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1. Introduction 

1.1. Background 

Abstract. Congestion avoidance mechanisms allow a network 
to operate in the optimal region of low delay and high 
throughput,  thereby, preventing the network from becoming 
congested. This is different from the traditional congestion 
control mechanisms that allow the network to recover from the 
congested state of high delay and low throughput.  Both con- 
gestion avoidance and congestion control mechanisms are basi- 
cally resource management  problems. They can be formulated 
as system control problems in which the system senses its state 
and feeds this back to its users who adjust their controls. 

The key component  of any congestion avoidance scheme is 
the algorithm (or control function) used by the users to in- 
crease or decrease their load (window or rate). We abstractly 
characterize a wide class of such increase/decrease algorithms 
and compare them using several different performance metrics. 
They key metrics are efficiency, fairness, convergence time, 
and size of oscillations. 

It is shown that a simple additive increase and multiplicative 
decrease algorithm satisfies the sufficient conditions for con- 
vergence to an efficient and fair state regardless of the starting 
state of the network. This is the algorithm finally chosen for 
implementation in the congestion avoidance scheme recom- 
mended for Digital Networking Architecture and OSI Trans- 
port Class 4 Networks. 

Keywords. Computer  Network, Network Performance, Re- 
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Congestion in computer networks is becoming 
an important issue due to the increasing mismatch 
in link speeds caused by intermixing of old and 
new technology. Recent technological advances 
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Fig. 1. Network performance as a function of the load. Broken 
curves indicate performance with deterministic service and 

interarrival times. 

such as local area networks (LANs) and fiber 
optic LANs have resulted in a significant increase 
in the bandwidths of computer network links. 
However, these new technologies must coexist with 
the old low bandwidth media such as the twisted 
pair. This heterogeneity has resulted in a mis- 
match of arrival and service rates in the inter- 
mediate nodes in the network causing increased 
queuing and congestion. 

Traditional congestion control schemes help 
improve performance after congestion has oc- 
curred. Figure 1 shows general patterns of re- 
sponse time and throughput of a network as the 
network load increases. If the load is small, 
throughput generally keeps up with the load. As 
the load increases, throughput increases. After the 
load reaches the network capacity, throughput 
stops increasing. If the load is increased any fur- 
ther, the queues start building, potentially result- 
ing in packets being dropped. Throughput may 
suddenly drop when the load increases beyond 
this point and the network is said to be congested. 
The response-time curve follows a similar pattern. 
At first the response time increases little with 
load. When the queues start building up, the re- 
sponse time increases linearly until finally, as the 

queues start overflowing, the response time in- 
creases drastically. 

The point at which the packets start getting lost 
is called a cliff due to the fact that the throughput 
falls off rapidly after this point. We use the term 
knee to describe the point after which the increase 
in the throughput is small, but when a significant 
increase in the response time results. 

A scheme that allows the network to operate at 
the knee is called a congestion avoidance scheme, 
as distinguished from a congestion control scheme 
that tries to keep the network operating in the 
zone to the left of the cliff. A properly designed 
congestion avoidance scheme will ensure that the 
users are encouraged to increase their traffic load 
as long as this does not significantly affect the 
response time, and are required to decrease them 
if that happens. Thus, the network load oscillates 
around the knee. 

Both congestion avoidance and congestion con- 
trol mechanisms are dynamic resource manage- 
ment problems that can be formulated as system 
control problems in which the system senses its 
state and feeds this back to its users who adjust 
their controls. For the congestion problem, the 
state consists of the load on the network and the 
control is the number of packets put into the 
network by the users. Often a window mechanism 
is used in the transport layer protocols to limit the 
number of packets put into the network. An alter- 
native mechanism consists of setting a limit on the 
rate (packets per second or bits per second) that 
can be sent by a user. In either case, the control 
(window or rate) can be dynamically adjusted as 
the total load on the system changes. This control, 
which we call the increase/decrease algorithm, is 
at the heart of all congestion avoidance mecha- 
nisms. 

We have investigated a number of congestion 
avoidance mechanisms, reported in a series of 
papers, and this paper is a part of that series 
[7,8,10,11]. The concept of congestion avoidance 
and several alternatives are described in [7]. We 
chose a particular alternative called the "binary 
feedback scheme" which is described in detail in 
[11]. This scheme is later extended in [10] to 
include a "selective feedback" mechanism in which 
the routers monitor different users and permit 
some users to increase load while requesting others 
to decrease load. All of our work on congestion 
avoidance is summarized in [8]. 
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This paper  concentrates on a detailed analysis 
of the increase/decrease algorithms. This analysis 
resulted in the selection of the increase/decrease 
algorithms used in the binary feedback scheme 
proposed in [11] and [10]. However, the analysis 
presented here is general and applies to many 
other applications besides congestion avoidance. 

Briefly, the binary feedback scheme for conges- 
tion avoidance operates as follows. The resources 
in the network monitor their usage and determine 
if they are loaded below or above an optimal load 
level. Depending upon the load level, the resource 
sends a binary feedback (1 = overloaded, 0 = 
underloaded) to the users who then adjust their 
load using an increase/decrease algorithm. This 
binary feedback is sent by setting a bit in the 
packet header. The use of a bit in the packet 
header as a feedback mechanism has been incor- 
porated into the OSI connectionless networking 
protocol standards [4]. The bit is called a "conges- 
tion experienced bit" and is a part  of a field called 
"quali ty of service" in the network layer header. 

