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Abstract

In sensor networks we aim to achieve global objectives
through local decisions at each node, based only on data
available in the node’s neighborhood. In this paper, we dif-
fuse information away from source nodes holding desired
data, so as to establish information potentials that allow net-
work queries to navigate towards and reach these sources
through local greedy decisions, following information gra-
dients. We compute these information potentials by solving
for a discrete approximation to a partial differential equation
over appropriate network neighborhoods, through a simple
local iteration that can be executed in a distributed manner
and can be re-invoked to repair the information field locally
when links fail, sources move, etc. The solutions to this equa-
tion are classical harmonic functions, which have a rich al-
gebraic structure and many useful properties, including the
absence of local extrema, providing a guarantee that our lo-
cal greedy navigation will not get stuck.

Unlike shortest path trees, which can also be used to
guide queries to sources, information potentials are robust
to low-level link volatility as they reflect more global prop-
erties of the underlying connectivity. By exploiting the al-
gebraic structure of harmonic functions such potentials can
be combined in interesting ways to enable far greater path
diversity and thus provide better load balancing than is pos-
sible with fixed tree structures, or they can be used to an-
swer range queries about the number of sources in a cer-
tain regions by simply traversing the boundary of the region.
Potentials for multiple information types can be aggregated
and compressed using a variant of the q-digest data struc-
ture. The paper provides both analytic results and detailed
simulations supporting these claims.

Keywords: Information Gradients, Harmonic Function,
Data-centric Routing, System Design

1. Introduction and Motivation

Recent advances in wireless sensor networks reveal the
potential of such embedded networked systems for revolu-
tionizing the way we observe, interact with, and influence the
physical world. Early applications on distributed data collec-
tion systems have already identified the advantages of inex-
pensive networked sensors over more traditional centralized
sensing systems. As technologies become mature and as sen-
sor networks grow large in size and become inter-connected,
we expect that sensor networks will move beyond military
deployments and the monitoring of animal or other natural
habitats to the places where humans work and live: homes,
cars, buildings, roads, cities, etc. Note that in these human
spaces a sensor network serves users embedded in the same
physical space as the network, not a community of scientists
remote from the observation site. Furthermore, there is often
the need to deliver relevant information with very low la-
tency, in order to allow users to act in a timely manner, as for
example with first responders in disaster recovery scenarios.

In this work we explore the potential of using a network of
embedded sensors to aid information discovery and naviga-
tion through a dynamic environment. This includes the navi-
gation of packets (answering user queries from any node), as
well as the navigation of physical objects (people or vehicles)
moving in the same space — such as users with hand-held
devices communicating with nearby sensor nodes to get real-
time navigation information. For example, road-side sensors
can monitor local traffic congestion; empty parking lots in
downtown areas can be detected and tracked by sensors de-
ployed at each parking spot. A real-time navigation system
in such a dynamic environment is quite useful — for finding
an empty parking spot, for guiding vehicles to road exits in
an emergency, for diverting cars to alleviate and avoid traffic
jams, etc. The embedded sensors serve two purposes: dis-
covering/detecting the events of interest (e.g., a parking spot
is left empty); and forming a supporting infrastructure for
users to navigate towards or around and act on the detected
events. In this setting, the events of interest or the destina-



tions to which the users want to navigate to are modeled as
sources and the users (or the nodes in which the query is gen-
erated) are modeled as sinks.

These emerging application scenarios have a few char-
acteristics that differentiate them from traditional scientific
monitoring applications. First, the environment can be dy-
namic: parking spaces are freed up or occupied over time;
road conditions are changing at different periods of the day.
Thus the navigation system needs to accommodate these
environmental changes. Second, an event of interest may
emerge anywhere in the network and a node typically does
not have prior knowledge of when and where the event may
appear. Third, a data source is often of the most interest to the
users in its immediate neighborhood. For example, cars near
a traffic jam may look for navigation suggestions to avoid the
jammed area; or an empty parking space is of the most value
to cars within a few blocks. Fourth, multiple queries may be
arise at once seeking the same source, as in disaster recovery.
Fifth, unlike scientific monitoring applications in which data
is gathered to the base station for post processing at a later
time, in these scenarios low latency in answering queries is a
major quality-of-service requirement.

These application characteristics and new QoS require-
ments demand a radically different system design for infor-
mation discovery and routing. Existing work has focused on
infrequent queries of long duration (i.e., for streaming data).
Thus information discovery phase takes a reactive approach
and allows the query node to flood its interests in the net-
work searching for relevant data [11]. Data aggregation can
also be performed on the way back to the sink [19]. Little
preprocessing is done; as a result information discovery may
require high delay. To avoid flooding, a logical brokerage
structure can be imposed in the network, enabling queries
to rendez-vous with data in the network. For example, ge-
ographical hash tables [22] use a content-based hash func-
tion that maps the event type to a geographical location so
that sensors near the geographical location store the data and
serve as render-vous for later queries. But the separation of
the logical structure from the physical structure introduces
awkward triangular routing — a user may need to visit a dis-
tant rendez-vous first to learn the way to the data source, even
if the latter is very close. This further exacerbates traffic bot-
tlenecks at rendez-vous nodes holding popular data.

1.1. Overview

In this paper we explore an information diffusion scheme
that maintains a potential field and establishes information
gradients in the entire network, or appropriate neighbor-
hoods of it, depending on the application. Hints left on
sensor nodes on the existence of data sources will smoothly
guide queries or mobile users towards desired sources. The
construction and maintenance costs of these information po-
tentials are justified by and amortized over the expected high
frequency of queries about the data sources. As long as en-
vironmental changes occur at a slower rate than the time it
takes to establish or repair these information potentials in

relevant source neighborhoods, our mechanism will success-
fully guide queries to their destination.

Information-guided routing has been explored before as a
scalable approach for settings with high query frequency [3,6,
7,18,27]. Most of these gradient-based approaches [3,6,7,18]
use the natural gradients of physical phenomena, since the
spatial distribution of many physical quantities, e.g., temper-
ature measurements for heat, follows a natural diffusion law.
However, gradients imposed by natural laws can be far from
perfect guides, as witnessed by the existence of local extrema
or large plateau regions, forcing information-guided routing
to deteriorate to a random walk.

