
USENIX Association

Proceedings of the First Symposium on
Networked Systems Design and Implementation

San Francisco, CA, USA
March 29–31, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

OSPF Monitoring: Architecture, Design and Deployment
Experience

Aman Shaikh Albert Greenberg
AT&T Labs - Research AT&T Labs - Research

Florham Park, NJ 07932, USA Florham Park, NJ 07932, USA
ashaikh@research.att.com albert@research.att.com

Abstract

Improving IP control plane (routing) robust-
ness is critical to the creation of reliable and sta-
ble IP services. Yet very few tools exist for ef-
fective IP route monitoring and management. We
describe the architecture, design and deployment
of a monitoring system for OSPF, an IP intra-
domain routing protocol in wide use. The archi-
tecture has three components, separating the cap-
ture of raw LSAs (Link State Advertisements –
OSPF updates), the real-time analysis of the LSA
stream for problem detection, and the off-line
analysis of OSPF behavior. By speaking “just
enough” OSPF, the monitor gains full visibility
of LSAs, while remaining totally passive and vis-
ible only at the point of attachment. We describe
a methodology that allows efficient real-time de-
tection of changes to the OSPF network topol-
ogy, flapping network elements, LSA storms
and anomalous behavior. The real-time analy-
sis capabilities facilitate generation of alerts that
operators can use to identify and troubleshoot
problems. A flexible and efficient toolkit pro-
vides capabilities for off-line analysis of LSA
archives. The toolkit enables post-mortem anal-
ysis of problems, what-if analysis that can aid in
maintenance, planning, and deployment of new
services, and overall understanding of OSPF be-
havior in large networks. We describe our expe-
riences in deploying the OSPF monitor in a large
operational ISP backbone and in a large enter-
prise network, as well as several examples that
illustrate the effectiveness of the monitor in track-
ing changes to the network topology, equipment
problems and routing anomalies.

1 Introduction
Effective management and operation of IP

routing infrastructure requires sound monitoring
systems. With the advent of applications that re-

quire a high degree of performance and stability,
such as VoIP and distributed gaming, network op-
erators are now paying considerable attention to
the performance of the routing infrastructure – its
convergence, stability, reliability and scalability
properties. Yet very few monitoring tools exist
for effective routing management and operation.
In this paper we present a monitoring system for
one of the widely used intra-domain routing pro-
tocols, OSPF [1] by providing its detailed archi-
tecture and design. The OSPF Monitor has been
deployed in two operational networks: a large
enterprise network and an ISP network. It has
proved to be a valuable asset in both networks.
We provide several examples illustrating differ-
ent ways in which the monitor has been used, as
well as the lessons learned through these experi-
ences.

We designed the OSPF Monitor to meet the
following objectives:

1. Provide real-time tracking of OSPF behav-
ior. Such real-time tracking can be used for (a)
identifying problems in the network and help-
ing operators troubleshoot them, (b) validation
of OSPF configuration changes made for main-
tenance or traffic engineering purposes, and (c)
real-time presentation of accurate views of the
OSPF network topology.

2. Facilitate off-line, in-depth analysis of
OSPF behavior. Such off-line analysis can
be used for (a) post-mortem analysis of recur-
ring problems, (b) generating statistics and re-
ports about network performance, (c) identify-
ing anomaly signatures and using these signa-
tures to predict impending problems, (d) tun-
ing configurable parameters, and (e) improving
maintenance procedures.

There are two basic approaches for monitoring
OSPF: rely on SNMP [2] MIBs and traps, or lis-
ten to Link State Advertisements (LSAs) flooded

by OSPF to describe the network changes. Our
prior work [3] has shown the superiority of the
LSA-based approach, so we take the approach of
passively listening to LSAs for our OSPF Mon-
itor. The monitor directly attaches to the net-
work, and speaks enough OSPF to receive LSAs.
These LSAs are then analyzed in real-time to
identify network problems and validate configu-
ration changes. LSAs are also archived for a de-
tailed off-line analysis, for example, for identifi-
cation and diagnosis of recurring problems. The
monitor uses a three-component architecture to
provide a stable, scalable and flexible solution.
The three components are:

1. LSA Reflector (LSAR) which collects LSAs
from the network,

2. LSA aGgregator (LSAG) which analyzes LSA
streams in real-time to identify problems, and

3. OSPFScan which provides off-line analysis
capabilities on top of LSA archives.

The paper describes these three components in
detail and the benefits offered by this three-
component architecture. Since the LSAR and
LSAG are key to real-time monitoring, their ef-
ficiency and scalability are of utmost importance.
We demonstrate the efficiency and scalability of
the LSAR and LSAG in terms of network size
and LSA rate through lab experiments.

This paper is organized as follows. We discuss
related work in Section 2. Section 3 provides
an overview of OSPF. Section 4 discusses the
three-component architecture of the OSPF Mon-
itor. Sections 5, 6 and 7 provide detailed de-
scription of these three components. Section 8
presents the performance analysis of LSAR and
LSAG through lab experiments. In Section 9, we
describe salient aspects of our experiences with
deploying the monitor in commercial networks.
Finally, Section 10 presents conclusions.

2 Related Work
Monitoring and analyzing dynamics of routing

protocols have become active areas of research
of late. Route monitoring systems have started
to appear in the market-place from networking
startups, such as Packet Design [4] and Ipsum
Networks [5]. However, the products offered by
these companies have appeared in the market af-
ter our OSPF Monitor was designed. Moreover,
details about the architecture and implementation
of these products are not available in the public
domain. The IP monitoring project at Sprint [6]
consists of an IS-IS listener and a BGP listener

that collects IS-IS and BGP data from the Sprint
network. Although a number of studies have
appeared based on the data collected by these
listeners, the actual architecture of the monitor-
ing system has not received attention. Our prior
work [7] and Watson et al. [8] presented case
studies of OSPF dynamics in real networks. Al-
though [7] used the OSPF Monitor described in
this paper to collect and analyze the OSPF data
for the case study, the paper did not focus on
the design and implementation of the monitor it-
self. Neither did [8] focus on the design of the
monitor. Route-Views [9] and RIPE [10] collect
and archive BGP updates from several vantage-
points; a number of research studies have bene-
fited from this data. However, both Route-Views
and RIPE merely collect BGP updates; they do
not provide software for monitoring or analyzing
the updates.

