
USENIX Association

Proceedings of the
5th Symposium on Operating Systems

Design and Implementation

Boston, Massachusetts, USA
December 9–11, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Scalability and Accuracy in a Large-Scale Network Emulator∗

Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan,

Dejan Kostić, Jeff Chase, and David Becker

Department of Computer Science

Duke University

{vahdat,grant,walsh,priya,dkostic,chase,becker}@cs.duke.edu

Abstract

This paper presents ModelNet, a scalable Internet
emulation environment that enables researchers to
deploy unmodified software prototypes in a config-
urable Internet-like environment and subject them to
faults and varying network conditions. Edge nodes
running user-specified OS and application software
are configured to route their packets through a set
of ModelNet core nodes, which cooperate to subject
the traffic to the bandwidth, congestion constraints,
latency, and loss profile of a target network topology.

This paper describes and evaluates the ModelNet ar-
chitecture and its implementation, including novel
techniques to balance emulation accuracy against
scalability. The current ModelNet prototype is able
to accurately subject thousands of instances of a dis-
trbuted application to Internet-like conditions with
gigabits of bisection bandwidth. Experiments with
several large-scale distributed services demonstrate
the generality and effectiveness of the infrastructure.

1 Introduction

Today, many research and development efforts in-
vestigate novel techniques for building scalable and
reliable Internet services, including peer-to-peer net-
works [17, 19, 20], overlay networks [1, 8], and wide-
area replication [10, 23]. These projects and many
others run on large numbers of cooperating nodes
spread across the Internet. To test and evaluate such
systems, their developers must deploy them in real-
istic scenarios, i.e., large, structured, dynamic wide-
area networks.

∗ This work is supported in part by the National Science
Foundation (EIA-9972879), Hewlett Packard, IBM, Intel, and
Microsoft. Vahdat is also supported by an NSF CAREER
award (CCR-9984328).

Unfortunately, it is difficult to deploy and administer
research software at more than a handful of Internet
sites. Further, results obtained from such deploy-
ments “in the wild” are not reproducible or predic-
tive of future behavior because wide-area network
conditions change rapidly and are not subject to the
researcher’s control. Simulation tools such as ns [15]
offer more control over the target platform, but they
may miss important system interactions, and they do
not support direct execution of software prototypes.

This paper advocates network emulation as a tech-
nique for evaluating Internet-scale distributed sys-
tems. Network emulators subject traffic to the end-
to-end bandwidth constraints, latency, and loss rate
of a user-specified target topology. However, emula-
tion has typically been limited to systems that are
relatively small and static.

We present the design, implementation, and eval-
uation of ModelNet, a scalable and comprehensive
large-scale network emulation environment. In Mod-
elNet, unmodified applications run on edge nodes
configured to route all their packets through a scal-
able core cluster, physically interconnected by gigabit
links. This core is responsible for emulating the char-
acteristics of a specified target topology on a link-
by-link basis, capturing the effects of bursty flows,
congestion, etc. In this context, this paper makes
the following contributions:

• We show that a single modern server-class PC
can accurately emulate bandwidth, latency, and
loss rate characteristics of thousands of flows
whose aggregate bandwidth consumption in the
target topology approaches 1 Gb/s. Depending
on communication patterns and topology map-
ping, we are able to scale available bisection
bandwidth linearly with additional core nodes
in our switched gigabit network hosting envi-
ronment.

• We demonstrate the utility of a number of tech-
niques that allow users to trade increased emu-
lation scalability for reduced accuracy. This is
required because, in general, it is impossible to
capture the full complexity of the Internet in any
controlled environment. Sample approaches in-
clude: i) progressively reducing the complexity
of the emulated topology, ii) multiplexing multi-
ple virtual edge nodes onto a single physical ma-
chine, and iii) introducing synthetic background
traffic to dynamically change network character-
istics and to inject faults.

• We illustrate the generality of our approach
through evaluation of a broad range of dis-
tributed services, including peer-to-peer sys-
tems, ad hoc wireless networking, replicated web
services, and self-organizing overlay networks.
For one of our experiments, we use ModelNet
to independently reproduce published results of
a wide-area evaluation of CFS [6].

Our intent is for the research community to adopt
large-scale network emulation as a basic methodol-
ogy for research in experimental Internet systems.

