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Abstract

Following a rich line of research on leakage-resilient cryptography, [Garg, Jain, and Sahai,
CRYPTO11] and [Bitansky, Canetti, and Halevi, TCC12] initiated the study of secure interactive
protocols in the presence of arbitrary leakage. They put forth notions of leakage tolerance for zero-
knowledge and general secure multi-party computation that aim at capturing the best-possible
security when the private inputs of honest parties are exposed to direct leakage. However, so
far, only a handful of specific two-party functionalities have been successfully realized.

In this work, we present the first constructions of leakage-tolerant multi-party computa-
tion protocols for evaluating general functions. The protocols can tolerate continual leakage,
throughout an unbounded number of executions, provided that leakage is bounded within any
particular execution. The protocols rely on an input-independent preprocessing that is performed
once and for-all, and is then maintained under continual leakage. In the malicious setting, we
also require a common reference string, and a constant fraction of honest parties.

At the core of our construction, is a tight connection between secure compilers in the Only-
Computation-Leaks (OCL) model and leakage-tolerant protocols. In particular, we show that
leakage-tolerant protocols with input-independent preprocessing are essentially equivalent to
OCL compilers with strong properties. We then show how to construct such strong OCL com-
pilers.
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1 Introduction

Starting with the seminal works of [Yao82, GMW87, BGW88, CCD88], secure two-party and multi-
party computation (2PC and MPC) have played a central role in shaping modern cryptography, and
are still the subject of a great body of research. An MPC protocol allows m mutually distrustful
parties to securely compute any function f(x̄) of their private inputs x̄ = (x1, ..., xm). The security
of such a protocol π is classically captured through the simulation paradigm (also known as the
real-ideal paradigm). The paradigm stipulates that the adversarial effect and view in a “real-world”
execution of π, can be simulated in an “ideal-world”, where parties run an idealized protocol If . In
the idealized protocol inputs are simply handed to a trusted party (or an ideal functionality) that
performs the computation for the parties.

The traditional attack model against a real-world MPC protocol allows a monolithic adversary
to corrupt any given set of parties and completely control their behavior, as well as to observe
all network messages and control the scheduling of the delivery of messages. In the ideal world,
in contrast, there is no communication between the parties, and the adversary (or simulator) is
limited to learning the original inputs of corrupted parties and possibly replacing them.

A crucial assumption underlying the traditional attack model is that the internal computation
state of honest parties is kept completely secret, and the sole way of affecting honest parties and
gaining information regarding their secret state is through the communication interface. However,
as witnessed in recent years, attackers may sometimes learn partial information—termed leakage—
about the secret state of the honest parties, for example, via a myriad of side-channels (e.g. timing,
radiation, etc., see [Sta09]). This growing threat has spurred a large body of research devoted to
the development of leakage-resilient cryptography.

Recently, extending the notions of non-interactive leakage-resilient primitives [ISW03, MR04,
DP08, AGV09, NS09, Pie09, ADN+10, BKKV10, DHLAW10, FKPR10, BSW13], the works of [GJS11,
BCH12] initiated the study of cryptographic protocols in the presence of leakage—termed leaky
protocols. Here, in addition to usual attacks allowed, the adversary may obtain leakage on hon-
est parties’ secret states, modelled as the outputs of arbitrary leakage functions chosen adaptively
(from some broad class) by the adversary.

Leakage-resilience vs leakage-tolerance. A fundamental question in the context of leaky
protocols, concerns the level of security that can be achieved in the presence of leakage. A natural
goal would be to achieve the same security properties as in the traditional attack model (where there
is no leakage); such a strong guarantee means leakage on the secure states of honest parties causes
no degradation of security and is called leakage resilience. In the context of MPC protocols, this
means that despite leakage, the real world protocols retain the same security guarantees that the
ideal world protocols have in a leakage-free environment, where honest parties’ inputs are totally
secret. However, such a guarantee is inherently impossible to achieve if the real world adversary
can directly leak on parties’ inputs. Previous works have taken two different approaches towards
overcoming this difficulty.

The first approach by Boyle Goldwasser, Jain and Kalai [BGJK12] circumvents the difficulty by
assuming a leakage-free input preprocessing phase per session to avoid direct leakage on the inputs.
Very roughly, every input is first encrypted in a leakage-free input preprocessing phase, and only
the ciphertexts are delivered to the parties; thus, the inputs themselves are never exposed to leak-
age (and only the ciphertexts are). Then, additionally assuming a leakage-free input-independent
preprocessing phase that is executed once for all before any executions, they construct MPC pro-
tocols that are leakage-resilient, for polynomial number of parties among which a constant fraction
of parties are uncorrupted.
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A different approach, introduced in [GJS11, BCH12] and followed in this work, recognizes
that, in many scenairos direct leakage on parties’ inputs might be unavoidable. For instance, in
modern information systems, parties’ inputs often emerge only when the parties are already online,
potentially as the outputs of other computations. Here, since leakage-resilience is unachievable, the
goal shifts to devise protocols that achieve the “best possible” security guarantees. Under the real-
ideal paradigm, this means the real-world executions subject to ` bits of leakage on honest parties’
secret states, should emulate ideal-world executions, subject to comparable (e.g., in length) leakage
on the ideal states of parties. Such protocols are leakage-tolerant in the sense that real-world leakage
on the secret state of honest parties, including inputs and randomness, is intuitively not worst than
ideal-world leakage on the parties’ ideal state. More generally, different levels of leakage-tolerance
can be captured by different specifications of the ideal functionality that, in particular, determines
what is the ideal leaky state of parties.

Separate state vs. joint state ideal world leakage. The most natural leaky ideal func-
tionality, as defined in [BCH12, GJS11], defines the ideal state of each party to consist of only
their own private input and output (which is necessary), but nothing more. This separate state
model intuitively captures the best possible achievable guarantee, in the presence of leakage.
From hereon, we simply refer to protocols achieving this notion as leakage-tolerant protocols.
In [BCG+11, GJS11, BCH12], leakage-tolerant protocols for several basic tasks, including, secure
message transmission, commitment, oblivious transfer and zero knowledge, are constructed. The
question of constructing leakage-tolerant protocols for general tasks, however, was left open.

The work of Boyle et al. [BGJ+13] made significant progress towards resolving the above
question by considering a weaker notion of leakage tolerance. In particular, they formulated a
leaky ideal functionality that includes in the ideal state of each party the joint inputs and outputs
of all parties. Roughly speaking, this means that the effect of learning a leakage function on the
isolated state of any single party can be “emulated” by a simulator that learns a joint leakage
function on the joint inputs and outputs of all parties. While certainly meaningful for many
scenarios, this joint state model is not as ideal as the separate state model. In particular, it means
that the input-output privacy of one participant can be compromised due to the leakage attack
launched on another participant.

Summarizing the state-of-the-art, for general multi-party computation tasks, known construc-
tions either achieves only a weaker notion of leakage tolerance [BGJ+13], or relies on the physical
assumption that leakage-free input-processing is available per session [BGJK12]. Without leakage-
free input-processing, the exsistence of (separate-state) leakage-tolerant protocols has only been
demonstrated for specific two-party functionalities. Determining the feasibility of leakage-tolerant
multi-party protocols for general tasks, in any model without leakage-free input-preprocessing,
remains open.

1.1 Contributions

Our primary contribution is the construction of multi-party protocols for general functions, with
continual leakage-tolerance, relying only on an input-independent leakage-free preprocessing phase
that is carried out once for all before any executions. In this model, prior to the computation, each
of the parties obtains an initial state to be used later in the computation. The initial states are
sampled, without any leakage, from a fixed (joint) distribution that is independent of the inputs (or
function), which are only determined online. The online phase proceeds in iterations, where in each
iteration a function is computed on the new set of inputs. The entire state of each party, including
its current inputs, randomness, and initial state, are all exposed to leakage at any point in the
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protocol’s execution, with the restriction that, between every two iterations, leakage is bounded.
The initial state produced in the preprocessing phase is updated between the iterations, under
leakage, and previous state and inputs are erased (which is necessary in the continual setting).

At the heart of our constructions, is a strong connection that we establish between Leakage-Tolerant
Computation (LTC for short) and secure compilers in the Only Computation Leaks (OCL) model.
We next recall the basics of OCL compilers, and overview our main results.

OCL vs. LTC. The OCL model [MR04] considers a setting where computation is performed
using leaky memory, under the assumption that only the parts “touched” by the computation
might leak some bounded amount of information. The memory is assumed to be initialized ahead
of time and without leakage, typically with secret information associated with the computation. A
(continual) OCL scheme, is meant to take any computation represented by a circuit C(k, ·) with
an associated secret k, and compile it, offline and without leakage, into a new computation C ′(k, ·)
that fully protects the secret k when executed using leaky memory. The model of computation is
semi-honest in the sense that the evaluation of C ′(k, ·) is assumed to be performed correctly, and
the adversarial power is limited to bounded leakage, and choice of inputs for the computation. The
intuitive property that C ′ protects the secret k is formalized by the requirement that the adversary’s
view (i.e., the leakage) can be simulated from the input and output of the computation alone.

To see the connection with the setting of LTC, it is convenient to interpret the evaluation of an
OCL-compiled circuit as a leaky distributed computation performed jointly by t honest parties (or
components) [BCG+11, DF12, BGJK12]: The parties’ memories are initiated with some prepro-
cessed information about the secret k, generated in private without leakage, and they communicate
with each other via secret and authenticated secure channels (capturing communication through
the secure memory); during the compuation, bounded leakage can be obtained from the different
parties separately, but it is not possible to leak on the joint state of any two parties. Furthermore,
in the basic OCL model, leakage is assumed to be ordered; namely, computations are done by the
parties in a certain order, and at each point in time it is only possible to leak from the active party.
1

We summarize the differences between the models of OCL and LTC. The first, and minor,
difference is the secure communication assumption; this difference can be bridged using existing
constructions of leakage-tolerant communication [BCG+11] to replace the secure channels. A more
crucial gap is the preprocessing of secret inputs: In OCL, a shared secret input k is preprocessed
offline without leakage and split between the t parties; in contrast, in LTC, the parties receive
their inputs online under direct leakage. Another difference is that in the LTC model leakage is
unordered; namely, it is possible to leak from any party at any time. Finally, an essential difference
is that the OCL model assumes that all parties are honest and only subject to bounded leakage,
whereas in LTC, we will also want to deal with corruption of parties, in which case their entire
state is leaked to the adversary.

Bridging the gap: LTC with input-independent preprocessing and strong OCL. As
discussed above, the LTC model is meant to deal with a reality in which inputs are unavoidably
subject to leakage, without input-dependent preprocessing. Our first contribution is a generic

1Different constructions of OCL shemes handle different settings. For instance the construction of 2-component
OCL schemes using hardwares by [JV10, DF12] are secure even if the leakage is not “unordered”. However, so far,
the only continual OCL scheme without hardware by [GR12] only handles ordered leakage. As we will see later,
our construction of leakage-tolerant protocols is based on the Goldwasser-Rothblum OCL scheme, and bridging from
ordered leakage to unordered leakge is one of the main hurdles.
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transformation from a strengthened form of two-party OCL, referred to as strong OCL, to two-
party LTC with input-independent preprocessing. Roughly speaking, the main feature of strong
OCL schemes is that they allow simulating the internal states of the two parties obliviously of
the adversary’s leakage functions, and moreover, simulation of the party that produces the output
depends only on the output of the computation, oblivious of the input. (In contrast, basic OCL
schemes allows simulating leakage on the two parties using both input and output). In addition,
strong OCL security is guaranteed even under unordered leakage.

The transformation yields (continual) LTC protocols for the basic case of two-party LTC with-
out corruptions, and is a crucial step towards getting stronger forms of security in the presence of
corruptions and with multiple parties. (In fact, differing from constructing MPC protocols with-
out leakeage, where security against no corruption is easy; when dealing with leakage, achieving
security with no corruption is already a hard step.) While it may seem as a drawback that our
transformation relies on a strengthened OCL scheme with special properties, we show that, in fact,
strong OCL is necessary for LTC.

Theorem 1 (informal). Any two-party strong continual OCL scheme implies two-party continual
LTC relying on input-independent preprocessing (and secure channels), and vice versa. The LTC
protocol is secure when no party is corrupted and can tolerate the same amount of leakage on every
party as the OCL scheme.

Obtaining Strong continual OCL. There are several known (continual) OCL schemes in the
literature [JV10, GR10, DF12, GR12]; however, none satisfy as is the requirements of strong OCL.
Augmenting (some of) the schemes to satisfy the required strong properties is relatively straight
forward, if one allows reliance on leak-free hardware, as in [JV10, GR10, DF12]. But the transfor-
mation presented in Theorem 1 carries the use of hardware in OCL to the resulting LTC protocol;
in order to avoid this, we need strong OCL schemes without any reliance on hardware. However,
so far, even for standard OCL, the only scheme in the literature that does not rely on hardware is
by Goldwasser and Rothblum [GR12] (referred to as the GR scheme henthforth), which requries a
polynomial number of components; and constructing two-component OCL without hardware is a
long standing open question.

To circuimvent this, we resort to a weaker primitive—a strong 2-component OCL with auxiliary
parties—where the computation is carried out by two main components with the assistance of
several auxiliary parties; its strong security additionally requires that the states of the auxiliary
parties can be simulated obliviously of both the input and output, (thus the sole purpose of the
these auxiliary parties is to assist the computation and their view is completely independent of the
input and output). With this relaxation, we construct such an OCL scheme without reliance on
hardware, which also directly gives a multi-component OCL scheme without hardware.

Theorem 2 (informal). There exists a continual strong 2-component OCL scheme with O(1) aux-
iliary parties that does not rely on any hardware. Moreover, the scheme is unconditionally secure.

Given a strong two-component OCL scheme with O(1) auxiliary parties, Theorem 1 is then
generalized to yield two-party LTC, with O(1) auxiliary parties, whose ideal state is empty. These
LTC protocol (assisted by the auxiliary parties) would eventually lead to standard multi-party
LTC, with no auxiliary parties.

Multiparty LTC and security against corruptions. We then leverage the two-party proto-
cols, with O(1) auxiliary parties, to obtain m-party (continual) LTC protocols that withstand up
to (1− ε)m corrupted parties, for large enough m.
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Concretely, we provide two transformations: The first is a generic transformation for the case
of no party corruptions: it takes any m-party LTC protocol with (leakage-free) input-dependent
preprocessing and obtains a new protocol relying only on input-independent preprocessing and
two-party LTC (with auxiliary parties). The second achieves the same in the case of (1 − ε)m
corruptions and is based on the specific protocol of Boyle et al. [BGJK12] in the common reference
string.

Theorem 3 (informal). Any m-party LTC protocol with input-dependent preprocessing and two-
party LTC with O(1) auxiliary parties, both secure when no party is corrupted, imply an m-party
LTC protocol with input-independent preprocessing when no party is corrupted (and without ad-
ditional auxiliary parties or hardware). Moreover, the [BGJK12] protocol, in the common reference
string model, and any two-party LTC as above, imply security under (1− ε)m corruptions, for any
constant ε, and large enough m. The resulting protocols can tolerate the same amount of leakage
as the original protocols.

Universal composability and oblivious simulation. All of our constructions are presented
within the framework of universal composability (UC) with leakage [Can01, BCH12]. In particular,
our protocols admit the strong form of emulation known as leakage-oblivious simulation. An obliv-
ious simulator works obliviously of the actual leakage function that the adversary produces, and
provides a way (more precisely, a state-translation function) that simulates the real world states of
honest players using their ideal state; namely, inputs and outputs. An essential feature of protocols
with oblivious simulation (and thus of the protocols constructed in this work) is that they respect
the universal composition theorem.

1.2 Techniques

We now present our main ideas and techniques. Before that, we first give some intuition regarding
the difficulties in constructing LTC protocols, exemplify why the classical paradigms of 2PC and
MPC fall short of achieving leakage-tolerance, and motivate the core use of OCL in our techniques.

Why classical protocols are not leakage-tolerant. The common paradigm for (say, semi-
honest) 2PC and MPC protocols is for parties to first secret share their inputs, and then homo-
morphically compute a given boolean circuit over their shares. For example, in two-party GMW
[GMW87], the invariant is that throughout the computation each one of the parties holds one ran-
dom additive share for each wire in the circuit, where the two shares together encode the actual
value of the wire; then, addition is done locally over shares, and multiplication is done with the
help of oblivious transfer.

A basic problem that arises when using such a protocol under leakage is that additive secret
sharing has very poor leakage-resilience properties. Indeed, it is possible to learn the value of any
intermediate value in the circuit, by simply leaking a single bit from every party. However, in the
ideal world, where it is only possible to separately leak a single bit on the input and output of
each party, learning the value of some intermediate wires might be impossible. For example, the
value of an intermidiate wire might be the inner product of two uniformly random inputs, and thus
statistically close to uniform, even under independent leakage as above. A rather similar problem
also appears in other classical protocols (e.g., Yao [Yao82]), even if not as explicitly.

A plausible route towards circumventing this problem would be to use a leakage-resilient secret
sharing [BGK11, DLWW11, DF11], such as the inner product two-source extractor. The challenge
is, however, to be able to compute the circuit gates over such shares in a leakage-resilient way.
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While this is not known in the plain model, this approach is successfully executed in existing OCL
protocols (e.g. in [GR12, DF12] with the inner-product extractor), with the help of a leakage-free
preprocessing phase. Only that there, all secret inputs are preprocessed offline, while online inputs
are public. Thus, a natural question is whether we can import, perhaps even generically, the OCL
techniques to the setting of LTC.

Before explaining how we bridge the gap between LTC an OCL, we first quickly cover some of the
technical basics of OCL compiler, which will be instrumental for our technical exposition.

Strong OCL. It is convenient to consider two-party OCL schemes for universal circuits U(k, ·)
with a fixed secret input k. A continual strong OCL scheme Λ consists of a compiler algorithm
Comp that preprocesses a secret k, and splits it into two shares, and a two party protocol between
a left component PL and a right component PR whose memories are initiated with the two shares
respectively; to evaluate a function f on k, the two components PL and PR interact with each
other, where PL receives the input f and PR produces the output y = f(k). The scheme may
be assisted by additional auxiliary parties PA1 , . . . , PAa , who obtain an initial state from Comp
participate together with PL, PR in the protocol for computing f(k).

The protocol proceeds in iterations: In each iteration i, the adversary may specify f = fi
and repeatedly, adaptively, and in no particular order, obtain leakage from any one of the parties
PL, PR, PA1 , . . . , PAa . Leakage is separate on the individual state of each party, and the number of
bits leaked from any given party during a single iteration is bounded by `.

We require an oblivious simulator S that can simulate the states of all parties PL, PR, PA1 , . . . , PAa ,
obliviously of the leakage functions specified by the adversary; the leakage to the adversary is then
simulated simply by evaluating these functions on the simulated states. We further require that S
admits a special structure: the state of PL in every iteration i can be simulated given the current
input fi and output yi = fi(k). The state of PR can be simulated given only the output yi, and
obliviously of fi. The state of any auxiliary party PAi can be simulated obliviously of either fi, yi.

From strong OCL to LTC without corruption: To illustrate the idea behind our construction
of LTC protocols secure without corruption, let us focus on the case where (P0, P1), assisted by
(PA1 , . . . , PAa), jointly compute a single-output function f of their private inputs (x0, x1), and only
one of them receives the output. (This can be shown to be without loss of generality—protocols
computing single-output functions can be transformed into protocols computing functions with
different outputs for different parties). Furthermore, let us first focus on the non-continual setting,
where only a single execution is performed, and later on generalize to the continual setting.

Given a strong OCL scheme, obtaining a one-time leakage-tolerant protocol ρ is rather simple.
An easy way to compute a function is to ask P0 to send its input x0 to P1, who then computes
y = f(x0, x1) directly; however, this is obviously non-private. Instead, we may have P0 encrypt
its input x0 using a one-time pad r and send the ciphertext c = x0 ⊕ r to P1. Now privacy is
re-installed, but it becomes unclear how to perform the computation.

In remedy, the OCL scheme provides a way for the two parties to jointly decrypt x0 and
compute f(x0, x1). More precisely, the preprocessing phase samples the initial states of the OCL
scheme with respect to a random string r, which will set as the OCL secret (referred to before
as k, and distributes the left-component initial state to P1 and the right-component initial state
together with r to P0. During the protocol execution, P0 sends c = r⊕ x0 to P1; then, jointly with
the auxiliary parties PA1 , . . . , PAa , they perform an OCL evaluation, where P0 acts as the right
component and P1 acts the left component with input function g((c, x1), ·) = f(c ⊕ (·), x1) = y.
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The OCL evaluation computes the function g on the secret r, producing the desired output y at
P0.