Recall that one of the design goals of the OSPF
Monitor is to track the OSPF topology. Several
studies have dealt with the discovery and tracking
of the network topology. For instance, our prior
work [3] described SNMP and LSA-based ap-
proaches for designing an OSPF topology server,
and evaluation of these approaches in terms of
operational complexity, reliability and timeliness
of information. The evaluation showed the su-
periority of the LSA-based approach in terms of
reliability and robustness over the SNMP-based
approach. This paper extends the LSA-based
approach for monitoring OSPF. The Rocketfuel
project [11, 12, 13] tackled the problem of infer-
ring ISP topologies and weight settings through
end-to-end measurements. Feldmann et al. [14]
described the approach of periodically dumping
router configuration files of routers. This ap-
proach provides a static view of the topology.
One can make it more dynamic by increasing
the dumping frequency, but it is hard to go be-
yond certain limits because of the size of IP net-
works today. Lakshman et al. [15] mentioned
approaches for real-time discovery of topology
in their work on the RATES System for MPLS
traffic engineering. But topology discovery was
just one of the modules of their system and they
did not go into details. Siamwalla et al. [16]
and Govindan [17] discussed topology discovery
methods that do not require cooperation from the
network service providers, relying on a variety
of probes, including pings and traceroutes. Such
methods provide indications of interface up/down
status and router connectivity. However, these
methods do not deal directly with OSPF topology

tracking or monitoring, the topic of this paper.

3 OSPF Overview
OSPF [1] is a link state routing protocol. With

link state protocols, each router within the do-
main discovers and builds a complete and con-
sistent view of the network topology as a di-
rected graph. Each router represents a node in the
graph, and each link between neighboring routers
represents a unidirectional edge. Each link also
has an associated weight that is administratively
assigned in the configuration file of the router.
Using the weighted topology graph, each router
computes a shortest path tree with itself as the
root, and applies the results to build its forward-
ing table. This assures that packets are forwarded
along the shortest paths defined in terms of link
weights to their destinations. We will refer to the
computation of the shortest path tree as an SPF
computation, and the resultant tree as an SPT.

For scalability, an OSPF domain may be di-
vided into areas determining a two-level hierar-
chy. Area 0, known as the backbone area, resides
at the top level of the hierarchy and provides con-
nectivity to the non-backbone areas (numbered 1,
2, ...). OSPF assigns each link to exactly one
area. The routers that have links to multiple ar-
eas are called border routers. Every router main-
tains a separate copy of the topology graph for
each area it is connected to. In general, a router
does not learn the entire topology of remote areas
(i.e., the areas in which the router does not have
links), but instead learns the weight of the short-
est paths from one or more border routers to each
node in remote areas. In addition, the reachabil-
ity of external IP prefixes (associated with nodes
outside the OSPF domain) can be injected into
OSPF. Roughly, reachability to an external prefix
is determined as if the prefix were a node linked
to the router that injects the prefix into OSPF.

Routers running OSPF describe their local
connectivity in Link State Advertisements (LSAs).
These LSAs are flooded reliably to other routers
in the network, which the routers use to build
the consistent view of the topology described
earlier. The set of LSAs in a router’s mem-
ory is called the link state database and concep-
tually forms the topology graph for the router.
A change in the network topology requires af-
fected routers to originate and flood appropriate
LSAs. For instance, when a link between two
routers comes up, the two ends have to originate
and flood LSAs describing the new link. More-
over, OSPF employs a periodic refresh of LSAs.

The default value of the refresh-period is 30 min-
utes. So, even in the absence of any topologi-
cal changes every router has to periodically flood
self-originated LSAs. Due to the reliable flood-
ing of LSAs, a router can receive multiple copies
of a change or refresh triggered LSA. We term
the first copy received at a router as new and sub-
sequently received copies as duplicates.

Two routers are termed neighbor routers if they
have interfaces to a common network (i.e, they
have a link-level connectivity). Neighbor routers
form an adjacency so that they can exchange
routing information with each other. OSPF al-
lows a link between the neighbor routers to be
used for forwarding only if these routers have the
same view of the topology, i.e., the same link
state database. This ensures that forwarding data
packets over the link does not create loops.

4 Architecture
As mentioned earlier, the OSPF Monitor con-

sists of three components:

1. LSA Reflector (LSAR): The LSAR captures
LSAs from the network. Section 5 describes
various modes used by the LSAR for network
attachment. The LSAR sends the LSAs over a
TCP connection to the real-time analysis com-
ponent, and also archives them for off-line
analysis.

2. LSA aGgregator (LSAG): The LSAG re-
ceives a stream of LSAs from one or more
LSARs, and performs real-time analysis of the
stream. The LSAG maintains and populates a
model of the OSPF network topology (as de-
scribed in Section 6), using the LSA stream.

3. OSPFScan: The OSPFScan is used for off-
line analysis of the LSA archives. The OSPF-
Scan implements a three step analysis method,
described in Section 7.

Figure 1 depicts how the three components are
deployed in an example OSPF network.

Separating real-time monitoring into the
LSAR and LSAG components provides several
benefits. Each function is simplified and can be
replicated independently to increase the overall
reliability. Another benefit is that the LSAG can
selectively receive a subset of LSAs, for exam-
ple, LSAs belonging to a given OSPF area. Fur-
thermore, the LSAR has to reside close to the
network to capture LSAs, and so must be very
simple in order to achieve a high degree of re-
liability. Moreover, as shown in Figure 1, mul-
tiple LSAR boxes may be required to cover all

‘‘Reflect’’ LSAs
LSAR 2

OSPFScanLSAG

LSAs
Off−line Analysis

Area 2
OSPF Domain

Area 0Area 1

Real−time Monitoring

TCP connection LSAs

LSAR 1
‘‘Reflect’’ LSAs

LSA

Cache
LSA

Cache
LSA

Archive

Figure 1: Three component architecture of the
OSPF Monitor.

the areas since most LSAs only have an area-
level flooding scope. Multiple LSAR boxes be-
comes almost a necessity if areas are geograph-
ically widespread. Finally, the LSAG, having to
support applications, may require more complex
processing and more frequent upgrades. Separat-
ing the LSAG from the LSAR allows us to bring
LSAG up and down without disturbing LSARs.

Separating the real-time analysis (LSAG) from
the off-line analysis (OSPFScan) offers a number
of benefits. The LSAG, being real-time, needs
to be very reliable (24x7 availability) and effi-
cient. This requires us to be extremely careful
about what analysis capabilities are supported by
the LSAG. The OSPFScan, on the other hand, is
required to process a large volume of data as ef-
ficiently as possible and allow users to query the
archives. However, it also has freedom in terms
of what analysis capabilities it can support. Al-
though, real-time and off-line analysis are imple-
mented as separate components, they work hand
in hand. Any analysis capability that is supported
in real-time is also supported as an off-line play-
back.

5 LSAR
The LSAR captures LSAs from the network

for real-time and off-line analysis. LSA traffic is
reliably flooded by OSPF, not routed since LSAs
need to be reliably communicated even when
routing is impaired or broken. As a result, the
LSAR has to be closely attached to the network it
monitors. There are four choices for network at-
tachment. Below, we describe these four choices
along with their pros and cons:

1. Wire-tap mode: An obvious way of captur-
ing LSAs from a network is to use a tap on a
link of the network, either a physical tap or port

forwarding on a layer-2 switch. We will gener-
ically refer to this way of capturing LSAs as
the wire-tap mode. If done in the right man-
ner, this allows one to capture LSAs in a com-
pletely passive manner. However, depending
on the physical media or the layer-2 technol-
ogy being used, wire-tapping may not be op-
erationally feasible. As a result, the LSAR
currently does not support wire-tap, though it
should be relatively straight-forward to add a
module that supports LSA capture via wire-
tap.