The abstract model assumes that all the users 
sharing the same bottleneck will receive the same 
feedback. Based on this feedback, the users try to 
adjust their load so that the bottleneck is effi- 
ciently used as well as equally shared by all users. 
In this abstracted context, we assume that the 
feedback and control loop for all users is synchro- 
nous, that is, all users receive the same feedback 
and react to it; the next feedback is then gener- 
ated after all users have reacted to the feedback 
and so on. Also, we concentrate on one bottleneck 
resource and the users that share it. Because of 
these abstractions, we are able to demonstrate 
some of the subtle behavior of this type of al- 
gorithm. The results presented here were verified 
by detailed simulations of real networks [7,10,11]. 

At the other end of the spectrum, we have de- 
centralized decision-making. In this case the deci- 
sions are made by the users while the resources 
feed information regarding current resource usage. 
Algorithms studied by Jaffe [5] and later exten- 
sions by Gafni  [2] and Mosely [9] are all good 
examples of this approach. 

In this paper  we analyze a class of decentral- 
ized decision-making algorithms that are based on 
a special form of feedback, namely the feedback 
from the resource is a binary signal. This binary 
signal indicates whether the resource is currently 
overloaded or underutilized. A very good reason 
for considering a binary form of feedback is the 
motivation of making the cont ro l ler /manager  of 
the resource as simple and efficient as possible. 
The requirement of a binary feedback often mini- 
mizes the work at the resource in generating the 
feedback. 

1.3. Notations and Definitions 

Figure 2 shows the assumed model of the net- 
work with n users sharing it. The congestion state 
of the system is determined by the number  of 
packets in the system. We assume a discrete time 
operation with time divided into small slots. These 
slots basically represent intervals at the beginning 
of which the users set their load level based on the 
network feedback received during the previous 
interval. If  during time slot t, the i th user's load is 
x i ( t  ), then the total load at the bottleneck re- 
source would be T.x,(t) ,  and the state of the 
system is denoted by the n-dimensional vector 
x ( t )  = {xl( t ) ,  x2(t  ) . . . . .  xn(t)}. Since we are op- 
erating at or near the knee, all resource~ de- 
manded by the users are granted (this is not true 
at the cliff). Thus, x A t  ) denotes the i th user's 

1.2. Past Work 

The algorithms studied here belong to a class of 
distributed algorithms for managing distributed 
resources. A spectrum of such distributed al- 
gorithrns have been studied in the literature. At 
one end of the spectrum, we have centralized 
decision-making. In this paradigm, information 
(about user demands) flows to the resource 
managers, and the decision of how to allocate the 
resource is made at the resource. The analysis by 
Sanders [12] is a good example of this approach. 

User  1 

User  n 

Y 

r.xi > Xgoat ( 

Network  

Fig. 2. A control system model of n users sharing a network. 
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demand as well as allocation of the system's re- 
sources. During the interval, the system de- 
termines its load level and sends a binary feed- 
back y(t), which is interpreted by the users as 
follows: 

y ( t ) = { ~  ~ I n c r e a s e l ° a d ,  
Decrease load. 

The users cooperate with the system and change 
(increase of decrease) their demands by an amount 
ui(t ). Thus, 

xi(t  + 1) = xi(t  ) + ui(t ). (1) 

The change ui(t ) represents ith user's control. It 
is a function of the user's previous demand and 
the system feedback: 

u,(t) = f ( x i ( t ) ,  y ( t ) ) .  (2) 

In other words, 

x i ( t+  1) = x i ( t )  + f ( x i ( t ) ,  y( t ) ) .  

Notice that the users are not aware of other user's 
individual demands and, thus, cannot make ui(t) 
a function of xj(t), j ~ i. In general, the control 
function f (  ) can be any linear or nonlinear func- 
tion. However, we will focus first on linear con- 
trois. The state equations (1) reduce to 

xi( t  + 1) 

= ( a l + b i x i ( t )  if y ( t )  = 0 ~ Increase, 

a D + bDXi(t ) if y( t )  = 1 ~ Decrease. 

Here, a l, bi, aD, b D are constants. The following 
are some examples of the control functions: 

(1) Multiplicative Increase/Multiplicative De- 
crease: 

x i ( t + l ) =  [blx~(t ) if y ( t )  = 0 ~ Increase, 

[bDXi(t ) if y( t )  = 1 ~ Decrease. 

Here, b I > 1 and 0 < b D < 1. All users increase 
their demands by multiplying their previous de- 
mands by a constant factor. The decrease is also 
multiplicative. 

(2) Additive Increase/Additive Decrease: 

xi(t  + 1) 

=[al+xi(t ) if  y ( t )  = 0 ~ Increase, 

[a D + xi(t  ) if y( t )  = 1 ~ Decrease. 