Showing that the above protocol ρ is indeed leakage tolerant, boils down to showing that the
states of P0 and P1 can be simulated using their own input and output. By construction, P0’s state
consists of x0, r and the right-component state of OCL, while P1’s state contains x1, c and the
left-component state of OCL. A simple yet crucial observation is that since r is truly random, so is
c. Therefore, the ciphertext c can be simulated directly using a random string c̃← U , and later, the
secret r can be simulated as c̃⊕ x0; and the pair (c̃, r̃) distributes identically to their counterparts
(c, r) in the real execution. Next, it follows from the strong leakage resilience of the OCL scheme
that the left-component state stateL in P1 can be simulated using the input function g(c̃, x1), ·)
and the output y, while the right-component state stateR in P0 can be simulated using only y.
Therefore, overall the simulated state (x0, r̃, stateR) of P0 and the simulated state of (x1, c̃, stateL)
of P1 depend, respectively, on their own input and output. The state of the auxiliary parties is
guaranteed, by strong OCL, to be simulatable independently of the input and output, as required.
Thus, leakage-tolerance follows as required.

To generalize the above to the continual setting, requires a modification of the above protocol.
Indeed, in the previous protocol ρ, the secret r underlying the OCL is fully revealed to P0. In the
one-time case, security still holds as the adversary is restricted to bounded leakage. However, in
the continual case, r will eventually be revealed entirely and the preprocessed OCL state would no
longer provide any leverage.

Instead, we present a slightly more complicated protocol ρ′, in which even the ciphertext c is
computed using the OCL scheme by evaluating the function g′(x0, ·) = x0 ⊕ (·) on the secret r; To
do this, the preprocessing stage is modified to sample an additional set of OCL initial states with
respect to the secure r, and to distribute the left-component initial state to P0 who later acts as
the left component when evaluating g′. The protocol ρ′ is still a one-time protocol, but in which r
is not fully revealed.

Moving to the continual case, instead of directly using r as the one-time pad, in the ith iteration,
we use the pseudo-random string produced by PRF(r, i) as the one-time pad, where r is used as the
seed. It follows from the continual strong leakage-resilience of the OCL scheme that the seed r is
always kept secret, and thus all the one-time pads generated are pseudo-random.

From LTC with input-independent processing back to strong OCL. We now briefly
sketch how LTC with input-independent processing can be used to obtain strong OCL, thus im-
plying that OCL is necessary for our goal. For simplicity, we describe the transformation with two
parties, and with no auxiliary parties. It is easy to see that if we start from an LTC with a auxiliary
parties, we will get strong OCL with a auxiliary parties.

The idea relies on the properties of inner product as a two-source extractor [CG88]. For an
OCL secret k ∈ {0, 1}n we consider a two-party function g(f,Li,L

′), (R,R
′)) that takes as input

a description of f : {0, 1}n → {0, 1}∗, matrices Li,Ri ∈ Fκ×n2 , which will be inner product shares
of the key k (That is, Li[j],Ri[j] ∈ Fκ2 and 〈Li[j],Ri[j]〉 = kj), and two random matrices L,R ∈
Fκ
′×κ′

2 , where κ′ = poly(κ). The function computes f(k) = f(〈Li[1],Ri[1]〉, . . . , 〈Li[n],Ri[n]〉), and
in addition new random shares Li+1[j],Ri+1[j] ∈ Fκ2 of the key k, which will be computed using
randomness 〈L′[1],R′[1]〉, . . . , 〈L′[κ′],R′[κ′]〉, derived by inner-product extraction.

At compilation, initial shares L1,R1 of the key k are sampled and distributed to the parties,
and input-independent processing is done with respect to the function g. Then at each iteration i
the parties compute the function where P0 inputs f,Li,L

′, where Li was produced in the previous
iteration and L′ was sampled uniformly at random by P0 itself. P1 accordingly inputs Ri,R

′. The
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properties of the LTC ensure that throughout all the different shares L,L′,R,R′ are only leaked
on separately, within some small bound. Strong OCL simulation then follows directly by the LTC
simulation guarantee.

Obtaining strong OCL. At high level, our construction combines the two-component OCL
scheme of Dziembowski and Faust [DF12] (referred to as the DF scheme henceforth), which relies
on a leakage-free hardware that samples random orthogonal vectors, with the key ciphertext bank
module in the Goldwasser-Rothblum OCL scheme [GR12] (Hencefort, the GR scheme). The ci-
phertext bank allows continual sampling of random orthogonal vectors at the presence of leakage
using multiple components.

A natural idea is, indeed, to use auxiliary parties to emulate the GR ciphertext bank in order
to implement the hardware needed for the DF-scheme. However, combining the two schemes and
showing that the joint scheme admits strong simulation turns out to be quite challenging.

First, the GR-scheme is only proven secure in a weaker model of OCL, where at any moment,
the leakage adversary can only obtain leakage from the component that is currently activated; in
other words, leakage occurs in the same order as the sequence of sub-computations. As a first step
towards our construction, we argue in a relatively modular way that the GR-scheme is also secure
agasint “unordered leakage”.

Second, we provide new simulation procedures for both the DF-scheme and the GR ciphertext
banks that are structured as required by strong OCL. In fact, the need for specially-structured
simulation is the reason we rely on the DF-scheme (besides from its simplicity), rather than relying
entirely on the GR scheme. (So far, we do not know whether the GR OCL scheme can be simply
adapted to satisfy the requirements of strong OCL schemes.) On the positive side, the resulting
OCL scheme enjoys the relative simplicity of the DF scheme, while leveraging only the features of
the GR scheme that are required to circumvent hardware (and are relatively more complex).

Due to the fact that the joint OCL schemes relies on details of DF-scheme and the GR ciphertext
bank and the lack of space, we defer more detailed description of the joint scheme to Section C.

From two-party LTC to multiparty LTC. We now briefly explain our transformations from
m-party LTC protocols with (leakage-free) input-dependent preprocessing to protocols, relying only
on input-independent preprocessing and two-party LTC (even with auxiliary parties).

The high-level idea behind our transformations is as follows: the input processing of the multi-
party LTC can be performed online, and under leakage, jointly by two parties. Namely, to process
an input xi of a given party Pi0 , it will use the help of another party Pi1 , and possibly of other
auxiliary parties Pi′1 , . . . , Pi′a . The two parties would each sample independently a long enough
random string ri0 and ri1 , respectively, and will use the LTC to compute the two-party function
g((xi, ri0), ri1) that computes the processing function x̄i = Π(xi;Ext(ri0 , ri1)), where the randomness
r = Ext(ri0 , ri1) is derived from the two random strings using a two-source extractor (e.g., inner
product).

Once each party obtains this processed input, the parties then run the original protocol (which
used to rely on a leakage-free processing of inputs). Intuitively, by the guarantees of two-source
extraction, provided that there’s only bounded separate leakage on each of the random strings, the
randomness r = Ext(ri0 , ri1) is statistically independent of the leakage, achieving the same effect
as leakage-free input preprocessing.

The above intuition holds only assuming that the party Pi1 assisting Pi0 , as well as the other
assisting parties Pi′1 , . . . , Pi′a , are all honest. In particular, we can get a protocol in the no corruption
(but only bounded leakage) model. Indeed, assuming Pi0 is (even semi-honestly) corrupted, the
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adversary, who now knows ri0 can learn any `-bounded function of r, by leaking on ri0 . Furthermore,
a malicious party may even bias the result and hurt the correctness of the protocol.

An appealing approach towards overcoming this problem is to have each party Pi jointly process
its input with all other parties Pj , and then somehow aggregate the processed inputs, some of which
computed with dishonest parties, into one processed input, which is safe to use. While we do not
know how to do this in general, we observe that the input-processing in the [BGJK12] protocol
possesses some additional properties, which give rise to a very similar approach. Specifically, in
the [BGJK12] protocol the input processing function Π(xi, pk, crs) := (Encpk(xi), π) samples an
encryption of the input xi under a public key pk for a fully-homomorphic encryption scheme, and a
NIZK of knowledge π of the input xi. Here the public key pk and the common reference string crs
are determined as part of the input-independent processing (in particular, in the [BGJK12] scheme
there is no leakage on the randomness for the encryption).

We implement the above idea is follows, let a = O(1) be the number of auxiliary parties required
for the two-party LTC. We let each Pi jointly compute with each coalition C of parties of size a+ 1
an encryption cC of zero, and a NIZK for it being and encryption of zero with respect to pk.
The randomness for this computation is computed by a two-source extractor, as above. Then, Pi
aggregates all these ciphers by adding them together to a new zero encryption c =

∑
C∈( [m]

a+1)
cC ,

and uses them to get a rerandomnized encryption cxi of his input xi, by encrypting xi under leakage
(and thus non-securely) and then adding to it the aggregated zero encryption c. In addition, Pi
computes a NIZK of knowledge that it knows xi and that cxi was generated by adding an encryption
of xi to ciphers c, and that NIZKs for the fact that they’re zero ciphers were verified.

It can be shown that, in known fully homomorphic encryption schemes, the eventual encryp-
tion of xi is semantically-secure provided that any one of the zero encryptions cC , which follows,
assuming there exists some non-corrupted coalition C of parties. Moreover, the NIZKs guarantee
that malicious parties cannot bias the result of the computation.

In summary, the above transformation, can withstand the same number of corruptions as the
[BGJK12] protocol: it allows for (1− ε)m parties to be corrupted, m > λ.
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A Definitions

In this section, we provide the definition for leakage tolerant secure computation.

A.1 Leakage-Tolerant Protocols

We present our results within the UC framework [Can01] and its extension to the setting of leakage
[BCH12]. We now provide a brief overview of the basic concepts and definitions of UC execution,
emulation and composition in the face of leakage. For more details, we refer the reader to [BCH12].

Protocol execution. The model of executing protocol π with environment Z and adversary A is
the same as in the basic UC framework, with the exception that the adversary is allowed to execute
an additional leakage instruction. Such a leakage instruction includes the identity of a given party
P (given by some pid) and a leakage function L, represented by a circuit. The leakage function is
to be evaluated on the entire state of P :

stateP = (stateρ1 , . . . , stateρk) ,

which includes its local state stateρi , with respect to any subroutine ρi that the party P is running.
(Intuitively, the total state of P corresponds to the entire state that is physically available for
joint leakage.) The leakage operation is completed once the adversary obtains L(stateP ), and the
environment Z is notified regarding the identity of the leaking party, and the number of bits leaked.
(Technically, to deal with the non-modular leakage-operation and enable joint leakage on separate
processes, corresponding to the same party pid, an aggregator entity is added to the UC framework.
See [BCH12] for details.)

Leaky ideal functionalities and leakage in hybrid models. As in the standard (non-leaky)
UC framework, the level of security of a given protocol, in the presence of leakage, is captured by
the ideal functionality that it implements. For each party P , associated with an ideal functionality
F , the functionality defines a corresponding ideal leaky state stateF . (In principle the functionality,
might also change its behavior after leakage occurs, e.g., disclose extra information to the adversary;
however, in this work, all the behavior of functionalities will not change due to leakage.)
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As in standard UC, we also consider hybrid protocols where a real protocol π might be invoking
an ideal functionality F . In such hybrid protocols, the entire leaky state of a party P :

stateP =
(
stateρ1 , . . . , stateρk , stateF1 , . . . , stateFk′

)
also include its ideal leaky state stateFi with respect to any ideal functionality Fi that the party is
associated with.

Emulation with leakage. Protocol emulation is defined as in the standard UC framework:
for any adversary A, there should exist a simulator S, such that no environment will be able to
distinguish between an interaction with A and an implementation protocol π or with S and an
ideal specification protocol φ (typically, representing some ideal functionality F).

Throughout most of this paper, we will consider a restricted class of `-bounded leakage adver-
saries that are guaranteed to leak at most ` bits from any party throughout the protocol.

In the following definitions EXECπ,A,Z(λ, z) denotes the output distribution of environment Z
when interacting with parties running protocol π on security parameter λ and auxiliary input Z.
Let EXECπ,A,Z denote the ensemble {EXECπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Definition 1 (Emulation for leaky protocols [BCH12]). Let π and φ be leaky protocols. Then π
UC-emulates φ if, for any PPT adversary A, there exists a PPT simulator S, such that for any
PPT environment Z, the environment cannot distinguish an execution with π and A from one with
φ and S, i.e.

EXECπ,A,Z ≈c EXECφ,S,Z .

We say that π UC-emulates φ under `-bounded leakage, if the above is only guaranteed for `-leakage
adversaries, which leak at most `(λ) bits from any given party during any execution.

Remark 1 (Non-triviality of leakage bound). We consider a model where the adversary will be
able to ask for additional leakage whenever parties receive new messages or toss fresh random coins,
or more generally, whenever the new state stateiP cannot be deterministically computed from the
previous state statei−1

P . In particular, the leakage bound ` will always be greater than the number of
such state updates.

We note that when the above restriction is removed and some “leakage-free state updates” are
allowed, then designing leakage-resilient protocols becomes easier (albeit still not trivial, because
parties do not know which of their state updates are the leakage-free ones.)

Remark 2 (The dummy adversary). A useful technicality in the UC framework is that it is suffi-
cient to obtain protocol emulation only with respect to the dummy adversary D that simply reports all
the information it receives to the environment and follows all the instructions of the environment
regarding sending messages to parties and ideal functionalities. In the setting of leakage, the dummy
adversary also executes any leakage instructions provided by the environment, and forwards to the
environment their result. Relying on the fact that any adversary can be emulated by the adversarial
environment itself, it is easy to show that simulation of the dummy adversary D implies simulation
for any adversary.

Thus, from hereon when discussing protocol emulation in UC framework, we can restrict atten-
tion to the dummy adversary.

Oblivious emulation. [BCH12] also consider a stronger form of emulation called leakage-oblivious
emulation where the simulator works obliviously of the actual leakage function that the adversary
produces, and the same leakage functions that are evaluated in the real world are also evaluated
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in the ideal world, but on a simulated state. Specifically, an oblivious simulator S has a separate
subroutine S̃ for handling leakage. When S receives from the emulated adversary a request to
apply a leakage function L to a party P , the subroutine S̃ is invoked to produce a state translation
function T . This function is meant to transform the internal state of P in the ideal protocol φ
into “a real state” in the implementation π. Once T is produced, the composed leakage function
L ◦ T is evaluated on the state of the party stateP . Finally, when the leakage-result is returned, it
is forwarded directly back to the emulated adversary and S returns to its state prior to the leakage
event. The subroutine S̃ should operate independently of the leakage function L, and its only
input is the state of S (prior to the leakage query) and the identity of the leaking party. Also, the
leakage operation has no side effects on S. That is, following the leakage event S return to the
state that it had before that event.

For simplicity, we define oblivious simulation with respect to the dummy adversary D.

Definition 2 (Oblivious simulation [BCH12]). Let π and φ be leaky protocols. Then π strongly
UC-emulates φ if there exists an oblivious PPT simulator S so for any PPT environment Z:

EXECπ,D,Z ≈c EXECφ,S,Z ,

where D is the dummy adversary.
We say that π strongly UC-emulates φ under `-bounded leakage, if the above is only guaranteed

for `-leakage environments, which leak at most `(λ) bits from any given party during the execution.

Universal composition with leakage. Under Definition 2, [BCH12] extend the universal com-
position theorem [Can01] to the setting of leakage. The theorem directly extends to the case where
all adversaries are `-bounded.

Let π be a “real” implementation protocol and let φ be an “ideal” specification protocol, cor-
responding to an ideal functionality F . We denote by ρ = ρ[π] a protocol that includes subroutine
calls to π. Also, we denote by ρπ the system where the subroutine calls to π are processed by π and
by ρF/π the system where these subroutine calls are processed by F . Also, we say that a protocol
is modular up to leakage if it only interacts directly with its caller and its subroutines (and the
adversary).

Theorem 4 (UC-composition with leakage [BCH12]). Let ρ, π, φ be protocols as above, all modular
up to leakage, such that π UC-emulates φ with an oblivious simulator. Then ρπ UC-emulates ρF/π

with an oblivious simulator.

Protocols with leakage-tolerant secure communication. All of our protocols rely on a
leakage-tolerant secure communication functionality FLSC, i.e., they are constructed in the FLSC-
hybrid model. The FLSC functionality (Figure 1) is similar to the standard secure communication
functionality where parties can transmit messages to each other in a private and authenticated
manner; however, unlike the standard case where privacy implies that only the length of messages
is leaked, here the adversary can obtain additional leakage on the parties. Concretely, the ideal leaky
state of parties consist of the transmitted message alone. (Thus, Any protocol that implements the
FLSC functionality guarantees that leakage on the message and parties’ randomness does not reveal
more than leakage on the message alone.)

The FLSC functionality can be implemented using non-committing encryption and leakage-
resilient MACS [BCG+11, BCH12], and thus we shall freely use it throughout this paper.
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Functionality FLSC

Running with parties S,R and an adversary S, FLSC operates as follows:

• Given input (send, S,R,m), send a message (send, S,R, |m|) to the adversary S. In case S or R
are corrupted, allow S to replace the message m with a new message m′ of his choice. Once S
allows forwarding the message, send (sent, S,m′) to R.

• The ideal leaky state of each one of the parties is m.

Figure 1: The Secure Communication Functionality

A.2 Leakage-Tolerant Computation

Like in standard secure computation, we consider a setting where m parties P1, . . . , Pm are inter-
ested in computing a joint function of their inputs (y1, . . . , ym) = f(x1, . . . , xm) of their inputs
x1, . . . , xm. Our technical results are mainly focused on a specific two-party setting, where two
parties (P0, P1) jointly compute a function (y0, y1) = f(x0, x1) of their inputs (x0, x1), and where
auxiliary parties without input or output are available to help the two parties compute the function.
In Section E, we show how to extend our results from the specific two-party (with auxiliary parties)
setting to the standard multiparty (without auxiliary parties) setting.

We consider two attack models. In the basic model, we consider the two-party with auxiliary
party setting and only allow the adversary to leak from any party, but not to corrupt parties. We
call this the “no-corruption” setting. Then, when we consider multiparty protocols, we allow the
adversary to statically corrupt some subset of parties (or no parties) and simultaneously leak on
the remaining honest parties’ states.

A.2.1 Leakage-Tolerant Computation with Input-Independent Preprocessing

In the model of leakage-tolerant computation with input-independent preprocessing (LTIIP), the
parties (P1, P2, . . . , Pm) rely on a leakage-free preprocessing phase. The preprocessing is done once
and is independent of the future inputs for the computation.

We construct leakage-tolerant protocols that, after a single preprocessing stage, support an
arbitrary number of evaluations on arbirary inputs (x1

0, x
1
1), (x2

0, x
2
1), . . .. We call this setting the

continual setting and call such protocols continual leakage-tolerant protocols. Note that the distinc-
tion between continual and one-time is only relevant in the preprocessing model. Formally, continual
leakage-tolerant protocols are protocols that implement a continual leakage-tolerant computation
(LTC) functionality, at the presence of an adversary who can obtain independent `-bounded leakage
in each evaluation—we refer to such adversaries as continual `-bounded adversaries.

Definition 3 (continual `-bounded adversaries). A is a continual `-bounded adversary, against a
stateful protocol π, if between any two consecutive executions of π , A leaks at most `(λ) bits on
any given party.

The leakage-free preprocessing is captured by a leakage-free sampling functionality F∆
LFS (Fig-

ure 3) that is used (in the real world) to implement F2LTC. The functionality FLFS is associated with
efficiently samplable distribution ∆ that samples states (init0, init1) for each one of the parties. The
distribution is fixed, and only gets as input the security parameter, and possibly other length pa-
rameters; in particular, it is independent of the protocol’s execution and parties’ inputs. We think
of this distribution as being sampled offline and distributed to the parties. (Alternatively, in case
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Functionality Ff,∞2LTC-AUX

Running with parties (P0, P1, P
aux
1 , . . . , P aux

a ) and an adversary S, Ff,∞2LTC-AUX operates as follows:

• Given inputs (xi1, x
i
2) from (P0, P1), it computes (yi0, y

i
1) = f(xi0, x

i
1), notifies S of the computa-

tion, and once S allows, sends yij to Pj .

• The ideal leaky state of party Pb, b ∈ {0, 1} after obtaining the i input and before obtaining
i+ 1-st, is (xib, y

i
b). The ideal leaky state of auxiliary party P aux

j , j ∈ [a] is ⊥.