The rest of this paper is organized as follows. The
next section describes the ModelNet architecture.
Section 3 discusses our implementation and an eval-
uation of the system’s baseline accuracy and scala-
bility. Section 4 then discusses techniques to sup-
port accuracy versus scalability tradeoffs in large-
scale system evaluation. In Section 5, we demon-
strate the generality of our approach by using Model-
Net to evaluate a broad range of networked services.
Section 6 compares our work to related efforts and
Section 7 presents our conclusions.

2 ModelNet Architecture

Figure 1 illustrates the physical network architecture
supporting ModelNet. Users execute a configurable
number of instances of target applications on Edge
Nodes within a dedicated server cluster. Each in-
stance is a virtual edge node (VN) with a unique IP
address and corresponding location in the emulated
topology. Edge nodes can run any OS and IP net-
work stack and may execute unmodified application
binaries. To the edge nodes, an accurate emulation is
indistinguishable from direct execution on the target
network. ModelNet emulation runs in real time, so
packets traverse the emulated network with the same
rates, delays, and losses as the real network. We

Gb
Switch

100Mb
Switch

Edge
Nodes

Router
Core

Figure 1: ModelNet.

use standard administrative tools to configure edge
nodes to route their network traffic through a sepa-
rate set of servers acting as Core Routers. The core
nodes are equipped with large memories and mod-
ified FreeBSD kernels that enable them to emulate
the behavior of a configured target network under the
offered traffic load.

A key difference between ModelNet and earlier ef-
forts is that it targets the emulation of entire large-
scale topologies. Thus, ModelNet captures the ef-
fects of congestion and cross traffic on end-to-end
application behavior. To achieve this, the core routes
traffic through a network of emulated links or pipes,
each with an associated packet queue and queue-
ing discipline. Packets move through the pipes and
queues by reference; a core node never copies packet
data. Packets enter the queues as they arrive from
VNs or exit upstream pipes, and drain through the
pipes according to the pipe’s specified bandwidth,
latency, and loss rates. Each queue buffers a spec-
ified maximum number of packets; overflows result
in packet drops. When a packet exits the link net-
work, the core transmits the packet to the edge node
hosting the destination VN.

2.1 ModelNet Phases

ModelNet runs in five phases as shown in Figure 2.
The first phase, Create, generates a network topol-
ogy, a graph whose edges represent network links
and whose nodes represent clients, stubs, or tran-
sits (borrowing terminology from [3]). Sources of
target topologies include Internet traces (e.g., from
Caida), BGP dumps, and synthetic topology gener-

CREATE
Target

topology

DISTILL

ASSIGN

BIND

RUN

Pipes�cores

Physical client
resources

Topology
e.g., GT-ITM

Distilled
topology

Core resource
specs

Virt.�Phys.
Routing info

Figure 2: The phases of the ModelNet architecture.

ators [3, 4, 12]. ModelNet includes filters to convert
all of these formats to GML (graph modeling lan-
guage). Users may annotate the GML graph with
attributes not provided by its source, such as packet
loss rates, failure distributions, etc.

The Distillation phase transforms the GML graph
to a pipe topology that models the target network.
As an option, distillation may simplify the network,
trading accuracy for reduced emulation cost. Sec-
tion 4.1 discusses distillation and other techniques
to balance accuracy and scalability in ModelNet.

The Assignment phase maps pieces of the distilled
topology to ModelNet core nodes, partitioning the
pipe graph to distribute emulation load across the
core nodes. Note that the ideal assignment of
pipes to cores depends upon routing, link properties,
and traffic load offered by the application, an NP-
complete problem. Currently, we use a simple greedy
k-clusters assignment: for k nodes in the core set,
randomly select k nodes in the distilled topology and
greedily select links from the current connected com-
ponent in a round-robin fashion. We are investigat-
ing approximations for dynamically reassigning pipes
to cores to minimize bandwidth demands across the
core based on evolving communication patterns.

The Binding phase assigns VNs to edge nodes and
configures them to execute applications. ModelNet
multiplexes multiple VNs onto each physical edge
node, then binds each physical node to a single core.
The binding phase automatically generates a set of
configuration scripts for each node hosting the emu-
lation. For core routers, the scripts install sets of
pipes in the distilled topology and routing tables

with shortest-path routes between all pairs of VNs.
The scripts further configure edge nodes with appro-
priate IP addresses for each VN.