Here, a i > 0 and a D < 0. All users increase their 

demands by adding a constant amount to their 
previous demands. The decrease is also additive) 

(3) Additive Increase/ Multiplicative Decrease: 

xi(t  + 1) 

= ( a l + x i ( t )  i f y ( t ) = 0 ~ I n c r e a s e ,  

boxi(t  ) if y( t )  = 1 ~ Decrease. 

The increase is by a constant amount but the 
decrease is by a constant factor. 

(4) Multiplicative Increase/Additive Decrease: 

xi(t  + 1) 

/ b~xi(t ) if y( t )  = 0 ~ Increase, 
\ 
[a o + x i ( t  ) i f y ( t ) = l ~ D e c r e a s e .  

In order to evaluate the effectiveness of these 
controls, we next define a set of criteria explicitly 
in the next section. 

1.4. Criteria for Selecting Controls 

The key criteria are: efficiency, fairness, distrib- 
utedness, and convergence. We define them for- 
mally as follows: 

(1) Efficiency: The efficiency of a resource usage 
i s  defined by the closeness of the total load on the 
resource to its knee. If Xgo~ ~ denotes the desired 
load level at the knee, then the resource is operat- 
ing efficiently as long as the total allocation X(t) 
= F.xi(t ) is close to X~oar Overload (X( t )  > Xgoal) 
or underload (X ( t )<  Xgoal) are both undesirable 
and are considered inefficient. We consider both 
as equally undesirable. 

Notice, that efficiency relates only to the total 
allocations and thus two different allocations can 
both be efficient as long as the total allocation is 
close to the goal. The distribution of the total 
allocation among individual users is measured by 
the fairness criterion. 

(2) Fairness: The fairness criterion has been 
widely studied in the literature. When multiple 
users share multiple resources, the maxmin fair- 
ness criterion has been widely adopted [2,3,5,10]. 
Essentially, the set of users are partitioned into 
equivalent classes according to which resource is 
their primary bottleneck. The maxmin criterion 
then asserts that the users in the same equivalent 

i It is a s sumed  that truncat ion  is appl ied w h e n  a D + xi(t ) is 
less than zero,  so that x i ( t  ) wil l  never  b e c o m e  negative .  
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class ought to have the equal share of the bot- 
tleneck. Thus, a system in which x i ( t ) = x j ( t ) V i, j 
sharing the same bottleneck is operating fairly. If  
all users do not get exactly equal allocations, the 
system is less fair and we need an index or a 
function that quantifies the fairness. One such 
index is [6]: 

Fairness: F ( x ) -  (Ex ' )2  
n(r ;i ) " 

This index has the following properties: 
(a) The fairness is bounded between 0 and 1 (or 

0% and 100%). A totally fair allocation (with 
all xi 's  equal) has a fairness of 1 and a 
totally unfair allocation (with all resources 
given to only one user) has a fairness of 1 / n  
which is 0 in the limit as n tends to oo. 

(b) The fairness is independent of scale, i.e., 
unit of measurement does not matter. 

(c) The fairness is a continuous function. Any 
slight change in allocation shows up in the 
fairness. 

(d) If only k of n users share the resource 
equally with the remaining n -  k users not 
receiving any resource, then the fairness is 
k / n .  

For other properties of this fairness function, see 

[61. 
(3) Distributedness: The  next requirement that 

we put on the control scheme is that it be distrib- 
uted. A centralized scheme requires complete 
knowledge of the state of the system. For example, 
we may want to know each individual user's de- 
mand  or their sum. This information may be 
available at the resource. However, conveying this 
information to each and every user causes consid- 
erable overhead, especially since a user may be 
using several resources at the same time. We are 
thus primarily interested in control schemes that 
can be implemented in real networks and, there- 
fore, we assume that the system does the mini- 
mum amount  of feedback. It only tells whether it 
is underloaded or overloaded via the binary feed- 
back bits. Other information such as Xsoal and the 
number  of users sharing the resource are assumed 
to be unknown by the users. This restricts the set 
of feasible schemes. We, therefore, describe the set 
of feasible schemes with and without this restric- 
tion. 

Goal 

Total  
load on 

the 
network 

~ e _ _ ~  C Responsiveness  

~ oothness  

Time 
Fig. 3. Responsiveness and smoothness. 

(4) Convergence: Finally we require the control 
scheme to converge. Convergence is generally 
measured by the speed with which (or time taken 
till) the system approaches the goal state from any 
starting state. However, due to the binary nature 
of the feedback, the system does not generally 
converge to a single steady state. Rather, the sys- 
tem reaches an "equil ibrium" in which it oscillates 
around the optimal state. The time taken to reach 
this "equilibrium" and the size of the oscillations 
jointly determine the convergence. The time de- 
termines the responsiveness, and the size of the 
oscillations determine the smoothness of the con- 
trol. Ideally, we would like the time as well as 
oscillations to be small. Thus, the controls with 
smaller time and smaller amplitude of oscillations 
are called more responsive and more smooth, re- 
spectively, as shown in Fig. 3. 

1.5. Outline of  this Paper 

In this paper, we develop a simple and intuitive 
methodology to explain when and why a control 
converges. We address the following questions: 
What are all the possible solutions that converge to 
efficient and fair states? How do we compare those 
controls that converge? 