Figure 2: The continual 2-party LTC Functionality with auxiliary parties

the sampler is not trusted, the parties can run a non-leaky protocol to compute their preprocessed
state.)

The ideal leaky state of the parties in the functionality is empty modeling the fact that the
preprocessing is leakage free. The functionality can be invoked once during the execution in order
to retrieve the initial states (init0, init1).

Our protocols will thus be constructed in the FLFS-hybrid model. (All previous features, such
as universal composition, and the completeness of emulation with respect to the dummy adversary,
also hold in this model.)

Functionality F∆
LFS

Running with parties (P1, . . . Pm) and an adversary A, F∆
LFS operates as follows:

• When activated with security parameter λ, and possibly another length parameter n, sample
states (init1, . . . , initm)← ∆(1λ, 1n).

• When invoked for the first time, send initi to Pi. In subsequent invocations, return ⊥.

• The ideal leaky states of each party Pi only includes its output initi (if it has already been
generated).

Figure 3: The Leakage-Free Sampling Functionality

B Strong Only-Computation-Leaks Compilation

In this section, we discuss the only computation leaks model (OCL) and OCL schemes, which will
play a central role in our constructions.

At high-level, the OCL model [MR04] considers a scenario where a given computation is per-
formed using leaky memory; however, the assumption is that, at any given point in time, only the
parts currently “touched” by the computation might leak some bounded amount of information.
The memory is assumed to be initialized ahead of time and without leakage, possibly with secret
information associated with the computation. The model is semi-honest in the sense that the com-
putation is assumed to be performed correctly, and the adversarial power is limited to leakage, and
choice of inputs for the computation. The security requirement is that the adversary’s view (i.e.,
the leakage) can be simulated from the input and output of the computation alone, independent of
the secret of the computation.
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Different variants of OCL have been considered in the literature. One varient is the leaky dis-
tributed system (LDS) considered by [BCG+11, DF12, BGJK12]. In a LDS, the leaky computation
is performed jointly by several parties (or components) communicating with each other via secure
channels—in other words, the communication between different parties or components is secret and
authenticated (modeling communication through the secure memory). In this modeling, bounded
leakage can be obtained from different parties separately, but it is not possible to leak on the joint
state of any two parties.

The LDS model can be viewed as a strengthening of the classical OCL model [MR04], where
the attackers cannot obtain leakage in an arbitrary order, but are restricted to leak only from the
component (or sub-computation) that is currently active. We call this model the ordered OCL
model.

In this work, our definition and construction follow the LDS model. Below we recall its formal-
ization and simply refer to it as the OCL model. Our construction in Section C relies on a previous
construction [GR12] in the ordered OCL model; we provide more detailed comparison relavant to
our construction in Section C.

N-component OCL. A N -component OCL scheme for a circuit C(k, ·), associated with a secret
k, consists of an efficient compiler Comp and a N -party protocol Π = (POCL

1 , POCL
2 , · · · , POCL

N ). To
compute C(k, ·) in a leakage-resilient way, the circuit is compiled ahead of time by Comp(C(k, ·))
that produces an initial state (init

(k)
1 , · · · , init(k)

N ) for each one of the N parties, and this compilation
is done “in the dark” without any leakage. Then, at computation time, the parties can compute
together y = C(k, x) for any input x by running the protocol Π.

Below we provide the formal definition of OCL schemes for universal circuits; this is w.l.o.g
since to evaluate any circuit C, one can provide C as a part of the input to the universal circuit.
Furthermore, towards our end goal of constructing composable leakage tolerant protocols, where the
simulator is oblivious of the leakage queries from the adversary, we consider directly strengthened
OCL schemes that have obvious simulators.

OCL schemes with oblivious simulation: Let {UT (k, f)}T∈N denote the family of universal
circuits: UT takes two inputs k and f of length at most T , where f represents a T -step deterministic
computation, and computes f(k). (If the computation does not complete in T steps, we assume
w.l.o.g. that the output of UT (k, f) is ⊥).

Definition 4 (ContinualN -component OCL schemes). We say that Λ = (Comp,Π = 〈POCL
1 , · · · , POCL

N 〉)
is a continual, N -component OCL scheme for the universal circuit family {UT (k, f)}T∈N if it sat-
isfies the following properties.

Initialization: For every security parameter λ and T ∈ N, k ∈ {0, 1}T , the compiler Comp(1λ, UT , k)
runs in time poly(λ, T ) and outputs N initial states init1, init2, · · · , initN .

Unbounded-time evaluation: The evaluation procedure invokes the protocol Π between the com-
ponents POCL

1 (init1), POCL
2 (init2) to POCL

N (initN ), which interact in an arbitrary polynomial
number of iterations: In the ith iteration, POCL

1 receives an input fi ∈ {0, 1}T and POCL
2 pro-

duces an output yi. At the end of the evaluation, an update procedure is carried out, producing
the new initial states for the next iteration; then all information other than the new initial
states are erased.

For every component j ∈ [N ], denote by initi,j the initial states of component j at the onset
of the ith iteration (in the first iteration, init1,j = initj), and evli,j the random coins tossed
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and messages exchanged by each POCL
j during the ith iteration (including its state during the

update phase).

Correctness with adaptive input selection: For every λ ∈ N, every T ∈ N polynomially re-
lated to λ, every k ∈ {0, 1}T , every auxiliary input z ∈ {0, 1}poly(λ), and every PPT adversary
A, consider the following real experiment RealExp∞A (1λ, T, k, z) where A initiates an arbitrary
number of evaluations with adaptively chosen inputs. It holds that with all but negligible
probability, the outputs of all evaluations in RealExp∞A (1λ, T, k, z) are correct.

We say that Λ has perfect correctness, if the above holds with probability 1.

We now describe the security experiments of OCL schemes. Λ is said to be `-leakage-resilient
with oblivious simulation if there is a simulator S, such that, for every λ ∈ N, T ∈ N polynomially
related to λ, every k ∈ {0, 1}T , and auxiliary input z ∈ {0, 1}poly(λ), the views of the adversary in the
following real and ideal experiments are indistinguishable. In the real world, the adversary has the
power of obtaining leakage independently from each component, during honest OCL evaluations; the
inputs to the evaluations are chosen adaptively by the adversary. In the ideal world, the adversary
obtains leakage from states of the components simulated by an oblivious simulator. More formally,

RealExp∞A (1λ, T, k, z) (Real experiment): The adversary A(1λ, T, k, z) proceeds as follows:

1. The initial states (init1, · · · , initN )← Comp(1λ, UT , k) are sampled.

2. A launches `-bounded leakage attacks on an unbounded number of evaluations of its choice:
In the ith iteration,

(a) A submits an input function fi ∈ {0, 1}T , which is evaluated on k by resuming the
protocol execution of Π between the components POCL

1 (initi,1), · · · , POCL
N (initi,N ) with

input fi to the first component POCL
1 .

(b) A launches an `-bounded leakage attack on the ith evaluation: It issues an arbitrary
number of leakage queries (POCL

j , L) for j ∈ [N ] adaptively, and obtains leakage answers
L(initi,j , evli,j), as long as the total amount of leakage on each POCL

j in this iteration is
smaller than `(λ) bits.

(c) A obtains the output of the evaluation, which is the output of POCL
2 .

Denote by view`,∞A (1λ, T, k, z) the view of A in the above experiment.

IdealExp∞S,A(1λ, T, k, z) (Ideal experiment): The adversary A(1λ, T, k, z) participates in the same
experiment as above, except that during its `-bounded leakage attacks, it is given simulated answers:
In the ith iteration,

(a) A submits an input function fi ∈ {0, 1}T . S(1λ, T, i, fi, fi(k); wi) is invoked, producing sim-

ulated states (ĩntli,1, · · · , ĩntli,N , ẽvli,1, · · · , ẽvli,N ), where wi is the fresh random coins tossed
for the simulation in iteration i and wi = w1, · · · , wi is all the random coins that have been
tossed for simulation in the first i iterations.

(b) Whenever A issues a leakage query (POCL
j , L) for j ∈ [N ], it is given the simulated answer

L(ĩntli,j , ẽvli,j), as long as the total amount of leakage on each POCL
j in this iteration is smaller

than `(λ) bits.

(c) A obtains the simulated output of the evaluation in ẽvli,2.
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Denote by ṽiew
`,∞
S,A(1λ, T, k, z) the view of A in the above experiment.

Definition 5 (Continual `-Leakage-resilience with oblivious simulation). We say that a continual
OCL scheme Λ is continually `-leakage-resilient with oblivious simulation if there is a PPT simu-
lator S, such that, for every PPT adversary A, the following two ensembles are indistinguishable.

• {view`,∞A (1λ, T, k, z)}λ∈N,T∈N,k,z∈{0,1}poly(n)

• {ṽiew
`,∞
S,A(1λ, T, k, z)}λ∈N,T∈N,k,z∈{0,1}poly(n)

Strong OCL schemes: In the above definition, the oblivious simulator simulates the states of all
N components in each evaluation i depending on both the input fi and output fi(k). We consider
the following strengthening: Only the simulation of the first component depends on both the input
and output, whereas the simulation of the second component depends solely on the output, and
simulation of the rest components depends on neither the input nor output.

Definition 6 (Continual strong OCL Schemes). We say that Λ = (Comp,Π = (POCL
1 , POCL

2 , · · · , POCL
N ))

is a continually `-leakage-resilient strong OCL scheme if it satisfies the following property.

Strong `-leakage resilience: Λ admits an oblivious simulator S satisfying Definition 5 with the
following structure: S consists of three sub-algorithms (S1,S2,S3) and on input (1λ, T, i, fi, fi(k) ; wi),
S invokes these sub-algorithms as follows:

• S1(1λ, T, i, fi, fi(k); wi) = (ĩntli,1, ẽvli,1)

• S2(1λ, T, i, fi(k); wi) = (ĩntli,2, ẽvli,2)

• S3(1λ, T, i; wi) = (ĩntli,3, · · · , ĩntli,N , ẽvli,3, · · · , ĩntli,N )

and outputs (ĩntli,1, · · · , ĩntli,N , ẽvli,1, · · · , ẽvli,N ).

Strong two-component OCL with auxiliary components In this work, we often consider
the special case of a strong two-component OCL scheme, and refer to the two components the
left and right components, denoted as POCL

L and POCL
R . The strong oblivious simulation property

ensures that the state of the left component in each evaluation can be simulated using both the
input and output, whereas the state of the right component can be simulated using only the output.
We sometimes view a strong (N+2)-component OCL scheme as a strong 2-component OCL scheme
using N auxiliary parties POCL

A1
, · · · , POCL

AN
; they are called auxiliary parties since their states can be

simulated independent of both the input and output. In this view, we denote the strong oblivious
simulator as S = (SL, SR, SA). Viewing strong N -component OCL as strong two-component OCL
with auxiliary components is instrumental for our construction of leakage tolerant protocols.

C Obtaining Strong OCL

In this section, we construct a continually `(λ)-leakage-resilient strong OCL scheme, for `(λ) =
λΩ(1), where λ is the security parameter. Our scheme combines together the OCL scheme of
Dziembowski-Faust [DF12] OCL schemes, and the ciphertext bank construction from the OCL
scheme of Goldwasser and Rothblum [GR12].

The core of our scheme relies on the DF scheme, which is relatively simple to describe and
analyze. The original DF scheme, however, relies crucially on leakage-free hardware for orthogonal
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share generation. Here, instead of relying on hardware, we implement orthogonal share generation
using the ciphertext bank component from the GR scheme, and thus avoid any reliance on hardware.
Achieving the extra properties of strong OCL (comparing to standard OCL), requires dealing with
extra technical challenges (mainly in simulation). For this purpose, we modify the schemes and
their analysis. As a side product, our modfication actually simplifes the constructions and analysis
of [DF12, GR12] and leads to a simpler OCL compiler without using hardware.

In Section C.1, we define the orthogonal share generation required in our scheme, and show
how to achieve it based on the GR ciphertext bank in Section C.2. In Section C.3, we present the
full scheme.

C.1 Definition of Orthogonal Share Generation Protocol

At high-level, an orthogonal share generation procedure is a protocol that is meant to enable two
parties PL and PR to repeatedly generate pairs of orthogonal vectors Li, Ri ∈ Fm2 in a leakage
tolerant way. Here, by leakage tolerance, we mean that it is possible to simulate an execution of
the protocol, such that, an adversary that obtains (separate) leakage on each of the participating
parties, cannot tell the difference from a real execution. As before, we require the simulation to be
“oblivious” (of the leakage functions), that is, the simualtor can translate the left shares {Li} to
the state of the left component and the right shares {Ri} to that of the right component. Given
such an oblivious simulator, it is easy to see that the simulator can bias (Li, Ri) to have arbitrary
inner product; the produced simulated states would still be indistinguishable to any adversary that
obtains only bounded leakge from each component in each iteration. (An update procedure is
executed between iterations, in order to inject new entropy to the system.) Also, while ideally
we would like to obtain a protocol with only two participating parties, so far the only known
leakage tolerant way of generating orthognal shares is by GR, which requires multiple components.
Correspondingly, our solution will require some constant number of additional auxiliary parties.

We next present the interface of an orthogonal share generation protocol in more detail. The
definition is very similar to the definition of strong OCL; but we formalize the use of erasure more
explicitly since it is crucial for the construction.

Definition 7 (Orthogonal share generation). We say that (CompOG,OG = 〈PL, PR, PA1 , . . . , PAa〉)
is a continual orthogonal share generation protocol if it satisfies the following properties.

Initialization: Comp(1m(λ)) is a PPT compiler that produces initial states initL, initR, initA1 , . . . , initAa.

Unbounded-time evaluation: The evaluation procedure invokes the protocol OG between the par-
ties, which interact in an arbitrary polynomial number of iterations: In the ith iteration, PL
receives an output Li ∈ Fm2 and PR receives an output Ri. At the end of the evaluation, an
update procedure is carried out, producing the new initial states for the next iteration; then
all information other than the new initial states are erased.

For every party P , denote by initi,P the initial states of P at the onset of the ith iteration, and
evli,P the random coins tossed and messages exchanged by each P during the ith iteration,
including its state in the update phase. In case, P performs erasures within a given iteration
we view evli,P = (evl(i,1),P , . . . , evl(i,e),P ) as a collection of evaluation states, where e is the
number of erasures.

Orthogonality: In any iteration i, it holds that 〈Li, Ri〉 = 0.

We now describe the security properties that we require from the orthogonal generation proto-
col. We say the an orthogonal generation protocol (CompOG,OG) is `-leakage-resilient with strong
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simulation if there is a simulator S = (SL,SR,A), such that, for every λ ∈ N, polynomial m(λ),
and auxiliary input z ∈ {0, 1}poly(λ), the views of the adversary in the following real and ideal
experiments are indistinguishable.

In the real world, the adversary obtains continual (bounded) leakage independently from each
party in the execution of OG, whereas in the ideal world, it obtains leakage from simulated party
states. More formally,

RealExp∞A (1λ,m, z) (Real experiment): The adversary A(1λ,m, z) proceeds as follows:

1. The initial states (initL, initR, initA1 · · · , initAa)← Comp(1m(λ)) are sampled.

2. A launches `-bounded leakage attacks on an unbounded number of executions: In the ith

iteration, A launches an `-bounded leakage attack on the ith evaluation. It issues an arbitrary
number of leakage queries (P,Φ) for any party P adaptively, and obtains leakage answers
Φ(initi,P , evli,P ). If P performs erasures within a given iteration, then Φ is only applied to
its current state evl(i,j),P . The total amount of leakage on each P in this iteration is smaller
than `(λ) bits.

Denote by view`,∞A (1λ, T, k, z) the view of A in the above experiment.

IdealExp∞S,A(1λ,m, z) (Ideal experiment): The adversary A(1λ,m, z) participates in the same ex-
periment as above, except that during its `-bounded leakage attacks, it is given simulated answers:
In the ith iteration, S samples coins wi to be jointly used by (SL,SR,A), and samples uniformly
random orthogonal vectors (Li, Ri).

(a) S(1λ,m, i; wi,Li,Ri) is invoked, producing simulated states

(ĩntli,L, ĩntli,R, ĩntli,A1 · · · , ĩntli,Aa , ẽvli,L, ẽvli,R, ẽvli,A1 · · · , ẽvli,Aa).

where wi = w1, · · · , wi is all the random coins that have been tossed for simulation in the
first i iterations, and and (Li,Ri) = (L1, R1), . . . , (Li, Ri) consists of all the previous sampled

orthognal shares. (In case, there are erasures within the iteration the states ẽvl are split
according to the erasures as noted above.)

We further require that the simulator S consists of algorithms (SL,SR,A) as follows:

• SL(1λ,m, i; wi, Li) generates any state corresponding to PL.

• SR,A(1λ,m, i; wi,Ri) generates any state corresponding to PR, PA1 , . . . , PAa .

Note that the simulation of the state of the left party relies on only the current left share,
whereas the simulation of the right and auxiliary parties can depend on all right shares gen-
erated so far.

(b) Whenever A issues a leakage query (P,Φ), it is given the simulated answer Φ(ĩntli,P , ẽvli,P ),

or of the relevant sub-state ẽvl(i,j),P in case there are erasures within the iteration. As in the
real experiment, the total amount of leakage on each P in the iteration is smaller than `(λ)
bits.

Denote by ṽiew
`,∞
S,A(1λ,m, z) the view of A in the above experiment.

Definition 8 (Continual `-Leakage-resilience with oblivious simulation). We say that an orthog-
onal share generation scheme (CompOG,OG) is continually `-leakage-resilient if the following two
ensembles are indistinguishable.
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• {view`,∞A (1λ,m(λ), z)}λ∈N,z∈{0,1}poly(n)

• {ṽiew
`,∞
S,A(1λ,m(λ), z)}λ∈Nz∈{0,1}poly(n).

Remark 3. In our application below, we need to generate orthogonal vectors of different di-
mension. All of the above definitions naturally extend to this case, in which we will denote by
CompOG(1m1 , . . . , 1mk) a procedure that can generate shares for any of the dimensions mi, and
assume that mi is specified every time OG operates.

C.2 An Orthogonal Share Generation Protocol via a Modifed GR Ciphertext
Bank.

We now introduce an orthogonal share generation procedure based on the Goldwasser and Rothblum
[GR12] ciphertext bank procedures. We start with a quick recap of their main constructs, focusing
on the ones required for our purpose. We then discuss the security properties of their bank,
and pinpoint the obstructions towards the strong simulation properties described in the previous
subsection. We then describe an augmented version of the bank that bridges this gap.

C.2.1 The GR Ciphertext Bank - A Recap.

In the base of the GR OCL scheme is an inner product leakage-resilient encryption scheme. Where
the key is a random (or high-entropy) vector key ∈ Fκ2 , and an encryption of a given plaintext
b ∈ F2 consists of a random c ∈ Fκ2 such that 〈key, c〉 = b.

They then describe an “updatable” ciphertext bank that allows generating, in every iteration
i, fresh key-ciphertext pairs (keyi, ci) that encrypt some predetermined b ∈ F2, all this under
continual leakage on the generation and update procedure (below, we discuss what kind of leakage
resilience is achieved). Eventually, the key-ciphertext pairs (keyi, ci) will essentially correspond to
our orthogonal shares (Li, Ri).

Before we proceed to describing GR, we first highlight a subtle, but important, difference
between the OCL settings handled in GR and this work. As mentioned earlier in Section B,
GR, as well as [MR04, GR10], considers the ordered OCL model, whereas this work, as well
as [JV10, BCG+11, DF12], considers the model of LDS with unordered leakage; we detail below:

OCL with “ordered” leakage: In GR, an OCL computation consists of a sequence of sub-
computations and a shared, secret, memory. An evaluation is carried out by performing
the sub-computations sequentially, each of which reads from and writes to only a part of the
memory. At any moment, the adversary can only leak from the state of the sub-computation
that is currently “active”. We say that in this model, the leakage is “ordered” according to
the computation. Note that the memory keeps some intermediate states of the computation
that will be loaded for a later subcomputation; however, the adversary cannot leak from them
until this occurs.

OCL with “unordered” leakage: In our work, as well as in [JV10, DF12], an OCL computation
consists of components that interact with each other, without access to a shared, secret,
memory. At any moment, the adversary can leak from the current state of components
separately, even those that are not currently “active”. We say that in this model, the leakage
is “unordered”, irrespective to the order of computation. We also remark that since the
components must keep the intermediate states of the computation themselves, which are
subject to leakage at any point.
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As we shall see later, when using the GR ciphertext bank to implement our orthogonal share
generation protocol, this difference in the model will be one of the obstructions preventing us from
using the GR ciphertext bank in a black-box way. By a closer examination of the GR analysis,
we will see how to overcome this in a relatively modular way, towards proving the security of our
orthogonal share generation protocol.

