than t1) updated or requested.

8



Module Sequencer:

Global Data: A sequencer.queue and a sequencer.map.
Sequencer reacts to the following events:
• Upon receiving request (typei, bidi, vi), do:

– Create entry sequencer.map[(typei, bidi, vi)]←⊥.
– Push request (typei, bidi, vi) into sequencer.queue.
– Send request (typei, bidi, vi) to Processor.

• Upon receiving response wi for request (typei, bidi, vi) from
Processor, set sequencer.map[(typei, bidi, vi)]← wi.

• Run on a separate thread the Serialization Procedure that keeps
doing the following:

– When sequencer.queue is non-empty, pop a request
(type, bid, v) from sequencer.queue.

– Wait until entry sequencer.map[(type, bid, v)] is updated
to a value w 6= ⊥.

– Return w as a response to request (type, bid, v), and
remove entry sequencer.map[(type, bid, v)].

Module Processor:
Global Data: A secret (encryption) key key, a stash, a request.map,
a response.map, a PathReqMultiSet, a subtree, a counter #paths
and a write.queue.
Processor reacts to the following events:
• Upon receiving a logical request (typei, bidi, vi) from Se-

quencer, start a new thread doing the following and then
terminate.

– (pid, P , fake.read) ← READ-PATH(typei, bidi, vi);
– Lock subtree;
– ANSWER-REQUEST(typei, bidi, vi, pid, P , fake.read);
– FLUSH(pid);
– Unlock subtree;

• Whenever #paths turns a multiple of k, c · k, start a new
thread running WRITE-BACK(c);

READ-PATH(typei, bidi, vi):

1) Create entry response.map[(typei, bidi, vi)]← (false,⊥).
2) Insert (typei, bidi, vi) into queue request.map[bidi].

• If the queue was previously empty, set fake.read ← 0
and pid← pos.map[bidi];

• Else, set fake.read← 1, and sample pid
$← {0, 1}D .

3) Read-path pid from server and insert pid to
PathReqMultiSet. Wait for response.

4) Upon waking up with the server response, remove (one
occurrence of) pid from PathReqMultiSet.

5) Decrypt the response with key to obtain the content of path
pid, denoted as P , and return (pid, P, fake.read).

ANSWER-REQUEST(typei, bidi, vi, pid, P, fake.read):

1) Syncing procedure: Insert every node w on path P that
is currently not in subtree into subtree.

2) Update entry response.map[(typei, bidi, vi)] from
(b, x) to (true, x). If x 6= ⊥, reply value x for the
request (typei, bidi, vi) to Sequencer, and delete the
entry.

3) If fake.read = 0, find block bidi in subtree, and create
responses to requests in queue request.map[bidi] as
follows:
• Pop a request (type, bidi, v) from the queue.
• Let w be the current value of block bidi.
• If type = write, set the value of bidi to v.
• If entry response.map[(type, bidi, v)] = (true,⊥),

reply value w for the request (type, bidi, v) to
Sequencer, and delete the entry.

• Else, if response.map[(type, bidi, v)] = (false,⊥),
set the entry to (false, w).

Repeat the above steps until request.map[bidi] is empty.
4) If fake.read = 0, assign block bidi a new random path

pos.map[bidi]
$← {0, 1}D .

FLUSH(pid):

1) For every block bid′ on path pid in subtree and stash,
do:
• Push block bid′ to the lowest node in the intersec-

tion of path pid and pos.map[bid′] that has less
than Z blocks in it. If no such node exists, keep
block bid′ in stash.

2) Increment #paths and push pid into queue write.queue.
3) For every node that has been updated, add (local)

timestamp t = #paths.
WRITE-BACK(c):

1) Pop out k paths pid1, · · · pidk from write.queue.
2) Copy these k paths in subtree to a temporary space S.
3) Encrypt paths in S using secret key key.
4) Write-back the encrypted paths in S to the server with

(server) timestamp c. Wait for response.
5) Upon waking up with write confirmation, delete nodes

in subtree that are on paths pid1, · · · pidk, with (local)
timestamp smaller than or equal to c · k, and are not on
any path in PathReqMultiSet.

Fig. 5: Pseudocode description of TaORAM.

To ensure the former, we timestamp every node in subtree
(locally) to record when it is last updated. (See Step 3 of
Algorithm FLUSH in Figure 5, and note that this timestamp is
different from the version number used as a server timestamp.)
To ensure the latter, the Processor maintains a multi-set
PathReqMultiSet that tracks the set of paths requested but not
yet returned.7 (See Step 3 and 4 of algorithm READ-PATH and
Step 6 of WRITE-BACK in Figure 5.)

3) Step 3 – Non-Blocking Flushing: So far, though requests
are concurrently processed at their arrival, the flush and write-

7We remark that PathReqMultiSet must be necessarily a multi-set, as the
same path may be requested more than once.

back operations are still done sequentially, in the same order
their corresponding logical requests arrive (in batches of k).
We further remove this synchronization.

First, we decouple the order in which paths are flushed from
the order in which logical requests arrive: As soon as a path is
retrieved (“synched” with the subtree, and used for answering
client request), the Processor flushes the path immediately,
even if the paths for some previous requests have not yet been
returned (remember that they could well be late due to the
asynchronous nature of the network). Furthermore, we make
write-back operations asynchronous: As soon as k new paths
are inserted into subtree and flushed, the Processor writes-

9



back these k paths to the server, irrespective of the status of
any other operations (e.g., some previous write-back requests
may still be pending)— therefore, in the rest of the paper, we
call k the write-back threshold. In summary, flush and write-
back operations are performed as soon as they are ready to be
performed. (See the pseudocode of Module Processor.)

This brings two challenges. First, since paths may be flushed
in an order different from that they were requested, it is no
longer clear whether the stash size is bounded (at least the
analysis of Path ORAM does not directly apply as a black
box). We show that this is indeed the case, and provide the
proof below.

Lemma 1. The stash size of TaORAM is bounded by
any function R(N) = ω(logN) (e.g. R(N) = (logN) ·
(log log logN)), except with negligible probability in N .8

The second challenge is ensuring server consistency when
multiple write-back operations end up being concurrent. In an
asynchronous network, these requests may arrive at the server
out-of-order, causing the server to be updated incorrectly. To
address this problem, we mark each node stored at the server,
as well as each write-back request, with a version number (or
“server timestamp”), and the server can only overwrite a node
if the write-back request is of a newer version. (See Step 4 of
WRITE-BACK; we omit the server algorithm due to lack of
space.)

Proof of Lemma 1: We only give a proof sketch. A more
formal proof is rather tedious and requires repeating many of
the technical steps in the stash analysis of Path ORAM with
little change.

We show that given any execution trace T of TaORAM
with a sequence of logical requests r1, r2, · · · , one could
come up with another sequence r′1, r

′
2, · · · of the same length

(modified and permuted from the original sequence based
on the execution trace) which when fed to Path ORAM
sequentially yields the same stash.

By design of TaORAM, whenever the Processor receives
a request ri = (typei, bidi, vi) with typei = read/write, it
immediately issues a path-read request to the server, fetching
either the path `i = pos.map(bidi) assigned to block bidi (in
the case of real read), or a randomly chosen path `i

$← U (in
the case of fake read). Furthermore, upon receiving the path
`j corresponding to request rj from the server, the Processor
flushes the path immediately. The execution trace T contains
the time tj at which each path `j corresponding to request rj
is flushed. Order the time points chronologically tj1 < tj2 <
· · · . We observe that the contents of the stash are determined
by the sequence of events of flushing over paths `j1 , `j2 , · · · ,
where if the jk’th request corresponds to a real read, then the
block bidjk is assigned to a new path, and if the jk’th request
corresponds to a fake read, no new assignment occurs.