The novelty of our construction is to create an artificial
information potential field that is guaranteed to be free of
local maxima and minima. Specifically, we mimic an infor-
mation diffusion process by using harmonic functions [16].
A harmonic function Φ(x) defined in a domain Ω satisfies
the Laplace’s equation ∇2Φ(x) = 0, familiar from the heat
equation. With boundary values specified, a harmonic func-
tion is uniquely determined. In a discrete sensor network,
we can specify the potential of a source node as the maxi-
mum value1 and construct the potential field for the rest of
the nodes by solving for the harmonic function. This con-
struction is possible by a simple local iteration on the nodes,
akin to gossiping with one’s neighbors. Harmonic functions
bring us a number of benefits, due to their nice algebraic
properties, as shown in the following.

Support for local greedy routing. Most importantly, the
potential field induced by the harmonic function has no local
maxima. On each non-source node u, our discrete harmonic
function Φ satisfies a condition analogous to the mean value
property of continuous harmonic functions: Φ(u) is the av-
erage of the Φ values of its neighbors. From this it immedi-
ately follows that we cannot have a node with higher infor-
mation strength than all of its neighbors, unless it is a source
node. Thus the information gradients support an efficient lo-
cal routing algorithm by simply ascending the potential field.
The query messages, or the physical objects navigating with
the information gradients, will in each case eventually reach
the data source/destination of interest. The set of all links
from each non-source node to its neighbor with the highest
information strength implicitly defines a routing tree towards
the source.

Aggregating coherent gradients. The rich algebraic prop-
erties of harmonic function support an efficient way to
aggregate gradients for different sources. For two data
types PAIDPARKINGLOT, FREEPARKINGLOT with infor-
mation strength fields, ΦP and ΦF , respectively, we can use
the summed value ΦP + ΦF to guide queries that search
for any PARKINGLOT — either a PAIDPARKINGLOT or a
FREEPARKINGLOT. By the definition of harmonic func-
tions, any node that does not detect PAIDPARKINGLOT or

1We also fix some other nodes, e.g., a few on the network boundary, as
having potential 0, to enforce an information gradient throughout the net-
work. The nodes with preassigned potentials form the Dirichlet boundary
conditions for the harmonic function.



FREEPARKINGLOT cannot be a local maximum of the func-
tion ΦP +ΦF . Thus queries for a range of data types can be
guided simply by the sum of the individual potential fields
and will eventually reach a source node within the specified
range. More generally, gradient aggregation can be exploited
to compress the potentials and save storage space. We show
how the q-digest data structure of [24] can be used to do so
for any tree-structured set of information potential types.
Routing diversity and traffic balancing. Both in the case
of navigation in the presence of traffic jams, as well as in
the case of finding empty parking spaces, multiple queries
may simultaneously ask for navigation information towards
sources of the same type (freeway exits or empty parking
lots). Thus it is extremely important to distribute evenly the
traffic among the multiple destinations and along the paths to
these data sources. If multiple queries follow the same po-
tential field for the same source, the routing paths are likely
to converge as they come near the source. This subsequently
introduces load accumulation for packet routing, and traffic
congestion for navigation of physical objects. But with har-
monic potentials, the query from each user can choose a set
of random linear coefficients λi and ascend the potential field
∑

i λiΦ(si), where Φ(si) is the potential field for source i.
The linear combinations of harmonic functions are still har-
monic, thus each query follows its ‘personalized’ potential
field towards one of the sources. We show that this will uni-
formly distribute the users among different destinations, and
furthermore spread out the routing paths that the users take
to these destinations. Such routing diversity and traffic bal-
ancing can be appealing features for emergency evacuation.
Answering counting range queries. A counting range
query asks for the number of sources inside a given (ar-
bitrary) geographical region, such as the number of empty
parting spots within a given set of blocks. With the poten-
tial field, a counting range query can be answered by simply
touring the boundary of the range and summing up the dif-
ference of the potential values on the edges across the region
boundary. This summed difference is precisely the number
of sources in the interior of the range by the divergence-free
property of harmonic gradients and Faraday’s law of induc-
tion.

The information potentials are particularly suitable for
sensor networks due to their inherent robustness to both en-
vironmental changes as well as wireless link dynamics and
quality fluctuations. This robustness comes from a simple,
gossip-style local algorithm for the potential construction, as
well as from the global properties of the harmonic potentials
themselves.
Distributed gradient construction The gradient construc-
tion is accomplished by the classical Jacobi iteration. The
data sources fix their values at the global maximum and the
rest of the nodes iterate setting their value to the average
of those of their neighbors. The process stops when cer-
tain local convergence criteria are met. We remark that this
construction and maintenance algorithm is completely dis-
tributed and ‘blind’. A node does not need to know about

environmental changes or the emergence/disappearance of
data sources, thus enabling the algorithm to automatically
adapt to environmental and topological changes of the net-
work — the same reason why gossip-style algorithms are
favored in dynamic networks. The construction and main-
tenance of the gradient field is often within a local neighbor-
hood of the events of interest (thus reducing the total com-
munication cost) and aims to support answering a large num-
ber of simultaneous queries in a certain region surrounding
the source. Thus the construction and maintenance costs are
amortized over the subsequent queries.

Robustness to low-level link variations A standard way
to guide queries towards a specific node in a network is to
build a shortest path tree rooted at that node — that guaran-
tees greedy routing towards the root from any node. Trees,
however, are fragile structures. A single failed link can dis-
connect the tree and make the root inaccessible from a large
subset of nodes. As we have discussed, our potentials also
define implicitly a routing tree to the source. However, each
node is not committed to a single parent — rather, the node’s
parent is only determined when the query arrives at the node.
Of course a classical shortest-path tree can also be imple-
mented in this fashion, by giving each node a ‘potential’
which is its hop count distance to the source. But the real
benefit of the harmonic potentials is that they can be thought
of as normalized hop counts which have been smoothed via
the global effects of the Jacobi iteration. Due to the discrete-
ness in the hop count definition, link variations and node fail-
ures create many more irregularities and disturbances in hop
count values than those in the harmonic strength fields. Ef-
fectively the harmonic potential creates a smooth ‘mountain’
with a single peak at the source; almost all nodes on this
mountain side are likely to have several ascending neighbors,
and thus greater capacity to reach the source. The robustness
of the harmonic potentials over hop counts is supported by
simulations we present later on, as well as by a theoretical
analysis on link asymmetry. This trick of smoothing out the
discrete hop counts by a harmonic function can also be ap-
plied in other settings where smooth vector fields of informa-
tion flow need to be maintained [25].