In what follows, when we describe GR and stating their claims, we stick to with their ordered
OCL model. Later on, we augment the scheme, and in particular translate it to our unordered
leakage setting.

Ciphertext Bank Procedures. We now recap the main procedures of the ciphertext bank and
their implementation. Most of the text is taken verbatim from [GR12], excluding procedures that
are not required in our context, and noting other simplifications that we shall allow.

The bank is initialized (without leakage) using a BankInit procedure that takes as input a bit
b ∈ F2. It can then be accessed (repeatedly) using a BankGen procedure, which produces a key-
ciphertext pair whose underlying plaintext is b. Between generations, the banks internal state is
updated using a BankUpdate Procedure. Leakage from a sequence of BankGen and BankUpdate
calls can be simulated. The simulator has arbitrary control over the plaintext bits underlying the
generated ciphertexts. Simulated leakage is statistically close to leakage from the real calls.

These functionalities are implemented as follows. The ciphertext bank consists of key and a
collection C of 2κ ciphertexts. We view C as an κ× 2κ matrix, whose columns are the ciphertexts.
In the BankInit procedure, on input b, key is drawn uniformly at random conditioned on key[1] = 1
(this will be useful for key updates), and the columns of C are drawn uniformly at random such
that their inner product with key is b. We denote by b as the ciphertext bank’s underlying plaintext
bit.

The BankGen procedure outputs a linear combination of C’s columns. In GR, the linear com-
bination is chosen uniformly at random such that it has parity 1. This guarantees that it will
yield a ciphertext whose underlying plaintext is b. The linear combination is taken using a secure
piecemeal matrix-vector multiplication procedure PiecemealMM.

The BankUpdate procedure injects new entropy into key and into C. We refresh the key using
a (piecemeal) key refresh procedure PiecemealRefresh. We refresh C by multiplying it with random
matrix R ∈ F2κ×2κ

2 whose columns all have parity 1 (again, in for our purpose, the parity restriction
is not necessary). Matrix multiplication is again performed securely using PiecemealMM.

Simplification we allow: For our purpose, we will be interested in the special case where the
underlying plaintext b is always 0, namely, we will always sample truly orthogonal vectors. Because
of this, the BankGen and PiecemealRefresh procedures can be simplified to use any random linear
combintations and any random matrix R without the restriction of having parity 1.

Piecemeal matrix procedures. The piecemeal matrix procedures access matrices by dividing
them into pieces, and separating the pieces between separate parties in the computation. Each
piece is a collection of linear combinations of the matrix’s columns; namely, a small subspace of
the matrix’s columns. We now overview the GR piecemeal procedures for matrix multiplication,
and for refreshing the key under which the ciphertexts in a matrix’s columns are encrypted. In all
these procedures, no matrix is ever present in its entirety in the active memory.

The PiecemealMM procedure is given two matrices A,B, where say A ∈ Fκ×2κ
2 and B ∈ F2κ×2κ

2

as above. A is divided to a sub-matrices A1, . . . , Aa, each with only ` = 2κ/a� κ columns, which
are divided between different parties, and leaked on separately. Each column Bi of B is accordingly
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separated to a parts Bi,1, . . . , Bi,a, each of dimension `. Then, the column Ci of the resulting
matrix is aggregated by multiplying each Aj with Bi,j , the result Di,j is then carried on to the next
computation where Aj+1 is multiplied by Bi,j+1 and added Di,j , and so on. (More generally, we
can deal with several B-columns at a time, rather than a single one.)

The PiecemealRefresh procedure is given key and a ciphertext matrix A. It first refreshes the
key to key′ by adding a uniformly random vector σ conditioned on σ[1] = 0, so that the invariant
key′[1] = 1 is maintained. Then, given σ, the procedure resets each of A’s columns Aj to maintain
their inner product with the original key. This is done by adding 〈Aj , σ〉 to the first coordinate
Aj [1] of Aj . (Again, more generally, we deal with several A-columns at a time.)

The procedures are described in Figures 4,5,6 with the restriction that b ≡ 0, and without the
parity 1 restrictions referred to above. The description still does not assign the different tasks to
parties. This will be done later on, according to our concrete simulation requirements.

BankInit(1κ): initializes a ciphertext bank; No leakage.

1. key is sampled uniformly at random from Fκ2 , so that key[1] = 1.

2. For i ∈ [2κ], C[i] is a random vector orthogonal to key.

3. Output Bank = (key, C).

BankGen(C): generates a new ciphertext; Under leakage.

1. Generate a random r ∈ Fκ2 .

2. c← PiecemealMM(C, r).

3. Output c.

BankUpdate(Bank): updates the bank between generations; Under leakage.

1. Refresh the key: (key′, D)← PiecemealRefresh(key, C).

2. Refresh the ciphertexts: sample a random R ∈ F2κ×2κ
2 , C ′ ← PiecemealMM(D,R).

3. Bank′ = (key′, C ′).

Figure 4: The ciphertext bank procedures

The GR simulated ciphertext bank. Next, we recall the GR simulator for simulating the
ciphertext bank procedure, while arbitrarily controlling the plaintext bits underlying the ciphertexts
that are produced. Towards this end, we maintain a simulated ciphertext bank, consisting of a key
and a matrix, similarly to the real ciphertext bank. These are initialized, without leakage, in a
SimBankInit procedure that draws key and the columns of C uniformly at random from Fκ2 . Here,
unlike in the real ciphertext bank, the plaintexts underlying C’s columns are independent and
uniformly random.

Calls to BankGen are simulated using SimBankGen. This procedure operates similarly to
BankGen, except that it uses a biased linear combination of C’s columns to control the plaintext
underlying its output ciphertext. SimBankUpdate operates identically to BankUpdate.

The simulation procedures are in Figure 7.
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PiecemealMM(A,B): multiplies matrices A ∈ Fκ×m2 and B ∈ Fm×n2 ; Under leakage.

1. Let A = [A1, . . . , Aa], where each Ai is a κ× ` matrix, and Bt = [Bt1, . . . , B
t
b], where each Bj is

an m× ` matrix. Further parse each Bti = [Bti,1, . . . , B
t
i,a], where each Bi,j is an `× ` matrix.

2. For i ∈ [b]:

(a) Set D0 = 0κ×`.

(b) For j ∈ [a] : Dj = Dj−1 + (Aj ×Bi,j); leakage on each tuple (Dj−1, Aj , Bi,j) separately.

(c) Ci = Da.

3. Output the product matrix C = [C1, . . . , Cb].

Figure 5: Piecemeal matrix multiplication

PiecemealRefresh(key, A): refreshes the key for matrix A ∈ Fκ×m2 .

1. Parse: A = [A1, . . . , Aa], where each Ai is a κ× ` matrix.

2. Sample a uniformly random σ ∈ Fκ2 such that σ[1] = 0. (leakage on σ)

3. Set key′ = key + σ. (leakage on key, σ)

4. For j ∈ [a]: A′j = CorrelateKey(Aj , σ), where A′j is set to be the same as Aj except the 1st row
A′j [1] = Aj [1] +Atj × σ.
(leakage on (Aj , σ) for each j ∈ [a] separately).

5. Output key′ and the refreshed matrix A′ = [A′1, . . . , A
′
a].

Figure 6: Piecemeal matrix refresh
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SimBankInit(1κ):

1. key is sampled uniformly at random from Fκ2 .

2. For i ∈ [2κ], C[i] is a uniformly random vector.

3. Output Bank = (key, C).

SimBankGen(C, b):

1. Generate a random r ∈ Fκ2 such that 〈r, Ct × key〉 = 〈C × r, key〉 = b.

2. c← PiecemealMM(C, r).

3. Output c.

SimBankUpdate(Bank): identical to BankUpdate(Bank).

1. Refresh the key: (key′, D)← PiecemealRefresh(key, C).

2. Refresh the ciphertexts: sample a random R ∈ F2κ×2κ
2 , C ′ ← PiecemealMM(D,R).

3. Bank′ = (key′, C ′).

Figure 7: The simulated ciphertext bank procedures

C.2.2 Overview of Our Orthogonal Share Generation Protocol

To build an orthogonal share generation scheme from the GR ciphertext bank, as described in the
previous subsections, we need to bridge three gaps:

1. Difference in models of computation: As discussed above, the OCL setting in GR
considers computations performed using a sequence of sub-computation with shared, secret,
memory, whereas in our setting, computations are done by separate components without
shared memory.

Thus our first task is to design a protocol Λ = (PL, PR, PA1 , . . . , PA2a) that carries out the
sub-computations, and stores the intermediate memory states of GR using different compo-
nents. A naive one-to-one assingment, mapping every subcomputation to a separate compo-
nent, would require a polynomial number of components. To maintain a constant number
of components, we use a many-to-one assignment and apply erasure to “separate” different
sub-computations assigned to one component. The invariant that we maintain is that with
erasure, at any point, the state of any component consists of only the state of a single sub-
computation, so that states of different sub-computations would never be leaked on jointly.
We describe our protocol Λ in Section C.2.3.

2. Ordered v.s. unordered leakage: In GR, at any moment, the adversary can only leak
from the sub-computation that is currently active. In our language, the adversary can only
leak from the component that is currently computing. However, the model of leakage we
handle is more stringent, and allows the adversary to leak from any component at anytime.

Our second task is to show that unordered leakage does not break the security of GR
scheme. In Section C.2.4, we transcribe the GR simulation procedures (SimBankInit(1κ),
(SimBankGen(C, b)), and (SimBankUpdate(C)) into a monolitic simulator S ′ of our protocol
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Λ that simualtes the state of all parties in one shot (using both the left and right shares
{Li}, {Ri}). The GR analysis directly ensures to that the adversarial views in an honest
execution of Λ and in simulation by S ′ are statistically close, provided that the adversary
performs only “ordered” leakage.

Next, we show that this statistical closeness holds even under “unordered” leakage, that is,
the simulator S ′ generates a statistically close adversarial view, even if the adversary performs
“unordered” leakage. This was previously claimed, e.g. in [BCG+11], but without a proof.
For the sake of completeness, we give here a rather crude, but relatively modular and simple,
argument to why this is the case, at cost of getting slightly worse leakage bounds.

3. Strong simulation: Our final task is go beyond a monolithic simulator S ′, and obtain
a strong simulator S = (SL,SR,A) that has two special structures, which are crucial for
eventually getting a strong OCL scheme.

• The monolithic simulator S ′ entailed by GR simulation samples the orthogonal shares
{(Li, Ri)} (or in GR terminology, (ci, keyi)) internally. In contrast, we require the strong
simulator S to receive these shares externally, and “reverse sample” the rest of the state
consistently.

• Moreover, the “reverse sampling” must be done in a way that uses {Li} (or {ci}) and
{Ri} (or {keyi}) separately: SL simulates the state of PL and only gets the shares {Li}
(or {ci}), while SR,A simulats the state of PR, PA1 , . . . , PA2a and only gets the shares
{Ri} (or {keyi}).
Note that since the left and right shares are never used together, they can be simulated to
have arbitrary underlying plaintext bits {bi}, by sampling {(Li, Ri)} (or {ci, keyi}) with
inner products {bi}. Relying on the fact that inner products are resilient to bounded
separate leakage, the view simulted by SL,SR,A using these shares is statistically close
to the view generated using orthognal shares. In other words, we can “program” these
shares however we want, so long that their distribution withstands separate bounded
leakage, which will be leveraged when proving the security of our strong OCL scheme.

We describe and prove security of our strong simulator S in Section C.2.5.

We next move to provide details for each of the steps. In what follows we denote ` = 2κ/a, and
adopt the GR terminology.

C.2.3 Our Orthogonal Share Generation Protocol Λ

Our orthogonal share generation protocol Λ = (CompOG,OG) with OG = (PL, PR, PA1 , . . . , PA2a)
starts with preprocessing that runs BankInit and then proceeds in many iterations, where in each
iteration, BankUpdate is executed first followed by BankGen. Note that, the protocol uses 2a
auxiliary components, twice the number of pieces in GR ciphertext banck. Let κ be the security
parameter.

Preprocessing CompOG: Sample (C0, key0) ← BankInit(1κ) without leakage. PR is given key0,
while the bank C0 = [C01, . . . , C0,a] is divided into a pieces and assigned to PA1 , . . . , PAa
respectively. More precisely, the initial states of components are

init1,L = null, init1,R = key0, ∀i ∈ [a], init0,Ai = C0,i, ∀i ∈ [a], init0,Aa+i = null
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Evaluation protocol OG: In the tth evaluation, an execution of BankUpdate is carried out first
by PR and PA1 , . . . , PAa , followed by an execution of BankGen by PL. Note here, the update
procedure is done before the actual share generation; as we will see in Section C.2.5, the order
is important for ensuring that the protocol admits a strong simulator. More specifically:

(1) Executing BankUpdate(1κ): PR and PA1 , · · · , PAa jointly perform BankUpdate as follows:
To do (keyt, H) = PiecemealRefresh(keyt−1, Ct−1), PR samples a uniformly random σt so that
σt[1] = 0, sets keyt = keyt−1 + σt, sends σt to each PAj , and erases σt. Each PAj computes
Hj = CorrelateKey(Ct−1,j , σt) as described in Figure 6 and erases Ct−1,j .

Note the seperation of sub-computations {Hj = CorrelateKey(Ct−1,j , σt)} in PiecemealRefresh
is ensured via the use of different parties and erasure.

To compute the new bank C ′ = [C ′1, · · · , C ′a] = PiecemealMM(H,B), PA1 , · · · , PAa compute
each piece C ′j for j ∈ [a] in three steps.

1. PA1 to PAa computes in order, where PAi upon receiving Dj,i−1 from PAi−1 (for PA1 ,

Dj,0 is set to the all zero matrix) samples a random matrix Bj,i ∈ F`×`2 , computes
Dj,i = Hi ×Bj,i +Dj,i−1, and sends Dj,i to PAi+1 .

2. PAa sets the jth piece of the new bank C ′j to Dj,a, which equals to H ×Bj , and sends it
to store at PAa+j .

3. Each PAj erases (Dj,i, Bj,i) from its memory after its computation

Finally, after the new bank C ′ has been computed entirely and stored at PAa+1 , . . . , PA2a piece
by piece. Each party PAj erases the piece Hj first, loads the new piece C ′j from PAa+j , who
then erases C ′j from its memory. The new bank Ct is C ′ and the random update matrix Rt
in this iteration is B.

Note the seperation of sub-computations {Dj,i = Dj,i−1 +Hi ×Bj,i} in PiecemealMM is done
via erasure and the use of different parties. By storing the new bank pieces C ′j at PAa+j before
the old piece Hj is erased from PAj , the new bank pieces and the old bank pieces are never
leaked together, except in PAa, which is the same as in GR.

(2) Executing BankGen(1κ): PL performs PiecemealMM(C, r) in a iterations:
In iteration i, it “loads” the new bank piece Ct,i ∈ Fκ×`2 from PAi ; it then samples a random
rt,i ∈ F`2, and computes Di = Di−1 + Ct,i × rt,i (in the first iteration D0 is set to the zero
vector). PL then erases everything, but Di for the next iteration. At the end of all iterations,
PL obtains c = Da = Ct × rt.
Note the sub-computations {Di = Di−1 + Ct,i × rt,i} in PiecemealMM is done sequentially in
PL and their separation is ensured via erasure.

(3) Outputting: PL outputs the left share Lt = ct, and PR outputs the right share Rt = keyt.

Theorem 5. Let γ(κ) = o(κ1/2), and a = 20. The orthogonal share generation protocol (CompOG,OG)
with parties PL, PR, PA1 , · · · , PA2a is continual γ-leakage-resilient.

Towards this theorem, we need to construct a strong simulator S as in Definition 8. As an in-
termediate step, below we first construct a monolithic simulator S ′ that does not have the structure
of a strong simulator; instead, S ′ on input all the shares {Lt, Rt} simulates the states of all com-
ponents PL, PR, PA1 , . . . , PA2a . When discussing the security of this simulator S ′, we will consider
both ordered and unordered leakage adversaries. Below we describe their behaviors when attacking
the above protocol Λ.
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Ordered leakage adversary: An ordered (leakage) adversary Aord attacking Λ, at any moment,
can only leak from the component that is currently “activated”. As noted above already, the
constrution of Λ uses erasure and the separation of parties to ensure that, at any moment, the
current state of the activated component corresponds to the state of a sub-computation in the
GR scheme. Thus, an ordered adversary Aord obtains leakage in the same way as an adversary
attacking the GR scheme does in [GR12].
Unordered leakage adversary: An unordered adversary A attacking Λ (as described in exper-
iment RealExp∞A (1κ,m, z)), at any moment, can obtain separate leakage from the current state of
all parties, even ones that are not activated. We note that, informally, in Λ, the currently activated
party is equivalent to the current sub-computation in GR, while the parties that are not currently
activated serves as the memory in GR. The protocol Λ makes sure that parties immediately erase
all information that is no longer needed for later, and it keeps the invariant that, at any point, the
state at every inactive party is the input of a single sub-computation to be performed later. Thus,
an unordered adversary A can be viewed as an adversary that at any moment can obtains leakage
from all sub-computations of GR, as long as the leakage on different sub-computations is separate.

C.2.4 A Monolithic Simulator of Λ

In this section, we describe a monolithic oblivious simualtor S ′ that simulates the state of all
parties in each evaluation using the GR simulation procedures:

• In the first evaluation: S ′ calls SimBankInit(1κ) to generated simulated initial bank and key
(C̃0 = [C̃0,1, · · · , C̃0,a], ˜key0), and sets the initial states of all parties as

init0,L = init0,PAa+1
= null, initR = ˜key0, ∀ j ∈ [a], init0,Aj = C̃0,j , init0,Aa+j = null

• In every evaluation t ≥ 1: S ′ simulates the evaluation states evlt,R, evlt,A1 , · · · , evlt,A2a of
the right and auxiliary parties by calling SimBankUpdate(C̃t−1, ˜keyt−1) to simulate the sub-
computations for updateing the key and bank, and assign the simulated state of each sub-
computation to the appropriate party that performs it. This yields the simulated bank and key
(C̃t, ˜keyt) for the next iteration; it then sets the initial states initt,L, initt,R, initt,A1 , · · · , initt,Aa
of all parties for the next iteration using (C̃t, ˜keyt) as in the first iteration.

Next, S ′ simulates the evaluation state evlt,L of PL by calling SimBankGen(C̃t) to simulate
the sub-computations for sampling a new ciphertext c̃t. (Note that, S ′ split the simulated
evaluation states of parties according to the erasure performed in Λ.)

Consider an ideal experiment IdealExp∞S′,A(1κ,m, z) using the monolithic simulator, where the ad-
versary obtains bounded independent leakage from the simulated state of each party, by S ′. Denote
by ṽiew

γ,∞
S′,A(1κ,m, z) the view of an A in this experiment.

Since the monolithic simulator S ′ uses the GR simulation procedures exactly as in [GR12], and
as discussed before, ordered leakage adversary attacking Λ obtains leakage in the same as in the ci-
phertext bank scheme, it follows from the GR analysis that the simulation by S ′ is indistinguishable
to any ordered leakage adversary. Formally,

Lemma 4 (Security of Λ against ordered adversaries [GR12])). There exists a function γ(κ) =
Θ(κ), such that, for every ordered γ-leakage adversary Aord, the following ensembles are indistin-
guishable.

• {viewγ,∞Aord(1
κ,m(κ), z)}κ∈N,z∈{0,1}poly(n)

30



• {ṽiew
γ,∞
S′,Aord(1

κ,m(κ), z)}κ∈Nz∈{0,1}poly(n).

Below we sketch the proof of Lemma 4 from [GR12] and then show how to extend their analysis
to handle also unordered adversaries, at the price of reducing the leakage bound.

Lemma 5 (Security of Λ against unordered adversaries [GR12])). There exists a function γ(κ) =
o(κ1/2), such that, for every (potentially unordered) γ-leakage adversary A, the following ensembles
are indistinguishable.

• {viewγ,∞A (1κ,m(κ), z)}κ∈N,z∈{0,1}poly(n)

• {ṽiew
γ,∞
S′,A(1κ,m(κ), z)}κ∈Nz∈{0,1}poly(n).