Suppose we execute Path ORAM with a sequence of re-
quests r′1, r

′
2, · · · sequentially, where r′k = rjk if the jk’th

8In fact, the statement can be made more concrete, as the probability of
overflowing is roughly c−R for some constant c and stash size R.

request corresponds to a real read, and otherwise r′k is a
“special request” for flushing path `jk without assigning new
paths to any blocks, (and suppose that the same random coins
are used for assigning new paths as in execution trace T ).
At any point, the contents of the stash is identical to that of
TaORAM with execution trace T .

It was shown in [38] that the stash size of Path ORAM
when executed without “special requests” is bounded by any
function R(N) = ω(logN) with overwhelming probability.
Since the “special requests” only involve flushing a path
without assignment new paths (in other words, they only put
blocks at lower positions on the path), the probability that the
stash size exceeds R(N) decreases. Therefore, the stash size
of TaORAM is also bounded by R(N) with overwhelming
probability.

4) Step 4 – Response Timing and Sequencer: The above
description considers only the obliviousness of the communi-
cation between the server and the Processor. Indeed, by the
use of “fake reads”, every read-path request to the server
fetches an independent random path. Their timing, as well
as that of the write-back requests, are completely determined
by the timing of (the arrival of) logical requests and the
schedule of asynchronous network. Hence, the Processor-
server communication is oblivious of the logical requests.

Another aspect that has been neglected (on purpose) so
far is the timing of replies (to logical requests). Consider
the scenario where a sequence of repetitive logical requests
arrives in a burst, triggering a real read (for the assigned
path), followed by many fake reads (for random paths).
When the real read returns, the requested block is found;
but, if the Processor replies to all logical requests in one
shot and an adversary observes this event, it can infer that
there are likely repetitions. To eliminate this leakage, the
Processor only replies to a request when the corresponding
read-path request has returned, even if it is a fake read. To
achieve this, the Processor uses a response map, denoted
as response.map, that maps each request (type, bid, v) to a
tuple response.map[(type, bid, v)] = (b, w) indicating whether
this request is ready to be replied to (i.e., b = true if the
corresponding read-path request has returned) and what the
answer w is. A request is replied to only when both b = true
and w 6= ⊥. (See Step 2 and 3 of ANSWER-REQUEST.)

Unfortunately, a more subtle leakage of information still
exists in an asynchronous network, and is exploited by our
attack against CURIOUS in Section II-B. To see this, consider
again the above scenario with one real-read followed by many
fake reads. If in addition the real-read is indefinitely delayed
due to the asynchrony of the network, the requested block
is not retrieved and none of the requests can be answered
(even if all fake-reads return without delay). This delay of
replies again leaks information; we have explained how an
adversary can use this information to violate obliviousness in
Section II-B. In order to prevent this attack, TaORAM runs
an additional auxiliary module, the Sequencer, whose sole
function is enforcing that logical requests are replied to in the
same order as they arrive.

10



C. Client Memory Consumption

The client memory of an ORAM scheme contains both
temporary data related to on-going processing of requests, and
permanent data that keeps the state of the ORAM scheme.
Since the latter needs to be stored even when there is no
request present, it is also called the client storage. In TaORAM,
the client storage consists of the position map, the stash, and
the secret key key, of size respectively O(N logN), ω(logN),
and λ (the security parameter); thus,

TaORAM Client Storage Size = O(N logN + λ) ,

which is the same as Path ORAM.
On the other hand, unlike Path ORAM and other sequential

ORAM schemes, the size of temporary data in TaORAM (and
other concurrent cloud storage system such as [36]) depends
on the number I of concurrent “incomplete” (more details
below) logical requests. The number I in turn depends on
various (dynamically changing) parameters, from the rate of
arrival of logical requests, to the schedule of asynchronous
network, to the processing power of the server and client.
Hence, we analyze the size of temporary data w.r.t. I . For
TaORAM, we say that (the processing of) a logical request
is incomplete, if it has not yet been answered, or updates
induced by the request (due to being a write request itself
and/or flushing) has not been committed to the server. For
each incomplete request, TaORAM keeps temporary data of
size O(logN), leading to

TaORAM Temporary Data Size = O(I logN) .

In a normal execution where the rate of processing and
the rate of arrival of logical requests are “balanced”, since
TaORAM writes-back to the server after every k paths are
retrieved and flushed, the number I of incomplete requests is
roughly k; hence,

Normal TaORAM Memory Consumption
= O(k logN +N logN + λ) .

Of course, a malicious adversary can drive the number I to
be very large, by simply preventing write-back operations to
complete. When this is a concern, we can let the system
halt whenever I reaches a certain threshold (note that I is
known to the adversary, and thus this operation does not break
obliviousness of the scheme).

D. Partitioning

It may be often advantageous to store our tree in a dis-
tributed fashion across multiple partitions, e.g. to prevent I/O
and bandwidth bottlenecks.

TaORAM is easily amenable to partitioning, without the
need of storing an additional partition table as in previous
systems [36], [37], [4]. If m = 2i partitions are desired,
we can simply “remove” the top i levels of the tree, storing
them in TaORAM’s local memory. (Note that this requires
storing O(m) additional data blocks locally, but this number
is generally not too large.) Then, the rest of the tree can be

thought as a forest of m sub-trees (the root of each sub-tree
is one of the nodes at the i-th level of the original tree). One
can then store each of these sub-trees on a different partition.

Note that the scheme remains unchanged – the only dif-
ference is in the data-fetch logic. The tree is now distributed
across m partitions, and the TaORAM’s local memory. When
a path is to be fetched, one retrieves the contents of the
first i levels on the path from the local memory, and the
remaining levels from the appropriate partition. Every access
being on a random path, the load on the partitions is uniformly
distributed.

E. Security

The following theorem summarizes our security statement
for TaORAM. The proof, given in Appendix B, follows from
two facts: First, from our use of the sequencer module,
ensuring that the i-th operation is not answered until all
previous operations are answered. Second, from the fact that
all requests retrieve random paths.

Theorem 1 (TaORAM security). Assume that the underlying
encryption scheme is IND-CPA secure. Then TaORAM is aaob-
secure.

F. Correctness

It is a priori not clear whether the system behaves as
expected, or say (for example) we may return inconsistent
or outdated values for different requests. Proving correctness
of the scheme, therefore, becomes a non-trivial issue in the
asynchronous setting (which is in fact even harder than
proving security). In Appendix D, we prove that TaORAM
exhibits atomic semantic, i.e., completed operations appear (to
an external observer) as if they took effect atomically at some
point during their invocation and their response. (We provide
formal definitions for correctness in Appendix C.)

The core of the proof lies in showing that the fresh-subtree
invariant mentioned above always holds (i.e., the contents
in the local storage at the proxy is the most up-to-date).
Operations then take effect when a write operation writes its
value into, or when a value is retrieved from the proxy’s local
storage.

Remark. We note that packet dropping or delays have a very
isolated impact on TaORAM. Indeed, loss of some of the
read-path/write-back operations will not result in stalling the
system (just in slightly increased memory consumption). This
is in sharp contrast to the background shuffling process of
ObliviStore [36], which cannot be halted at any point as
otherwise the system will stall.

V. EXPERIMENTS

The experiments evaluate TaoStore in two different test
environments: simulation based and real world deployment.
We start by providing a detailed analysis of TaoStore’s per-
formance by deploying the untrusted server to a public cloud
(AWS[1]). We then compare TaoStore with ObliviStore and
Path ORAM in the hybrid cloud setting using a simulation

11



Fig. 6: Trusted Proxy Implementation

Fig. 7: Subtree Structure

based environment, which is similar to the setting in Oblivi-
Store paper.