The final Run phase executes target application
code on the edge nodes. We have developed sim-
ple scripts to automate this process, so that a sin-
gle command is sufficient to execute thousands of
instances of a particular application across a clus-
ter. A key detail is that VNs running application
instances must bind IP endpoints to their assigned
IP addresses in the emulated network rather than
the default IP address of the host edge node. This
is necessary to mark outgoing packets with the cor-
rect source and destination addresses, so they are
routed through the core and to their final destina-
tion correctly. ModelNet includes a dynamic library
to interpose wrappers around the socket-related calls
that require this binding step. Most modern operat-
ing systems provide a mechanism to preload libraries
that intercept system calls while leaving the default
variants accessible to the wrapper. In Linux, the af-
fected system calls include bind, connect, sendto,
recvfrom, sendmsg, recvmsg, and name resolu-
tion calls (e.g., gethostbyname, gethostbyname2,
gethostname, uname and gethostbyaddr).

2.2 Inside the Core

During the Binding phase, ModelNet pre-computes
shortest-path routes among all pairs of VNs in the
distilled topology, and installs them in a routing ma-
trix in each core node. Each route consists of an or-
dered list of pipes that need to be traversed to deliver
a packet from source to destination. This straightfor-
ward design allows fast indexing and scales to 10,000
VNs, but the routing tables consume O(n2) space.

This scheme can be extended to scale to larger tar-
get networks. For common Internet-like topologies
that cluster VNs on stub domains, we could spread
lookups among hierarchical but smaller tables, trad-
ing less storage for a slight increase in lookup cost.
Another alternative is to use a hash-based cache of
routes for active flows (of size O(n lg n)). In the rare
case of a cache miss, the route may be fetched from
an external cache or computed on the fly from an in-
ternal representation of the topology using Dijkstra’s
shortest path algorithm (an O(n lg n) operation).

Figure 3 illustrates the packet processing steps in
ModelNet cores. First an IP firewall (ipfw) rule inter-
cepts packets entering the emulated network based

ModelNet core

ipfw

Route
lookup

pipe 12 pipe 43 pipe 26

IP
Output

10.1.1.4�10.1.2.3

per-hop BW, latency

VNs
10.1.1.1-
10.1.1.10

VNs
10.1.2.1-
10.1.2.10

Edge Node A Edge Node B

IP packet

Figure 3: A packet traveling from one edge node to
another through ModelNet.

on IP address: all VNs bind to IP addresses of the
form 10.0.0.0/8. On a match, control is transferred
to the ModelNet kernel module, which first looks up
the route for the given source and destination. This
returns the set of pipes that are traversed in the emu-
lated topology. ModelNet creates a descriptor refer-
encing the buffered packet and schedules this descrip-
tor on the appropriate pipes. Because these pipes are
shared among all simultaneous flows and each has a
fixed (specifiable) amount of queueing, ModelNet is
able to emulate the effects of congestion and packet
drops according to application-specific communica-
tion patterns.

Packet scheduling in ModelNet uses a heap of pipes
sorted by earliest deadline, where each pipe’s dead-
line is defined to be the exit time for the first packet
in its queue. The ModelNet scheduler executes once
every clock tick (currently configured at 10Khz) and
runs at the kernel’s highest priority level. The sched-
uler traverses the heap for all pipe deadlines that are
later than the current time. The descriptor for the
packets at the head of the queue for each of these
pipes is removed and either: i) moved to the tail
of the queue for the next pipe on the packet’s path
from source to destination, or ii) the packet itself is
scheduled for delivery (using the kernels ip output

routine) in the case where the packet has reached its
destination. The scheduler then calculates the new
deadline for all pipes that had packets dequeued dur-
ing the current clock tick and reinserts these pipes
into the pipe heap according to this new deadline.

Achieving emulation accuracy requires careful coor-
dination of kernel components. In steady state, a
ModelNet core performs two principal tasks. First,

it processes hardware interrupts to retrieve packets
from the network interface. Second, the ModelNet
scheduler wakes up periodically to move packets from
pipe to pipe or from pipe to final destination. The
second operation operates at a strictly higher kernel
priority than the first. Thus, under load, Model-
Net will preferentially emulate the delay for packets
that have already entered the core rather than service
packets waiting to enter the core through hardware
interrupts. This means that core CPU saturation re-
sults in dropped packets (at the physical level) rather
than inaccurate emulation. Hence, the relative accu-
racy of a ModelNet run is proportional to the number
of physical packets dropped (note the distinction be-
tween physical drops and emulated “virtual” drops
in the core).