Lastly, we note that others have also used protocols moti-
vated by the solution to partial differential equations in sen-
sor networks. For example, [12–14, 26] use routing based on
an electrostatic potential field; but in those papers the empha-
sis is on network capacity and not on dynamic and efficient
information discovery, the topic explored in this paper.

We introduce harmonic information potentials in Sec-
tion 2, and present their main applications in Section 3. In
Section 4 we describe a simple local method for computing
harmonic potentials and updating them after small changes in
network connectivity or source positions. Section 5 contains
experimental evaluation by extensive simulation, aimed at
better understanding the suitability and performance of these
techniques.



2. Harmonic Information Potentials

Before the formal description of information potentials,
we introduce the following terminology. The raw sensor
readings are processed into high-level events, which are cat-
egorized into a set of data types. These data types might be
chosen from a fixed universe, such as the parking spots or
road exits. The nodes holding data with a particular type are
called sources. The nodes that search for data of this type are
called sinks. We explore in this section information diffusion
schemes for pushing information about data sources into the
network, so as to later facilitate information discovery. We
establish an information potential field, that indicates the in-
tensity of the diffused strength at any node, for an existing
data type.

2.1. Harmonic functions

The key to our information gradient scheme is the notion
of harmonic functions. On a domain Ω ⊆ R2, a harmonic
functionΦ is a real function whose continuous second partial
derivative satisfies Laplace’s equation [16]: ∇2Φ(x, y) = 0.
If the value of the function is specified on all boundaries,
referred to as Dirichlet boundary conditions, the solution to
the Laplace’s equation is unique.

A dense sensor network can be viewed as a discrete ap-
proximation of the underlying continuous geometric domain.
Given certain boundary conditions, Laplace’s equation in the
discrete form becomes

Φ(u) =
1

d(u)
Σv∈N(u)Φ(v) ,

where u is a node in the discrete network, N(u) is the set of
u’s neighbors, and d(u) denotes the degree of u. This natu-
rally leads to a relaxation method for computing the discrete
harmonic function Φ, namely, the Jacobi iteration method
(also called the rubber band algorithm). Each non-boundary
node performs the iteration

Φk+1(u)←
1

d(u)
Σv∈N(u)Φ

k(v) ,

where Φk(u) is the value of node u in the k-th iteration. The
sources are fixed at a maximum potential value say 1. We
also fix some other nodes, typically nodes on the network
boundary, with information strength 0 to enforce a gradient
throughout the network. The rest of the nodes perform Ja-
cobi iterations to compute the information strength field. The
Jacobi iteration method converges to the harmonic function
with the pre-specified boundary values. Figure 1 gives some
examples of the strength fields with different boundary con-
ditions.

The algorithm can be intuitively understood by imagining
that all the edges in the network are rubber bands. Sources
or boundary nodes are pinned at their fixed values. The al-
gorithm converges to the minimum energy state where each
node is placed at the center of mass of all its neighbors. No-
tice that in this iterative algorithm only local neighborhood
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Figure 1. Examples of the potential field. The boundary conditions are
specified as follows. Top left: the center node is maximum and all perime-
ter nodes are minima; Top right: maximum and minimum are fixed at two
internal nodes, respectively; Bottom left: the center node is maximum and
4 corner nodes on perimetry are minima; Bottom right: two internal nodes
are maxima and all perimeter nodes are minima.
information is needed, so that the algorithm can be easily re-
alized in a distributed sensor network.

2.2. Information potential & greedy routing

A solution to Laplace’s equation has the property that the
average value over a spherical surface is equal to the value
at the center of the sphere (Gauss’s harmonic function theo-
rem). In other words, harmonic functions are guaranteed to
be free of local minima or maxima within the solution region,
also referred to as the min-max principle. Because of this
prominent property, harmonic functions have been applied to
many fields such as robot path-planning [4, 15], virtual coor-
dinate construction in sensor networks [21] and many others.
For a potential function where the goal is to find the source by
local greedy routing, the min-max principle ensures that no
matter where the source and the minima are located, greedy
routing will succeed: starting from any node, by repeatedly
ascending to the node in the neighborhood with the greatest
information strength we are guaranteed to eventually hit the
source.

Theoretically, the information gradient may encounter a
plateau region, where all the neighbors have the same infor-
mation strength. This may be due to saddle points in the
harmonic function or to narrow necks such as bridges in the
connectivity graph. Flat regions caused by saddle points can
be easily dealt with by local discovery. By searching the
local neighborhood through either a random walk or flood-
ing, we can reach a nearby non-stationary point and continue
greedy routing. Plateaus created by irregular network topol-
ogy such as narrow bridges or cuts can be avoided by the
placement of additional boundary nodes with minimum in-
formation strength inside the plateau regions. See also the
discussion of this issue in [25].

This scheme can be easily extended to multiple sources
of the same type by simply fixing the maximum information
strength for all the source nodes and running the same itera-
tive algorithm at all other nodes. Since all the maxima in the
harmonic function are realized on the boundaries, a gradient
path always leads to one of the sources.



2.3. Linearity of information gradients

The rich algebraic properties of harmonic functions en-
able a number of possibilities for aggregation and compres-
sion of coherent data types, as well as navigation in the po-
tential field. For two data types e1 and e2 with information
strength fields, Φe1

and Φe2
, respectively, we can use the

summation Φ = λ1Φe1
+ λ2Φe2

to guide queries that search
for either e1 or e2, where λ1, λ2 are positive constant coeffi-
cients. It is easy to check, using the definition of harmonic
function, that Φ is the harmonic function under the bound-
ary condition Φ(w) = λ1Φe1

(w) + λ2Φe2
(w), where w is

a source for e1 or e2. Hence Φ cannot have local extrema
except at the source nodes for data type e1 or e2. In the next
section we will exploit this feature to achieve routing diver-
sity and gradient aggregation.