2. Host mode: LSAs are exchanged via a multi-
cast group all-rtrs on a broadcast network [1].
Thus, on broadcast networks, LSAs can be
received by joining this group; we term this
mode of network attachment as the host mode.
In this mode, the LSAR does not have to es-
tablish any form of adjacency with operational
routers in the network. As a result, the LSAR is
completely invisible to the routers, which is the
ideal situation for any passive monitoring sys-
tem. However, there are a few disadvantages.
First, the LSAR has to initialize the database as
routers flood LSAs on the network during the
refresh process. In the worst case, it can take
one refresh cycle (30 minutes as per [1]) for the
LSAR to receive the first copy of an LSA after
it comes up. Second, OSPF’s reliable flooding
does not extend to the LSAR in the host mode.
If the LSAR misses transmission of an LSA to
the multicast group for any reason, the sending
router will be unaware of this, and there will
be no retransmission. Finally, the host mode
can be used only on a broadcast capable media
where LSAs are sent to the multicast group.

3. Full adjacency mode: On a point-to-point
link where routers do not send LSAs to the
multicast group, the LSAR has to establish
an adjacency with a router to receive LSAs.
We will refer to this mode as the full adja-
cency mode. In this mode, the LSAR cannot
be completely invisible to the network. How-
ever, it is crucial to ensure that the LSAR has
minimal impact on the network, and most im-
portantly, other routers in the network never
send data packets to the LSAR to be forwarded
elsewhere. A natural line of defense is to
use router configuration measures: assign high
OSPF weights and install strict access control
lists and route filters on the link to the LSAR.
Another line of defense stems from the fact
that the LSAR (by design) cannot send LSAs.
As a result, the link from the LSAR to the

router it attaches to does not exist in the OSPF
topology graph. Since OSPF uses a link for
data forwarding only if both of its unidirec-
tional edges exist in the graph [1], this ensures
that the LSAR-router link cannot be used for
data forwarding. However, the LSAR might
still have an impact on the network since the
router advertises a link to the monitor in its
router LSA. If the LSAR or its link with the
router is flapping (going up and down), the as-
sociated adjacency can start flapping, trigger-
ing SPF calculations around the network.

4. Partial adjacency mode: To prevent network-
wide SPF calculations when the adjacency be-
tween the LSAR and the router is flapping in
the full adjacency mode, we can keep the adja-
cency in an “intermediate” state at the router,
so that the router does not include a link to
the LSAR but still sends LSAs to it. We
refer to this mode as the partial adjacency
mode. To keep the LSAR-router adjacency in
the intermediate state, the LSAR describes a
“fake” LSA to the router during the link state
database synchronization process but never ac-
tually sends it out to the router. As a re-
sult, the database is never synchronized, the
adjacency stays in OSPF’s loading state, and
is never fully established. Note that this is
permissible under the OSPF specification [1].
With the partial adjacency, instability at the
LSAR does not impact other routers in the net-
work, which makes for an attractive choice.
However, there are two potential issues. First,
with an adjacency in the intermediate state, the
router cannot delete LSAs from its link state
database [1]. In the worst case, this might lead
to memory exhaustion on the router. We deal
with this problem by periodically dropping
the partial adjacency (so that the router has
a chance of garbage collecting the link state
database) and then re-establishing the partial
adjacency after a short time interval. In our
implementation, the LSAR drops its adjacency
once every 24 hours for a five second period.
While there is a possibility for the LSAR to
lose data during this five second period, we be-
lieve that chances of this happening are rare.
Second, the use of the partial adjacency is a
deviation from the normal behavior of OSPF.
Keeping an adjacency in the loading state on
a router for a long time might generate alarms,
or might cause the router to drop the adjacency.
However, we have not observed this problem
with the commercial routers we have tested.

6 LSAG
As mentioned in Section 4, the LSAG receives

a stream of LSAs from the LSAR for real-time
analysis. The LSAG prints messages on the con-
sole when it detects changes to the network topol-
ogy or a behavior that does not conform to the
OSPF standards. These messages allow opera-
tors to identify problems in the network. Sec-
tion 6.1 provides more details about various types
of messages generated by the LSAG. Under the
hood, the LSAG maintains and updates a snap-
shot of the network topology to identify topologi-
cal changes and anomalous behavior. Section 6.2
provides a detailed description of the model and
how it helps LSAG print console messages. This
topology model also allows the LSAG to dump
topology snapshots periodically and upon topo-
logical changes. These snapshots in turn can
be used by applications that might benefit from
them.

6.1 Classification of Real-time Messages

(c) Change messages for external routes

(1) Topology Change Messages

RTR FLAP
INTF FLAP
ADJACENCY FLAP
STUB LINK FLAP

TYPE−5 ROUTE FORW_ADDR CHANGE

TYPE−4 ROUTE COST CHANGE

(ii) Messages about an ASBR in a remote area

(b) Change messages for remote areas

TYPE−5 ROUTE ANNOUNCED
TYPE−5 ROUTE WITHDRAWN
TYPE−5 ROUTE COST CHANGE
TYPE−5 ROUTE COST_TYPE CHANGE

TYPE−3 ROUTE FLAP

TYPE−4 ROUTE FROM NON−BORDER RTR
TYPE−5 ROUTE FROM NON−ASBR

(3) Messages related to Anomalous Behavior

(4) LSA Storm Messages
LSA STORM

TYPE−3 ROUTE FROM NON−BORDER RTR

TYPE−4 ROUTE FLAP
TYPE−5 ROUTE FLAP

(2) Flap Messages

NON−BORDER RTR YET TO WITHDRAW TYPE−3/4 ROUTES
NON−ASBR YET TO WITHDRAW TYPE−5 ROUTES
DUPLICATE ADJACENCY
DUPLICATE STUB LINK

TYPE−4 ROUTE WITHDRAWN

INTF MASK CHANGE

(ii) Messages about an interface on a router

ADJACENCY UP
ADJACENCY DOWN
ADJACENCY COST CHANGE
ALL ADJACENCIES DOWN

INTF DOWN

RTR UP
RTR DOWN
BECAME BORDER RTR
NO LONGER BORDER RTR
BECAME ASBR
NO LONGER ASBR

(i) Messages about a router

(iii) Messages about an adjacency

(v) Messages about DR on a broadcast network

(a) Change messages insides an area

TYPE−3 ROUTE ANNOUNCED
TYPE−3 ROUTE WITHDRAWN
TYPE−3 ROUTE COST CHANGE

(i) Messages about a prefix in a remote area

TYPE−4 ROUTE ANNOUNCED

MASK CHANGE

STUB LINK UP
STUB LINK DOWN
STUB LINK COST CHANGE

(iv) Messages about a host−route on a router

NEW DR
NO LONGER DR
DR CHANGE

Figure 2: Classification of the LSAG messages.