A. Implementation

We implemented a prototype of TaoStore in C#. We start
by briefly highlighting some technical aspects of our imple-
mentation.

The trusted proxy (see Figure 6) runs an implementation of
TaORAM as described in Section IV, which internally runs
many threads, where each is a processing unit responsible
for handling a client request and then returning a response
to the client. The request map is implemented as a dynamic
dictionary in the format of (bid, queue) pairs where block id,
bid, is a key in the map and each value is a queue object that
keeps track of the threads waiting for block bid. Additionally,
the control unit communicates with the threads and the flush
controller to maintain the state of the system. The position map
is an array based data structure. The proxy also has a local
cache with 2 components: a subtree and a stash. The subtree is
implemented as a dynamic data structure that takes advantage
of a dictionary and a tree structure as shown in Figure 7.
For faster lookup, the dictionary component maintains the
information for mapping the blocks to buckets. If a block is
stored in the subtree, the dictionary points to the bucket in
which the block is stored. The nodes themselves also use a
dictionary structure to store blocks. Maintaining this two-level
structure enables an O(1) lookup for stored blocks. The other
caching component, the stash, has a dictionary format of (bid,
block). To provide data confidentiality, the data is encrypted
at the bucket level using a semantically secure randomized
encryption scheme, AES-128 [30] in CBC-mode, before it is
outsourced to the cloud storage.

The components of the local cache are implemented in
memory. When paths are fetched from the untrusted cloud
storage, concurrent fetches are likely to have overlapping
buckets, especially at the top levels of the tree. To avoid
locking the complete subtree (which would be very costly),

we apply the read-write lock mechanism [12] at the bucket
level to control concurrent accesses to the shared buckets in
the local cache.9 If a thread wants to perform an insert, an
update or a delete operation on a bucket, it has to acquire a
write lock for this bucket, to which it gains exclusive access.
In contrast, for read operations, it is enough for the thread to
acquire a read lock, which still allows several threads to access
the same bucket for reading at the same time. The stash is
another shared data structure that needs to be controlled. Since
it is a block level data storage, we apply read-write locks at
the block level. The control unit also uses block level read-
write locks to maintain concurrent operations on the request
map.

Our server implementation performs I/O operations directly
on the disk. TaoStore is an I/O intensive infrastructure, and
for higher performance it is important to minimize the I/O
overhead. Our implementation performs I/O operations at the
path level, i.e., reading or writing the buckets along the path
at once, rather than at the bucket level, which would require
separate I/O operations for each bucket. Performing I/O at
the bucket level requires more I/O scheduling and context-
switch overheads; therefore TaoStore avoids it. The server
responses are returned with callbacks which have significant
performance advantages over thread pooling and scheduling.

TaoStore can cache the top levels of the tree and serve
directly from memory to eliminate a significant amount of
I/O overhead in the untrusted cloud storage. In our implemen-
tation, caching is done using a dictionary data structure.

In real world deployment scenario, the trusted proxy and
the server communicate and exchange data over asynchronous
TCP sockets.

B. Experimental Setup

The first set of experiments are conducted to analyze how
TaoStore performs as an oblivious cloud storage in the real
world. The trusted proxy runs on a machine on a university
network with i5-2320 3 GHZ CPU, Samsung 850 PRO SSD,
and 16 GB memory. The cloud storage server is deployed
to an i2.4xlarge Amazon EC2 instance. The average round-
trip latency from the trusted proxy to the storage server is
12 ms. The average downstream and upstream bandwidths are
approximately 11 MBytes/s10.

The second set of experiments are conducted to compare
TaoStore with ObliviStore. To be comparable with ObliviStore,
we use a configuration which is similar to the ObliviStore
paper. The network communication between the trusted proxy
and the storage server is simulated with a 50 ms latency.
Although there are multiple clients and they query the trusted
proxy concurrently, the network latency between the clients
and the trusted proxy is assumed to be 0 ms. The trusted
proxy and the storage server run on the same machine -it is

9We stress that our algorithm presentation above does lock the whole tree –
this makes the proof slightly simpler, but the proof extends also to this higher
level of granularity.

10Measured using iPerf tool[2].

12



the machine that is used as a trusted proxy in the initial set
of experiments.

In both set of experiments, each bucket is configured to have
four blocks of size 4 KB each. The default dataset sizes are
1 GB, i.e. 244,140 blocks and 13 GB, i.e. 3,173,828 blocks
for real world and simulation based experiments, respectively.
Additionally, the write-back threshold is set to k = 40 paths.

In our experiments, the clients issue concurrent read and
write requests. Three parameters may affect the performance
of the system: 1) the number of clients, 2) the scheduling
of client requests, and 3) the network bandwidth. For 2), we
consider an adaptive scheduling of requests, where each client
sends the next request immediately after receiving the answer
for the previous one. The requested blocks are selected from
a uniformly distributed workload and each set of experiments
uses the same workload11.

The main metrics to evaluate the performance are response
time and throughput. Response time spans the time period
from initiating a client request until the time that this client
receives a response. This metric shows how fast the system can
handle client requests. Throughput is defined as the number of
(concurrent) requests that the system answers per unit time.
The goal is to achieve a low average response time while
ensuring high throughput. To report reliable results, each set
of experiments is run multiple times and the averages of the
gathered results are presented with a 95% confidence interval.
Some intervals are not clearly seen in Figure 8 due to their
small sizes compared to the scale.

We also note that in order to calculate the experimental
results in the steady state, the system is warmed up before
taking any measurements. Warming up is achieved by the first
10% of the workload.

C. Experimental Results

1) Cloud-based TaoStore Evaluation: In this section, we
vary different system parameters and study their effects on
the performance of TaoStore by deploying it to a real world
environment using AWS.

a) Effect of Concurrency: Figure 8(a) shows the effect of
concurrency on TaoStore’s average response time and through-
put while varying the number of concurrent clients from 1 to
15. The left and right vertical axes represent throughput and
response time, respectively.

With a single client, the response time is 55.68 ms, which
leads to a throughput of 17.95 op/s. As the number of
concurrent clients increases, the throughput also increases as
long as the system can support more simultaneous operations.
The system reaches its limit and stabilizes at a throughput
of approximately 40 ops/s when the number of concurrent
clients is 10. When the number of concurrent clients goes
above 10, the clients generate more requests than the system
can handle concurrently. In such a case, the clients experience
increasingly worse performance in terms of response time

11Please note that the distribution of requested blocks does not affect the
performance of TaoStore unlike ObliviStore.

although the performance of the system does not degrade in
terms of throughput. Consider the case when the number of
clients is 15. Although the system achieves approximately
the same throughput at around 40 ops/s, the response time
increases by 45% compared to the case with 10 concurrent
clients. We observe that the network bandwidth is the main
bottleneck in our experiments and it is the main reason for
the observed behavior. Each path request results in transfer-
ring approximately 260-270 KBytes of data from the storage
server to the proxy. Since the system handles 40 ops/s, the
bandwidth utilization of the system is approximately 10.4-10.8
MBytes/s. Recall that the downstream network bandwidth is
11 MBytes/s, the system utilizes almost all the bandwidth and
achieves its best throughput performance at around 40 ops/s.

To understand the system behavior with higher network
bandwidth, we perform an additional set of experiments by
running a proxy on another Amazon EC2 instance in the same
datacenter where the storage server is located. The proxy runs
on an m3.xlarge EC2 machine and we measure the bandwidth
between the server and the proxy to be 125.25 MBytes/s. In
this setting, the system achieves a throughput of 97.63 ops/s
with an average response time of 102 ms when the number of
clients is 10. The system performance increases dramatically
with the increase in network resources, 149% increase in the
throughput and 60% decrease in the response time.