2.4. Robustness to low-level link variations

In practice, wireless links can be asymmetric. Thus
we can model the network by a directed communication
graph. Following the same distributed protocol as in
the symmetric case results in a potential function whose
value at any node u is the average of the values which
u can receive — these correspond to u’s incoming edges.

1 N u v 0

Figure 2. Trivial potential function in a
large part of the network as a result of
poor connectivity.

Of course, when
links are directed, not
every node is reach-
able from any other, in
general. It is easy to
see that this can result
in potential functions
which are not mean-

ingful. For example, in Figure 2, the source cannot be
reached from the boundary. As a consequence, an arbitrar-
ily large subnetwork N may have the same potential as the
source, which is trivial and useless. In other words, even
though there might be an abundance of paths leading from
some node in N to the source, gradient paths are not helpful
in finding any of them. Notice that this would not happen
if the link (u, v) were symmetric. However, we will show
that our method does not require full symmetry in the links,
but only a much weaker condition: bi-directional reachabil-
ity between any two nodes, possibly along a multi-hop path.

In the ideal case of fully symmetric links, for any two
nodes the shortest paths in both directions have equal lengths.
Intuitively, the difference between the two shortest path
lengths (the ratio of the longer one to the shorter one) is
a measure of link asymmetry. The performance of our
gradient-based method degrades gracefully with respect to
this measure.

Theorem 2.1. If the network is strongly connected, the po-
tential function described above is unique and can be com-
puted using the standard iterative method. Furthermore, if
for any two nodes u and v the shortest path lengths from u

to v and from v to u differ by at most a factor of r, then any
non-source node can find a node with a potential value no
higher/no lower than its value in its brc-hop neighborhood.

Proof: We define the system matrix M as follows: row i
corresponds to the interior node (i.e., a non-Dirichlet bound-
ary node) i, with the diagonal entry (i, i) equal to the in-
degree of i, and the entry (i, j) equal to −1 if there is an
edge from another interior node j to i, zero otherwise. This
is the Laplacian matrix of the directed network, with rows
and columns corresponding to the interior nodes.

The matrix-tree theorem for directed graphs (Chapter 9
of [2]) states that the determinant of M is the number of di-
rected spanning forests (arborescences) all of whose directed
trees are rooted at (i.e. their edges pointing to) the boundary
nodes. Equivalently, this is the number of directed spanning
trees pointing to the node obtained by contracting the bound-
ary nodes. Because of our connectivity assumption, there
exists at least one such tree. Thus M has full rank, which
means the harmonic function is unique, as a solution to the
linear system Mv = 0, with v as the vector for all interior
nodes.

The convergence of the iterative method can be proved in
the same manner as in the undirected case (spectral radius
argument).

Finally, note that any node u has a neighbor v with a po-
tential value no higher/no lower, such that (v, u) is an edge.
As u can be reached from v in one hop, v can be reached
from u in at most brc hops. This completes the proof. ¤

3. Applications of Information Potentials

3.1. Routing diversity

Consider an emergency evacuation scenario in which
many users are guided by the information gradients to build-
ing or road exits (each exit is modeled as a data source). It is
important to spread out uniformly the users along the paths
to these exits, to avoid traffic congestion. We abstract this
scenario as multiple queries or navigation requests for the
same set of sources si, and we would like to use local rout-
ing guidance to achieve global routing diversity and traffic
balancing.

Assuming that an information potential field Φi has been
constructed for each source (e.g., exit) si, we could simply
let each user choose uniformly at random among the set of
possible sources, and then use the potential for that source to
guide the way. However, traffic tends to accumulate on the
paths to the same source, as they are directed by the same
gradient function. Once two navigation requests converge at
one node, they are going to follow the same path from this
point on.

Instead, each query j can choose some random coeffi-
cients λij to form a ‘personalized’ potential field

∑

i λijΦi,
where Φi is the potential for source i. By the linearity of
information gradients, this linear combination of harmonic
functions is still harmonic. Thus routing will not get stuck



until it reaches a source node. However, each query is guided
by a different potential function, thus the query routes exhibit
spatial diversity and traffic load is more evenly spread out on
the routes to these sources.

To better understand this feature, we consider the follow-
ing scenario, in which there are k sources si and source i
fixes its potential as Φi(si) = 1, and Φi(sj) = 0, for j 6= i.
All the other nodes have a potential 0 < Φi < 1. Now we
form a configuration space as a k-dimensional vector space,
c(u) = (Φ1(u),Φ2(u), · · · ,Φk(u)), for each node u. The
vector of coefficients for query j is θj = (λ1j , λ2j , · · · , λkj).
The potential function Φj simply guides the query in the di-
rection θj ; the neighbor selected at each step is the node u
whose potential vector maximizes θj · c(u) It is easy to see
that, by linearity of potentials, all points c(u) are inside the
convex hull of the source points c(si), i.e. in the simplex
spanned by c(si), ∀i. In addition, the sources si are located
in uniformly spread directions around the simplex, and thus a
random direction θj will have equal probability to lead to any
one of the sources. To summarize, as each query chooses its
coefficients randomly, it will arrive at a source node with uni-
form probability, but the routing paths for different queries
will follow their respective individual potentials. We present
simulation results later to demonstrate the effectiveness of
this approach in load balancing.

3.2. Potential aggregation and compression

The linearity of harmonic functions immediately enables
an efficient implementation of queries for aggregated data
types. As illustrated in the introduction, queries for a range
of sources can simply ascend at each step to a neighbor with
higher summed information potential and they will eventu-
ally reach a source node within the specified range.

In many real world scenarios an event is only of inter-
est to the users within close proximity, i.e., the ‘strength’ or
‘importance’ of a detection is in many cases proportional to
proximity of the node to the event, or the ‘scale’ of the event.
For example, in the disaster relief scenario, an ambulance ve-
hicle moving through the network is more likely to respond
to a building collapse if it happens nearby, or if the building
in question is a highrise. As the total number of events in
the network may be large, nodes can simply ‘forget’ about
the less important ones, thus saving storage for new, more
important detections that may occur in the near future.