Figure 2 shows classification of various mes-
sage types supported by the LSAG. Each message
contains a time-stamp, and a message type along
with the attributes. The message type is used for
identifying the kind of event or problem in the
network. For example, a “RTR DOWN” message
is issued when OSPF process on a routes dies.
The attributes provide more detail about the mes-
sage. For example, if the message type is “RTR
DOWN”, the attributes include the router-id of
the associated router.

Let us describe the four top-level categories
shown in Figure 2:

1. Topology Change Messages: These messages
are generated for changes in the network topol-
ogy. As Figure 2 shows, majority of message
types fall into this category. These messages
help operators identify problems in the net-
work, as well as help them validate mainte-
nance activities.

2. Flap Messages: These messages are generated
for network elements (e.g., router, link etc.)
that go up and down repeatedly. These mes-
sages are always preceded by topology change
messages. For example, a “RTR FLAP” mes-
sage is preceded by several “RTR DOWN” and
“RTR UP” messages. These messages are use-
ful for getting an operator’s attention. They
also act as early warning signs to the network
stability.

3. Messages related to Anomalous Behavior:
These messages are generated when the ob-
served behavior deviates from the expected be-
havior of OSPF. An example of an anoma-
lous behavior is a non-border router originat-
ing summary LSAs (the corresponding mes-
sage type is “TYPE-3 ROUTE FROM NON-
BORDER RTR”). Often these messages indi-
cate configuration errors or bugs in the vendor
software.

4. LSA Storm Messages: These messages are
generated when too many refresh instances of
an LSA are observed by the LSAG. Often these
messages indicate bugs in the vendor software.
They also act as early warning signs to the net-
work stability.

6.2 Topology Model

The LSAG uses a topology model to gen-
erate messages described in the previous sec-
tion. Apart from generating these messages, the
LSAG is also required to efficiently support real-
time queries about the network topology, such

as “how many routers does area X have?” or
“how many interfaces does router X have in area
Y?”. This requires a model that can be updated
and searched efficiently, and can be scaled to net-
works consisting of hundreds of routers and thou-
sands of links.

We have designed and implemented a model
meeting these goals, which consists of the follow-
ing six classes:

1. Area: represents an OSPF area.
2. Rtr: represents a router.
3. AreaRtr: represents area-specific parameters

of a router. Recall that OSPF does not assign a
router to an area. It assigns each interface of a
router to an area. Thus, a router can have some
interfaces in each of several areas. An AreaRtr
object contains the set of interfaces a router has
in a given area.

4. Ntw: represents a subnet or a prefix.
5. Intf: represents an interface of a router.
6. Link: represents a unidirectional weighted

edge in the topology. The monitor classifies
links into three types: intra-area links that rep-
resent link between a pair of routers or a router-
subnet pair, inter-area links to represent sum-
mary routes injected by border routers, and ex-
ternal links to represent external routes redis-
tributed into OSPF. The local and remote ends
of each link are objects of one of the above
mentioned five classes.

Figure 3 shows the model in terms of “con-
tainment” relationship between objects of these
six classes. For example, at the highest level, the
model consists of a set of Area objects represent-
ing the areas of the OSPF network. Each Area
object in turn contains a set of Ntw objects rep-
resenting all the subnets of the associated area.
AreaRtr objects are special. Since each AreaRtr
object represents area-specific parameters of a
router, it is contained in two objects: a Rtr ob-
ject, and an Area object. In our implementation,
search, add and delete operations on the objects
are implemented via hash tables, enabling scal-
ing to large networks.

Upon receiving an LSA, the LSAG updates the
relevant part of the topology model. As an ex-
ample, consider what happens when the LSAG
receives a router LSA. The LSAG has to update
the AreaRtr object that represents the router LSA.
This may result in addition or deletion of inter-
faces, or a change in the administrative weight of
interfaces. Router LSA can also result in addition

Set of areas Set of rtrs

Area Ntw Rtr

Network LSA

Set of links
Set of inter−area links

Set of external ntws

Set of external links

Set of intfs

Set of subnets Set of area−specific paramsSet of rtrs
Ntw

External LSA
Flapping ext route

Link

Summary LSA
Flapping link

Link
Link

Flapping summary

Intf

Ntw

AreaRtr
Router LSA
Flapping rtr

Link
Flapping link

Flapping intf

Set of intra−area links

Set of summarized
subnets

Figure 3: Topology model of the LSAG.

or deletion of an AreaRtr object.

The topology model conveniently allows the
identification of a flapping node and generation
of the associated flap message (see Section 6.1).
The LSAG considers a node to be flapping if the
node goes down and comes up � times within a

�
second time frame, where both � and

�
are config-

urable parameters. To identify flaps, each node of
the OSPF topology is mapped to a specific object
of the topology model. This mapping is shown
in Figure 3 by statements of the form “flapping
xxx” under appropriate objects. For example, an
external route is mapped to a Link object in the
set of external links in the Rtr object representing
the advertising router.

The topology model is also used for identify-
ing LSA storms. As described in Section 6.1,
the LSAG issues an LSA storm message if many
new copies of a refresh LSA are received within
a short time period. Note that LSAs that indi-
cate change(s) to the model are not considered a
part of an LSA storm. More precisely, the LSAG
issues a warning about too many LSA copies if
it receives � refresh copies of an LSA within�

seconds. To identify LSA storms, each LSA
is mapped to a specific object of the topology
model. The mapping is intuitive in the sense that
the LSA essentially describes the status of the ob-
ject it is mapped to. For example, each router
LSA is mapped to an AreaRtr object. Similarly,
each external LSA is mapped to a Link object in

the set of external links of a Rtr object.

7 OSPFScan
As mentioned in Section 4, the OSPFScan is

used for off-line analysis of LSA archives. At
present, the OSPFScan provides the following
functionalities:

1. Classification of LSA traffic. The OSPFScan
allows various ways of “slicing-and-dicing” of
LSA archives. For example, it allows isolating
LSAs indicating changes from the background
refresh traffic. As another example, it also al-
lows classification of LSAs (both change and
refresh) into new and duplicate instances. We
have used this capability of the OSPFScan to
analyze one month worth of LSA traffic as a
case study for the enterprise network [7].

2. Modeling topology changes. Recall that
OSPF represents the network topology as
a graph. Therefore, the OSPFScan allows
modeling of OSPF dynamics as a sequence
of changes to the underlying graph where
a change represents addition/deletion of ver-
tices/edges to this graph. Furthermore, the
OSPFScan allows a user to analyze these
changes by saving each change as a single
topology change record. Each such record
contains information about the topological ele-
ment (vertex/edge) that changed along with the
nature of the change. For example, a router is
treated as a vertex, and the record contains the

OSPF router-id to identify it. As another exam-
ple, a link between a pair of routers is treated
as an edge, and the corresponding record uses
router-ids of the two ends to identify the link.
We have used change records for a detailed
analysis of router/link availability as we will
see in Section 9.1.2.