The paper  is organized as follows. In Section 2 
we will characterize the set of all linear controls 
that converge and, thus, identify the set of feasible 
controls. Then we narrow down the feasible set to 
a subset that satisfies our distributedness criterion. 
These subset still includes controls that have un- 
acceptable magnitudes of oscillation or those that 
converge too slowly. Then in Section 3, we discuss 
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how to find the subset of feasible distributed 
controls that represent the optimal trade-off of 
responsiveness and smoothness, as we defined in 
convergence. In Section 4, we discuss how the 
results extend to nonlinear controls. And in the 
last section we summarize the results and discuss 
some of the practical considerations (such as sim- 
plicity, robustness, and scalability). 

2. Feasible Linear Controls 

2.1. Vector Representation of the Dynamics 

In determining the set of feasible controls, it is 
helpful to view the system state transitions as a 
trajectory through an n-dimensional vector space. 
We describe this method using a 2-user case, which 
can be viewed in a 2-dimensional space. 

As shown in Fig. 4, any 2-user resource al- 
location {Xl(t), x 2 ( t ) }  Can be represented as a 
point (x 1, x2) in a 2-dimensional space. In this 
figure, the horizontal axis represents allocations to 
user 1, and the vertical axis represents allocations 
to user 2. All allocations for which x I + x 2 = Xgoa l 
are efficient allocations. This corresponds to the 
straight line marked "efficiency line". All al- 
locations for which x 1 = x 2 are fair allocations. 
This corresponds to the straight line marked "fair- 
ness line". The two lines intersect at the point 
(X  goal/2, Xgo~/2 ) that is the optimal point. The 
goal of control schemes should be to bring the 

l Equi- 

Fairness  Fairness  

User  ~ L m ~  Line  

2's ~ ~ / /  

Alloc- ] ~  / / O v e r l o a d  

User  l ' s  Allocation xt 
Fig. 4. Vector representation of a two-user case. 

system to this point regardless of the starting 
position. 

All points below the efficiency line represent an 
"underloaded" system and ideally the system 
would ask users to increase their load. Consider, 
for example, the point x 0 = (xl0, x20 ). The ad- 
ditive increase policy of increasing both users' 
allocations by a~ corresponds to moving along a 
45 ° line. The multiplicative increase policy of 
increasing both users' allocations by a factor b I 
corresponds to moving along the line that con- 
nects the origin to the point. Similarly, all points 
above the efficiency line represent an "overloaded" 
system and additive decrease is represented by a 
45 ° line, while multiplicative decrease is rep- 
resented by the line joining the point to the origin. 

The fairness at any point (x 1, x2) is given by 

(Xl + x2) 2 
Fairness - 

2 (x  2 + x22) " 

Notice that multiplying both allocations by a fac- 
tor b does not change the fairness. That is, 
(bx 1, bx2) has the same fairness as (x  1, x2) for all 
values of b. Thus, all points on the line joining a 
point to origin have the same fairness. We, there- 
fore, call a line passing through the origin a 
"equi-fairness" line. The fairness decreases as the 
slope of the line either increases above or de- 
creases below the fairness line. 

Figure 5 shows a complete trajectory of the 
two-user system starting from point x 0 using an 
additive increase/multiplicative decrease control 
policy. The point x 0 is below the efficiency line 
and so both users are asked to increase. They do 
so additively by moving along at an angle of 45 o. 
This brings them to x~ which happens to be above 
the efficiency line. The users are asked to decrease 
and they do so multiplicatively. This corresponds 
to moving towards the origin on the line joining 
x 1 and the origin. This brings them to point x 2, 
which happens to be below the efficiency line and 
the cycle repeats. Notice that x 2 has higher fair- 
ness than x 0. Thus, with every cycle, the fairness 
increases slightly, and eventually, the system con- 
verges to the optimal state in the sense that it 
keeps oscillating around the goal. 

Similar trajectories can be drawn for other con- 
trol policies. Although not all control policies con- 
verge. For example, Fig. 6 shows the trajectory for 
the additive increase/additive decrease control 
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Fig. 5. Additive Increase/Multiplicative Decrease converges to the optimal point. 

ID- 

policy starting from the position x 0. The system 
keeps moving back and forth along a 45 ° line 
through x 0. With such a policy, the system can 

converge to efficiency, but not to fairness. The 
conditions for convergence to efficiency and fair- 
ness are derived algebraically in the next section. 

User 
2's 

Alloc- 
ation 

x2 

] The operating 
] point keeps 
/ oscillating along , . 

\ / this line I ~ awness 
/ Line 

\ / /  ,," 

~ N ~  l / / j  
fx0 

/ j / j  ~ 

/ ~ f f i c t e n e y  Line 

f 

User l's Allocation x l  
Fig. 6. Additive Increase/Additive Decrease does not converge. 
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2.2. Convergence to Efficiency 

In order to guarantee convergence to efficiency 
we need to first make sure that at each step the 
system react correctly to the feedback by moving 
in the right direction. That is, when the system 
asks the users to decrease, we should ensure that 
the total load will not increase and when the 
system asks the users to increase, the total load 
will not decrease This is the principle of negative 
feedback, z Algebraically: 

y ( t ) = O  = ~,xi(t+ l )>  Exi(t) ,  

y ( t ) = l  = Exi ( t+ l ) < X x i ( t  ). 