In this section we show that our approach naturally sup-
ports this notion of event importance. The idea is to have
the nodes estimate the importance of an event using their lo-
cal value of its potential. A potential is lumped with other
small potentials, if it is smaller than some threshold. Large
scale events generate a lot of sources, which can then com-
bine their potentials. As a result, more significant events
will be detected at larger distances, because the combined
potential will be above the threshold further away from the
sources. This kind of compression and potential aggregation
save on-board storage without losing much of the navigation
capability.

We use the idea of q-digest, developed by Shrivas-
tava et al. [24] for answering approximate quantile queries
with fixed memory requirement. In particular, suppose there
are n different types of data sources that form a logical hi-
erarchy, i.e. correspond to leaf nodes in a (balanced) binary
tree. The hierarchy can be arbitrary, but many applications
have a natural classification of types (e.g. big vs. small an-
imals, dogs vs. cats, etc.). Instead of storing the n potential
values separately, each node stores these potentials in a local
q-digest data structure, constructed as follows.

Start with a binary tree describing the hierarchy of types.
At each leaf node i record the potential Φi for source of type
i. Small values will be lumped together into internal nodes
of the tree so that for each node in the tree two properties
will hold: (i) the value of a node is at most ε; (ii) the sum of
the values of a node, its parent and sibling is at least ε. To
achieve this, examine the nodes bottom up. If a node does
not satisfy (ii), lump its value and the value of its sibling into
the parent. The storage needed is the number of non-empty
values at the nodes in this tree.

Suppose that at a sensor node u the sum of the potentials
is M(u) =

∑n

i=1 Φi(u). If the leaf node i has a non-empty
value, this value is precisely Φi(u), i.e., no compression is
done for source i. Otherwise, its value is lumped into the
value of the lowest ancestor with non-empty value and is at
most ε. Denote the value of a node x in the tree as Vu(x),
its parent as p(x), its sibling as s(x), and Su(x) as the set
of sources that contribute to the potential at x. To count the
number of non-empty values of the digest, denoted by m, we
calculate the following sum: M =

∑

x[Vu(x) + Vu(p(x)) +
Vu(s(x))] ≤ 3

∑

x Vu(x) = 3M(u).At the same time, M ≥
∑

x ε = mε. Thus we have m ≤ 3M(u)/ε. That is, the
storage requirement at a node is only dependent on the total
potential value, but not the number of sources present in the
network.

Since the potentials are ‘compressed’ when they are
smaller than ε, gradient routing from a node with a small po-
tential value may need to do a local flooding until it encoun-
ters a node with a visible potential value (i.e., higher than
ε), from where the standard gradient routing is adopted. Al-
ternatively to avoid the local flooding, we can also ‘decom-
press’ the aggregated potentials by distributing uniformly the
non-empty value of an internal node x to all the leaf nodes
that have contributed to x, i.e., those in Su(x). Routing for a
particular source can be guided by this lossily decompressed
potential (and may get into a local minimum in the worse
case).

This compression scheme with the q-digest can be inte-
grated nicely with the gradient update scheme, in particular,
with the Jacobi iteration for computing the harmonic values.
Notice that each internal node will have its value as the sum
of the potential of a subset of sources. By the linearity of
harmonic functions, one can directly perform the Jacobi it-
eration on this bucket at a node u if at node u and all its
neighbors the bucket x contains the potential values of the
same subset of sources — in other words, if Su(x) = Sv(x)
for all neighbors v of u. In this case, we simply take the av-



erage of the values at bucket x of u’s neighbors as the new
value at Vu(x). In a more complicated scenario, the bucket
x at node u is non-empty but the bucket x at its neighbor v
is lumped into an ancestor y of x — we will let node v also
keep the value at bucket x. Then the Jacobi update can be
performed at node u. Symmetrically, when we update the
value at bucket y of node v, we will take the sum of the val-
ues of sources in Sv(y) at sensor node u, by taking the sum
of appropriate buckets at node u.

To summarize, each node maintains the non-empty buck-
ets of its own q-digest, as well as the values at the buckets
corresponding to the non-empty buckets at the q-digest of its
neighbors. The storage requirement is at most a constant fac-
tor more, as a non-empty bucket at a node u in the worst case
causes its neighbors to also keep the value at this bucket be-
yond what they have already maintained in the q-digest. In a
network with bounded node degree, this modification at most
increases the storage requirement by a constant factor.

When we perform a Jacobi iteration, we also check the
properties of q-digest to make sure they still hold. Two pos-
sibilities can happen:

• If the sum of the values Vu(x) with Vu(p(x)) and
Vu(s(x)) is smaller than ε, then the value of x and its
sibling is lumped to the parent p(x). The value at Vu(x)
is still maintained unless all the neighbors of u do not
have non-empty bucket x.

• If the value Vu(x) is larger than ε, we will need to ‘de-
mote’ this bucket. The insight here is that for at least
one of u’s neighbors v,

∑

i∈Vu(x) Φi(v) > ε — if oth-
erwise the new value Vu(x) is the average of its neigh-
bors’ values and can not be larger than ε. Thus u has al-
ready been maintaining the buckets (lower than x) cor-
responding to the non-empty buckets in the q-digest at
v. Thus we will demote bucket x to those non-empty
buckets in its subtree.

One more advantage of this setup is that it supports am-
biguous event detections. Sometimes a node cannot deter-
mine the basic type, but only a higher-level class of its de-
tection (cannot tell a cat from a dog, but knows it is a small
animal). Such a detection can then be associated with an in-
ternal node in the ontology tree of types, just like in the case
of a composition of several basic potentials.

3.3. Counting range queries

A range query asks for the value of certain attributes in-
side a given geographical range. Previous approaches for
range queries either choose to flood the region for computing
the attributes of interest, or preprocess the sensor data into
partial aggregates that are later assembled properly for the
correct answer [8–10,23]. For the later approach, the shape of
the geographical range affects the assembly cost: the more
complicated the geographical range is, the more partial ag-
gregates are to be used.

The algebraic property of harmonic function allows an ef-
ficient algorithm for counting query in an arbitrary range.