3. Emulation of OSPF routing. The OSPFScan
allows a user to reconstruct the routing table of
any given set of routers at a given point of time
based on the LSA archives. For a sequence
of topology changes, the OSPFScan also al-
lows the user to determine changes to these
routing tables. Together, these capabilities al-
low the user to determine an end-to-end path
through the OSPF domain at a given time, and
see how this path changed in response to net-
work events over a period of time.

4. Statistics and reports. The OSPFScan allows
generation of statistics and reports on specific
OSPF dynamics and anomalies over given time
intervals. A simple example is the ability to
count the number of change, new and duplicate
LSAs over a given time period.

5. Correlation with other data sources. The
functionalities provided by the OSPFScan
form a basis for correlating OSPF data with
other data sources such as usage data (e.g.,
SNMP statistics and Cisco netflow statistics),
fault data (e.g., SNMP traps and syslogs),
network inventory and topology data (e.g.,
router configuration files), other dynamic rout-
ing data (e.g., BGP updates), and maintenance
data (workflow logs). For example, the routing
table entries generated by the OSPFScan have
been used by Teixeira et al. [18] to analyze the
impact of OSPF changes on BGP routing.

The OSPFScan implements a three-step proce-
dure to analyze each LSA record. These three
steps include parsing the LSA, testing the LSA
against a query expression, and analyzing the
LSA if it satisfies the query. The OSPFScan al-
lows a user to specify the query expression and
the kind of analysis to be carried out with the
LSAs.

The parsing step converts each LSA record of
the archive into a canonical form. The query ex-
pression is applied to the canonical form, and not
to the raw LSA record. The use of a canonical
form makes it easy to adapt OSPFScan’s func-
tionality to support LSA archive formats other
than the native format used by the LSAR. Adap-
tation only requires addition of a routine to parse

the new format into the canonical form. The
query language supported by the OSPFScan has
a C-style expression syntax. An example query
expression is “areaid == ’0.0.0.0”’ which selects
all the LSAs belonging to area 0. The OSPFS-
can uses an internally developed data stream scan
library which allows efficient processing of ar-
bitrary data, described via a canonical form for
each data type. The OSPFScan also allows fur-
ther analysis of the information derived from the
LSA archives such as topology changes and rout-
ing entries by implementing a similar three-step
procedure.

8 Performance Evaluation
In this section, we characterize the perfor-

mance of the monitor through lab experiments.
We focus on the LSAR and LSAG which are cen-
tral to the real-time monitoring, and analyze how
these two components scale with the LSA-rate
and the network size.

8.1 Methodology

SUT

LSAR
TCP connection

OSPF adjacency

PC

Zebra

TCP

LSAs

LSAs connection LSAs

LSAG

Figure 4: Experimental setup for measuring the
LSAR and LSAG performance.

Our experimental setup consists of two hosts
as shown in Figure 4. The host denoted by SUT
(System Under Test) runs the LSAR and LSAG.
The other host runs a modified version of Ze-
bra [19]. The modifications include the ability to
emulate a desired OSPF topology and changes to
it by sending appropriate LSAs over an OSPF ad-
jacency, and the ability to form an LSAG session
with the LSAR to receive LSAs.

With this setup, we start an experiment by
loading the desired topology into the LSAR run-
ning on the SUT. We use a fully connected graph
having � nodes as the emulated topology. Once
the desired topology is loaded at the LSAR, Ze-
bra sends out a burst of back-to-back LSAs to the
LSAR; we will denote the number of LSAs in a
burst by � . These bursts are repeated such that
there is a gap of inter-burst time (�) between the

beginning of successive bursts. Thus, every ex-
periment instance consists of four input parame-
ters: the number of nodes (�) in the fully con-
nected graph, the number of LSAs in a burst (�),
inter-burst time (�), and the number of bursts (�).

Each LSA in a burst results in changing the sta-
tus of all � adjacencies of a router from up to
down or from down to up. During a burst, we cy-
cle through routers while sending the LSAs out.
For example, if ����� and � �
	 , the four LSAs
sent out would result in the following events: (i)
bring down all adjacencies of router 1, (ii) bring
down all adjacencies of router 2, (iii) bring up
all adjacencies of router 1, and (iv) bring up all
adjacencies of router 2. We believe that using
a fully connected graph, flapping adjacencies of
routers, and sending out bursts of LSAs stresses
the LSAR and LSAG most in terms of resources.

To characterize the LSAR performance, we
measure how quickly it can send out an LSA re-
ceived over an OSPF adjacency to the LSAG. Re-
call that our modified Zebra is capable of forming
an LSAG session with the LSAR. This allows us
to record the necessary time-stamps within Ze-
bra itself thereby obviating the need for running
a separate LSAG process on the Zebra PC. For
each LSA, Zebra records the time when it sends
the LSA over the adjacency, and the time when
it receives the LSA back over the LSAG ses-
sion. We will denote the mean of the difference
between the send-time and receive-time for an
LSA by �
������� . For the LSAG, we measure how
long it takes the LSAG to process every LSA. To
measure this, we instrumented the LSAG code to
record the time before and after every LSA is pro-
cessed. We will denote the mean LSA processing
time at the LSAG by � ������� .

Long duration LSA bursts can cause the LSAR
to lose LSA instances occasionally. Despite
OSPF’s reliable flooding, most of these losses are
irrecoverable if the lost instance is “overwritten”
by a new instance of the LSA before the retrans-
mission timer expires. Therefore, we measure the
number of LSAs lost during each experiment by
calculating the fraction of LSAs that were sent by
Zebra to the LSAR but never received back. We
will denote this quantity by ��������� .
8.2 Results

We used PCs each having a 550 MHz AMD-
K6 CPU, 64 MB of RAM and RedHat Linux 6.2
as the SUT and for running Zebra. We varied the
number of nodes (�) in the topology in the range�����! "���$#%#$#��$&'�"�

; and varied the number of LSAs

per burst (�) in the range
�����$&'�"�(�%#$#%#)�����*�

. We set
the inter-burst gap (�) to one second, and sent 100
bursts (�) in each experiment. For every value of+ � � � � � � �), quadruplet, we carried out the experi-
ment three times.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450 500

Ti
m

e
(s

ec
on

ds
)

Number of LSAs per burst (l)

Mean LSA processing time (LSAR) v/s burst-size

n = 100, LSAR + LSAG
n = 50, LSAR + LSAG

n = 100, LSAR only
n = 50, LSAR only

Figure 5: LSAR performance (� �������) versus the
number of LSAs per burst for 50 and 100 nodes
in the topology.