We base our core implementation on dummynet [18],
with extensions to improve accuracy and to support
multi-hop and multi-core emulation. When a packet
arrives at a pipe queue, the emulation computes the
time to dequeue the packet and enter the pipe itself—
if it is not dropped due to a congestion-related queue
overflow, randomized loss, or a RED policy (each
pipe is FIFO by default). We calculate this time
based on the size of the packet, the size of all ear-
lier packets queued waiting to enter the pipe, and
the bandwidth of the pipe. As described above, the
clock interrupt handler checks for dequeued packets
once every system tick. A packet enters a pipe by
transferring to the pipe’s delay line queue, where it
waits until it exits the pipe according to the pipe’s
specified latency; the link’s delay-line queue holds its
bandwidth-delay product if the link is fully utilized.

This process repeats for every pipe in the path from
source to destination. When the packet exits its last
pipe, ip output forwards it to its destination edge
node, where the host operating system delivers it to
the VN process bound to the destination IP address.

For multi-core configurations, the next pipe in a
route may be owned by a different core node. In
this case, the core node tunnels the packet descriptor
to the owning node, which is determined by a table
lookup in a pipe ownership directory (POD) created
during the Binding phase. Note that link emulation
does not require access to the packet contents itself,
so ModelNet can reduce the physical bandwidth re-
quirements in the core by leaving the packet contents
buffered on the entry core node and forwarding it di-
rectly to the destination edge node when it exits the
emulated network [22].

2.3 Discussion

We now briefly discuss a number of outstanding is-
sues with the current ModelNet architecture. Since
we do not perform resource isolation among compet-
ing VN’s running on the edges, it is possible for a sin-
gle VN to transmit UDP packets as fast as allowed by
the hardware configuration (100 Mbps in our setup).
ModelNet will drop the appropriate portion of these
packets according to the specified first-hop charac-
teristics of emulated pipes in the topology. However,
since UDP flows do not respond to congestion sig-
nals (dropped packets), they will continue sending at
the same rate, preventing other well-behaving TCP
flows originating from the same physical host to ob-
tain their proper share of emulated bandwidth. A
number of solutions exist to this problem, such as
running individual VN’s within a virtual machine or
running traffic shapers (ModelNet itself could be ap-
plied recursively in this manner) on the edge hosts.
For portability, simplicity, and our desire to focus on
congestion-friendly distributed services, we choose to
minimize required modifications to edge nodes.

There are a number of scalability issues with Model-
Net. First, the traffic traversing the ModelNet core is
limited by the cluster’s physical internal bandwidth.
For current commodity network switches, this means
that application bisection bandwidth is limited to
roughly 10 Gb/s—assuming 10 ModelNet cores on a
switched gigabit network, and that individual pipes
in the emulated topology are limited to the band-
width of a single host, or 1 Gb/s. We believe this
level of bandwidth to be sufficient for a wide variety
of interesting distributed services. Next, Modelnet
must buffer up to the full bandwidth-delay product
of the target network. Fortunately, this memory re-
quirement is manageable for our target environment.
For example, a core node requires only 250 MB of
packet buffer space to carry flows at an aggregate
bandwidth of 10 Gb/s (currently beyond the capac-
ity of a single core node) with 200 ms average round-
trip latency.

Finally, we currently assume the presence of a “per-
fect” routing protocol that calculates the shortest
path between all pairs of hosts. Upon an individ-
ual node or link failure, we similarly assume that
the routing protocol is able to instantaneously dis-
cover the resulting shortest paths. We are currently
in the process of implementing various routing pro-
tocols within the ModelNet core. The idea here is to
emulate the propagation and processing of routing
protocol packets within a ModelNet routing module

without involving edge nodes. By leveraging our ex-
isting packet emulation environment, we are able to
capture the latency and communication overhead as-
sociated with routing protocol code while leaving the
edge hosts unmodified.