In particular, suppose we would like to count the number of
sources inside a simple closed curve (a Jordan curve). We
simply tour along the curve and sum up the difference in
the potential values on the edges across the region bound-
ary. In particular, say an edge uv is crossing the region
boundary with u inside the range. Then the signed difference
Φ(u) − Φ(v) is added to the sum. The summed difference
will give precisely the number of sources in the interior of
the range, assuming that the same signed difference, evalu-
ated for the set of edges adjacent to each source, is equal to
1. However, the latter can be guaranteed by a simple modi-
fication to the basic Jacobi iteration described in Section 2.1
– the sources previously had their values fixed at 1, whereas
now they perform the following iteration

Φk+1(u)←
1

d(u)

[

Σv∈N(u)Φ
k(v) + 1

]

.

To better understand this, one can imagine that each source is
equipped with an ‘external’ constant inflow of value 1 with
one node fixed to the ground with voltage 02. The signed
difference Φ(u)− Φ(v) is the electrical flow on the edge uv
from interior to the exterior. If the range contains no sources,
then the amount of flow entering the range must be the same
as the amount of flow leaving it, by Kirchoff’s current law.

Beyond its simplicity, this approach also compares favor-
ably with other approaches for answering counting range
queries, in terms of the communication cost. For exam-
ple, the quad-tree/fractional cascading approach [9] incurs a
query cost proportional to O(h log h) for a rectangular range
with perimeter h. Our query only incurs a communication
cost of h and it works for ranges of arbitrary shape.

4. Construction & Maintenance

The establishment of information strength field is
achieved by on-demand Jacobi iterations. The source nodes
and some boundary nodes always fix their information
strength as the maximum and minimum value, respectively.
A non-source node u, upon the receipt of strength values
from its neighbors, takes the average of the neighbors’ val-
ues, i.e., Φ′(u) =

∑

v∈N(u) Φ(v). If the new strength value
Φ′(u) is sufficiently different from the old strength value
Φ(u), the new value is updated and broadcast to its neigh-
bors. Otherwise, nothing is changed at node u. The update
criterion can be selected to provide a tradeoff between up-
date cost and gradient quality. We provide two basic update
criteria as follows.

• Relative difference threshold: The update stops if the
relative difference is below a threshold δ. In other
words, |Φ′(u)− Φ(u)| ≤ δ ·max{Φ(u),Φ′(u)}.

• Stable relative ordering: The update stops if the rel-
ative ordering of the strength values between u and

2Technically, the equation being solved in this case is the discrete Pois-
son (‘nonhomogeneous Laplace’) equation, where the sources are no longer
boundary nodes, but nonhomogeneous terms. The theory of Jacobi method
is essentially the same, however.



all neighbors of u stabilizes. In other words, for all
w ∈ N(u), Φ′(u) < Φ(w) if and only if Φ(u) < Φ(w).

In the relative difference threshold condition, the thresh-
old δ bounds the relative difference of the current strength
field from the harmonic function. The smaller δ we choose,
the better strength field approximates the harmonic function
and the higher construction cost we pay.

The stable relative ordering criterion is a more relaxed
condition. In fact, the stable relative ordering is obviously
sufficient to guarantee that non-source nodes do not form a
local maximum or minimum of the strength values. Thus
greedy routing never gets stuck at a non-source node.

The update condition can also be a combination of the
stable relative ordering and the relative difference thresh-
old conditions, so that the orderings stabilize and the rela-
tive error is below the specified threshold. The convergence
condition controls the quality of the information gradients,
which consequently affects the query quality and query path
lengths. The convergence condition is a system parameter
that can be tuned in an application specific fashion to trade
preprocessing for query time.

We remark that the gradient construction and maintenance
is performed in an on-demand and asynchronous way. Upon
the appearance of data sources, information diffuses to the
network. The closer a node is to the data sources, the less
delay a node experiences in encountering a visible gradi-
ent. The delay it takes for this information diffusion usu-
ally depends on the network diameter. However, with on-
demand computation, the amount of iterations each node per-
forms, and thus the energy consumption at each node, de-
pends mainly on the convergence condition and are relatively
independent of the network size. This scalability is verified
by simulations (Figure 3(iii)).

Gradient maintenance can also be triggered by user
queries. Before the information gradients stabilize or when
the convergence condition is too loose (e.g., δ is large in the
relative difference threshold case), a user query may reach a
local maximum and get stuck at a non-source node u. This
may trigger further improvements of the gradients, by initiat-
ing Jacobi iterations at u (possibly with a tighter convergence
condition).

5. Evaluation by Simulations

We evaluate information gradients by simulation in the
following aspects: the construction and maintenance costs of
the information strength field, robustness to network dynam-
ics, the tradeoff of query qualities versus gradient mainte-
nance cost, as well as the applications of the potential fields
in Section 3.

5.1. Simulation setup

We use two sets of network topologies. One is a grid net-
work with radio range of 1 unit and exact node degree of 4.
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Figure 3. The boot-up phase with preset approximations: (i) The conver-
gence rates with relative difference threshold model, ε = 0.2%, 0.5%, 1%.
(ii) The average number of iterations each node experiences. The mainte-
nance phase: (iii) The network and per node convergence iterations for link
toggles at different positions in a 50× 50 grid network. (iv) The cumulative
distribution function of the number of updated nodes at different distances.

The other is sensor nodes deployed uniformly randomly in a
rectangular region.

We model wireless transmission using the same radio
models as in TOSSIM [1, 17]: simple mode and lossy mode.
In the simple mode, all nodes within the transmission range
can communicate perfectly without data corruption. In the
lossy mode, each link has a bit error rate reflecting the prob-
ability that a bit is flipped, according to the distance between
the two communicating parties. We feed in our node loca-
tions in the TOSSIM radio model and obtain connectivity
and link quality for each pair of nodes. To model link fail-
ure, at any particular time slot we also set a percentage of
randomly selected links to be not available, throughout all
the experiments.

The maintenance of the information strength field is on-
demand. We build the gradient scheme upon a neigh-
bor discovery protocol, which notifies the gradient mainte-
nance component about the appearance and disappearance of
neighbors. Gradient maintenance and routing are in the net-
working layer, and can be integrated with existing protocols
that maintain a neighbor list for each node [5, 20].