As a result of our experiments we observe that higher
bandwidth can facilitate outstanding improvements in the
system performance. Therefore, the bandwidth is one of the
important issues for oblivious cloud storage systems in a
realistic deployment setting as well as supporting concurrency
and asynchronicity.

Please note that the default setting for the number of
concurrent clients is 10 in the rest of our experiments unless
otherwise stated.

b) Caching at the Cloud Storage: Caching the top levels
of the tree at the untrusted cloud storage eliminates a signif-
icant amount of the I/O overhead. Figure 8(b), 8(c) and 8(d)
present the effects of applying caching in terms of response
time, throughput, and path fetch time versus caching ratio. The
caching ratio represents the amount of data cached in the cloud
memory compared to complete dataset size. When there is no
caching, the requested buckets in the path are fetched in 6.12
ms from the disk. When the caching is applied, the cached
buckets are retrieved from the memory and the remaining
buckets are fetched directly from the disk. Caching 1.6% of
the dataset, approximately 16 MBytes, decreases path retrieval
time from 6.12 ms to 2.68 ms. As the caching ratio increases,
the time to fetch path decreases. When this ratio is 6.3%,
the path is fetched in 1.7 ms. However, 3-4 ms performance
improvement in data retrieval is not reflected in the overall
system performance in terms of response time and throughput
because of the network bandwidth limitations. As Figure 8(c)
and 8(d) show, the system provides similar throughput and
response time over varying caching ratios.

c) Impact of the Write-back Threshold: Recall that the
write-back threshold k determines the number of paths that are

13



0

100

200

300

400

0

10

20

30

40

50

1 5 10 15

R
e

sp
o

n
se

 T
im

e
 (

m
s)

T
h

ro
u

gh
p

u
t 

(o
p

s/
s)

Number Of Concurrent Clients

Throughput Response Time

(a) Effect of Number of Concurrent Clients

0

1

2

3

4

5

6

7

0.000 0.016 0.031 0.063

P
at

h
 F

et
ch

 T
im

e
 (

m
s)

Storage Cache/Dataset Size Ratio 

(b) Effect of caching at the untrusted
server on average path fetch time from
disk

0

50

100

150

200

250

300

0.000 0.016 0.031 0.063

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Storage Cache/Dataset Size Ratio 

(c) Effect of caching at the untrusted server
on response time

0

10

20

30

40

50

0.000 0.016 0.031 0.063

Th
ro

u
gh

p
u

t 
(o

p
s/

s)

Storage Cache/Dataset Size Ratio 

(d) Effect of caching at the untrusted
server on throughput

0

50

100

150

200

250

300

40 80 160 240
R

e
sp

o
n

se
 T

im
e

 (
m

s)

Write Back Threshold

(e) Effect of write-back threshold on re-
sponse time

0

10

20

30

40

50

40 80 160 240

Th
ro

u
gh

p
u

t 
(o

p
s/

s)

Write Back Threshold

(f) Effect of write-back threshold on
throughput

23.3 23.6

40.2

55.8

0

0.01

0.02

0.03

0.04

0.05

0.06

40 80 160 240

M
ax

 O
u

ts
o

u
rc

e 
 R

at
io

Write Back Threshold

(g) Effect of write-back threshold on maxi-
mum outsource ratio (Data labels represent
maximum utilized memory in MBytes)

0

100

200

300

400

10 20 30 40 50 60

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Number of Concurrent Clients

TaoStore ObliviStore

(h) Effect of number of concurrent clients
on response time

0

50

100

150

200

250

300

10 20 30 40 50 60

Th
ro

u
gh

p
u

t 
(o

p
s/

s)

Number of Concurrent Clients

TaoStore ObliviStore

(i) Effect of number of concurrent clients
on throughput

Fig. 8: TaoStore Performance Analysis

retrieved from the untrusted cloud storage before a write-back
operation is initiated. A large k requires storing more data
at the trusted proxy. However, this results in triggering less
write-back operations and performing them in bigger batches.
The effects of this parameter in terms of the average response
time and throughput are demonstrated in Figure 8(e) and 8(f).
As it can be seen in the results, there is no significant change
in the performance with respect to k. This explicitly shows the
design advantages of the non-blocking write-back mechanism,
since the system performance is independent of the frequency
of write-backs.

d) Memory and Bandwidth Overhead: TaoStore’s mem-
ory overhead mostly depends on the write-back threshold k.
In our experiments, we observe that the number of stored
blocks in the stash usually does not exceed 2k. When k equals
40, the stash usually does not contain more than 80 blocks,
which requires approximately 320 KB in memory. Therefore,
the stash memory overhead is a small constant, while the
subtree uses more memory to store retrieved blocks from the
untrusted storage. The overall memory usage for the trusted
proxy is usually not more than 24 MB when k = 40 as shown
in Figure 8(g), which has an approximate outsource ratio of

0.02. The outsource ratio is the ratio of maximum memory
usage at the trusted proxy over dataset size. To answer one
client query, the trusted proxy needs to fetch approximately 16
buckets, i.e., 256 KB. Increasing the flush trigger count results
in using more memory at the trusted proxy; however, there is
not much performance gain from increasing the write-back
threshold. When k = 240, the trusted proxy uses a maximum
of 55.8 MB memory, but achieves a throughput of 39.09 ops/s.
The results show that TaoStore can deliver a good performance
with a very low outsource ratio.

2) Comparison with Other Works: We now compare Tao-
Store with Path ORAM and ObliviStore to show how TaoStore
can achieve high throughput and lower response times. The
implementation of ObliviStore was provided by its authors12

and we implemented our own version of Path ORAM. All
experiments in this section are simulation based and have the
same configuration.

Path ORAM provides relatively low response times of 63.63
ms with a corresponding throughput of 7.9 ops/s. Since Path
ORAM does not support concurrency, it is not fair to compare

12We would like to thank the authors of ObliviStore for providing us the
implementation graciously.

14



it directly with TaoStore. However, the results highlight the
importance of providing concurrency for cloud storage systems
(also highlighted in [4]).

Although ObliviStore is not secure over asynchronous net-
works and fails to provide complete access privacy when con-
current requests access the same item even over synchronous
networks, the comparisons with ObliviStore aim to provide in-
sights about TaoStore’s performance while providing stronger
security. Note that the simulation based experiments assume a
50 ms fixed round-trip network latency. Such an assumption
prevents network bandwidth limitation issues. Once data is
fetched from the disk drive, operations are executed in memory
with delays on the order of 1 ms. The performance is affected
mainly by the ORAM client side processing and data retrieval
from the disk. Please note that since a uniformly distributed
workload is used in the experiments, the probability for
accessing the same ORAM blocks, which causes a slowdown
for ObliviStore as highlighted in [4], is negligible.

Response times and throughput are compared for both
systems in Figures 8(h) and 8(i), respectively. TaoStore and
ObliviStore achieve their highest performances at 30 and
50 clients, respectively. When the number of clients is 30,
TaoStore reaches a throughput of 250.79 ops/s with a response
time of 117.91 ms. When the number of concurrent clients is
30, ObliviStore delivers a throughput of 159.35 ops/s with a
response time of 209.07 ms. Hence, TaoStore achieves 57%
high throughput with 44% lower response time. ObliviStore
has performance issues against demanding applications due
to its complex background shuffling and eviction operations
(also pointed out in [4]). It deploys an internal scheduler
to manage evictions and client requests but in contrast to
TaoStore, the eviction process is not directly decoupled from
the client request processing. The scheduler schedules a client
request if the system has enough resources available. When the
client request is scheduled, it acquires some amount of system
resources and these resources are released once the eviction
operations are completed. On the other hand, TaoStore can
process client requests concurrently and asynchronously, and
the write-back operations are decoupled from the client re-
quest processing. This allows TaoStore to continue processing
client requests while one or more write-back operations are
ongoing. With 30 concurrent clients, available resources are
utilized aggressively to provide better performance in terms
of throughput and response time. This explicitly demonstrates
the design advantages of TaoStore compared to ObliviStore.
If the number of concurrent clients goes above 30, Taostore’s
throughput shows a slight decline and the response time
increases, due to the increased contention on processing units
and I/O. TaoStore’s performance plateaus after 40 clients
with a throughput of 211-215 ops/s. ObliviStore’s achieves
its highest throughput of 218.56 ops/s with a response time of
254.45 ms at 50 clients.