Proof Skech of Lemma 4 The GR analysis can be divided into two steps. In the first step, they
fomulate piecemeal leakage attacks on matrices and vectors—we call them “piecemeal games”—
which capture the leakage that can be computed via a leakage attack on the piecemeal matrix
procedures (multiplication, refresh), and then show that random matrices are resilient to several
flavors of such piecemeal attacks. In the second step, they show how to base the security of the
GR simulation (and thus the security of S ′) on the resilience of random matrices to piecemeal
leakage. We remark that, though not presented explicitly, their proof of the second step actually
constructs a non-uniform black-box reduction that converts an ordered leakage adversary attacking
the GR simulation (or an ordered adversary Aord attacking simulation by S ′) to an adversary in the
piecemeal matrix game; moreover the reduction satisfies certain special property that are crucial
for adapting the analysis of [GR12] to handle unordered leakage adversaries.

Piecemeal Games:
Piecemeal leakage attack on a matrix is parameterized with a key key ∈ {0, 1}κ and matrix M ∈
{0, 1}κ×m with m ≥ κ. An γ-leakage attacker AMtrx can obtain γ-bit leakage on key and on pieces
{Ei} of the matrix M separately, where each piece Ei is a small collection Ei = M × Lini of `
linear combinations of the columns of the matrix M (represented by Lini ∈ {0, 1}m×`), with the
restriction that leakage on E1, . . . , EL must occur in order (that is, after the adversary starts to
leak on Ej it cannot go back to leak from any Ek for k < j). We call this game the piecemeal
matrix game.

It was shown in [GR12] that when each piece is small enough ` ≤ 0.1κ and the leakage bound
is small enough γ = 0.05κ/L, a random matrix M is resilient to piecemeal leakage. That is, the
leakage obtained by AMtrx in the above game is statistically close in the following settings: (i) the
columns of M are all in the kernel of key, (ii) M is a uniformly random matrix, and (iii) M is a
uniformly random matrix of rank κ− 1 (independent of key). This statistical closeness holds even
if key is later revealed to AMtrx in its entirety. Furthermore, the statistical distances between the
distrubtions of view of AMtrx in the above three cases are bounded by exp(−O(κ/L)). (See Lemma
5.10 in [GR12] for more details.)

Piecemeal leakage attack on a matrix and vector extends the above attack and allow the adversary
AMtrx to additionally leak from a vector v ∈ {0, 1}κ jointly with each piece Ei of the matrix M .
We call this game the piecemeal matrix-vector game

It was shown in [GR12] that when each piece is small enough ` ≤ 0.1κ and the leakage bound is
small enough γ = 0.05κ/L2, for a matrix M with columns in the kernel of key, the leakage obtained
by AMtrx in the above extended game is statistically close in the following two settings: (i) the
vector v is in the kernel of key, and (ii) the vector v is not in the kernel of key. Moreover, this
statistical closeness holds even if key is later exposed to AMtrx in its entirety (as above) and also
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M is later exposed in its entirety. Again, the distance between the distrubutions of the view of
AMtrx in the above two cases is bounded by exp(−O(κ/L)). (See Lemma 5.15 in [GR12] for more
details.)

Overall as long as the number of pieces that AMtrx can leak from is bounded L = o(κ1/2),
the statistical distances between the views of AMtrx in the piecemeal matrix game and piecemeal
matrix-vector games with different settings are exponentially small. In this case, we say that the
two games are secure.

Reduction to the security of piecemeal games: In the second step, the security of the GR
simulation is reduced to the security of the two games. Though not presented explicitly, their proof
actually establishes the exitence of a black-box reduction Red that converts an (ordered) adversary
that distinguishes the GR simulation from the real ciphertext bank execution—or in our language
an adversary Aord that violates Lemma 4—to an adversary AMtrx = Red(Aord) that violates the
security of one of the piecemeal games. Furthermore, Red has the following special properties:

• Red externally participates in a piecemeal game, obtaining leakage from a constant number
of matrix pieces L = O(1); internally it emualtes the view of Aord with leakage from the real
execution of Λ or from the simulation by S ′ (depending on the setting of the piecemeal game
it participates in).

• It emulates the view of Aord in a straightline and oblivious of the leakage queries from Aord.
More specifically, Red handles each query q = (P,Φ) from Aord in the tth evaluation in one of
the two ways: Either, the state (initt,P , evlt,P ) that q applies to is emualted by Red internally;
then Aord receives as the answer, the output of Φ evaluated on the simulated state. Or Red
outputs a translation functions T , which translates q into a leakage query q′ = (q ◦ T,Ei)
on some matrix piece Ei in the external piecemeal game, and feeds the answer a it receives
to Aord. We remark that this special property of Red will be crucial for showing that the
security of GR extends to handling unordered adversaries.

When L = O(1) and the leakage bound is γ = 0.05κ/L2 = Θ(κ), the security of the external
piecemeal games hold against Red. Thus, it follows that no ordered adversary Aord can distinguish
leakage obtained from the simulation by S ′, from that obtained in the honest execution of Λ. Thus
Lemma 4 follows.

Proof Skech of Lemma 5 We show that the above analysis can be adapted to prove Lemma 5.
Towards this, we argue first that the piecemeal games described above are secure even against
unordered adversaries, and second the reduction Red converts an undordered adversary A distin-
guishing the simualtion by S ′ to an unordered adversary breaking the security of the piecemeal
games. Then Lemma 5 follows.

Recall that an ordered adversary in the piecemeal game can only obtain leakage from the matrix
pieces {Ei} in order. In contrast, an unordered adversary does not respect the order and can leak
from all pieces at any moment: That is, the γ-bit leakage from each piece Ei consists of γ 1-bit
leakage queries, which can be interleaved in an arbitrary way with the 1-bit leakage queries from
other pieces. We observe that the view of an unordered adversary with leakage from L pieces, can
be emulated an ordered adversary with leakage from γL appropriate pieces (by simply duplicating
the matrix pieces according to unordered leakage queries). Thus, by the security of the piecemeal
games against ordered adversaries, we have that piecemeal games remain secure at the presence of
unordered leakage attacks, as long as γL is bounded by o(κ1/2).

Next, we show how to modify the reduction Red to work with unordered adversaries A (that
distinguish simulation by S ′ from the honest execution of Λ). To see this, recall that Red is
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completely oblivious of the leakage queries from the adversary. Thus for each query q from an
unordered adversary A,

• if q leaks from a state (initt,P , evlt,P ) that has not been previously leaked from, emulate an
answer just as described above;

• if q leaks from a state (initt,P , evlt,P ) that has been previously leaked from, do: If the previ-
ous leakage is answered using internally simulated state, then answer the current query by
evaluating on the same simualted state again; otherwise, if the previous leakage is answered
using translation T and leakage from Ei in the external piecemeal game, simply issue an
out-of-order leakage q ◦ T to Ei, and feed the answer a to A.

It is easy to see that the oblivious emulation property of Red allows for handling unordered leakage
queries from A with the help of obtaining unordered leakage from the external piecemeal games.
Furthermore, the external game remains the same with L = O(1) matrix pieces and a bound of γ
on the total length of leakage from each piece, except that now unordered leakage is allowed.

When L = O(1) and γL = o(κ1/2), that is γ = o(κ1/2), the security of the external piecemeal
games hold against Red (making unordered queries). Thus it follows that the simulation by S ′
is indistinguishable from a real world execution of Λ even to unordered γ-leakage adversaries.
Lemma 5 follows.

C.2.5 A Strong Simulator of Λ

In this final step, we describe a strong simulator S that can simulate the same distribution of the
states of parties as S ′ does. Recall that S = (SL,SR,A) must observe that

• SL(1κ,m, i; wi, Li) generates any state corresponding to PL.

• SR,A(1κ,m, i; wi,Ri) generates any state corresponding to PR, PA1 , . . . , PAa .

We now describe the simulation procedures:

Simulate the state of PR: In each iteration t, the state of PR consists of ĩntlt,R = ˜keyt−1 and

ẽvlt,R = (σt, ˜keyt). To bias the output right share in this iteartion to Rt, SR with input Rt

sets ˜keyt to Rt, and computes σt = ˜keyt − ˜keyt−1 = Rt − Rt−1. In the first iteration, ˜key0 is

set to a random string such that ˜key0[0] = 1.

Simulate the state of PA1 , · · · , PA2a: In each iteration t, the intitial states of PA1 , · · · , PAa are
the previous bank pieces, initt,j = Ct−1,j ; in the first iteration, C0 is a ramdom matrix.
(The initial states of the latter a auxiliary parties are empty.) The joint evaluation states
(evlt,A1 , · · · , evlt,A2a) of PA1 , · · · , PA2a contain the states related to the computation of H =
PiecemealRefresh(Ct−1, σt) and that related with Ct = PiecemealMM(H,Rt). To simulate
these states SA with input Rt compute σt as SR does, and then performs the two computa-
tion honestly; the states of the sub-computations are then assigned to (evlt,A1 , · · · , evlt,A2a)
appropriately.

Simulate the state of PL: In each iteration t, the state of PL consists of initial state ĩntlt,L =

null and evaluation state ẽvlt,L for computing the new ciphertext c̃t. To bias c̃t to the new
left share Lt, SL with input Lt, samples at random a linear combination L̃int such that
C̃t× L̃int = Lt. Then it performs the computation c̃t = PiecemealMM(C̃t, L̃int) honestly, and
set evlt,L accordingly.
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Concluding Theorem 5: By examining the construction of the monolitic simulatior S ′ and
GR simulation procedures SimBankInit, SimBankGen, and SimBankUpdate, the strong simulator S
indeed produces the same distribution of the simulated states of all parties as S ′ does. Thus it
follows directly from Lemma 5 that when leakage bound is bounded by γ = o(κ1/2) and a = 20
such that ` = 2κ/a = 0.1κ, we have that no adversary can distinguish leakage obtained from the
simulation by S or that obtained from the honest execution of Λ. Furthemore, S has the right
structure as required in Definition 8. Therefore we conclude that Λ is indeed continually γ-leakage
resilient.

C.3 The Full Scheme

Next, we construct a strong continual OCL scheme, based on the Dziembowski-Faust [DF12] OCL
scheme and the orthogonal share generation scheme presented in the previous subsection.

Overview of the scheme. At high level, the DF scheme follows the classic GMW [GMW87]
paradigm for semi-honest two-party computation: the parties (PL, PR) secret share the secret key k,
and then, to compute f(k), evaluate the circuit U(·, f) gate by gate over the shares. To guarantee
leakage-resilience, the DF scheme relies on a leakage-resilient secret sharing scheme - the inner
product two-source extractor.

We now overview how computation over the inner product shares is done. For simplicity, we
describe a simple instance of the DF scheme over the binary field F2. We assume that each share
is of length m (we later describe how this length is related to the amount of leakage that can be
tolerated). Throughout, we denote byOmv the uniform distribution on (L,R) ∈ Fm2 ×Fm2 conditioned
on 〈L,R〉 = v.

At the onset of the tth iteration, the parties share each bit ki of the key k; namely, PL holds
Lki , and PR holds Rki . These shares are refreshed in every iteration (as will be described later),
with the invariant that 〈Li, Ri〉 = ki. Then, when PL obtains the current input f = ft, it computes
(Lfi , Rfi) ← Omfi , and sends Rf = (Rfi)i∈[m] to PR. The parties then homomoprhically compute
the boolean circuit U(·, ·) on the underlying input (k, f).

We assume that the circuit consists of NAND gates that are performed one at a time (or one
level at a time). Concretely, for a NAND gate with input wires i, j and output wire k, the parties
initially hold the shares (Li, Ri), (Lj , Rj) for the input wires, and would like to compute shares
(Lk, Rk) for the output wire, where

〈Lk, Rk〉 = 1 + 〈Li, Ri〉 · 〈Lj , Rj〉 ,

and all operations are over F2. Thus, it is enough to be able to perform multiplication and addition
of the constant 1 over shares. We next describe how this is done.

Given (Li, Ri), (Lj , Rj), encoding vi and vj , the parties first locally compute the tensor product
of their shares L⊗,k = Li⊗Lj , and R⊗,k = Ri⊗Rj . While 〈L⊗,k, R⊗,k〉 = vi·vj , the size of L⊗,k, R⊗,k
is now m2 each, and thus we cannot go on multiplying shares in this manner, without incurring
exponential blowup. To shrink back the size of shares, the parties first run a refresh procedure that
rerandomizes their shares, at the end of which they posses refreshed shares (Lfr

⊗,k, R
fr
⊗,k). Then,

PR sends the last m2 − m + 1 entries Rfr
k [m, . . . ,m2] of its refreshed share Rfr

⊗,k. (Refreshing is

indeed necessary, since the non-refreshed R⊗,k[m, . . . ,m
2], combined with even one bit of leakage

may reveal for example the entire share Ri). Then, PL computes

v := 〈Lfr
⊗,k[m, . . . ,m

2], Rfr
⊗,k[m, . . . ,m

2]〉 .
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Noting that at this point (Lfr
⊗,k[1, . . . ,m− 1], Rfr

⊗,k[1, . . . ,m− 1]) encode viv̇j − v, the parties now

only need to add v + 1. Thus PL sets its share Lk to (1 + v|Lfr
⊗,k[1, . . . ,m − 1]), and PR sets its

share Rk to (1|Rfr
⊗,k[1, . . . ,m− 1]). At the end of this protocol, the parties hold new shares of the

right length m, encoding the right value vk = 1 + vi · vj .
At the end of the evaluation process, the parties hold vectors of shares (Lf(k),Rf(k)) encoding

the output result. At this point, PL sends his vector of shares Lf(k) to PR who produces the output.
Finally, towards the next iteration, the parties refresh their shares (Rk,Rk) of the secret key k.

Refreshing based on orthogonal share generation. We now describe the DF refresh proce-
dure Refresh(L,R), when instantiated with the an orthogonal share generation scheme (CompOG,OG)
described in the previous subsection. Given two arbitrary shares (L,R) ∈ F`2×F`2, the Refresh pro-
cedure outputs new shares (Lfr, Rfr) ∈ F`2 × F`2 such that 〈Lfr, Rfr〉 = 〈L,R〉. For the sake of
each refresh operation, two uniformly random orthogonal shares ((L′|L′′), (R′|R′′)) ← O2`

0 should
be generated and split between PL and PR. In the original DF scheme, these are sampled using
designated leakage-free hardware. Here we shall use, for this purpose, the GR-based orthogonal
generation scheme (CompOG,OG). The reliance of leakage-free hardware is replaced with leaky
auxiliary parties PA1 , . . . , PAa , for some constant a.

When executing Refresh(L,R), PL first samples an invertible matrix M ′ ∈ F`×`2 such that
M ′L = L′, and sends M ′ to PR. PR then sets Rfr = R + M ′tR′. Then, symmetrically, PR
samples an invertible matrix M ′′ ∈ F`×`2 such that M ′′Rfr = R′′, and sends M ′′ to PL. PL then
sets Lfr = L + M ′′tL′′. (For simplicitly of exposition, assume for now that in the above neither
L,L′, R′, R′′ are zero.) Correctness follows by linearity:

〈Lfr, Rfr〉 = 〈L,Rfr〉+ 〈M ′′tL′′, Rfr〉 =

〈L,Rfr〉+ 〈L′′,M ′′Rfr〉 =

〈L,Rfr〉+ 〈L′′, R′′〉 =

〈L,R〉+ 〈L,M ′tR′〉+ 〈L′′, R′′〉 =

〈L,R〉+ 〈M ′L,R′〉+ 〈L′′, R′′〉 =

〈L,R〉+ 〈L′, R′〉+ 〈L′′, R′′〉 =

〈L,R〉+ 〈(L′|L′′), (R′|R′′)〉 =

〈L,R〉+ 0 .

As explained in [DF12], the refresh procedure guarantees that (Lfr, Rfr) are independent of (L,R)
upto their similar inner product. Moreover, a simulator can “reprogram” ((L′|L′′), (R′|R′′)) so
that (Lfr, Rfr) will be distributed according to O2m2

b , for any b ∈ F2 of its choice, in a way that
is indistinguishable under leakage. Our proof of strong OCL, will rely in an essential way on the
strong simulation guarantee for the orthogonal share generation procedure, where the simulator is
guaranteed to work, even given “externally programed shares”.

The scheme in detail. We now provide a more detailed description of the scheme and each of
its components, and show that it satisfies the properties required by a strong OCL scheme. The
full scheme is given in Figure 8 below, where U(·, ·) denotes the universal circuit, and is assumed
to have T NAND gates labeled G = {1, . . . , T}, among them n input gates labeled I = {1, . . . , n},
and w output gates labeled O = {T − w + 1, . . . , T}. For a set G we often denote the collection of
shares (Lg)g∈G as LG; we often treat strings k ∈ {0, 1}n as their corresponding bit set {k1, . . . , kn}.
We denote by O`b the distribution on vector pairs in F`2 × F`2 whose inner product is b.
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The scheme proceeds in iterations, we often denote the tth iteration by superscript t. Within,
every iteration, we invoke multiple iterations of a (continual) orthogonal share generation. We
denote by superscript OG(t, i) the ith orthogonal share generation, within the tth iteration of the
main protocol. We denote by OG(t) the sequence of all orthogonal share generation, within the tth

iteration of the main protocol.

Correctness. The correctness of the scheme follows readily, as outlined in the above overview.
The only thing to note is that if during refreshing any of L,L′, Rfr, R′′ are zero, there might not
exist invertible matrices M ′,M ′′ as required and the parties would have to abort. However, it is
not hard to see that all of these shares throughout the execution have very high min-entropy, and
thus the above event occurs with neglgible probability. (It is also possible to augment the scheme
so that the above event never occurs, by repeated sampling when necessary. For simplicitly of
exposition, we describe and analyze the scheme without making this change.)

We now go on to give a proof sketch the security analysis.

Oblivious simulation. We show that Λ has a strong oblivious simulator S = (SR,SL,SA).
Recall that we need to describe how, in the tth iteration, SL, given (f, f(k)) = (ft, ft(k)) and

randomness wi, simulates

{initt,L, evlt,L} =

{Ltk, init
OG(t,1)
L , f,Lf ,RfR

fr
⊗,z(O)[m, . . . ,m

2],L′,L′′,M′,M′′, init
OG(t)
L , evl

OG(t)
L , initt+1,L} ,

how SR, given only f(k) and randomness wi, simulates

{initR, evlR} =

{Rt
k, init

OG(t,1)
R , f(k),Rf ,R

′,R′′,M′,M′′,Lz(O), init
OG(t)
R , evl

OG(t)
R , initt+1,R} ,

and how SA, given only the randomness wi, simulates

{initAi , evlAi}i∈[a] =

{initOG(t)
Ai

, evl
OG(t)
Ai

, initt+1,Ai}i∈[a] .

The simulator S will invoke the strong simulator SOG = (SOG
L ,SOG

R,A) for the orthogonal share
generation scheme. We start by describing how the joint randomness wt is sampled towards simu-
lation of the tth iteration.

• (L̃k, R̃k) = (L̃tk, R̃
t
k) are sampled so that L̃ki , R̃ki ∈ Fm2 are independently uniformly random.

• R̃f is sampled so that R̃fi ∈ Fm2 is uniformly random.

• R̃fr
⊗,z(G) is sampled so that, for each g ∈ G, R̃fr

⊗,z(g) ∈ Fm2

2 is uniformly random.

• L̃fr
⊗,z(G\O) is sampled so that, for each g ∈ G \O, L̃fr

⊗,z(g) ∈ Fm2

2 is uniformly random.

• M̃′, M̃′′ are sampled so that

– When refreshing the output of each gate g ∈ G, the corresponding matrices M̃ ′g, M̃
′′
g ∈

Fm
2×m2

2 are uniformly random invertible matrices.
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OCL scheme Λ = (Comp, PL, PR, PA1 , . . . , PAa)

Initial Compilation by Comp:

• For each bit ki of the secret k ∈ {0, 1}n, sample (L1
ki
, R1

ki
)← Omki .

• Invoke CompOG(12n, 12m2

) with parties PL, PR, PA1 , . . . , PAa .

Initial state: initL = (Lk, init
OG(1,1)
L ), initR = (Rk, init

OG(1,1)
R ), initAi = init

OG(1,1)
Ai

.

Evaluation during the tth iteration by PL, PR, PA1
, . . . , PAa

:

• Given input f = ft, PL computes: {(Lfi , Rfi)← Omfi}i∈[|f |], and sends Rf to PR.