5.2. Gradient construction

A critical system parameter is how fast the information
strength converges. In the boot-up phase, gradients are ini-
tially set up for newly introduced data sources. In the mainte-
nance phase afterwards, gradients are updated at link changes
and repaired upon source motion.

We first study the boot-up phase behavior. In the grid
topology with increasing size from 20 × 20 to 100 × 100,
we fix a source at the center of the network and set the maxi-
mum value as 1000. We use a simple radio model with com-



munication range 1. We evaluate the number of relaxation
iterations (i.e., the delay) it takes for the whole network to
stabilize under different convergence criteria, as shown in
Figure 3 (i). The total number of iteration steps is propor-
tional to the network diameter. We also observed that the
convergence threshold ε affects the coverage scope of the
potential field. Correspondingly, the convergence rates are
missing in case of incomplete coverage. We also evaluate
the number of Jacobi iterations each node performs. The av-
erage number of actual iterations each node experiences is
much smaller, as shown in Figure 3 (ii). In these experiments
we adopted a simplified pre-set scheme for the information
strength field. We pre-set the strength field as a field that
linearly decays from the source in the boot-up phase. The
decaying amount at each step is set by as S = MAX/D,
where MAX is the maximal strength value at sources and D
is the network diameter. In practice, the estimated decaying
step S can be preloaded on all sensor nodes. When a node
first receives a positive strength value from a neighbor, it di-
rectly sets its strength value to be the neighbor’s value minus
S. Standard Jacobi iterations are performed afterwards. This
linear approximation is shown by simulation to be very ef-
fective. Most of the numbers are below 10 iterations. For
ε = 0.5%, 1%, the average number of iterations is even less
than 1. Another interesting behavior observed is that the ap-
proximation favors large networks, in the sense that the num-
ber of iterations per node decreases with network diameter.
This is because both the gradient and the preset approxima-
tion functions are less steep. Thus only a few adjustments
are needed.

5.3. Robustness to link dynamics

After the establishment of information gradients, the
strength field is maintained to accommodate various types of
dynamics. When one link toggles (appears or disappears),
the gradient maintenance component will be notified with
the lost (or new) neighbor and perform a Jacobi iteration.
If the convergence condition is violated, gradient update will
be triggered and new values are broadcast to the neighbors.
We evaluate the update convergence rates and update scopes
(how far the updates span). We first study whether the prox-
imity of the link dynamics to source matters. In a 50 × 50
grid network, the potential field is constructed with 0.1%
convergence threshold and maintained by 1% threshold. We
sample nodes at different distances from the source and ran-
domly fail one of the attached links. Figure 3 (iii) shows
the number of iterations for the network to stabilize. The
number of iterations per node is about 10. Figure 3 (iv)
describes the cumulative distribution function about the per-
centage of updated nodes within a certain distance threshold.
The nodes updated are all within vicinity. Nearly 90% of
them are within 6 hops from the triggering node.

We also test the algorithm for scalability. By varying the
diameter of the grid network from 20 to 80, we observe that
both the average convergence rates (the total and per node
number of iterations), as shown in Figure 4(b), and the up-
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Figure 4. Gradient maintenance cost under link dynamics and source mobil-
ity. (a) the average number of hop counts of updated nodes to the triggering
node with a link failure, (b) the average convergence iterations (both total
and per node) for link failure reparation, All the simulations are conducted
on a grid network with the simple radio

date scope, as shown in Figure 4(a) with 1% convergence
threshold, do not change much when the network size in-
creases. Thus information gradients updates for link dynam-
ics are completely local.

5.4. Packet loss and query quality

In these experiments we incorporate the lossy wireless
communication model described in section 5.1 and study the
query success rate and path quality in this scenario. Under
the lossy radio model, message may get corrupted, which is
detected by the CRC checksum. For a corrupted gradient up-
date message, the receiver drops this message and skip the
Jacobi iteration that may be triggered. A missing Jacobi iter-
ation can be compensated in later iterations. If a query mes-
sage gets corrupted, the sender will retry. In the simulation
query messages are acknowledged implicitly by overhearing
retransmission from the receiver. If a sender does not hear
the transmission of the query message by its neighbor after
a certain period of time, it retransmits the query. In case of
a second-time failure, the sender then chooses the neighbor
with the second largest information strength (still higher than
its own strength value though). The process repeats in case
of consistent transmission failure and finally claims a query
failure when there is no qualified neighbor to proceed.

In Figure 5(a), we show the query success rates under the
lossy communication model initiating from increasing dis-
tance ranges. We compare it with the query success rate with
the DAG formed by hop count distance to source, by using
the same query routing algorithm as explained above (Fig-
ure 5(b)). In the experiments, we place a source randomly
in a uniformly distributed 4000 nodes network. A potential
field using 0.1% convergence threshold or a DAG according
to hop count distance is constructed next. We then collect
the query statistics for every non-source node. The results
show that greedy routing using the gradient field is much
more robust than shortest path trees. The horizontal axis in
Figure 5(a) and 5(b), ‘lossy model scaling factor’, is a pa-
rameter used in the TOSSIM radio model that controls the
loss rate. The higher this factor is, the more lossy the radio
links are.



0 2 4 6 8 100.2

0.4

0.6

0.8

1

1.2

Lossy Model Scaling Factor

Q
ue

ry
 S

uc
ce

ss
 R

at
e

0.1% Relative Diff.
0.5% Relative Diff.
1% Relative Diff.

(a) (b)
Figure 5. We place 4000 nodes uniformly randomly in a square of size
100 × 100. The communication range is 3. The link quality is generated
with the TOSSIM lossy radio model. (a) and (b) show the query success
rates of greedy routing with information gradients and a shortest path tree.

5.5. Improving routing diversity

To demonstrate the use of information gradients to
achieve routing diversity, we consider a perturbed grid net-
work of 625 nodes, with two sources in the upper-right and
lower-right corners of the network. We generate 300 queries,
each of them looking for any one of the 2 sources. Each
query originates from one of the three nodes along the left
boundary of the network (indicated by dark bars) chosen at
random among the three. To guide the query message, we
follow the ascending path of a function which is guaranteed
to have all its local maxima at the sources. We compare three
choices of such function, namely

• the potential which happens to be the strongest at the
point where the query originates,

• a potential chosen uniformly at random,
• a linear combination of the potentials, with positive co-

efficients3 λ and 1− λ, where λ is chosen uniformly at
random from [0, 1].