Figure 5 shows how �
������� varies as a func-
tion of the burst-size (�) for two values of � .
Apart from running both LSAR and LSAG on
the SUT, we also repeated the same set of ex-
periments with only LSAR running on the SUT.
As Figure 5 shows, � ������� increases as the burst-
size increases under all circumstances. This can
be explained as follows. The inter-departure time
while sending a burst of LSAs out at Zebra is less
than the inter-arrival time of receiving them back
since the inter-arrival time includes the two-way
propagation delay and the processing time per
LSA. As a result, the turn-around time (the dif-
ference between receive-time and send-time) is
lowest for the first LSA within a burst, and grad-
ually increases for subsequent LSAs within the
same burst. Moreover, this disparity in the turn-
around time across LSAs widens as the burst-size
increases, ultimately resulting in a higher value of
� ������� for higher burst-sizes. For the “LSAR only”
case, the number of nodes in the topology does
not have much impact on � ������� since the LSAR
merely deals with passing LSAs to LSAG (Zebra
in this case) and archiving. On the other hand,
� ������� is higher for the “LSAR + LSAG” case than
the “LSAR only” case and is sensitive to the num-
ber of nodes in the topology. Both these obser-
vations can be attributed to the LSAG contending
for CPU and memory with the LSAR on the SUT.

Figure 6 shows how �-������� varies as a function
of the number of nodes (�) for two values of the
burst-size. As expected, � ������� increases linearly

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

50 55 60 65 70 75 80 85 90 95 100

Ti
m

e
(s

ec
on

ds
)

Number of nodes in the topology (n)

Mean LSA processing time (LSAG) v/s network size

l = 500
l = 100

Figure 6: LSAG performance (� �������) versus the
number of nodes in the network for the burst-size
equal to 100 and 500 LSAs.

with the number of nodes in the topology. How-
ever, it is insensitive to the burst-size mainly be-
cause of flow control imposed by TCP.

0

5

10

15

20

25

30

35

40

45

50

50 100 150 200 250 300 350 400 450 500

P
er

ce
nt

ag
e

lo
st

Number of LSAs per burst (l)

LSA loss at LSAR v/s burst size

n = 100, LSAR + LSAG
n = 50, LSAR + LSAG

n = 100, LSAR only
n = 50, LSAR only

Figure 7: Loss-rate at the LSAR (� �������) versus
the number of LSAs per burst for 50 and 100
nodes in the topology.

Figure 7 shows how � ������� varies as a function
of the burst-size for two values of � . As expected,
� ������� increases as the burst-size increases, and
�.������� is higher for the “LSAR + LSAG” case
than the “LSAR only” case. However, ��������� is
insensitive to the topology size. For all the exper-
iments, we checked that the LSAs not received
by Zebra did not exist in the LSAR archive im-
plying that the LSAR never received them due to
a memory exhaustion in the IP stack on the SUT.
Unlike LSAR, the LSAG does not lose LSAs due
to the use of TCP. In fact, if given enough time at
the end of the experiment, the LSAG ultimately
is able to process all the LSAs sent by the LSAR.

These results show that the LSAR and LSAG
are capable of handling large networks and high
LSA-rate even on a low-end PC. Furthermore,
their performance degrades gracefully as the load
increases beyond their processing capability. We
believe that at high LSA-rates and excessive flap-

ping as was the case here the routers are more
likely to melt-down before the LSAR and LSAG
processes especially if a high-end server is used
for running these processes. This is because route
processors used on even high-end routers do not
tend to be as powerful as the ones used on servers.
Furthermore, route processors typically run pro-
cesses other than OSPF, whereas the LSAR and
LSAG can run on dedicated servers.

9 Deployment Experience
We have deployed the monitor in two commer-

cial networks: a large enterprise network and a
large ISP network. Table 1 provides some facts
about these two networks and the deployment of
the monitor. More details about the enterprise
network architecture can also be found in [7].
It is important to note how diverse the two net-
works are in terms of their layer-2 architecture,
and their use of OSPF. The layer-2 architecture
dictated which LSAR mode we used for network
attachment, whereas the use of OSPF affected the
number of LSAs received per day. All servers
running LSAR and LSAG processes are NTP-
synchronized in both the networks.

Operators of both the networks were very cau-
tious about deploying the LSAR and LSAG in
their networks. As a result, before the deploy-
ment, both LSAR and LSAG underwent exten-
sive testing and review to convince the operators
about passiveness of the LSAR and robustness of
both the components. During testing, we also en-
sured that there were no memory leaks in either
of the components. To further enhance security,
we turned off all unnecessary services, and put
in measures to tightly control access to the server
running the LSAR. To increase the accuracy of
the time-stamping of the LSAs being archived
at the LSAR, we took care of minimizing the
I/O that might result from activities such as writ-
ing of syslog messages. In addition, to keep the
measurements as clean as possible, we separated
the interfaces used for remote management from
those used to capture LSAs. This minimized the
competition between measurement and manage-
ment traffic.

The OSPF Monitor has handled the load im-
posed by these networks with ease, demonstrat-
ing and further confirming the scalability of the
system. Furthermore, the LSAR and LSAG im-
plementations have proved to be extremely reli-
able and robust. We have observed the LSAR
crash only once during these two years, and have
not observed the LSAG crash at all. The LSAR

Parameter Enterprise network ISP network
Layer-2 architecture Ethernet-based LAN Point-to-point links
Customer reachability Use of EIGRP between Use of I-BGP to propagate
information network-edge routers and customer reachability

customer-premise routers. information. I-BGP routes
EIGRP routes are imported are not imported into OSPF.
into OSPF.

Scale of monitor deployment 15 areas; 500+ routers Area 0; 100+ routers
LSAR attachment mode Host mode Partial adjacency mode
Deployment history Deployment started in Deployment started in

February, 2002 by connecting January, 2003 by connecting
LSAR to two areas. Remaining LSAR to area 0.
areas were gradually covered
in the next two months.

Size of the LSA archive 10 MB per day 8 MB per day

Table 1: Facts related to the deployment of the OSPF monitor in two commercial networks.

has been upgraded three times for bug fixes, and
eight times for enhancements, whereas the LSAG
has been upgraded three times for bug fixes and
26 times for enhancements.

9.1 Utility of the Monitor
The OSPF monitor is being used primarily in

two ways. First, the LSAG is used for day-to-
day network operation, continuously tracking the
health of the network. Second, the OSPFScan is
used for detailed and long term analysis of OSPF
behavior.

9.1.1 LSAG in Day-to-day Operations

As mentioned earlier, the LSAG provides two
data sources in real-time: messages related to the
topology changes and anomalous behavior, and
network topology snapshots. Both the sources
provide valuable insight into the health of a net-
work.

We have developed a web-site for viewing
LSAG messages, interacting with network oper-
ators to make the site as simple and user-friendly
as possible. The web-site allows the operators to
query the LSAG message logs, generate statistics
about the messages, and navigate past archives.
The web-site makes use of a configuration man-
agement tool to map IP addresses into names.
This web-site is now used extensively by network
support and operations on a regular basis, and has
proved invaluable during network maintenance to
validate maintenance steps as well as to monitor
the impact of maintenance on the network-wide
behavior of OSPF.