• For every gate g ∈ G, with input wires x = x(g), y = y(g) and output wire z = z(g), and input
shares (Lx, Ly, Rx, Ry), each in Fm2 , the parties run a homomorphic NAND procedure:

(Lz, Rz)← HNand(Lx, Ly, Rx, Ry) .

• Having computed the shares (Lz(O),Rz(O)) = {(Lz(g), Rz(g))}g∈O for the output wires, PL sends
Lz(O) to PR, who outputs 〈Lz(O),Rz(O)〉 = {〈Lz(g), Rz(g)〉}g∈O.

State update towards iteration t+ 1:

• The parties refresh their shares (Ltk,R
t
k) of the secret key k:

(Lt+1
k ,Rt+1

k )← Refresh(Ltk,R
t
k) .

• Previous state is erased, except for the initial state initt+1,L, initt+1,R, initt+1,A1
, . . . , initt+1,Aa

for

iteration t+1, including (Lt+1
k ,Rt+1

k ), and init
OG(t+1,1)
L , init

OG(t+1,1)
R , init

OG(t+1,1)
A1

, . . . , init
OG(t+1,1)
Aa

.

Procedure HNand(Lx, Ly, Rx, Ry):

• Each party locally computes L⊗,z = Lx ⊗ Ly ∈ Fm
2

2 , R⊗,z = Rx ⊗Ry ∈ Fm
2

2 .

• The parties then run a refresh procedure:

(Lfr
⊗,z, R

fr
⊗,z)← Refresh(L⊗,z, R⊗,z) .

• PR sends Rfr
⊗,z[m, . . . ,m2] to PL, and the parties set their shares to:

Rz = (1|Rfr
⊗,z[1, . . . ,m− 1]), Lz = (1 + v|Lfr

⊗,z[1, . . . ,m− 1]) ,

where v = 〈Lfr
⊗,z[m, . . . ,m2], Rfr

⊗,z[m, . . . ,m2]〉.
Procedure Refresh(L,R):

• For ` = dim(L) = dim(R), PL, PR, PA1 , . . . , PAa generate orthogonal vector shares for (PL, PR):

F2`
2 × F2`

2 3 ((L′, L′′), (R′, R′′))← OG .

• PL samples a random invertible matrix M ′ ∈ F`×`2 such that M ′L = L′.

• M ′ is sent to PR who sets Rfr = R + M ′tR′.

• PR samples a random invertible matrix M ′′ ∈ Fm
2×m2

2 such that M ′′Rfr = R′′.

• M ′′ is sent to PL who sets Lfr = L + M ′′tL′′.

Overall evaluation state:

• evlt,L = f,Lf ,RfR
fr
⊗,z(G)[m, . . . ,m2],L′,L′′,M′,M′′, init

OG(t)
L , evl

OG(t)
L , initt+1,L.

• evlt,R = f(k),Rf ,R
′,R′′,M′,M′′,Lz(O), init

OG(t)
R , evl

OG(t)
R , initt+1,R.

• evlt,Ai = init
OG(t)
Ai

, evl
OG(t)
Ai

, initt+1,Ai .

Figure 8: A strong OCL scheme
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– When refreshing shares corresponding to the ith bit of the secret key k, during the
update phase, the corresponding matrices M̃ ′ki , M̃

′′
ki
∈ Fm×m2 are also uniformly random

invertible matrices.

• R̃⊗,z(G), R̃
′, R̃′′ are then set consistently and deterministically. That is,

– For every gate g ∈ G, with input wires x = x(g), y = y(g), and output wire z = z(g),
first figure out the pre-refreshed share R̃⊗,z ∈ Fm2

2 . If g ∈ I is an input gate, this can

be figured out from the values R̃k, R̃f . If g ∈ G \ I, this can be figured out from R̃fr
⊗,x,

which determines R̃x = (1|R̃fr
⊗,x[1, . . . ,m − 1]), and from R̃fr

⊗,y, which determines R̃y in

the same way. Thus, R̃⊗,z = R̃x × R̃y is also determined.

– When refreshing the output of each gate g ∈ G,

R̃′g = (M̃ ′tg )−1(R̃fr
⊗,z − R̃⊗,z) R̃′′g = M̃ ′′g R̃

fr
⊗,z .

– When refreshing shares corresponding to the ith bit of the secret key k,

R̃′ki = (M̃ ′tki)
−1(R̃t+1

ki
− R̃tki) R̃′′ki = M̃ ′′kiR̃

t+1
ki

.

• init
OG(t)
R , evl

OG(t)
R , {initOG(t)

Ai
, evl

OG(t)
Ai

}i∈[a] are all sampled by invoking SOG
R,A with input R̃′t, R̃

′′
t ,

which include all the vectors R̃′, R̃′′ produced in iterations 1, . . . , t.

We next describe how each one of the simulators work.

Simulator SR: All the values that simulator SR is required to simulate appear in the joint state
wt, except for the left shares L̃z(O) corresponding to the output gates.

To simulate the above:

1. SR first simulates L̃fr
⊗,z(O) as follows. For every gate g ∈ O, with input wires x = x(g), y =

y(g), and output wire z = z(g), let fz(k) denote the value of this output gate. L̃fr
⊗,z is sampled

uniformly at random conditioned on 〈L̃fr
⊗,z, R̃

fr
⊗,z〉 = fz(k). (Recall that SR gets the output

f(k).)

2. Then, L̃z(g) can be computed from (L̃fr
⊗,z, R̃

fr
⊗,z). Recall that it is simply (1+v|L̃fr

⊗,z[1, . . . ,m−
1]), where v = 〈L̃fr

⊗,z[m, . . . ,m
2], R̃fr

⊗,z[m, . . . ,m
2]〉.

Simulator SA: The values that simulator SA needs to simulate all appear in the joint state wt.

Simulator SL: All the values that simulator SL is required to simulate appear in the joint state

wt, except for L̃f , L̃
fr
⊗,z(O), L̃

′, L̃′′, init
OG(t)
L , evl

OG(t)
L that are computed using the joint state wi and

f = ft, f(k) as follows:

1. For input wire i ∈ I with value fi, sample L̃fi uniformly at random from Fm2 , subject to

〈L̃fi , R̃fi〉 = fi.

2. L̃fr
⊗,z(O) is sampled consistently with how SR,A samples it (by rleying on shared randomness).
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3. For every gate g ∈ G, with input wires x = x(g), y = y(g), and output wire z = z(g),
figure out the pre-refreshed share L̃⊗,z ∈ Fm2

2 . If g ∈ I is an input gate, this can be

figured out from the values L̃k, L̃f . If g ∈ G \ (I ∪ O), this can be figured out from

L̃fr
⊗,x, R̃

fr
⊗,x[m, . . . ,m2], L̃fr

⊗,y, R̃
fr
⊗,y[m, . . . ,m

2], which determine L̃x, L̃y. Indeed, L̃x = (1 +

v|L̃fr
⊗,x[1, . . . ,m − 1]), where v = 〈L̃fr

⊗,z[m, . . . ,m
2], R̃fr

⊗,z[m, . . . ,m
2]〉, and L̃y is computed

similarly. Then, SL sets

L̃′g ← M̃ ′gL̃⊗,z L̃′′g ← (M̃ ′′tg )−1(L̃fr
⊗,z − L̃⊗,z) .

4. For refreshing the shares corresponding to the ith bit of the secret key k,

L̃′ki = (M̃ ′tki)
−1(L̃t+1

ki
− L̃tki) L̃′′ki = M̃ ′′kiL̃

t+1
ki

.

5. init
OG(t)
L , evl

OG(t)
L are sampled by invoking SOG

L with input L̃′, L̃′′, which include all the vectors

L̃′, L̃′′ produced the tth iteration.2

Proposition 6. Λ is continually `-leakage-resilient strong OCL scheme against unbounded adver-
saries, with 2 + a components, where `(λ) = m(λ)/10, m(λ) = ω(log(λ)), and a = O(1).

The proof naturally relies on the properties of inner product as a two-source extractor [CG88].
Concretely, we will use the fact that an (unbounded) adversary A that executes an m

10 -leakage
attack on two sources (L,R),3 cannot tell whether they are sampled uniformly at random from
Fm2 × Fm2 , or from the correlated distribution Omb , where 〈L,R〉 = b.

Lemma 7 (Following [CG88, GR12]). Let view
(L,R)
A denote the view of an adversary A in an m/10-

leakage attack on sources (L,R) ∈ Fm2 × Fm2 . Then for any b ∈ F2, the following two distributions
are 2−Ω(m)-statistically close:

{view(L,R)
A : (L,R)← Fm2 × Fm2 } , (1)

{view(L,R)
A : (L,R)← Omb } . (2)

The lemma is in proved in [GR12][Lemma 3.11].

We shall also use the following simple corollary.

Corollary 8 (of Lemma 7). Let view
(L,R)
A (R[m, . . . ,m2]) denote the view of an adversary A in an

m/10-leakage attack on sources (L,R) ∈ Fm2

2 ×Fm2

2 , where it also gets all but the first m−1 entries
of R. Then, for any b ∈ F2, the following two distributions are 2−Ω(m)-statistically close:

{view(L,R)
A (R[m, . . . ,m2]) : (L,R)← Fm

2

2 × Fm
2

2 } , (1)

{view(L,R)
A (R[m, . . . ,m2]) : (L,R)← Om2

b } . (2)

2Here we rely on the fact that, unlike SOG
R,A, who needs the values R̃′, R̃′′ also from previous iterations, SOG

L can do

only with those of the current iteration (see Definition 8). Indeed, in order to compute L̃′, L̃′′ as above, the current
input f = ft and output f(k) are needed.

3A `-leakage attack on two sources (L,R), sampled from some correlated distribution, is defined analogously to
an `-leakage attack on two OCL components.
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Proof sketch: Given a distinguisher A that breaks the above for some b ∈ F2, we can construct
a distinguisher A′ that breaks Lemma 7. A′ samples (L[m, . . . ,m2], R[m, . . . ,m2]) ← Fm

2−m+1
2 ×

Fm
2−m+1

2 ; we shall denote v = 〈L[m, . . . ,m2], R[m, . . . ,m2]〉. Then it emulates

A(L[1,...,m−1],R[1,...,m−1])(R[m, . . . ,m2]) ,

where (L[1, . . . ,m − 1], R[1, . . . ,m − 1]) are sampled either independently from Fm−1
2 × Fm−1

2 , or
from Om−1

b−v . In the first case, (L,R) are distributed uniformly and independently. In the second

case they are 2−Ω(m) close to being sampled from Om2

b . The corollary follows.

We now turn to give a proof sketch of Proposition 6.
Proof sketch: We show that the view of any A, when executing a continual `-leakage attack in the
real world, is 2−Ω(m)-close to its view in the ideal world, where the state of (PL, PR) is simulated
by S = (SL,SR). For this purpose, we consider a sequence of hybrid experiments and show their
statistical indistinguishability. Throughout, let t∗ = t∗(λ) be the polynomial bound on the number
of iterations that A chooses to execute.

hyb0: Describes the ideal world where leakage is simulated by S.

hyb1: This experiment differs from hyb0 in that, in every iteration t, with input f = ft, instead
of sampling first R̃fi and then sampling L̃fi conditioned on 〈L̃fi , R̃fi〉 = fi, the two are sampled
together directly from Omfi as in the real world. It is easy to see that the distribution of the entire

continual execution, including the full states of all parties, is the same up to a 2−Ω(m) statistical
distance.

hyb2,t, for 0 ≤ t ≤ t∗: In this experiment, hyb2,0 = hyb1, and every hyb2,t−1 differs from hyb2,t

in that, in the tth execution, instead of sampling (L̃tki , R̃
t
ki

) uniformly and independently, they are

sampled from Omki as in the real world. By Lemma 7, each two such hybrids are 2−Ω(m)-close.
Indeed, we can transform any A that distinguishes hyb2,t−1 from hyb2t to a distinguisher A′ in

Lemma 7 for b = ki. A′ would emulate A and simulate its leakage using leakage on (L̃ki , R̃ki).

Indeed, the simulated leaky state of PL can be fully simulated from L̃ki , and that of PR can be

fully simulated from R̃ki .

hyb3,t,g, for 1 ≤ t ≤ t∗, for 0 ≤ g ≤ T − w: In this experiment, for any t, hyb3,t,g−1 differs from

hyb3,t,g in that, instead of sampling (L̃fr
⊗,z(g), R̃

fr
⊗,z(g)) uniformly at random they are sampled from

Om2

b(g), where b(g) = 〈L̃⊗,z(g), R̃⊗,z(g)〉; namely, refreshing preserves the inner product as in the real
world. hyb3,1,0 = hyb2, t∗ and hyb3,t,0 = hyb3,t−1,T−w.

We show how to turn any A that distinguishes hyb3,t,g−1 from hyb3,t,g, to a distinguisher A′
in Corollary 8 for the value b = b(g), which is the real-world output value of gate g. A′ at-
tacks (L̃fr

⊗,z(g), R̃
fr
⊗,z(g)) that are sampled either independently or from Om2

b ; in addition, it gets

the extra input R̃fr
⊗,z(g)[m, . . . ,m

2]. A′ emulates A, simulating its leakage queries using leakage on

(L̃fr
⊗,k(g), R̃

fr
⊗,z(g)). The simulated leaky state of PL is simulated from L̃fr

⊗,z(g) and R̃fr
⊗,z(g)[m, . . . ,m

2],

and that of PR is simulated from R̃fr
⊗,z(g). It is easy to see that the view of the emulated A corre-

sponds to either hyb3,t,g−1 if the shares are sampled independently, and according to hyb3,t,g if the

shares are sampled from Om2

b .
We now note that in hyb3,t∗,T−w, all the shared values along the wires are consistent with the

real world. Moreover, for each output gate g ∈ O the simulator already samples (L̃fr
⊗,k(g), R̃

fr
⊗,k(g))

with inner product [f(k)]g, which will now be the same as 〈L̃⊗,k(g), R̃⊗,k(g)〉. Thus, throughout the
entire circuit the simulated refresh procedure preserves inner product as in the real world.
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hyb4: This hybrid differs from hyb3,t∗,T−w in that the refresh procedure is done in a different

order. Recall that in the simulated hyb3,t∗,T−w, to refresh (L̃, R̃), we first sample M̃ ′, M̃ ′′ ← Fm
2×m2

2 ,

(L̃fr, R̃fr)← O`
〈L̃,R̃〉

, where ` ∈ {m,m2}, and then derive L̃′, L̃′′, R̃′, R̃′′ according to the equations:

L̃′ = M̃ ′L̃, R̃′ = (M̃ ′t)−1(R̃fr − R̃)

L̃′′ = (M̃ ′′t)−1(L̃fr − L̃), R̃′′ = M̃ ′′R̃fr .

Now, instead of the above, we first sample ((L̃′|L̃′′), (R̃′|R̃′′))← O2m2

0 , then we sample M̃ ′ uniformly

conditioned on L̃′ = M̃ ′L̃, and set R̃fr according to R̃′ = (M̃ ′t)−1(R̃fr − R̃, then we sample M̃ ′′

uniformly conditioned on R̃′′ = M̃ ′′R̃fr, and set L̃fr according to L̃′′ = (M̃ ′′t)−1(L̃fr − L̃).
It is not hard to check that the joint distributions of

L̃′, L̃′′, R̃′, R̃′′, M̃ ′, M̃ ′′, L̃fr, R̃fr

in all of the t∗ iterations, in the two cases are 2−Ω(m2)-close.
hyb5: Identical to the real world. Note that the previous hybrid hyb4 is identical to the real

world, with the exception that the refreshing operation is done using simulated orthogonal gen-
eration generated by SOG, instead of real orthogonal generation by OG. The two hybrids are
statistically close by the simulation guarantee of SOG. Indeed, we can easily convert a distinguisher
between hyb4 and hyb5 into a distinguisher between the real and ideal orthogonal generation, as we
can fully simulate the state of PL, respectively PR, from that of POG

L , respectively POG
R .

This completes the proof sketch.

D Two-Party Leakage-Tolerant Protocols without Corruption

In this section, we show how to construct a two-party, a auxiliary-party, continual leakage-tolerant
protocol ρ in the input-independent pre-processing model based on any strong, continual 2-component
OCL scheme with a auxiliary parties. Our tranformation works for any number a of auxiliary par-
ties, and, in particular works for the special case of a = 0. The protocol is secure against adversaries
that leak a bounded amount of ` bits of information on the state of each honest party (separately)
in each time period, but do not corrupt any of the parties. We note that using the strong continual
OCL constructions of Section C, we achieve our result without requiring the use of any trusted
hardware.

Theorem 6. Assume the existence of a `-continual-leakage-resilient strong OCL Λ scheme with
some number, a, of auxiliary components for the universal circuit family and the existence of one-
way functions. Then for every efficiently computable deterministic two-input two-output function f :
{0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, there is a protocol ρ that strongly UC-emulates the functionality

Ff2LTC-AUX under `-bounded continual leakage, with a auxiliary parties, when no party is corrupted,
in the (FLSC,FLFS)-hybrid model (i.e. with secure communication and input-independent leakage-
free preprocessing). Furthermore, if Λ has perfect correctness, ρ also has perfect correctness.

Towards proving the theorem, we first observe that it suffices to consider only functions with
a single output and design leakage-tolerant protocols where both parties obtain this output. For
brevity of notation, below we use Ff,∞2LTC-AUX for a single output function f to denote the ideal func-
tionality that proceeds identically to Fg,∞2LTC-AUX for two-output functions as described in Figure 2,
except that it distributes the single output to both parties.
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Proposition 9. Assume the existence of a `-continual-leakage-resilient strong OCL Λ scheme with
a auxiliary components for the universal circuit family. Then, for every efficiently computable de-
terministic two-input function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, there is a protocol ρ that strongly

UC-emulates the functionality Ff,∞2LTC-AUX under `-bounded continual leakage, when no party is cor-
rupted, in the (FLSC,FLFS)-hybrid model (i.e. with secure communication and input-independent
leakage-free preprocessing). Furthermore, if Λ has perfect correctness, ρ also has perfect correctness.

We show that Theorem 6 directly follows from Proposition 9 using standard techniques.

Proof. Fix any two-input two-output function g; let m(n) be a bound on the length of each output
of the function given two n-bit input strings. Translate g into a single output function f as follows:
For every xj0, x

j
1 ∈ {0, 1}n, f((xj0, r

j
0), (xj1, r

j
1)) = yj0 ⊕ rj0‖y

j
1 ⊕ rj1, where rj0, r

j
1, y

j
0, y

j
1 ∈ {0, 1}m

and (yj0, y
j
1) are the outputs of g(xj0, x

j
1) = (yj0, y

j
1). By Proposition 9, there is a a + 2-party

protocol ρ = (P0, P1, P
aux
1 , . . . , P aux

a ) that strongly UC-emulates the functionality Ff,∞2LTC-AUX under
`-bounded continual leakage, when no party is corrupted, in the (FLSC,FLFS)-hybrid model. Then
using ρ, we construct a protocol ρ′ = (P ′0, P

′
1, P

aux
1 , . . . , P aux

a ) that strongly UC-emualtes Fg,∞2LTC-AUX
under `-bounded leakage, when no party is corrupted in the (FLSC,FLFS)-hybrid model.

In the j-th iteration, the protocol ρ′ simply has the two parties with input, P ′0 and P ′1, given
security parameter 1λ and private inputs xj0, x

j
1 ∈ {0, 1}n, choose two random strings rj0 and rj1 of

length m, respectively, and invoke ρ to compute f((xj0, r
j
0), (xj1, r

j
1)). At the end of the interaction,

P ′0 obtains an output zj,00 ‖z
j,0
1 and outputs ỹj0 = zj,00 ⊕ r

j
0, while P ′1 obtains zj,10 ‖z

j,1
1 and outputs

ỹj1 = zj,11 ⊕ r
j
1. The (perfect) correctness of ρ follows direct from the (perfect) correctness of ρ.