In terms of the policy parameters, this means that 
the parameter  values should be 

na I + (b I + 1)Ex , ( t )  > 0 Vn and V ~ x i ( t ) ,  

nap + (b D --  l )~x~( t )  < 0 Vn and VEx,(t) ,  

or, equivalently, 

na I 
b ~ > l  

F.xi(t) 

na D 
b o < 1 Exi( t)  Vn and VEx~(t). (3) 

2.3. Convergence to Fairness 

Convergence to fairness is defined as moving 
towards the fairness index of one, i.e., 

F(x ( t ) )  ~ 1 as t---, oo. 

The linear control policies affect the fairness as 
follows: 

(F.xi(t  + 1)) 2 
F ( x ( t  + 1)) = n(Zx2( t + 1)) (4) 

= (Za + bx , ( t ) )  2 (5) 

n ~ , ( a + b x i ( t ) )  2 

(F.c + xi(t))  z 

where ¢ = a/b (6) 

= F(x ( t ) )  + (1 - F(x( t ) ) )  

( z x 2 ( t )  ) 

X ] --  Y'~(C q- X i ( t ) )  2 " (7) 

The last expression in the above equation is an 
increasing function of c. Thus, it is sufficient to 
ensure that c >~ 0 to guarantee non-decrease of 
fairness. Note that c - 0 ~ F(x(t  + 1)) = F(x(t)), 
i.e., the fairness stays the same. To ensure conver- 
gence to fairness, we require c > 0 for either in- 
crease or decrease policy. In terms of increase/de-  
crease parameters, this implies 

a l  OD 
b--~ >~0 and ~D > 0  (8) 

o r  

a l  a D  - - > 0  and >~0. (9) 

In (8), the fairness goes up during decrease and 
either goes up or stays the same during increase. 
Similarly, (9) ensures that fairness goes up during 
increase and either goes up or stays the same 
during decrease. This is sufficient to ensure con- 
vergence to fairness. We do not need the fairness 
to go up during both increase and decrease. 

Equations (8) and (9) basically state that a~ 
and b I should not be of opposite signs. Similarly, 
a D and b D should not be of opposite signs. 

To satisfy (8) or (9), it follows that all four 
parameters al,  b l ,  aD, and b D must be positive, 
for otherwise xi(t ) can become negative. Also, 
since n, Exi(t), and a D are all positive, from (3) 
we know b D must be less than 1. So 

al >/0, b I >~ 0, (10) 
a D > ~ 0 ,  0 ~ < b D < l  

where a~ and b~ cannot be both zero, else it 
would imply zero increase; and a~ and a D cannot 
be both zero, else it would imply c is always zero. 

2.4. Distributedness 

2 Note that satisfying the negative feedback condition alone 
only guarantees that the system will oscillate about the 
efficiency point, but says nothing about the size of oscilla- 
tion. So this is strictly speaking weaker than the efficiency 
condition. We will, however, explore how the oscillation size 
can be minimized when we talk about the optimality of a 
policy in the next section. 

The requirement of having no information 
about system state other than the feedback y(t) 
further limits the set of feasible linear controls. 
Since the fairness requirements (Equation (8) or 
(9)) do not involve any system state, it already 
satisfies the distributedness criterion. The ef- 
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ficiency convergence condit ions stated in (3), how- 
ever, require knowledge of  Y.x~(t) and n at each 
user. In  the absence of  such knowledge, each user 
must  try to satisfy the negative feedback condit ion 
by itself. This means a stronger condit ion to 
guarantee convergence to efficiency: 

y ( t ) = O  ~ x i ( t + l ) > x i ( t  ) Vi, 

y ( t ) = l  ~ x i ( t + l ) < x i ( t  ) v i .  (11) 

Which translates into 

a,+(b,-l)xi(t )>0 Vx,(t)>O, 
a D +  (b  D -  1)xi( t  ) <0  Vxi( t  ) >/0. 

This implies further constraining equat ion (10) to 
be 

a i > O ,  b1>~l,  
(12) 

a o = 0 ,  0 ~ < b D < l .  

We shall demonst ra te  these constrains graphically 
later, using the vector representations. 

There is, however, a simple variation for us to 
make the condit ions in (12) less restrictive for 
parameters  b t and a o. If  each user i truncates its 
control  whenever the condit ions in (11) would 
otherwise be violated, as below 

( m a x ( a , +  b , x ~ t ) ,  x i ( t ) )  

if y ( t )  = 0 Increase, 

x i ( t + l ) = ) m J n ( a D + b D ~ ( t ) , x i ( t )  ) (13) 

if y ( t )  = 1 Decrease, 

then (10) can guarantee both  convergence to ef- 
ficiency with the distributed requirements. There 
is one catch, however, that  is all users could 
truncate at the same time (thus s topping any 
progress). To prevent this possibility, let's consider 
the following condit ions:  

al + ( b l - 1 ) X m a x > O ,  

Nmaxa D + (b  D - 1)Xmi n < 0 (14) 

for some Xmi . and Xma x satisfying 

Xmin ~ /goal ~< Xmax- (15) 

Here, Nma x is the upper  bound  on the number  of  
users that would share the resource. The claim is 
that  when (14) and (15) are satisfied, it is impossi- 
ble for £xi ( t  + 1) = £x,( t ) .  