In these experiments, a 13 GB dataset is used as in the
experimental setup for ObliviStore [36]. In order to operate
over a 13 GB dataset, TaoStore requires 15.9 GB physical
disk storage in the untrusted cloud storage, while ObliviStore

requires 42.9 GB. The difference in storage overhead is due
to a significant number of extra dummy blocks ObliviStore
requires [36], i.e., if a level in a partition is capable of storing
up to x number of real blocks, the same level stores x or more
dummy blocks. However, in tree ORAMs, dummy blocks are
used to pad buckets if they contain a lower number of real
blocks than their capacity. As also seen in the results, TaoStore
is a lot less costly compared to ObliviStore in terms of required
physical disk storage.

Our evaluations show that TaoStore handles flush and write-
back operations better than ObliviStore, which leads to a high
client request processing performance.

VI. CONCLUSION AND ONGOING WORK

TaoStore is a highly efficient and practical cloud data store,
which secures data confidentiality and hides access patterns
from adversaries. To the best of our knowledge, TaoStore
is the first tree-based asynchronous oblivious cloud storage
system. Additionally, we propose a new ORAM security model
which considers completely asynchronous network commu-
nication and concurrent processing of requests. It is proven
that TaoStore is secure and correct under this security model.
Our experiments demonstrate the practicality and efficiency of
TaoStore.

We are currently exploring extending TaoStore for fault-
tolerance, since the system is vulnerable to multiple types of
failures, including critically the failure of the proxy and the
failure or inaccessibility of the untrusted public cloud. We are
currently developing methods to use persistent local storage,
i.e., disk, in the private cloud to overcome the failure of the
proxy server. On the other hand, for the public cloud data, we
are developing replication methods that span multiple clouds
(possibility owned by different providers).

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
constructive and helpful comments.

Cetin Sahin, Victor Zakhary, and Amr El Abbadi were
partly funded by NSF grants CNS-1528178 and CCF-1442966.
Huijia Lin was partially supported by NSF grants CNS-
1528178 and CNS-1514526. Stefano Tessaro was partially
supported by NSF grants CNS-1423566, CNS-1528178, and
the Glen and Susanne Culler Chair.

REFERENCES

[1] Amazon Web Services. https://aws.amazon.com/.
[2] iPerf - the TCP, UDP and SCTP network bandwidth measurement tool.

https://iperf.fr/.
[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security

treatment of symmetric encryption. In 38th FOCS, pages 394–403,
Miami Beach, Florida, Oct. 19–22, 1997. IEEE Computer Society Press.

[4] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang. Practic-
ing oblivious access on cloud storage: the gap, the fallacy, and the new
way forward. In I. Ray, N. Li, and C. Kruegel:, editors, ACM CCS 15,
pages 837–849, Denver, CO, USA, Oct. 12–16, 2015. ACM Press.

[5] D. Boneh, D. Mazieres, and R. Popa. Remote oblivious storage: Making
oblivious ram practical. MIT Tech-report: MIT-CSAIL-TR-2011-018,
2011.

15



[6] E. Boyle, K.-M. Chung, and R. Pass. Oblivious parallel RAM and
applications. In E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part
II, volume 9563 of LNCS, pages 175–204, Tel Aviv, Israel, Jan. 10–13,
2016. Springer, Heidelberg, Germany.

[7] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks
against searchable encryption. In I. Ray, N. Li, and C. Kruegel:, editors,
ACM CCS 15, pages 668–679, Denver, CO, USA, Oct. 12–16, 2015.
ACM Press.

[8] B. Chen, H. Lin, and S. Tessaro. Oblivious parallel RAM: Improved
efficiency and generic constructions. In E. Kushilevitz and T. Malkin,
editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages 205–234,
Tel Aviv, Israel, Jan. 10–13, 2016. Springer, Heidelberg, Germany.

[9] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: Outsourcing computation
without outsourcing control. In Proceedings of the 2009 ACM Workshop
on Cloud Computing Security, CCSW ’09, pages 85–90, New York, NY,
USA, 2009. ACM.

[10] K.-M. Chung, Z. Liu, and R. Pass. Statistically-secure ORAM
with Õ(log2 n) overhead. In P. Sarkar and T. Iwata, editors, ASI-
ACRYPT 2014, Part II, volume 8874 of LNCS, pages 62–81, Kaoshiung,
Taiwan, R.O.C., Dec. 7–11, 2014. Springer, Heidelberg, Germany.

[11] K.-M. Chung and R. Pass. A simple oram. Cryptology ePrint Archive,
Report 2013/243, 2013. http://eprint.iacr.org/.

[12] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with
readers and writers. Commun. ACM, 14(10):667–668, Oct. 1971.

[13] J. Dautrich, E. Stefanov, and E. Shi. Burst oram: Minimizing oram
response times for bursty access patterns. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 749–764, San Diego, CA, Aug.
2014. USENIX Association.

[14] S. Devadas, M. Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs.
Onion ORAM: A constant bandwidth blowup oblivious RAM. In
E. Kushilevitz and T. Malkin, editors, TCC 2016-A, Part II, volume 9563
of LNCS, pages 145–174, Tel Aviv, Israel, Jan. 10–13, 2016. Springer,
Heidelberg, Germany.

[15] C. W. Fletcher, M. van Dijk, and S. Devadas. Towards an interpreter
for efficient encrypted computation. In Proceedings of the 2012 ACM
Workshop on Cloud computing security, CCSW 2012, Raleigh, NC, USA,
October 19, 2012., pages 83–94, 2012.

[16] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova, and
D. Wichs. Optimizing ORAM and using it efficiently for secure
computation. In Privacy Enhancing Technologies - 13th International
Symposium, PETS 2013, Bloomington, IN, USA, July 10-12, 2013.
Proceedings, pages 1–18, 2013.

[17] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. J. ACM, 43(3):431–473, May 1996.

[18] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984.

[19] M. T. Goodrich. Randomized shellsort: A simple oblivious sorting
algorithm. In M. Charika, editor, 21st SODA, pages 1262–1277, Austin,
Texas, USA, Jan. 17–19, 2010. ACM-SIAM.

[20] M. T. Goodrich and M. Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In L. Aceto, M. Henzinger,
and J. Sgall, editors, ICALP 2011, Part II, volume 6756 of LNCS, pages
576–587, Zurich, Switzerland, July 4–8, 2011. Springer, Heidelberg,
Germany.

[21] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Oblivious RAM simulation with efficient worst-case access overhead.
In Proceedings of the 3rd ACM Cloud Computing Security Workshop,
CCSW 2011, Chicago, IL, USA, October 21, 2011, pages 95–100, 2011.

[22] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Oblivious storage with low I/O overhead. CoRR, abs/1110.1851, 2011.

[23] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Privacy-preserving group data access via stateless oblivious RAM sim-
ulation. In Y. Rabani, editor, 23rd SODA, pages 157–167, Kyoto, Japan,
Jan. 17–19, 2012. ACM-SIAM.