Figure 6 shows the results for the communication load.
We see that in the third case there is a significant improve-
ment in the nodes’ communication load distribution, as long
as they are not very close to the sources and query points (in
the latter case high load is unavoidable).

Because we diversify our paths, we may expect to pay
some penalty in terms of path stretch. Clearly, our approach
provides a way to trade off path diversity for path stretch by
restricting the domain from which random coefficients are
drawn. However, our results show that this penalty is not
too large even with the entire interval [0, 1]. In the above
experiment we obtained the stretch value of 1.22 for the third
approach, versus 1.14 and 1.15 for the first two approaches.

5.6. Potential influence zones

We tested the influence zone of aggregated gradients. In a
perturbed grid network of 400 nodes, we choose two sources
close to each other near the left boundary of the network. We
compute their individual potentials, but store the gradients

3If we allowed negative coefficients, there might be local maxima at the
network boundary.

Figure 7. Nodes can adapt their potentials’ zone of influence based on the
importance and scale of detected events. In this example the significance
threshold is ε = 1/64. Top row: Influence of the individual potentials.
Bottom row: Influence of the combined potential.

only if they are larger than ε. We want to see how many
more nodes will learn about the two events if the potentials
are combined.

Figure 7 shows the result for ε = 1/64. In the case of
individual potentials (Figure 7 top), the number of nodes un-
aware of the event is 182 and 183 for the lower and upper
source, respectively, and in the case of the combined poten-
tial the number is only 43 (Figure 7 bottom; as expected, the
number is the same in both cases).

5.7. Saving storage space using q-digests

In this section we test the idea of reducing the number of
stored potential values, but in such a way to be able to recon-
struct the original gradient with a guarantee on the additive
error. The q-digest data structure provides a way to do this,
as described in Section 3.2.

We consider the following simple example. Suppose we
have a perturbed grid network of size 20 × 20 nodes, with
two sources s1 and s2 near the left (resp. right) boundary,
and we want to have as many nodes as possible store only
one value instead of two.

If we try to compress using ε = 0.2, our approximate po-
tentials (after decompression) will have some local extrema.
In particular, the approximate potential of s1 will have local
maxima around s2 and vice versa (Figure 8 top left). This is
because in the region around s2 the potential of s2 is much
stronger than that of s1, so equal splitting results in under-
estimating s2 and overestimating s1. This effect is a lot less
pronounced if we use less compression (smaller ε). Figure 8
(middle) shows the results for ε = 0.05. Most nodes have
ascending paths to both sources even with approximate po-
tentials, but the storage savings are also smaller. The number
of nodes that decide to aggregate their potential is 380 (out
of 400) for ε = 0.2, and 185 for ε = 0.05.

Finally, notice that the aggregated potential (stored in the
internal node of the q-digest tree) is also a potential func-
tion whose domain is a subset of the nodes. Thus, if it is



Figure 6. Path diversity results. Left: using the strongest potential at the query origin. Middle: using a randomly chosen potential. Right: using a random
linear combination of potentials. Dark bars represent loads at query origins.

Figure 8. Compressing potential functions using q-digests. Sources are rep-
resented by black squares, empty circles represent the nodes that compress
their local potentials. Top: for ε = 0.2, some nodes in the vicinity of s1

have no ascending paths to s2, and vice versa. Middle: with less compres-
sion (ε = 0.05) the effect is less pronounced. Bottom: using the aggregate
potential (from the internal node of the q-digest tree) restores routability for
all nodes even for ε = 0.2.

not possible to route using approximate potentials, the ag-
gregate potential might provide a way out of the local min-
imum. In our case (Figure 8 bottom) it turns out that this
strategy (ascending the aggregate potential in the usual way)
restores routability for all nodes.

5.8. Counting sources inside a range
In this section we evaluate how many averaging iterations

(per node) are needed before the potential becomes accu-
rate enough to be used for counting sources inside a given
query region by examining only the boundary of the region
(Section 3.3). We place a single source in the middle of a
25 × 25-node perturbed grid network. The task is to decide
whether the source is inside or outside of the query region.

For any given number of iterations per node, we expect the
accuracy to depend on the distance of the query region from
the source. To measure this dependence accurately, we test

d

SOURCE

0.8d
d

SOURCE

≤ 0.1

Figure 9. Two types of circular query regions in our source counting simula-
tion, for a given distance parameter d. Regions are chosen to make d roughly
equal to the average distance between the region’s boundary and the source.
When the region does not contain the source (left), the radius of the region
is comparable to d. When the region contains the source (right), the region
is displaced with respect to the source by a small distance (compared to d).
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Figure 10. Source counting empirical error rate as a function of the number
of Jacobi iterations and the position of the query region. Left: false positives.
Right: false negatives.

with the query regions for which this distance is as uniform
as possible over the region boundary. Figure 9 shows the
kind of queries that we use.

Starting from a random initial values, we simulate Jacobi
iterations in small batches. After each batch of iterations,
for all distance values we compute an empirical estimate of
the error rate from a few hundred random trials (the random
quantity being the coordinates of the center of the query re-
gion).

The results are shown in Figure 10. In all cases, the er-
ror drops to zero after only 20-30 iterations per node. In the
case of false positives, convergence slows down as distance
parameter d grows. We believe that this is because in this
case the convergence speed is governed by the diffusion pro-
cess inside the region. As the size of the region grows, it
takes more time to eliminate local extrema inside the region
through local averaging. In the case of false negatives, the
flow has to become relatively large, which happens under
the influence of the source and boundary. Hence the nodes
roughly half way between the source and the boundary ex-
hibit the slowest error decay; the source/boundary informa-
tion needs to propagate furthest to these nodes, to make the
flow in their vicinity relatively large and reliably detectable.



6. Conclusion
In this paper we have shown that harmonic information

potentials, a lightweight structure that maintains and diffuses
information availability, can be very helpful in guiding infor-
mation flow and data-centric queries in sensor networks. The
rich structure of harmonic functions allows for great flexibil-
ity and adaptability in routing algorithm designs and we ex-
pect that many future applications of these techniques will be
possible.
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