Let us suppose the contrary is true for the case 
y = 0. This means that 

a. + b,x i ( t  ) < x i ( t )  Vi 

which means 

na I + (b I - 1)Y.xi(t ) < 0. 

Since a~, b 1, and all x / s  are positive, the above 
inequality is possible only if b~ - 1 is negative and 
if so, substituting Xm~ x which is more  than Y.xi(t ) 
will make the left-hand side even more  negative: 

na I + (b  I - -  l)Xma x < 0 .  

This violates (14); thus a contradict ion with our  
assumption. 

For  the case y = 1, if all users truncate,  then it 
means 

na D+ bDXi(t) > x i ( t  ) Vi, 

thus 

na o + (b  D -  1)~xi( t ) > O. 

Since b o is less than 1, the second term in the 
left-hand side of  the above equat ion is negative. 
y = 1 implies 52x~(t) is greater than Xgoa l, hence 
Xmi .. Substituting Nma x in place of  n, and Smi n in 
place of Y.x,(t), should maintain  the inequality. 
That  is, we must  have 

Nmaxa o + (b  o - l)Xmi n > 0. 

This leads to a violation of (14); thus a contradic-  
tion. 

So the linear controls with t runcat ion leave us 
with a set of  condit ions weaker than (12) and 
stronger than (10): 

al 
a l > 0 ,  b l > l -  

gmax ' 

Xmi. 
0 ~< a D < (1 -- bD) Nmax, 0 ~< b D < 1. (16) 

Not ice  that in the case that we do not  have any 
knowledge to bound  Xgoa, or n, that  simply corre- 
sponds to Nr~x = oo, Xmi . -----0 and Xmax= oo. 
Then the condit ions on linear control  with trunca- 
tion reduce to the same ones as those on the 
strictly linear control.  We have essentially proven 
the following proposit ions:  

Proposition 1. In order to satisfy the requirements 
of distributed convergence to efficiency and fairness 
without truncation, the linear decrease policy should 
be multiplicative, and the linear increase policy 
should always have an additive component, and 
optionally it may have a multiplicative component 
with the coefficient no less than one. 
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Proposition 2. For the linear controls with trunca- 
tion (as defined m Equation (13)), the increase and 
decrease policies can each have both additive and 
multiplicative components, satisfying the constraints 
in Equations (16) and (15). 

The vectorial representation in the next section 
should help illustrate these results further. 

2.5. Vectorial Representation of Feasibility Condi- 
tions 

The constraint on the control imposed by the 
efficiency and fairness convergence conditions are 
depicted in Fig. 7 for the 2-user case. Let us first 
consider a point in the overloaded region. As 
shown in Fig. 7(a), the users start at the point 
x H = (x H, x~) ,  which is above the efficiency line. 
The system asks the users to decrease. The line 
x I + x 2 = x H + x H represents an "equi-efficiency" 
line. All points on this line have the same ef- 
ficiency as x n. For convergence to efficiency it is 
sufficient to ensure that the next decrease moves 
into the shaded area. 

The requirement of linear controls and dis- 
tributedness puts additional restrictions. Linear 
controls imply that the new state vector x(t  + 1) is 
a sum of two vectors corresponding to a and 
bx(t). In two dimensions, a vector is represented 
by a 45 ° line through x(t). This is shown in Fig. 
7(b) by the line marked b = 1. All future states 
corresponding to b = 1 lie on this line. Points to 
the left of the line can be reached if and only if we 
choose b > 1. Similarly, points to the right of the 
line can be reached if b < 1. The second vector 
corresponding to bx(t) is represented by the line 
marked a = 0 in Fig. 7(b). If  we choose a = 0, the 
state x(t  + 1) will lie on this line. Points to the left 
of this line can be reached by choosing a < 0. 
Similarly, points to the fight of this line can be 
reached by a > 0. Depending upon the values of a 
and b, the set of reachable states will lie in one of 
the four regions formed by the two lines a = 0 and 
b = 1. Only one of these four regions, the one 
corresponding to a < 0 and b ~< 1, is completely 
below the equi-efficiency line. This region is shown 
shaded in Fig. 7(b). If  we choose parameter  values 
corresponding to other regions, the next state can 
not be guaranteed to be always below the equi-ef- 
ficiency line. 

For fairness, we note that the points between 
the fairness line and the line passing through x rt 
have higher fairness than x H (see Fig. 7(c)). If  we 
locate the mirror image of x H -  the point x r r =  
(2,xH xH) - t h i s  point has the same fairness as x H, 
and all points between the fairness line and the 
line joining x w have higher fairness than x rr. 
Thus, for convergence to fairness, it is sufficient 
that the next point be in the region bounded by 
the two lines joining origin to the points x n and 
X H'. 