[24] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In
NDSS 2012, San Diego, California, USA, Feb. 5–8, 2012. The Internet
Society.

[25] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-
based oblivious RAM and a new balancing scheme. In Y. Rabani, editor,
23rd SODA, pages 143–156, Kyoto, Japan, Jan. 17–19, 2012. ACM-
SIAM.

[26] J. R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schiffman.
Shroud: Ensuring private access to large-scale data in the data center. In
Presented as part of the 11th USENIX Conference on File and Storage
Technologies (FAST 13), pages 199–213, San Jose, CA, 2013. USENIX.

[27] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubi-
atowicz, and D. Song. PHANTOM: practical oblivious computation in a
secure processor. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors,
ACM CCS 13, pages 311–324, Berlin, Germany, Nov. 4–8, 2013. ACM
Press.

[28] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder. Privacy and
access control for outsourced personal records. In 2015 IEEE Symposium
on Security and Privacy, pages 341–358, San Jose, California, USA,
May 17–21, 2015. IEEE Computer Society Press.

[29] T. Moataz, T. Mayberry, and E. Blass. Constant communication ORAM
with small blocksize. In I. Ray, N. Li, and C. Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, Denver, CO, USA, October 12-6, 2015, pages
862–873. ACM, 2015.

[30] N. I. of Standards and Technology. Advanced encryption standard (aes).
Federal Information Processing Standards Publications - 197, November
2001.

[31] R. Ostrovsky and V. Shoup. Private information storage (extended
abstract). In 29th ACM STOC, pages 294–303, El Paso, Texas, USA,
May 4–6, 1997. ACM Press.

[32] B. Pinkas and T. Reinman. Oblivious RAM revisited. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 502–519, Santa Barbara,
CA, USA, Aug. 15–19, 2010. Springer, Heidelberg, Germany.

[33] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. van Dijk, and
S. Devadas. Constants count: Practical improvements to oblivious ram.
In 24th USENIX Security Symposium (USENIX Security 15), pages 415–
430, Washington, D.C., Aug. 2015. USENIX Association.

[34] L. Ren, X. Yu, C. W. Fletcher, M. van Dijk, and S. Devadas. Design
space exploration and optimization of path oblivious RAM in secure
processors. In The 40th Annual International Symposium on Computer
Architecture, ISCA’13, Tel-Aviv, Israel, June 23-27, 2013, pages 571–
582, 2013.

[35] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with
o((logn)3) worst-case cost. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 197–214, Seoul, South
Korea, Dec. 4–8, 2011. Springer, Heidelberg, Germany.

[36] E. Stefanov and E. Shi. ObliviStore: High performance oblivious cloud
storage. In 2013 IEEE Symposium on Security and Privacy, pages
253–267, Berkeley, California, USA, May 19–22, 2013. IEEE Computer
Society Press.

[37] E. Stefanov, E. Shi, and D. X. Song. Towards practical oblivious RAM.
In NDSS 2012, San Diego, California, USA, Feb. 5–8, 2012. The Internet
Society.

[38] E. Stefanov, M. van Dijk, E. Shi, C. W. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path ORAM: an extremely simple oblivious RAM protocol.
In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13,
pages 299–310, Berlin, Germany, Nov. 4–8, 2013. ACM Press.

[39] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private information retrieval
using trusted hardware. In D. Gollmann, J. Meier, and A. Sabelfeld,
editors, ESORICS 2006, volume 4189 of LNCS, pages 49–64, Hamburg,
Germany, Sept. 18–20, 2006. Springer, Heidelberg, Germany.

[40] X. Wang, T.-H. H. Chan, and E. Shi. Circuit ORAM: On tightness of
the Goldreich-Ostrovsky lower bound. In I. Ray, N. Li, and C. Kruegel:,
editors, ACM CCS 15, pages 850–861, Denver, CO, USA, Oct. 12–16,
2015. ACM Press.

[41] P. Williams and R. Sion. Single round access privacy on outsourced
storage. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12,
pages 293–304, Raleigh, NC, USA, Oct. 16–18, 2012. ACM Press.

[42] P. Williams, R. Sion, and B. Carbunar. Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage.
In P. Ning, P. F. Syverson, and S. Jha, editors, ACM CCS 08, pages
139–148, Alexandria, Virginia, USA, Oct. 27–31, 2008. ACM Press.

[43] P. Williams, R. Sion, and M. Sotáková. Practical oblivious outsourced
storage. ACM Trans. Inf. Syst. Secur., 14(2):20, 2011.

[44] P. Williams, R. Sion, and A. Tomescu. PrivateFS: a parallel oblivious
file system. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS
12, pages 977–988, Raleigh, NC, USA, Oct. 16–18, 2012. ACM Press.

16



The storage server SS is initialized with an array D of
M items from T (which is kept as the state), exposes
a network and an adversarial interface. It associates
with every bid ∈ [M ] a corresponding timestamp τbid –
initially set to 0 – and operates as follows:
• At initialization, it outputs D at the adversarial

interface.
• On input op = (bid, u, τ) at the network interface,

the request is associated with a unique identifier
id and op = opid is added to the input buffer.
The message (input, id, bid, u, τ) is output at the
adversarial interface.

• On input (process, id) at the adversarial inter-
face, then opid = (bid, u, τ) is removed from the
input buffer. We then set vid = D[bid] and if
u 6= ⊥, also sets D[bid] = u if τbid < τ (and update
τbid to τ ). The value vid is added to the output buffer
and returned at the adversarial interface.

• On input (output, id) at the adversarial interface,
the value vid is removed from the output buffer, and
output at the network interface.

Fig. 9: The storage server functionality SS.

APPENDIX

A. Security of Asynchronous ORAM Schemes

This section develops a framework to analyze the security
asynchronous ORAM schemes. We exercise this model to
prove TaORAM secure.

Reactive systems. We consider a model of randomized
interactive stateful reactive machines (sometimes simply called
“algorithms”), which we only specify informally here, and
which mimic the architecture running TaoStore. These ma-
chines have multiple interfaces, each with a given name.

The machines can activate at any time a thread by a certain
input condition being met a certain interface (for example, a
set of messages satisfying a certain condition have been input)
and the corresponding messages are removed and input to the
thread. During its execution, the thread can output messages at
an interface, can set local variable and global variables (and
can lock and unlock global variables), and can halt waiting
for input messages to satisfy some condition to be re-started.
Such threads can be run concurrently, and we do not make
any assumptions about how thread executions are interleaved.

Such machines can then be combined with each other by
connecting interfaces with the same name. (We can think of
a combination of such machines as a network of machines,
but also as a bigger machines.) Consistent with literature on
cryptography and asynchronous systems, we do not assume a
global clock: When a thread halts waiting for a message, it
does not learn how long it has been waiting.

Asynchronous ORAM. An asynchronous ORAM scheme is
a pair ORAM = (Encode,OClient) consisting of the two
following algorithms:

1) The encoding algorithm Encode on input a data set
D (i.e., an array of N items from a set S), outputs a
processed data set D̂ and a secret key K. Here, D̂ is an
array of M =M(N) elements from a set T .

2) The ORAM client OClient is initiated with the secret
key K, as well as M and N . It maintain two inter-
faces: The user interface receives read/write requests
(bidi, ui), where bidi ∈ [N ] is a logical address for the
data set and ui ∈ S∪{⊥} a data item. These requests are
eventually answered by a value vi ∈ S. The network
interface, OClient issues server read/write requests of
form (bidj , uj , τ), where bidj ∈ [M ], ui ∈ T ∪ {⊥},
and τ ∈ N, and which are eventually answered with a
value vi ∈ T .