Network operation groups also use the LSAG

messages for generating alarms by feeding them
into higher layer alerting systems. This in turn
allows correlation and grouping with other mon-
itoring tools. To prevent a deluge of alerts gener-
ated due to a high frequency of LSAG messages,
we have taken two steps. First, we prioritize mes-
sages to help operators in the event of “too many
flashing lights”. For example, the alerting system
assigns “RTR DOWN” message a higher prior-
ity than a “RTR UP” message. Second, we group
multiple messages into a single alarm. For exam-
ple, a fiber cut can bring down a number of adja-
cencies prompting the LSAG to generate several
“ADJACENCY DOWN” messages. We group all
these messages into a single alert to prevent a
flurry of alerts for a single underlying event.

Network operators may change OSPF link
weights from their design values to carry out
maintenance tasks. We have designed a “link-
audit” web-site that allows operators to keep
track of such link weight changes. The web-site
makes use of the topology snapshots to display
the set of links whose weights differ from the de-
sign weights. This allows operators to validate
the steps carried out for maintenance. At the end
of the maintenance interval, the web-site also al-
lows operators to verify that weights of the af-
fected links are reverted back to their original val-
ues.

Below we describe a few specific cases where
the LSAG served to identify network problems.

1. Internal problem in a crucial router: The
LSAG identified an intermittent hardware
problem in a crucial router in area 0 of the en-
terprise network [7]. This problem resulted in

episodes lasting a few minutes during which
the problematic router would drop and re-
establish adjacencies with other routers on the
LAN. Each episode lasted only for a few min-
utes and there were only a few episodes each
day. The data suggests that during the episodes
the network was at the risk of partitioning or
was in fact partitioned. During these episodes,
a second router failure could have resulted in a
catastrophic loss of connectivity. Fortunately,
a flurry of “ADJACENCY UP” and “ADJA-
CENCY DOWN” messages recorded by the
LSAG during each episode helped operators
identify the problem, and perform preventa-
tive maintenance. It is worth noting here that
this problem did not manifest in other network
management tools being used by the enterprise
network.

2. External link flaps: The LSAG helped iden-
tify a flapping external link in the enterprise
network [7]. One of the enterprise network
routers (call it /) maintains a link to a cus-
tomer premise router (call it 0) over which it
runs EIGRP. Router A imports EIGRP routes
into OSPF as external LSAs. LSAG messages
led to a closer inspection of network condi-
tions, which revealed that the EIGRP session
between / and 0 started flapping when the
link between / and 0 became overloaded.
This led to router / repeatedly announcing
and withdrawing EIGRP prefixes via external
LSAs. The flapping of the link between /
and 0 persisted nearly every day for months
between 9 PM and 3 AM. The LSAG mes-
sages (“TYPE-5 ROUTE ANNOUNCED” and
“TYPE-5 ROUTE WITHDRAWN”) helped
network operators to identify and mitigate the
problem, though they could not completely
eliminate it as the operators did not have ac-
cess to the customer-premise router.

3. Router configuration problem: In another
case, the LSAG helped operators of the en-
terprise network identify a configuration prob-
lem: assignment of the same router-id to two
routers. This error resulted in these routers re-
peatedly originating their router LSAs which
showed up as a series of “ADJACENCY
UP/DOWN” LSAG messages.

4. Refresh LSA bug: The LSAG helped identify
a bug in the refresh algorithm of the routers
from a particular vendor in the ISP network.
The bug resulted in a much faster refresh of
summary LSAs under certain circumstances

than the RFC-mandated [1] rate of 30 min-
utes. The bug was identified due to the “LSA
STORM” messages generated by the LSAG.
At the time of writing this paper, the vendor is
investigating the bug. It is worth noting that it
would be impossible to catch such a bug with
any other class of available network manage-
ment tools.

9.1.2 Use of OSPFScan for Detailed Analysis

In this section, we touch on ways in which the
OSPFScan has been used for analyzing long-term
behavior of OSPF. For both the networks where
the monitor is deployed, in addition to archiv-
ing all LSAs, we also archive topology snapshots
and LSAG message logs. Furthermore, we use
the OSPFScan to extract change LSAs, topology
change records and to compute routing tables for
each router, grouped by 24-hour intervals. All
this data (raw and change LSAs, topology change
records, routing tables, topology snapshots, and
LSAG message logs) forms the data repository
for the OSPFScan analysis. Although there is
a redundancy (raw LSAs are sufficient to con-
struct all other forms of data), we have found that
keeping the derived data greatly assists interac-
tive analysis of OSPF behavior. To illustrate, sup-
pose a user is interested in analyzing how the path
between two end-points evolved over time. It is
much faster to automatically compute paths be-
tween two end-points using the routing table data
than to construct the paths from raw LSAs.

Specific illustrations of the OSPFScan usage
include:

1. Duplicate LSA analysis: The LSA traf-
fic analysis in the enterprise network by the
OSPFScan [7] revealed excessive duplicate
LSA traffic. For some OSPF areas, the du-
plicate LSA traffic formed 33% of the over-
all LSA traffic. Subsequent analysis led to the
root-cause of the excessive traffic and preven-
tative measures, details of which can be found
in [7].

2. Change LSA statistics: The SPF calculation
on Cisco routers is paced by two timers [20]:
(i) spf-delay, which specifies how long OSPF
waits between receiving a topology change
and starting an SPF computation; and (ii) spf-
holdtime, which determines the lag between
two successive SPF computations. In order
to reduce OSPF convergence time, it is de-
sirable to decrease these timers to small val-
ues; however, reducing these values too much

can lock the routers into performing exces-
sive SPF calculations, possibly destabilizing
the network. Analysis of the inter-arrival time
of change LSAs in the network can help ad-
ministrators configure these timers to “good”
values. The network administrators of the ISP
network have done precisely this. To facili-
tate the process, we built a web-site on top of
the change LSA repository, providing statistics
such as minimum, maximum, mean, standard
deviation and empirical CDF of inter-arrival
times of change LSAs over a given time period
and for a given LSA type.

3. Availability analysis: Assessing reliability
and availability of intra-domain routing is cru-
cial for deploying new services and associated
service assurances into the network. OSPF
monitor data has proved very useful in an-
swering questions such as: what is the mean
down-time and mean service-time for links and
routers in the network at the IP level? Again,
we created a web-site to answer such questions
for the ISP network. The site relies on the
topology change records stored in the reposi-
tory.

4. Use of OSPF routing tables: For each router,
the routing table archive contains the entire
history of routing tables across the measure-
ment interval (e.g., several months or longer).
This data is being used by the ISP network en-
gineering teams to determine and analyze end-
to-end paths within the network at any instance
of time, to correlate OSPF routing changes
with I-BGP updates seen in the network [18],
and to analyze how OSPF events impact the
traffic flow within the network by correlating
this data with active probing.