Combining the effect of all the restrictions, the 
region for distributively converging to efficiency 
and fairness is given by the intersection of the 
regions shown in Fig. 7(b), and (c), i.e., by the line 
joining x H to the origin as shown in Fig. 7(d). 
Thus the only policies that would distributively 
satisfy the fairness and efficiency convergence 
conditions are those that move the operating point 
along this line. In other words, the decrease must 
be multiplicative. 

Similarly, starting with a point x L = (x~, x2 e) 
in the underloaded region, the region for distribu- 
tively converging to efficiency and fairness is given 
by the region shown in Fig. 7(e). 

Equations (12), (16), and (15) are basically the 
algebraic statement of these conditions. 

3. Optimizing the Control Schemes 

Having established the feasible control region, 
the next step is to determine the optimal policy - -  
a policy that takes the system to the goal quickly. 
In this section, therefore, we discuss the selection 
of control parameters to minimize the time to 
convergence and to minimize the oscillations. 

3.1. Optimal Convergence to Efficiency 

In this subsection, we deal exclusively with the 
tradeoff of time to converge to efficiency, te, with 
the oscillation size, s e. More figuratively, we also 
refer to these two metrics as responsiveness and 
smoothness, respectively. 

The n state equations corresponding for n users 
are 

1)= i = 1 , 2  . . . . .  n .  
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Fig. 7. Vectorial representation of efficiency and fairness feasibility conditions. 
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These n equations can be added to form a single 
state equation: 

Ex,(t  + 1) = na + bEx,(t) 

This is in fact the form of the control we are 
proposing for our congestion avoidance schemes 
[10,11]. 

or, 

X(t  + 1) = na + bX(t) where X= ~.x,. 

Given initial state X(0), the time to reach Xgoa I is 

I an + (b - 1) Xgoa z 

t e=  log(b) , b > 0 ,  

Xgoa, - X ( 0 ) ,  b = 0. 
an 

After converging to Xgoa I there will be a maximum 
overshoot of 

se= lan + (b-1)ggoa, I. 

Notice that t e is a monotonically decreasing func- 
tion of a and b, while se is a monotonically 
increasing function of a and b. Thus, any at tempt 
to increase responsiveness (decrease te) also re- 
suits in decreased smoothness (increased s~), and 
vice versa. 

3.2. Optimal Convergence to Fairness 

Equation (7) shows that the per step improve- 
ment in fairness F(x(t - 1)) - F(x(t)) is a mono- 
tonically increasing function of c = a/b. Thus, 
larger values of a and smaller values b give quicker 
convergence to fairness. 

For the case of strict linear controls, this leads 
to an elegantly simple conclusion. For decrease, 
feasibility conditions required a D = 0. Thus, the 
fairness remains the same at every decrease step 
and the parameter  b D has no effect on time to 
converge to a fair state. For increase, smaller b I 
results in quicker convergence to fairness. Thus, 
the optimal value of bl is its minimum value--one .  
(See Equation (12).) Choosing b~ = 1 is equivalent 
to saying that additive increase gives us the quick- 
est convergence to fairness. This result can be 
formally stated as: 

Proposition 3. For both feasibifity and optimal con- 
vergence to fairness, the increase poficy should be 
additive and the decrease policy should be multi- 
pficative. 

4. Nonlinear Controls 

In this section, we explore the behaviour of 
certain nonlinear controls. In particular, we show 
how they can be represented by the vector di- 
agrams as in the case for linear controls. This 
technique again gives an intuitive feeling about 
how nonlinear controls work. The detailed analy- 
sis of nonlinear controls is beyond the scope of 
this paper. However, we will explain why we con- 
sider such nonlinear controls not suitable for prac- 
tical purposes. 

Let us consider in general state transition equa- 
tions that are expressible as a power of the state: 

xi(t  + 1) = xi(t ) + a(xi( t ) )  k, 

or, in terms of control, 

ui ( t )  k 

where k can be any integer (positive, negative or 
zero), and a is a normalization constant that 
defines the step size and sign. Note that k = 0 
gives the additive policy and k = 1 gives the multi- 
plicative policy. 

Now let us consider the two user vector repre- 
sentation for these controls. In Fig. 8 we first 
show the efficiency and fairness lines as before. 
Consider the point x L'. Let O(k) be the slope of 
u(t). Then we know 0(0) is 45 ° and 0(1) is the 
same as the slope for the initial state x(t). As k 
tends to infinity, O(k) tends to 0 ° and as k tends 
to negative infinity, O(k) tends to 90 o 

Since fairness requires that the slope of the new 
state x(t + 1) be closer to 45 ° than that of the 
initial state x( t) ,  we must have k ~< 1 (negative k 
is fine). 

Slopes for other three possibilites x L, x ~, and 
x n '  are shown in the figure and can be similarly 
explained. Considering all four possibilities we see 
that the feasibility condition requires k ~< 1 for 
increase and k >~ 1 for decrease (with at least one 
inequality being strict), and appropriate values for 
a so the sign and step size are correct. The ad- 
ditive increase and multiplicative decrease control, 
for example, clearly satisfies this general condi- 
tion. 
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Fig. 8. Vectorial representation for nonlinear controls. 

A nonlinear control could generally include 
more components with different slopes: 

u i ( t ) =  ~ ctk(xk(t))  k. 
k=  --oo 

Then the sum of the components must have a 
slope satisfying the above condition. 