To see that ρ′ indeed strongly UC-emulates Fg,∞2LTC-AUX under `-bounded continual leakage, we
need to show that there is an oblivious simulator Sρ′ such that no malicious environment Z that,
on input 1λ and auxiliary input z ∈ {0, 1}poly(λ), launches an `-bounded continual leakage attack
on an execution of ρ′ (without corrupting any party), can distinguish whether it interacts with
an honest execution of ρ′, or with Sρ′ and Fg,∞2LTC-AUX. By the fact that ρ strongly UC-emulates

Ff,∞2LTC-AUX, there exists such an oblivious simulator Sρ for ρ; moreover, by the definition of the

oblivious simulators, Sρ contains a sub-component S̃ρ that handles all leakage queries from Z.
Towards constructing an oblivious simulator Sρ′ for ρ′, we first observe that an honest execution

of ρ′ with inputs (xj0, x
j
1) outputs (yj0, y

j
1) proceeds identically to an honest execution of ρ with inputs

((xj0, r
j
1), (xj1, r

j
1)) and outputs (zj0 = yj0⊕ r

j
0, z

j
1 = yj1⊕ r

j
1) for randomly chosen rj0, r

j
1. Furthermore,

since (rj0, r
j
1) are truly random, (zj0, z

j
1) are truly random as well, and the distribution of the inputs

and outputs {((xj0, r
j
1), (xj1, r

j
1)), (zj0, z

j
1)} remains the same even if (zj0, z

j
1) are sampled at random

first and (rj0, r
j
1) computed accordingly second as rjb = yjb ⊕ z

j
b .

Simulator Sρ′ interacts externally with Fg,∞2LTC-AUX and Z; to simulate an honest execution of ρ′

with inputs (xj0, x
j
1) chosen by Z, it samples two strings (zj0, z

j
1)← U2m and internally simulates an

execution of ρ with inputs (xj0, r
j
0), (xj1, r

j
1) for rjb = yjb ⊕ z

j
b using Sρ. More specifically, it forwards

all simulated protocol messages by Sρ to Z. Whenever Z submits a leakage query (L,P ′b), it invokes

a separate module S̃ρ′ with its current state containing the current state state of Sρ and (zj0, z
j
1)

as input; S̃ρ′ internally runs S̃ρ(state) to simulate any leakage answer. Recall that, by definition,
S̃ρ(state) produces a state translation function Tb or TA. If the leakage was on Pb, Sρ(state) then

expects to receive the leakage on the ideal state of Pb from Ff,∞2LTC-AUX with respect to L ◦Tb, which
is then forwarded to Z as the leakage answer. On the other hand, if the leakage was on party
P aux
i for some i ∈ a, Sρ(state) uses TA to reconstruct the real states of all auxiliary parties and

then responds to the leakage query with L ◦ TA[i], where TA[i] denotes the function outputting the

state of the i-th auxiliary party reconstructed by TA. S̃ρ′ emulates Ff,∞2LTC-AUX for S̃ρ as follows: For
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parties P ′b, b ∈ {0, 1}, it translates the state translation function Tb with respect to ρ into a state
translation function T ′b with respect to ρ′.

T ′b(x
j
b, y

j
b) = Tb((x

j
b, y

j
b ⊕ z

j
b), z

j
0‖z

j
1) .

It then obtains leakage L ◦ T ′b(x
j
b, y

j
b) from Fg,∞2LTC-AUX and forwards it back to S̃ρ and Z. Similarly,

for the auxiliary parties P aux
i , i ∈ [a], S̃ρ′ sets T ′A = TA. It then computes the leakage L ◦ T ′A[i] and

forwards it back to S̃ρ and Z.
By construction Sρ′ has the structure of an oblivious simulator; furthermore, it internally

emulates an execution of Sρ interacting with functionality Ff,∞2LTC-AUX parameterized with inputs

((xj0, r
j
0 = yj0 ⊕ z

j
0), (xj1, r

j
1 = yj1 ⊕ z

j
1)) for randomly sampled (zj0, z

j
1) ← U2m perfectly. Then, the

view of the environment Z interacting with Sρ′ and Fg,∞2LTC-AUX with inputs (xj0, x
j
1), is identical to

its view with Sρ and Ff,∞2LTC-AUX with inputs (xj0, r
j
0), (xj1, r

j
1) for randomly chosen (rj0, r

j
1). By the

security of ρ, the latter is indistinguishable from the view of Z when interacting with an honest
execution of ρ with inputs (xj0, r

j
0), (xj1, r

j
1) for randomly chosen rj0, r

j
1, which is identical to an honest

execution of ρ with inputs xj0, x
j
1. Thus Z cannot distinguish whether it interacts with an honest

execution of ρ′ or with Sρ′ and Fg,∞2LTC-AUX. This concludes the proof of the Theorem.

D.1 The Protocol ρ

Let λ be the security parameter, and let f be an efficiently computable deterministic two-input
function. Below we present a two-party leakage-tolerant protocol ρ that strongly emulates the
functionality Ff,∞2LTC-AUX in the (FLSC,FLFS)-hybrid model, where FLSC is the secure communication
functionality and FLFS captures the leakage-free preprocessing functionality. The protocol assumes
a `-continual leakage-resilient strong 2-component OCL scheme with a auxiliary parties. Λ =
(Comp,Π = (PL, PR, PA1 , . . . , PAa)) with an oblivious simulator S = (SL,SR,SA).

Let n be the length of the inputs xj0, x
j
1 ∈ {0, 1}n to be evaluated in the j-th iteration, which

is polynomially related with the security parameter. (The reason that we separate the security
parameter from the length of the input is that the leakage-bound of the protocol only depends on
the security parameter, but not the input length. Thus, by scaling up the security parameter, the
absolute number of leakage bits that the protocol tolerates grows.) Our leakage-tolerant protocol
below essentially makes use of the OCL scheme to perform the evaluation of f(xj0, x

j
1). However,

to ensure input privacy, any party should avoid sharing its input in the clear with the other
party. Instead, in the j-th iteration, the parties first use the OCL scheme to enable P1 to obtain
an encrypted version xj0 ⊕ PRF(r, j) of P0’s input, where PRF is a pseudorandom function and
the PRF key r is encoded as the OCL secret. Then, instead of directly evaluating f , the OCL
scheme is used again to evaluate the following function g((cj = (xj0 ⊕ PRF(r, j)), x1),PRF(r, j)) =

f(cj ⊕ PRF(r, j), xj1).
We now present the leakage-tolerant protocol ρ in detail: It consists of an input-independent

pre-processing stage, which is independent of the function and input to be computed, and an online
stage that depends on the function and input.

In the following, we simplify notation by denoting by initj,bA = initj,bA,1, . . . , init
j,b
A,a, for j ∈ [a] and

b ∈ {1, 2}, the initial states of all auxiliary components of the b-th OCL in the j-th iteration. We

similarly define evlj,bA . Moreover, by xj0 = x1
0, . . . , x

j
0 we denote the sequence of inputs of P0 in the

first j iterations. Similarly, by xj1 = x1
1, . . . , x

j
1 we denote the sequence of inputs of P1 in the first

j iterations and by yj = y1
1, . . . , y

j
1 the sequence of outputs in the first j iterations.
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The input-independent preprocessing stage: The pre-processing stage, or formally the

leakage-free sampling (LFS) functionality FCompρ
LFS , on input (1λ, T ), where T will be specified later,

invokes a compilation algorithm Compρ on (1λ, T ), proceeding as follows:

1. Sample r ← Uλ uniformly at random.

2. Sample two pairs of initial states of the OCL scheme Λ w.r.t. secret r independently and
randomly: (init1L, init

1
R, init

1
A)← Comp(1λ, UT , r) and (init2L, init

2
R, init

2
A)← Comp(1λ, UT , r).

3. Distribute Φ0 = (init1L, init
2
R) to P0, Φ1 = (init1R, init

2
L) to P1 and ΦA = (init1A, init

2
A) to the

auxiliary parties.

(Note that the distribution of the initial states are “crossed”—For the first pair, P0 receives the
left initial state, whereas for the second pair P1 receives the left initial state. In the evaluation
procedure below, two sequential OCL evaluations take place, where P0 plays the left component in
the first evaluation and P1 parties the left component in the second.)

The online stage: For each iteration j, given the initial states Φ0, Φ1 and ΦA sampled in the
preprocessing stage, the two parties P0 and P1 and a axuiliary parties P aux

1 , . . . , P aux
a on common

input (1λ, f, T ), and private inputs xj0 ∈ {0, 1}n and xj1 ∈ {0, 1}n, respectively, proceed in the
following steps, where all messages are sent through the secure channel functionality FLSC:

1. The first OCL evaluation—Compute an encryption cj = xj0 ⊕ PRF(r, j) of xj0:

P0, P1 and the auxiliary parties P aux
1 , . . . , P aux

a compute xj0⊕PRF(r, j) using the OCL protocol

Π. More precisely, P0 acts as the left component using initial state initj,1L , P1 acts as the right

component using initial state initj,1R and parties P aux
1 , . . . , P aux

a act as the auxiliary components

using initial states initj,1A,i, . . . , init
j,1
A,a, respectively. P0 feeds the following function gj1(r) =

g
(j,xj0)
1 (r) = xj0 ⊕ PRF(r, j) to the left component as input. At the end of the evaluation P1

obtains c̃j .

2. The second OCL evaluation—Compute the output f(xj0, x
j
1):

P0 and P1 and the auxiliary parties P aux
1 , . . . , P aux

a compute yj = f(xj0, x
j
1) by evaluating the

function g((c̃j , xj1),PRF(r, j)) using Π again. More precisely, P0 acts as the right component

using initial state initj,2R , P0 acts as the left component using initial state initj,2L and parties

P aux
1 , . . . , P aux

a act as the auxiliary components using initial states initj,2A,1, . . . , init
j,2
A,a, respec-

tively. P1 feeds the function gj2(r) = g
(j,c̃j ,xj1)
2 (r) = f(c̃j ⊕PRF(r, j), xj1) to the left component

as input. At the end of the evaluation P0 obtains ỹj .

3. P0 sends ỹj to P1. They both output ỹj .

T = T (n) is thus set to bound on the time for computing the functions (gj1, g
j
2) on two n-bit inputs.

D.2 Analysis of Security

The following lemma implies Proposition 9.

Lemma 10. Assume that Λ is a `-continual-leakage-resilient strong OCL scheme. Then the above
protocol ρ strongly UC-emulates the functionality Ff,∞2LTC-AUX under `-bounded continual leakage,
when no party is corrupted. Furthermore, if Λ has perfect correctness, ρ also has perfect correctness.
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Proof. It follows from the correctness (or perfect correctness) of Λ that with overwhelming proba-
bility (or with probability 1, respectively) for each iteration j, the two OCL evaluations computes
correctly c̃j = cj = xj0 ⊕ PRF(r, j) and ỹj = g((c̃j , xj1),PRF(r, j)) = f(xj0, x

j
1). Thus the protocol

〈P0, P1, P
aux
1 , . . . , P aux

a 〉 has correctness (or perfect correctness, respectively).

Next, we show that ρ strongly UC-emulates the functionality Ff,∞2LTC-AUX under `-bounded con-
tinual leakage, when no party is corrupted. Recall that to show this, it suffices to consider a
dummy adversary D that does not corrupt any party, and simply follows all instructions of the
environment Z. In particular, D forwards all the protocol messages between the honest parties
P0, P1, P aux

1 , . . . , P aux
a to Z, executes all the leakage queries issued by Z and forwards the answers

to Z. We want to show that there is an oblivious simulator Sρ, such that, for every environment
Z, every large enough λ ∈ N and auxiliary input z ∈ {0, 1}poly(λ), the outputs of Z(1λ, z), when

interacting with Sρ and functionality Ff,∞2LTC-AUX or interacting with D and ρ in the hybrid model

with functionalities FLSC and FCompρ
LFS , are indistinguishable. Below we construct such a simulator

Sρ and show its correctness.

The simulator Sρ. The leakage simulator Sρ simulates the protocol messages and leakage answers
for Z as follows:

Simulate protocol messages: Recall that P0, P1 and parties P aux
1 , . . . , P aux

a communicate via
the secure channel functionality FLSC, which only leaks the length of the messages to the adversary.
Since every message in the protocol belongs to an OCL evaluation, let B = B(λ, T ) be a bound on
the lengths of the messages exchanged between the left and right components when evaluating T -
time functions using Λ and security parameter λ. Then, for every message in the protocol, Sρ sends
message (send, S,R, |B|) with the appropriate senders and receivers S,R ∈ {P0, P1, P

aux
1 , . . . , P aux

a }
to Z.

Simulate leakage answers: Whenever Z sends a leakage query (Pb, L) for b ∈ {0, 1} or (P aux
i , L)

for i ∈ [a] , to simulate the answer to this query, Sρ invokes a subroutine S̃. S̃ proceeds in three
steps: (1) It produces a state translation function Tb or TA, for leakage queries on Pb or P aux

i ,

respectively; (2) If the leakage is on Pb, b ∈ {0, 1}, S̃ obtains the leakage on the ideal state of
Pb (which consists of its input and output pair (xjb, y

j) in the j-th iteration) with respect to the

composed leakage function L ◦ Tb and obtains output ans; (3) If the leakage is on P aux
i , i ∈ [a], S̃

computes ans = L◦TA[i] (where TA[i] denotes the function outputting the state of the i-th auxiliary
party reconstructed by TA) without leaking on the ideal state of any party, and (4) forwards the
answer ans to Z. After the subroutine call completes, the execution returns to Sρ at the state before
it receives the leakage query.

The most important step in S̃ is constructing, independently of the leakage function L, the
state translation function Tb, which translates the ideal-state (xjb, y

j) of Pb in the j-th iteration to
a simulated real-state of Pb or the state translation function TA which reconstructs the simulated
real-states of all auxiliary parties P aux

1 , . . . , P aux
a . Below we describe how for any polynomial p(·), to

simulate the real-states of P0 and P1 in each iteration j ∈ [p = p(λ)] using (xj0, x
j
1) and yj and the

real-states of P aux
1 , . . . , P aux

a without obtaining ideal inputs; we then observe that the simulation of
each party’s state depends only on their own ideal view, which leads to the desired construction of
Tb, TA. More precisely, for each iteration, Sρ keeps in its state stateS a sufficiently long random

string ηj = η1, . . . , ηj such that ηj = c̃j‖ηj1‖η
j
2. ηj is used in every invocation of S̃ to ensure

consistency. Given (xj0, x
j
1, y

j) and ηj the real-states of P0 and P1 and parties P aux
1 , . . . , P aux

a ,
respectively can be simulated by the following procedure:
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Procedure Ideal(f,ρ,p)(1λ,xp0,x
p
1 ; ηj): In the j-th iteration, the real states of P0, P1 consist of

(xj0, x
j
1, y

j) and the states of the two OCL evaluations. The real states of P aux
1 , . . . , P aux

a consist of
the states of the two OCL evaluations but no input or output.

• Simulate the states of the first OCL evaluation:

For each iteration 1 ≤ j ≤ p(λ), the first OCL evaluation computes ciphertext cj = g
(j,xj0)
1 (r) =

xj0+PRF(r, j). Since the secret PRF(r, j) is pseudorandom, the output of the evaluation is sim-

ulated using a truly random simulated ciphertext c̃j . Then, the initial states (initj,1L , initj,1R , initj,1A )

and evaluation states (evlj,1L , evlj,1R , evlj,1A ) are simulated as:

(ĩntl
j,1

L , ẽvl
j,1

L ) = SL(1λ, T, g
j,(xj0)
1 , c̃j ; ηj1)

(ĩntl
j,1

R , ẽvl
j,1

R ) = SR(1λ, T, c̃j ; ηj1)

(ĩntl
j,1

A , ẽvl
j,1

A ) = SA(1λ, T, ηj1)

• Simulate the states of the second OCL evaluation:

For each iteration 1 ≤ j ≤ p(λ), the second OCL evaluation computes g
(j,cj ,xj1)
2 (r) = f(cj ⊕

PRF(r, j), xj1) = yj . Since the simulated ciphertext is c̃j , the simulated input function for

the second evaluation is set to g
(j,c̃j ,xj1)
2 . Then, the initial states (initj,2L , initj,2R , initj,2A ) and

evaluation states (evl2L, evl
2
R, evl

j,2
A ) are simulated as:

(ĩntl
j,2

L , ẽvl
j,2

L ) = SL(1λ, T, g
j,(c̃j ,xj1)
2 , yj ; ηj2)

(ĩntl
j,2

R , ẽvl
j,2

R ) = SR(1λ, T, yj ; ηj2)

(ĩntl
j,2

A , ẽvl
j,2

A ) = SA(1λ, T ; ηj2)

• Finally, the procedure Ideal(f,ρ,p)(1λ, x0, x1 ; ηp) outputs the simulated state of P0 in all p
iterations:

s̃tate0 =

[
(xj0, y

j , g
(j,xj0)
1 , ĩntl

j,1

L , ẽvl
j,1

L , ĩntl
j,2

R , ẽvl
j,2

R )

]
j∈[p]

,

, the simulated state of P1,

s̃tate1 =
[
(xj1, y

j , c̃j , g
(j,c̃,x1)
2 , ĩntl

j,1

R , ẽvl
j,1

R , ĩntl
j,2

L , ẽvl
j,2

L )
]
j∈[p]

and the simulated states of the auxiliary parties P aux
1 , . . . , P aux

a

s̃tateA =
[
(ĩntl

j,1

A , ẽvl
j,1

A , ĩntl
j,2

A , ẽvl
j,2

A )
]
j∈[p]

.

We observe that, indeed, the j-th simulated state, s̃tate0[j], of P0 only depends on (xj0, y
j) and

the random strings ηj = c̃j‖ηj1‖η
j
2, while the j-th simulated state, s̃tate1[j], of P1 only depends

on (xj1, y
j) and the random strings ηj and that the simulated state s̃tateA of the auxiliary parties

P aux
1 , . . . , P aux

a does not depend on any ideal state and depends only on the random strings ηj .

Therefore, in the j-th iteration when b = 0, the subroutine S̃ outputs the function T0 = T η
j

0

(with the random string ηj hardwired in) that on inputs (xj0, y
j) computes s̃tate0[j] (the j-th tuple
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contained in s̃tate0) as procedure Ideal does; in the j-th iteration when b = 1, S̃ outputs T1 = T η
j

1

that on inputs (xj1, y
j) computes s̃tate1[j] (the j-th tuple contained in s̃tate1) as procedure Ideal

does. Finally, in the j-th iteration, the subroutine S̃ outputs the function TA = T η
j

A that does not

take input and outputs s̃tateA[j] (the j-th tuple contained in s̃tateA) as procedure Ideal does. This
completes the description of the simulator.

Validity of simulator Sρ. By construction, the simulator Sρ simulates the protocol messages
to Z perfectly. Therefore, to show that the environment Z(1λ, z) cannot distinguish its interaction

with Sρ using Ff,∞2LTC-AUX from the interaction with D using ρ, it suffices to show that all the leakage
answers obtained in the ideal world are indistinguishable from those obtained in the real world, as
long as the total amount of leakage from each party in each time period is `(λ)-bounded.

As described above in the construction of S̃, the procedure for simulating the leakage answers
can be viewed as first simulating the entire states (s̃tate0, s̃tate1) ← Ideal(f,ρ,p)(1λ,xp0,x

p
1) of P0

and P1 in p(λ) iterations using consistent randomness, and then applying an `-leakage attack
on the simulated states. Thus, it suffices to prove that the simulated states (s̃tate0, s̃tate1) are
indistinguishable from the real states (state1, state1) to all environments that choose the inputs
(xp0,x

p
1) of P0 and P1 and obtain at most `(λ) bits of leakage, separately on the state of each party

in each time period—we refer to such an environment as an `-bounded continual leakage adversary.
Formally, let (state0, state1) ← Real(f,ρ,p)(1λ,x0,x1) denote the random process that samples

the states of P0 and P1 in p honest executions of ρ with inputs xp0,x
p
1. To show the correctness of

Sρ, it suffices to prove the following claim.

Claim 11. Assume that Λ is a `-continual-leakage-resilient strong OCL scheme. Then, for every
polynomial p(·), the following two ensembles are indistinguishable to all `-bounded continual leakage
adversaries.

• {Ideal(f,ρ,p(λ))(1λ,xp0,x
p
1)}λ,n∈N,xp0,xp1∈{0,1}n·p ,

• {Real(f,ρ,p(λ))(1λ,xp0,x
p
1)}λ,n∈N,xp0,xp1∈{0,1}n·p .

Proof. We consider a sequence of hybrid experiments hyb0 to hyb4; we denote by hybi(1
λ,xp0,x

p
1)

the output of the hybrid hybi.

Hybrid hyb0: This hybrid runs p = p(λ) honest executions of the protocol ρ with inputs xp0,x
p
1

and outputs the honest states of (P0, P1, P
aux
1 , . . . , P aux

a ) in each iteration. Thus, the output
distributions of hyb0 and Real are identical. The states of (P0, P1, P

aux
1 , . . . , P aux

a ) are

state0 =

[
(xj0, y

j , g
(j,xj0)
1 , initj,1L , evlj,1L , initj,2R , evlj,2R )

]
j∈[p]

,

state1 =

[
(xj1, y

j , c̃j , g
(j,c̃j ,xj1)
2 , initj,1R , evlj,1R , initj,2L , evlj,2L )

]
j∈[p]

,

stateA =
[
(initj,1A , evlj,1A , initj,2A , evlj,2A )

]
.