3 Implementation and Evaluation

We have completed an implementation of the en-
tire ModelNet architecture described above. Here,
we describe the novel aspects of the resulting imple-
mentation, focusing on ModelNet’s performance and
scalability. Unless otherwise noted, all experiments
in this paper run on the following configuration, as
depicted at a high level in Figure 1. The ModelNet
core routers are 1.4Ghz Pentium IIIs with 1GB of
main memory running FreeBSD-4.5-STABLE with a
separate kernel module running our extensions. Each
core router possesses a 3Com 3c966-T NIC based on
the Broadcom 5700 chipset and is connected to a 12-
port 3Com 4900 gigabit switch. Edge nodes are 1Ghz
Pentium IIIs with 256MB of main memory running
Linux version 2.4.17 (though we have also conducted
experiments with Solaris 2.8 and FreeBSD-4.x). Un-
less otherwise noted, these machines are connected
via 100Mb/s Ethernet interface to multiple 24-way
3Com 100 Mb/s switches with copper gigabit aggre-
gating uplinks to the 3Com 4900 switch connecting
the ModelNet core.

3.1 Baseline Accuracy

The ability to accurately emulate target packet char-
acteristics on a hop-by-hop basis is critical to Mod-
elNet’s success. Thus, a major component of our
undertaking was to ensure that, under load, pack-
ets are subject to appropriate end-to-end delays, as
determined by network topology and prevailing com-
munication patterns. We developed a kernel logging
package to track the performance and accuracy of
ModelNet. The advantage of this approach is that
information can be efficiently buffered and stored
offline for later analysis. Using such profiling, we
were able to determine the expected and actual de-
lay on a per-packet basis. We found that by running
the ModelNet scheduler at the kernel’s highest prior-
ity level, each packet-hop is accurately emulated to
within the granularity of the hardware timer (cur-
rently 100 µs) up to and including 100% CPU uti-
lization. Recall that packets are physical dropped
on the core’s network interface under overload. If a
packet takes 10 hops from source to destination, this

corresponds to a worst-case error of 1 ms, which we
consider acceptable for our target wide-area experi-
ments. We are in the process of implementing packet
debt handling within the ModelNet scheduler, where
the scheduler maintains the total emulation error and
attempts to correct for it in subsequent hops. With
this optimization, we believe that per-packet emula-
tion accuracy can be reduced to 100 µs in all cases.

ModelNet delivers packets to their destination within
1 ms of the target end-to-end value that accounts for
propagation delay, queueing delay, and hop-by-hop
link bandwidth. The system maintains this accuracy
up to and including 100% CPU utilization. Given
that the principal focus of our work is large-scale
wide-area network services, we believe that this level
of accuracy is satisfactory.

3.2 ModelNet Capacity

Our first experiment quantifies the capacity of Mod-
elNet as a function of offered load, measured in pack-
ets per second (like most “routers”, ModelNet over-
head is largely independent of packet size save the
relatively modest memcpy overhead) and as a func-
tion of emulated hops that the packet must traverse.
We vary from 1-5 the number of edge nodes with 1
Gb/s Ethernet connections communicating through
a single core with a 1 Gb/s link. Each edge node
hosts up to 24 netperf senders (24 VNs) communi-
cating over TCP. We spread the receivers across 5
edge nodes, each also hosting up to 24 netperf re-
ceivers. The topology directly connects each sender
with a receiver over a configurable number of 10
Mb/s pipes with an end-to-end latency of 10 ms. By
changing the number of pipes in the path, we vary
the total amount of work ModelNet must perform to
emulate end-to-end flow characteristics.

Figure 4 plots the capacity in packets/sec of the sin-
gle ModelNet core as a function of the number of
simultaneous flows competing for up to 10 Mb/s of
bandwidth each. There are five curves, each corre-
sponding to a different number of pipes that each
packet must traverse from source to destination. For
the baseline case of 1 hop, Figure 4 shows that the
performance of the core scales linearly with offered
load up to 96 simultaneous flows (4 edge nodes). At
saturation with 1 hop, ModelNet accurately emulates
approximately 120,000 packets/sec. At this point,
the ModelNet CPU is only 50% utilized, with the
bottleneck being in the network link. 120,000 pack-
ets/sec corresponds to an aggregate of 1 Gb/s (aver-

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 20 40 60 80 100 120

pk
ts

/s
ec

Flows (TCP limited at 10Mb/s each)

Hops
1
2
4
8

12

Figure 4: Capacity of a single ModelNet core.

age packet size is 1 KB when accounting for 1 ACK
for every two 1500-byte data packets).