The (finite) sets S and T denote the data types of the items
held by the ORAM data structure and the storage server,
respectively. Formally, all algorithms take as input a security
parameter λ in unary form, and the sets S and T may depend
on this security parameter. We omit mentioning λ explicitly
for ease of notation. We also stress that in contrast to our
algorithm descriptions in the body of the paper, for notational
compactness here we think of OClient as answering a single
type of read-write operation – i.e., (bid, u) simply retrieves
the value of block bid if u = ⊥, and additionally overwrites
it with u if u 6= ⊥.

Our scheme TaORAM can naturally be expressed in this
framework. Here, the set S would correspond to individual
data items addressed by bid, whereas T would correspond to
bit-strings representing encrypted blocks.

Adaptive security. Our security definition, which we refer to as
adaptive asynchronous obliviousness, or aaob-security, is in-
distinguishability based. In contrast to existing security notions
– which are typically non-adaptive – our definition allows for
adaptive scheduling of operations and messages. In particular,
we model the non-deterministic nature of scheduling messages
in the communication between the server and the client by
leaving the scheduling task to the adversary A. To achieve
this, the security game involves a storage server SS, which
is initially given an array of M elements from some set T ,
and exposes a network interface and an adversarial interface.
It operates as described in Figure 9. In particular, beyond its
natural functionality at the network interface, the adversarial
interface leaks the contents of read/write accesses and allows
control of their scheduling.

For an asynchronous ORAM scheme ORAM =
(Encode,OClient) and an adversary A, we define the
experiment ExpaaobORAM(A) as in Figure 10. We can then define
the aaob-advantage of the adversary A against ORAM as

AdvaaobORAM(A) = 2 · Pr
[
ExpaaobORAM(A)⇒ true

]
− 1 .

We stress that the adversary schedules concurrent operation
pairs – previous operations do not need to have returned (and
thusA has been notified) before other operations are scheduled
by A.

17



Experiment ExpaaobORAM(A):
• Initially, a challenge bit b $← {0, 1} is chosen

uniformly at random.
• The adversary A, given no input, outputs two data

sets D0, D1, each with N items.
• Then, (D̂,K)← Encode(D) is computed, and we

give D̂ and K as initial inputs to the server SS and
to the client OClient, respectively.

• After that, the adversary A communicates with
the adversarial interface of SS. Also, the network
interfaces of OClient and SS are connected with
each other. Finally, at any point in time, A can
output a pair of operations (opi,0, opi,1), and the
operation opi,b is forwarded to the user interface
of OClient.

• When each operation terminates and a reply is
given at OClient’s user interface, the adversary A
is going to be notified (however, it does not learn
the result of the operation).a

• Finally, A outputs a guess b′. If b = b′, the
experiment returns true, and false otherwise.

aNote that leaking which value is returned by the operation can
lead to easy distinguishability.

Fig. 10: Experiment for aaob-security definition.

Definition 1 (ORAM Security). We say that am ORAM Pro-
tocol ORAM = (Encode,OClient) is aaob-secure (or simply
secure) if AdvaaobORAM(A) is negligible for every polynomial-time
adversary A.

We note that aaob-security in particular implies13 security
according to Definition 1 in [36], which has adversaries issue
a fixed sequence of operations with fixed timings.

B. Security of TaORAM

We now prove the following theorem, assuming that the
underlying encryption scheme satisfies the traditional notion
of (secret-key) IND-CPA security [18], [3].

Theorem 2 (Security). Assume that the underlying encryption
scheme is IND-CPA secure, then TaORAM is secure.

Proof (Sketch): The proof is more involved than for tradi-
tional, non-concurrent, ORAM schemes. We omit a complete
formal proof for lack of space. However, we outline the main
steps necessary for the formal argument to go through, which
in particular explains the central role played by the sequencer.

Specifically, we note the following central properties of
TaORAM:

13Formally speaking, their definition allows the choice of the scheduling
of operations to be fixed according to some absolute clock. Following the
cryptographic literature here we omit access to an absolute clock, and parties
have only accesses to logical sequences of events. We note that [36] does not
include a formal model.

• Every operation op to OClient results in the Processor
immediately starting a thread retrieving the contents of
exactly one fresh random tree-path pidop from the server.
This is regardless of the type of operation issued, or
whether fake.read is set or not. The adversary can then
schedule OClient’s requests as it wishes.

• The processor never replies to an operation before the
whole contents of pidop have been received from the
storage server, and never replies after the last path
pidop′ associated with an operation op′ preceding op in
sequencer.queue is completely retrieved.

• The sequencer replies to an operation request op imme-
diately after pidop and all paths pidop′ associated with
operations op′ preceding op in sequencer.queue have
been completely retrieved.

• Write backs occur after a fixed number of paths have been
retrieved, independently of the actual operations having
been issued, and consists of fresh encryptions.

The above four items imply that the communication patterns
are oblivious: The view of the adversary A in the experiment
ExpaaobORAM(A) does not depend on the actual choice of the
challenge bit b, when the adversary cannot see the contents
of the messages sent over the network. In particular, A can
see explicitly the mapping between op and the path pidop, and
A’s decision on when the contents of the path are given back
to OClient completely determines the timings of the responses.

Given this, we note that the case b = 0 and b = 1 cannot
be distinguished even given the contents of the messages and
the storage server. To show this, the proof first replaces every
encrypted block (either in a message or on the server) with a
fresh encryption of a dummy block (e.g., the all-zero block).
This does not affect the adversary’s aaob advantage much by
IND-CPA security of the underlying encryption scheme, and
the fact that the adversary never sees the actual responses to
its operations. Given now that the encrypted contents can be
simulated and are independent of the actual operations issued,
we can now apply the above argument showing that the actual
access patterns are indistinguishable.

C. Histories, Linearizability, and Correctness

We note that security of an asynchronous ORAM scheme
as defined above does not imply its correctness – one can
just have the client do nothing (i.e., not sending any message
to a server) and immediately reply requests with random
contents, and have a secure scheme. For this reason, we handle
correctness separately and show that our TaORAM satisfies
very strong correctness guarantees, and in particular provides
so-called atomic semantics of the underlying storage from
a user-perspective. This means that every operation appears
to have taken place atomically at some point between the
request and the answer is provided. To formalize this notion,
we follow the tradition of the literature on distributed systems
and consistency semantics. We start with some definitions.

To reason about correctness, let us think of a variation of
Experiment ExpaaobORAM(A) defined above where the reply to
each adversarial request is actually given back to the adversary,

18



and moreover, we do not have a challenge bit any more. More
formally, we define ExpcorrORAM(A) as the following experiment,
with no output:

Experiment ExpcorrORAM(A):
• The adversary A, given no input, outputs a data set
D with N items.

• Then, (D̂,K)← Encode(D) is computed, and we
give D̂ and K as initial inputs to the server SS and
to the client OClient, respectively.

• After that, the adversary A communicates with
the adversarial interface of SS. Also, the network
interfaces of OClient and SS are connected with
each other. Finally, at any point in time, A can
output an operation opi, which is forwarded to the
user interface of OClient.

• When each operation terminates and a reply is
given at OClient’s user interface, the adversary A
is going to be notified and learns the outcome of
the operation.

Recall that the client OClient processes requests of the form
(bidi, vi), where vi is either a data item (for an overwrite
operation), or vi = ⊥ (for a read operation), and this
operation is replied with a data item ui. In an execution of the
above experiment, we associate with every request a unique
operation identifier i ∈ N in increasing order, with the goal
of paring it with the corresponding reply.