9.2 Lessons Learned

In this section, we point out some of the
lessons learned during and after the deployment
of the system. The points may help in design, de-
velopment and deployment of other route moni-
toring systems.

1 New tools reveal new failure modes. The
LSAG has allowed us to find and fix several
problems in a pro-active fashion. Some of
these problems would have been impossible
to find with other network management tools
(e.g., the refresh LSA bug).1 Real-time alerting and off-line analysis are
complementary. Some problems such as
router-bug were caught by real-time messages,

whereas some other problems such as exces-
sive duplicate LSA traffic were caught because
of off-line analysis of LSAs stored over long
time intervals. Finally, problems such as re-
fresh LSA bug were identified using LSAG
messages in real-time, but they also required
a more detailed off-line analysis.1 OSPF exhibits significant amount of activ-
ity. Based on our experience, we have noticed
that both the networks monitored exhibit sig-
nificant amount of OSPF activity. This activity
is due to maintenance tasks as well as network
problems. Efficient and scalable design of the
system has helped us tackle this high level of
activity with relative ease.1 Add functionality incrementally. We have
added new functionality and improved the sys-
tem by close interaction with network opera-
tors. At one level, this pertained to the user in-
terfaces. For example, it took several iterations
until the operators were satisfied with LSAG
message formats and could make sense of as-
sociated logs at a glance. At another level, it
was important to customize and enhance value
by building custom reports that reflected oper-
ational practices.1 Archive all the LSAs. The analysis of exces-
sive duplicate LSAs and refresh LSA bug re-
quired archiving all the LSAs captured from
the network, not just those that indicated topol-
ogy changes. The volume of all OSPF LSAs
is not onerous. As seen in Table 1, the vol-
ume of raw LSAs collected from each of the
two networks is in the order of 10 MB per day.
This makes it fairly easy to collect all the LSAs
from the network, store these for a long period,
as well as transfer and replicate the archives as
needed.

10 Conclusion
In this paper, we have described the architec-

ture and design of an OSPF monitor, which pas-
sively listens to LSAs flooded in the network,
provides real-time alerting and reporting on net-
work events, and allows off-line investigation and
post-mortem analysis. The three main compo-
nents of the system are:
1 The LSAR (LSA Reflector), which captures

LSAs from the network. The LSAR supports
three modes by which it can be attached safely
and passively to the network.1 The LSAG (LSA aGgregator), which receives
“reflected” LSAs from one or more LSARs,

monitors the network in real-time for opera-
tionally meaningful events. The LSAG pop-
ulates a network topology model using the
LSA stream, tracking changes to the topology,
and issuing associated alerts and console mes-
sages. These messages allow network opera-
tors to quickly localize and troubleshoot prob-
lems. The topology model also provides timely
and accurate views of the OSPF topology to
other network management applications.1 The OSPFScan, which allows efficient post-
mortem analysis of LSA archives via stream-
lined parse, select and analyze capabilities.
The OSPFScan includes a large set of libraries,
implementing, in particular, playback and iso-
lation of topology change events, generation
of statistics, and construction and evolution of
routing tables and end-to-end paths for every
topology change event.

We demonstrated that the LSAR and LSAG
can scale to large networks and large LSA rates
through lab experiments. Overall, the monitor
cleanly separates instrumentation, real-time pro-
cessing and off-line analysis. The monitor has
been successfully deployed in two commercial
networks, where it has run without glitches for
months. We provided several examples illus-
trating how operators are using the monitor to
manage these networks, as well as some lessons
learned from this experience.

In future, we plan to work on improving the
LSAG by incorporating more intelligent group-
ing and prioritization of messages. We also plan
to focus on correlation of OSPF data with other
data sources both for better root-cause analysis of
network problems and for better understanding of
network-wide interaction of various protocols.

Acknowledgments
We are grateful to the operators of the ISP

and the enterprise network for allowing us to
deploy the OSPF Monitor. Their subsequent
feedback improved the functionality of the mon-
itor immensely. We thank Jennifer Rexford,
Jay Borkenhagen, anonymous reviewers and our
shepherd, Stephan Savage for their comments
which helped us a lot in improving the paper. Fi-
nally, we thank Kiranmaye Sirigineni for modifi-
cations to Zebra that enabled the OSPF topology
emulation.

References
[1] J. Moy, “OSPF Version 2.” Request for Comments

2328, April 1998.

[2] W. Stallings, SNMP, SNMPv2, SNMPv3 and RMON 1
and 2. Addison-Wesley, 1999.

[3] A. Shaikh et al., “An OPSF Topology Server: Design
and Evaluation,” IEEE J. Selected Areas in Communi-
cations, vol. 20, May 2002.

[4] “Route Explorer.” http://www.
route-explorer.com/.

[5] “Route Dynamics.” http://www.
ipsumnetworks.com.

[6] “IP Monitoring Project.” http://ipmon.sprint.
com/.

[7] A. Shaikh et al., “A Case Study of OSPF Behav-
ior in a Large Enterprise Network,” in Proc. ACM
SIGCOMM Internet Measurement Workshop (IMW),
November 2002.

[8] D. Watson et al., “Experiences with Monitoring OSPF
on a Regional Service Provider Network ,” in Proc.
IEEE International Conference on Distributed Comput-
ing Systems (ICDCS), May 2003.

[9] “University of Oregon Route Views Project.” http:
//www.routeviews.org/.

[10] “RIPE Network Coordination Center.” http://www.
ripe.net/.

[11] N. Spring et al., “Measuring ISP Topologies with Rock-
etfuel,” in Proc. ACM SIGCOMM, 2002.

[12] R. Mahajan et al., “Inferring Link Weights using End-
to-End Measurements,” in Proc. ACM SIGCOMM In-
ternet Measurement Workshop (IMW), 2002.

[13] “Rocketfuel: An ISP Topology Mapping En-
gine.” http://www.cs.washington.edu/
research/networking/rocketfuel.

[14] A. Feldmann and J. Rexford, “IP Network Configura-
tion for Intra-domain Traffic Engineering,” IEEE Net-
work Magazine, September 2001.

[15] P. Aukia et al., “RATES: A server for MPLS traffic engi-
neering,” IEEE Network, pp. 34–41, March/April 2000.

[16] R. Siamwalla et al., “Discovering Internet
Topology.” Unpublished manuscript, http:
//www.cs.cornell.edu/skeshav/papers/
discovery.pdf, July 1998.

[17] R. Govindan and H. Tangmunarunkit, “Heuristics for
Internet Map Discovery,” in Proc. IEEE INFOCOM,
March 2000.

[18] R. Teixeira et al., “Dynamics of Hot-Potato Routing in
IP Networks,” in Proc. ACM SIGMETRICS, June 2004.

[19] “GNU Zebra.” http://www.zebra.org.

[20] “Configure Router Calculation Timers.” http:
//www.cisco.com/univercd/cc/td/doc/
product/software/ios120/12cgcr/%np1\
_c/1cprt1/1cospf.html\#xtocid2712621.