Hybrid hyb1: This hybrid proceeds identically to hyb0, except for the following: In the j-th iter-
ation of hyb0, according to ρ, P1 uses the output of the first OCL evaluation c̃j to construct

the input function g(j,c̃j ,xj1) for the second OCL evaluation. In hyb1, P1 additionally receives
the correct output cj = PRF(r, j) + xj0 of the first OCL evaluation, and uses cj to construct
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the input function g(j,cj ,xj1) for the second OCL evaluation; in particular, (evl′
j,2
L , evl′

j,2
R , evl′

j,2
A )

correspond to the input cj . (The output of the first OCL evaluation is ignored). The states
of (P0, P1, P

aux
1 , . . . , P aux

a ) in this hybrid are

state
hyb1
0 =

[
(xj0, y

j , g
(j,xj0)
1 , initj,1L , evlj,1L , initj,2R , evl′

j,2
R )

]
,

state
hyb1
1 =

[
(xj1, y

j , cj , g
(j,cj ,xj1)
2 , initj,1R , evlj,1R , initj,2L , evl′L

j,2
)

]
,

state
hyb1
A =

[
(initj,1A , evlj,1A , initj,2A , evl′

j,2
A )

]
.

By the correctness of Λ, in each iteration the OCL output c̃j equals to the correct output
cj , with overwhelming probability. Therefore, the output distributions of hyb0 and hyb1 are
statistically close.

Hybrid hyb2: This hybrid proceeds identically to hyb1, except that in each iteration, the first
OCL evaluation in the execution of ρ is simulated (and only the second OCL evaluation is
carried out honestly). More precisely, the preprocessing stage of ρ is executed as in hyb1,
sampling random string r and producing initial states Φ0 = (init1L, init

2
R), Φ1 = (init1R, init

2
L),

ΦA = (init1A, init
2
A). Then, in iteration j, instead of performing the first evaluation according

to ρ, hyb2 simulates the states of the first OCL evaluation by invoking the simulator S of Λ

with honest input g
(j,xj0)
1 and output cj = PRF(r, j) + xj0. (The initial states init1L, init

1
R, init

1
A

sampled by the preprocessing stage are ignored.) For every iteration j ∈ [p] we have:

(ĩnit
j,1

L , ẽvl
j,1

L ) = SL(1λ, T, g
(j,xj0)
1 , cj ; ηj1)

(ĩnit
j,1

R , ẽvl
j,1

R ) = SR(1λ, T, cj ; ηj1)

(ĩnit
j,1

A , ẽvl
j,1

A ) = SA(1λ, T ; ηj1)

Next, in each iteration, the second OCL evaluation is carried out honestly as in ρ, with input

function g
(j,cj ,xj1)
2 and initial states initj,2L , initj,2R . Finally, hyb2 outputs the simulated states of

(P0, P1, P
aux
1 , . . . , P aux

a ):

state
hyb2
0 =

[
(xj0, y

j , g
(j,xj0)
1 , ĩnit

j,1

L , ẽvl
j,1

L , initj,2R , evl′
j,2
R )

]
j∈[p]

,

state
hyb2
1 =

[
(xj1, y

j , cj , g
(j,cj ,xj1)
2 , ĩnit

j,1

R , ẽvl
j,1

R , initj,2L , evl′
j,2
L )

]
j∈[p]

,

state
hyb2
A =

[
( ĩnit

j,1

A , ẽvl
j,1

A , initj,2A , evl′
j,2
A )

]
j∈[p]

.

The only difference between hyb1 and hyb2 is that in the former the state corresponding to
the first OCL evaluation is generated honestly, whereas, in the second, it is simulated. Recall
that `-bounded cotinual leakage adversaries leak at most ` bits from the states of P0, P1,
P aux

1 , . . . , P aux
a separately in each time period; by the construction of ρ, they leak at most `

bits from the states of the left component (emulated by P0) and right component (emulated
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by P1) and each of the auxiliary components (emulated by P aux
1 , . . . , P aux

a ) of the first OCL
evaluation separately. Since all the other elements in the state of (P0, P1, P

aux
1 , . . . , P aux

a ) can
be simulated, it follows from the `-continual leakage resilience of Λ that the outputs of hyb1

and hyb2 are indistinguishable to all `-bounded continual leakage adversaries.

Hybrid hyb3: This hybrid proceeds identically to hyb2 except that in each iteration, the second
OCL evaluation in the execution of ρ is also simulated. More precisely, in iteration j, after
running the preprocessing stage and the simulation of the first OCL evaluation as in hyb2,
the state of the second OCL evaluation is simulated by invoking the simulator S of Λ with

honest input g
(j,cj ,xj1)
2 and output yj . (The initial states (init2L, init

2
R, init

2
A) sampled by the

preprocessing stage are ignored.) For each iteration j ∈ [p]:

(ĩnit
j,2

L , ẽvl
j,2

L ) = SL(1λ, T, g
(j,cj ,xj1)
2 , yj ; ηj2)

(ĩnit
j,2

R , ẽvl
j,2

R ) = SR(1λ, T, yj ; ηj2)

(ĩnit
2

A, ẽvl
2

A) = SA(1λ; η2)

Finally, hyb3 outputs the states of (P0, P1, P
aux
1 , . . . , P aux

a ) as

state
hyb3
0 =

[
(xj0, y

j , g
(j,xj0)
1 , ĩnit

j,1

L , ẽvl
j,1

L , ĩnit
j,2

R , ẽvl
j,2

R )

]
j∈[p]

,

state
hyb3
1 =

[
(xj1, y

j , cj , g
(j,cj ,xj1)
2 , ĩnit

j,1

R , ẽvl
j,1

R , ĩnit
j,2

L , ẽvl
j,2

L )

]
j∈[p]

,

state
hyb3
A =

[
(ĩnit

j,1

A , ẽvl
j,1

A , ĩnit
j,2

A , ẽvl
j,2

A )

]
j∈[p]

.

It follows from the same argument for hybrid hyb2 that by the `-continual-leakage resilience of
Λ, the output distributions of hyb2 and hyb3 are indistinguishable to all `-bounded continual
leakage adversaries.

Hybrid hyb4: This hybrid proceeds identically to hyb3 except for the following: Note that in hyb3,
in each iteration, the honest initial states sampled by the preprocessing stages are ignored, and
only the pseudorandom string PRF(r, j) is used (implicitly when using cj = xj0⊕PRF(r, j)) for
later simulation of the OCL evaluations. In hyb4, in each iteration, instead of using PRF(r, j)
to compute the output of the first OCL evaluation cj = xj0 ⊕ PRF(r, j), simply omit the
preprocessing stage and sample directly a random string c̃j as the output of the first OCL
evaluation. Due to the security of the pseudorandom function PRF, we have that {c1, . . . , cp}
and {c̃1, . . . , c̃p} are computationally indistinguishable. Thus, the simulated states output
by hyb3 and hyb4 are also computationally indistinguishable. Furthermore, notice that hyb4

proceeds identically to the Ideal procedure; we have that the output distributions of hyb4 and
Ideal are identical.

Finally, by a hybrid argument, we conclude that the honest states of P0, P1, P
aux
1 , . . . , P aux

a in ρ are
indistinguishable to the simulated states by Ideal to all `-bounded continual leakage adversaries.
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D.3 From Leakage-Tolerant Protocols back to Strong OCL Compilation

Our construction of a two-party, a-auxiliary party continual leakage tolerant protocol ρ, in the
input-independent pre-processing model, crucially relies on the strong continual leakage-resilience
property of the underlying OCL scheme. In this section, we show that this property is, in fact,
necessary. In particular, given any two-party, a-auxiliary party continual leakage tolerant protocol
secure without corruptions, we can construct a strong continual 2 + a-component OCL scheme.

Theorem 7. Assume that, for every efficiently computable deterministic two-input function f :
{0, 1}∗×{0, 1}∗ → {0, 1}∗, there is a 2-party, a-auxiliary party protocol ρ that strongly UC-emulates

the functionality Ff,∞2LTC-AUX under `-bounded leakage in the (FLSC,FLFS)-hybrid model, when no
party is corrupted. Then, there is a 2 + a-component `-continual-leakage-resilient strong OCL
scheme Λ. Furthermore, if ρ has perfect correctness, so does Λ.

The high-level intuition for the theorem was sketched in the introduction. We defer a detailed
proof to the full version.

E Multi-Party Leakage-Tolerant Protocols Secure Against Mali-
cious Corruptions

In the previous section, we restricted attention to the case of two-party LTC protocols with auxiliary
parties (2PLTC-AUX). In this section, we show how to obtain multi-party LTC protocols (MPLTC)
by leveraging our two-party protocols with auxiliary parties and existing MPLTC that are based on
input-dependant processing (IDP). We first give the relevant definitions, and then state and prove
our results.

The MPLTC functionality. The ideal functionality corresponding to MPLTC of a given func-
tion f is defined analogously to the two-party case (as in Section A.2). Also, like in the two-party
case, we may consider either a one-time version or a many-time version in the model of continual
leakage. Below we give the more general functionality for the continual case.

Functionality Ff,∞MLTC

Running with parties (P1, . . . , Pm) and an adversary S, Ff,∞MLTC operates as follows:

• Given inputs (xi1, . . . , x
i
m) from (P1, . . . , Pm), it computes (yi1, . . . , y

i
m) = f(xi1, . . . , x

i
m), notifies

S of the computation, and once S allows, sends yij to Pj .

• The ideal leaky state of any party Pj , after obtaining the ith input and before obtaining i+ 1st,
is (xij , y

i
j).

Figure 9: The multi-party continual LTC Functionality

LTC with IDP. We consider LTC protocols where parties are assisted by a leak-free prepro-
cessing functionality FP that captures an input-independent preprocessing (IIP) phase (similarly
to FLFS) and a related input-dependant processing (IDP) phase. Specifically, FP produces initial
states (init1, . . . , initm) sampled from a fixed distribution ∆, and hands them to the parties, possibly
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together with a public sampling state pub∆. Then, whenever a party Pi obtains an input x = xji in
the jth execution, it locally invokes FP, which executes a randomized input processing procedure
Π(x, pub∆). The procedure, given the input x and public state pub∆ of the initial state sampler,
returns a processed input x̄.

When considering IDP (as in [BGJK12]), it is natural to assume that inputs never reach the
leaky states of parties, and go directly through the processing functionality, i.e., the leaky state of
Pi with respect to FP only contains the processed input. Since we are interested in constructing
leakage-tolerant protocols, and avoid assuming that the input is not leaked on, we will settle for
a weaker FP functionality that does include the parties’ inputs, as part of the leaky state. It can
be verified that leakage-tolerant (or fully leakage-resilient) protocols relying on the strong version
of FP (in particular, [BGJK12]) imply leakage-tolerant (and necessarily not fully leakage-resilient)
protocols relying on the weaker form of FP, which exposes inputs to leakage.

Functionality F∆,Π
P

Running with parties P1, . . . , Pm and an adversary A, FP operates as follows:

• When activated with security parameter λ, and possibly length parameter n, sample initial states
(init1, . . . , initm; s∆)← ∆(1λ, 1n), and a corresponding public state s∆.

• Initial state distribution: When invoked for the first time, send (initi, s∆) to each Pi.

• Input processing: When invoked by Pi, during the jth execution, with input xji , return x̄ji ←
Π(1λ, xji , s∆). In subsequent invocations, during the jth execution, return ⊥.

• The leaky state of Pi initially includes (initi, s∆). At any point, Pi can instruct FP to erase initi
from its state (the public state s∆ need not be erased). In addition, the leaky state of Pi during
the jth execution includes (xji , x̄

j
i ).

Figure 10: The preprocessing functionality

The BGJK protocol. Boyle et al. [BGJK12] construct a continual. fully leakage-resilient MPC
protocol with input-dependant processing, based on standard intractability assumptions and a
common reference string. Their protocol accounts for m-party functions, for any sufficiently large
m, and can withstand (1− ε)m malicious corruptions for an arbitrarily small constant ε.

Their protocol is constructed under the assumption that inputs never reach the leaky states
of parties, and go directly through the input processing procedure. As noted above, this implies
a leakage-tolerant protocol in our input-processing model (i.e., the FP-hybrid model), where the
inputs can be leaked on. Also, their protocol is not formally presented within the leaky UC
framework; however, it can be extended to this setting. Finally, we note that, in the setting of no
corruptions, one could consider a simple no corruption variant of their protocol (based on honest
OCL decryption). Such a variant would only require fully homomorphic encryption and would not
require a common reference string.

Overall, casting their protocol into our setting of leakage tolerance, we have:

Theorem 8 (follows from [BGJK12]).

1. Assume the existence of m-component OCL against `-bounded continual leakage and fully
homomorphic encryption. Then, for any m-party f , there exists a protocol π that (strongly)
UC-emulates F∞MLTC in the (FP,FLSC)-hybrid model, when no party is corrupted.
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2. In the CRS mode, and assuming also WLTC protocols, non-interactive extractable equivocal
commitments, and adaptive NIZKs, there exists a protocol π′ that (strongly) UC-emulates
F∞MLTC in the (FP,FLSC)-hybrid model, when at most (1− ε)m parties are corrupted, where ε
is an arbitrarily small constant and m = λΩ(1).4

Removing input-dependent processing using 2PLTC-AUX. To obtain MPLTC protocols,
we provide two transformations from MPLTC protocols that rely on IDP to protocols that instead
rely on 2PLTC-AUX and input-independent processing (IIP). Both transformations rely on 2PLTC-
AUX secure in the case of no corruptions. The first is a generic transformation for the case that
no party is corrupted. The second transformation is for the case that all but a small constant
fraction of the parties are corrupted; this transformation starts from the BGJK protocol (taking
advantage of specific properties of its IDP). The transformations apply for both the one-time and
the continual settings.

Theorem 9.

1. Assume the existence of a protocol ρ that strongly UC-emulates the functionality Ff2LTC-AUX
under `-bounded continual leakage, with a auxiliary parties, when no party is corrupted. Let
m ≥ a+2 and let π be any m-party protocol that (strongly) UC-emulates the m-party function-

ality FfMLTC under `-bounded continual leakage in the FP-hybrid model, with no corruptions.

Then there is a protocol ρ that strongly UC-emulates the m-party functionality Ff,∞MLTC under
`-bounded continual leakage in the FLFS-hybrid model, with no corruptions.

2. Assume the existence of a protocol ρ that strongly UC-emulates the functionality Ff2LTC-AUX
under `-bounded continual leakage, with a auxiliary parties, when no party is corrupted. Given
the assumptions of Theorem 8, we have that the BGJK Protocol π′ from Theorem 8 strongly
UC-emulates FfMLTC under `-bounded continual leakage in the in the FP-hybrid model in the
presence of N number of malicious corruptions. Under the same assumptions, there exists a
protocol ρ that strongly UC-emulates Ff,∞MLTC under `-bounded continual leakage in the FLFS-
hybrid model, in the presence of the same number N of malicious corruptions

By instantiating the 2PLTC-AUX with the protocols constructed in Section D, which require
a auxiliary parties, we deduce MPLTC protocols based on IIP in the continual setting.

Our tranformation for the no-corruption setting. The high-level idea is simple: the input
processing of the MPLTC can be performed online, and under leakage, jointly by a + 2 parties
by utilizing the protocol ρ (of Section D) that strongly UC-emulates Ff2LTC-AUX under `-bounded
continual leakage, with a auxiliary parties, when no party is corrupted. Namely, to process the input
xi of a given party Pi, it will use the help of another party Pi′ who holds input and a auxiliary
parties without input. Pi and Pi′ each sample independently a long enough random string ri
and ri′ , respectively, and all a + 2 parties participate in 2PLTC-AUX to compute the two-party
function g((xi, pub, ri), ri′) that computes the processing function x̄i = Π(xi, pub;Ext(ri, ri′)) where
the randomness r = Ext(ri, ri′) is derived from the two random strings using a two-source extractor
(e.g., inner product). Once, each party obtains this processed input, the parties then run the original
MPLTC. Intuitively, by the guarantees of two-source extraction, provided that there is only bounded
separate leakage on each of the random strings, the randomness r = Ext(ri, ri′) is statistically
independent of the leakage, achieving the same effect as leakage-free input preprocessing.

4More accurately, in this case, the fully homomorphic encryption should also have a certifiable randomness property
(satisfied by most known schemes).
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Extending to the semi-honest corruptions setting. The above procedure is only secure
assuming that Pi′ and all auxiliary parties assisting parties Pi and Pi′ are honest. Indeed, assuming
Pi′ or one of the auxiliary parties is (even semi-honestly corrupted) the adversary may be able to
leak jointly on ri′ , ri since the security guarantees for our 2PLTC-AUX protocols hold only when
no parties are corrupted.

Our approach towards overcoming this problem in the semi-honest setting is to have each party
Pi jointly process its input with all possible subsets of a+ 1 other parties, and then aggregate the
processed inputs, some of which were computed with dishonest parties, into one processed input.
Since the total number of corrupted parties is bounded, we are guaranteed that at least one subset
is entirely honest and thus the aggregated input will be safe to use. While we do not know how
to do this in general, we observe that the input-processing in the BGJK protocol possesses some
additional properties, which give rise to such an approach. Specifically, in the BGJK protocol IDP
function Π(xi, pk; r) := Encpk(xi; r) simply samples an encryption of the input xi under a public
key pk for a fully-homomorphic encryption scheme, where pk is determined as part of the input-
independent processing (in particular, there is no leakage on the randomness for the encryption).

To implement the above idea, for each subset S ⊆ [m] \ {i} (where m is the number of parties
participating in the protocol) of size a + 1 we let each Pi jointly compute with all parties Pj for
j ∈ S, an encryption cS of zero, where the randomness is computed by a two-source extractor, as
above. Then, Pi aggregates all these ciphers by adding them together to a new zero encryption
c =

∑
S⊆[m]\{i},|S|=a+1 cS , and uses them to get a fresh encryption, cxi of his input xi, by encrypting

xi under leakage (and thus non-securely) and adding to it the aggregated zero encryption c. It can
be shown that, in known fully homomorphic encryption schemes, the eventual encryption of xi is
semantically-secure provided that any one of the zero encryptions cS is.

We note that the noise distribution of cxi resulting from the above implementation not statis-
tically or computationally close to the noise distribution of encryptions of xi returned by the ideal
pre-processing functionality FP. However, since the total number of corrupted parties is bounded,
there must be some set of completely honest parties S∗, and so we have the property that even
under semi-honest corruptions, there is some encryption cS∗ corresponding to the set S∗ that can
be replaced with a random encryption of a non-zero value during the simulation. This is sufficient
for the proofs of BGJK to go through. We elaborate further on this in the full verison.

Achieving security in the malicious corruptions setting. In the malicious setting, the
approach outlined above fails due to the following issues: (1) A malicious party can affect the
correctness of the subcomputations and in particular, the encryptions cS for sets S which contain
corrupted parties may not be valid encryptions of 0. This, in turn, will affect the correctness of the
entire computation. (2) For the security analysis of the BGJK protocol π′, the preprocessing must
output not only an encryption of Pi’s input xi, but also an NIZK of plaintext knowledge, which
allows the simulator to extract the party’s input. However, Pi cannot output an NIZK of plaintext
knowledge for its ciphertext cxi = Encpk(xi; r) + c, since he does not know the randomness used to
compute c. In the following we outline how to solve both of these problems.

• Addressing (1): Instead of using the 2PLTC-AUX protocol to compute Encpk(0; r), we run
the 2PLTC-AUX protocol with each subset S of parties to compute both cS = Encpk(0; r) as
well as an NIZK proof that cS is a valid encryption of 0.

• Addressing (2): Pi computes c =
∑
S⊆[m]\{i},|S|=a+1 cS and adds to it a fresh encryption,

Encpk(xi; ri) of its own input xi, yielding cxi . In addition, Pi computes an NIZK of knowledge
that cxi is a sum of X = 1 +

(
m−1
a+1

)
encryptions c1, c2, . . . , cX such that (1) Pi knows the
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plaintext and randomness for c1 (2) For each c2, . . . , cX , Pi knows a correctly verifiying NIZK
proof π for the statement that ci is a valid encryption of 0.

Formalizing and proving the security of the above modifications is fairly straightforward. We
defer a full analysis to the full version.
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