A history Hist consists of the initial data set D, as well
as a sequence of items of the form reqi = (bidi, vi) and
repi = ui, such that every occurrence of some item repi = ui
is preceded by a (unique) element reqi = (bidi, vi) with the
same identifier i. We say that a history is partial if there
exists reqi = (bidi, vi) without a corresponding repi = ui,
and otherwise it is complete. An execution of ExpcorrORAM(A)
naturally generates a history at the user interface of OClient,
where the sequence of requests and responses corresponds to
the point in time in which they were given as an input to
OClient by A, and returned as an output to A, respectively.

In a complete history Hist, we refer to the pair (reqi, repi)
as opi (the i-th operation) and we say that opi precedes opj
if and only if repi occurs before reqj . Also, we often write
opi = (bidi, ui, vi). We say that a complete history Hist is
linearizable if there exists a total order ≤lin over the operation
identifiers such that: (1) If opi precedes opj , then opi ≤lin

opj . (2) If opi = (bidi, vi, ui), then either the largest opj =
(bidj , vj , ui) such that opj ≤lin opi and vj 6= ⊥, if it exists,
is such that vj = ui, or no such opj exists and D[bidi] = ui.

With the above definitions in place, we are ready to state
the following definition.

Definition 2 (Correctness). An asynchronous ORAM scheme
ORAM = (Encode,OClient) is correct, if for all adversaries
A (even computationally unbounded ones) that deliver all
messages, the history generated by ExpcorrORAM(A) is complete
and linearizable, except with negligible probability.

D. Correctness Proof for TaORAM

We apply the above definition to TaORAM.

Theorem 3 (Correctness). TaORAM is correct.

Proof: For this analysis, we assume that memory never
overflows, and thus the system will never crash or abort.
(We discussed above that lack of memory overflows can be
assumed without loss of generality.)

We show below that if A delivers all messages, then every
history is complete at the end of the execution of ExpcorrORAM(A).
The core of the proof is to show that the resulting complete
history Hist is linearizable. This requires first defining the
corresponding order ≤lin.

For every operation opi = (bidi, vi, ui), there is a point in
time ti in which it takes effect in the global event sequence (we
assume that every event is associated with a unique time). This
is always within ANSWER-REQUEST in the execution of Item
3. In particular, an operation opi = (bidi, vi, ui) takes effect
when it is popped from the queue request.map[bidi]. (Note
that this may be within a thread running ANSWER-REQUEST
for another operation opj for which bidj = bidi.) We order
two operations opi = (bidi, vi, ui) and opj = (bidj , vj , uj) so
that opi ≤lin opj if opi takes effect before opj . Clearly, if opi
precedes opj , then opi ≤lin opj , since every operation takes
effect between the request and the response.

During the execution of TaORAM, we can track the contents
of the local storage, and we are going to prove the following
invariant:

Invariant. At every point in time, there exists at
most one value Bbid for the block bid in the local
storage (sub-tree or stash). Moreover, this value
is the latest value assigned to bid according to
the “take-effect” order defined above (or the initial
value, if no such value exists).

Note that before returning a value u for an operation on bid, we
must have set the local value Bbid before returning Bbid[bid],
and thus the above implies that ≤lin is a proper ordering to
show that the history is linearizable.

To prove the invariant, we proceed by induction over steps
that can modify the contents of the local storage. The invariant
is true when the system has been initialized, and the client’s
local memory is empty. The following operations can modify
the contents of the local storage (here, a pair (bid, Bbid) in the
local storage simply denotes a pointer to block bid and the
actual contents of the block).

1) A pair (bid, Bbid) is added to the local storage as part
of some node w through processing of some path pid in
Step 1 of ANSWER-REQUEST.

2) A pair (bid, Bbid) is deleted at Step 5 of WRITE-BACK
because it is on a path pid written back to the server.

3) A pair (bid, Bbid) is moved to a new location (either in
the tree or into the stash) when shuffling within FLUSH

4) A pair (bid, Bbid) is present in the local storage, and we
assign Bbid to some new value v, in the third item of
Step 3 of ANSWER-REQUEST.

19



Clearly, 3–4 do not violate the invariant. As for 2, if Bbid

has been modified after it has been written to the server, then
it will not be deleted due to the node timestamp being now
higher than v · k. If it is deleted, then no modification has
occurred since the write-back has started, and thus the server
holds the latest version.

The core of the proof is showing that 1 cannot violate the
invariant, which we do next. In fact, we prove now that if at
some time t∗ the invariant has been true so far, and we now
insert (bid, Bbid) as part of the contents of a node N, then this
is the latest value of bid and no other value for bid appears in
the local storage at this point in time t∗.

First off, if this is the initial value written by the Encode
procedure into the server, and it gets written into node N,
and (bid, Bbid) was never locally in node N, then the value of
bid was never modified locally, because we need to retrieve
it from the server at least once for the first change to take
effect. Therefore, we can assume that (bid, Bbid) was already
once earlier in the local storage at node N, either because it
was written back from there (if this is not the initial value),
or because we need to retrieve it at least once if this is the
initial value and some modification has taken place. Now,
consider the time t ≤ t∗ at which (bid, Bbid) was in N for
the last time. Note that if t = t∗, then the value would not be
overwritten (as the node N is occupied in the local storage)
and by the induction assumption this node holds the latest
value. Therefore, assume that t < t∗, and we have two cases.

The first (and more difficult) case is that, at time t,
(bid, Bbid) left N, and was possibly modified one or more
times. In this case, we show that the local storage is not
updated because the node N is already occupied with some
pre-existing contents. The important observation here is that
if there are one or more completed write-backs between t and
t∗, the node N is never deleted after the write back completed.
If it left N, then N was modified, and a write-back terminating
after t would not delete N unless it just wrote this new contents
of N back (or an even newer version). But this means that
at that point we have already overwritten the contents of N
on the server with something different than what received
within pid (i.e., where in particular (bid, Bbid) would not be
in N any more). Hence, the contents (bid, Bbid) of N received
with pid must have been sent by the server before the new
contents have been written (this is ensured by our server time
stamping), and thus when this write-back completes, we have
pid ∈ PathReqMultiSet, and hence N is left untouched and
unmodified.

The second case is that, at time t, (bid, Bbid) was deleted
after a successful write back completed. As this was the last
time (bid, Bbid) ever appeared in N before t∗ it cannot be that
any operation to effect on bid between t and t∗, and thus the
value re-covered with pid is the latest one.

We still need to show that every operation eventually termi-
nates, and thus every history is eventually completed. We first
show that the Processor Module replies to every request. Note
that if all messages are delivered by A, the wait instructions

in READ-PATH always terminates, and the thread is waken up.
Therefore, every retrieved path is eventually received by the
client. Now there are two cases, for the thread executed for
an operation accessing bidi – either it results in a fake read or
not, i.e., the flag fake.read returned by READ-PATH is either
1 or 0.
• Case 1: fake.read = 0: Here, we know that the path P

contains bid, and when executing ANSWER-REQUEST,
either the entry in response.map for this operation has
form (false, x) for x 6= ⊥, then the operation is
answered right away in Step 2. Alternatively, if x = ⊥,
because the block is in the path P , this query must be
replied later in Step 3.

• Case 2: fake.read = 1. Then, this means that while
executing READ-PATH in the main thread T , another
thread T ′ has invoked READ-PATH for the same bidi
without returning fake.read = 1, and thread T ′ has not
yet gone through Step 3 in ANSWER-REQUEST. Now,
there are two cases. Either T ′ will update the value
for the current request in response.map in Step 3 of
ANSWER-REQUEST before T goes though Step 2 in its
own ANSWER-REQUEST, in which case T will return the
value. Alternatively, if T goes through Step 2 first, the
value will be output when T ′ goes through Step 3.

Finally note that the sequencer module may delay answering,
but the above argument implies that the processor eventually
answers all previous requests, and thus the sequencer will also
eventually answer them all.

20