Although nonlinear controls offer us far more 
flexibility in trying to direct towards fairness, it 
also complicates the task of finding the right 
scaling factors, represented by ag in the above 
equation. These parameters usually must be cho- 
sen relative to system parameters, such as the 
capacity Xgoa I and maximum number of users 
Nm~ ,. Being too sensitive to system parameters 
reduces the robustness of the control. For this 
reason we spent less effort in exploring nonlinear 
controls, We will discuss the robustness question 
more in the next section. 

5. Practical Considerations 

The problem studied in this report is a generic, 
but also highly abstracted problem. In order to 
apply the results to solve the decentralized conges- 
tion control problem in real networks, many prac- 
tical issues must be taken into considerations. We 
briefly discuss some of them here. 

One general principle in choosing an algorithm 
in a general architecture is to be independent of 

hardware and software scales or parameters as 
much as possible. The reason being that in a 
complex system, scaling parameters are not easily 
gathered in an automatic fashion and, thus, re- 
quire human help to configure. Having algorithms 
depend on system scales would complicate the 
configuration task and make the algorithm more 
vulnerable to human error. While in this report we 
have discussed optimizing the control scheme 
according to certain criteria, practical considera- 
tion may dictate that the control be chosen for the 
widest range of values of system parameters. As 
we indicated earlier, the nonlinear controls tend to 
be more sensitive to the system parameters and, 
thus, are less likely to be useful in practice. 

Another possible constraint is that the resource 
and thus the allocations must be integral. For 
example buffers and windows are all measured in 
integers. Simple rounding off to the nearest integer 
may cause violation of the various convergence 
conditions. 

Ease of implementation could also affect the 
choice of the controls. For example, the number 
of multiplications or exponentiations required to 
implement a control would impact on the minimal 
hardware required. 

5.1. Further Questions 

There are many further questions worth explor- 
ing in conjunction to this problem. In particular, 
the following are important: 

(1) How does delayed feedback affect the control? 
In practice there is invariably some delays before 
the feedback arrives at the controller. As the delay 
lengthens, the feedback becomes less and less use- 
ful, and the performance worsens. It would be 
valuable to have quantitative assessment of how 
the performance degrades. 

(2) What is the marginal utility of increased bits 
of feedback? The binary feedback is the simplest. 
Adding additional feedback signals may help to 
cut down the oscillations. A formal analysis would 
allow an assessment of the tradeoff of perfor- 
mance versus complexity. 

(3) Is it worthwhile to guess the current number 
of users n? Users come and go dynamically and 
the number changes by integral values. A se- 
quence of increase signals may indicate the reduc- 
tion in the number of users from n to n - 1. If n 
were known or bounded, sources could predict 
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n -  1 and request  that  level of  resources right 
away.  A wrong guess may  make  the system less 
stable.  This also deserves fur ther  study.  

(4) W h a t  is the  i m p a c t  o f  a synchronous  oper-  

a t ion?  The a lgor i thm descr ibed in the paper  is 
in t r ins ical ly  a synchronous  algori thm. In other  
words,  it is assumed that  all users s tar t  f rom an 
ini t ial  s tate and  follow through c o m m o n  phases  of  
compu ta t i on  and feedback.  W h e n  the f requency 
of  feedback  is different  or  when the t ime de lay  of  
feedback  is dras t ica l ly  different ,  then the conver-  
gence proper t ies  canno t  be guaranteed.  This topic  
is cur rent ly  under  fur ther  study.  

6. Summary of Results 

Conges t ion  avo idance  schemes al low a ne twork  
to opera te  in the op t ima l  region of  low delay  and  
high throughput .  This  is achieved via the ne twork  
moni to r ing  its load  level and  asking the users to 
increase or  decrease  the load  as appropr ia te .  In  
this paper ,  we examined  the user  i n c r e a s e / d e -  
crease policies under  the const ra in ts  that  the 
feedback  f rom the system is l imi ted  to a single bit,  
which tells whether  the current  load  is above  or  
be low the goal. 

We  formula ted  a set of  condi t ions  that  any  
i n c r e a s e / d e c r e a s e  pol icy  should sat isfy to ensure 
convergence to efficient  and  fair s tate in a d is t r ib-  
u ted  manner .  In  par t icular ,  we showed that  the 
decrease  must  be mul t ip l ica t ive  to ensure that  at 
every step the fairness ei ther  increases or  stays the 
same as that  the the current  opera t ing  point .  We  
der ived  the sufficient condi t ions  analy t ica l ly  and 
then expla ined  them using a vector  representa t ion.  

Op t imiza t ion  cons idera t ions  require  that  the 
change  in efficiency and fairness be maximized  in 
every feedback cycle. Us ing  these cons idera t ions  
we showed that  addi t ive  increase with mul t ip l ica-  
tive decrease is the op t imal  policy.  This  is the 
pol icy  f inal ly chosen for  imp lemen ta t ion  in the 
conges t ion  avo idance  scheme r e c o m m e n d e d  for 
Digi ta l  Ne twork ing  Arch i tec ture  and OSI  Trans-  
po r t  Class 4 Networks .  
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