Only once we attempt to emulate more than 4 hops
per flow does the ModelNet CPU become the bot-
tleneck. For 8 hops per flow, ModelNet accurately
forward approximately 90,000 packets/sec. At this
point, the machine enters a state where it consumes
all available resources to i) pull 90,000 packets/sec
from the NIC, ii) emulate the 8-hop characteristics
of each packet, and finally iii) forward the packets to
their destination. The NIC drops additional packets
beyond this point (recall that ModelNet emulation
runs at higher priority than NIC interrupt handling).
These drops throttle the sending rate of the TCP
flows to the maximum 90,000 packets/sec. Overall,
we measure a 0.5 µs overhead for each hop in the
emulated topology and a fixed per-packet overhead
of 8.3 µs for each packet traversing the core (re-
sulting from the standard IP protocol stack). Our
hardware configuration can forward approximately
250,000 small packets/sec when not performing Mod-
elNet emulation, indicating significant opportunity
for improved system capacity with improving CPU
performance.

3.3 Scaling with Additional Cores

The next experiment measures ModelNet’s ability to
deliver higher throughput with additional communi-
cating core routers. Recall that ModelNet’s ability
to deliver additional bandwidth with additional cores
depends upon the target topology and application
communication patterns. As the topology is divided
across an increasing number of cores, there is an in-
creasing probability that a packet’s path forces it to
cross from one core to another before being deliv-

Cross-Core Traffic Throughput (Kpkt/sec)

0% 462.5

25% 404.5

50% 276.3

75% 219.3

100% 155.8

Table 1: Scalability as a function of communication pat-
tern for 4-core experiment.

ered to its final destination. Each such core crossing
negatively impacts overall system scalability.

To quantify this effect, we configure 20 machines as
edge nodes, each hosting 56 VNs, evenly split among
28 senders and 28 receivers (for a total of 1120 VNs).
For this experiment, the edge machines were each
configured with a gigabit link to the ModelNet core
to allow us to load the 4-node configuration with
fewer resources. We emulate a star topology with
all VNs connected to a central point with 10 Mb/s,
5 ms latency pipes. Thus, all paths through the
topology consist of 2 hops. We assign one quarter
of the VNs to each core. During the experiment all
560 senders use netperf to simultaneously transmit
TCP streams to 560 unique receivers; there is no con-
tention for the last-hop pipes. We vary the commu-
nication pattern so that during any one experiment,
x% of flows must cross from one core to the other,
leaving (1−x)% of the traffic to travel within a single
core.

Table 1 summarizes the results of this experiment,
showing the maximum system throughput in pack-
ets/sec as a function of the percent of cross-core traf-
fic. With 0% cross-core traffic, the system delivers
four times the throughput of a single core (compare
to the 2-hop results from Figure 4 above) degrad-
ing roughly linearly with additional cross-core traf-
fic. For more complicated topologies where, for ex-
ample, each packet must traverse four different cores,
throughput would degrade further. Thus, the ability
to scale with additional core nodes depends on appli-
cation communication characteristics and properly
partitioning the topology to minimize the number of
inter-core packet crossings.

4 Accuracy versus Scalability Trade-

offs

This section outlines several techniques to configure
emulations on a continuum balancing accuracy and
cost. It is impractical to model every packet and link

for a large portion of the Internet on a PC cluster.
Rather, the goal of ModelNet is to create a controlled
Internet-like execution context with a diversity of
link capabilities, rich internal topology, network lo-
cality, dynamically varying link status, cross traffic,
congestion, and packet loss. The key to emulation at
scale is to identify and exploit opportunities to re-
duce overhead by making the emulation less faithful
to the target network in ways that minimally impact
behavior for the applications under test. Ideally, the
emulation environment would automate these trade-
offs to yield the most accurate possible emulation on
the available hardware, then report the nature and
degree of the inaccuracy back to the researcher. We
have taken some initial steps toward this vision in
our work with ModelNet.

4.1 Distillation

ModelNet’s Distillation phase modifies the topology
with the goal of reducing the diameter of the em-
ulated network. In a pure hop-by-hop emulation,
the distilled topology is isomorphic to the target net-
work; ModelNet faithfully emulates every link in the
target network. This approach captures all conges-
tion and contention effects in the topology but also
incurs the highest per-packet overhead. At the other
extreme, end-to-end, distillation removes all interior
nodes in the network, leaving a full mesh with O(n2)
links interconnecting the n VNs. The distiller gener-
ates the mesh by collapsing each path into a single
pipe p: the bandwidth of p is the minimum band-
width of any link in the corresponding path, its la-
tency is the sum of the link latencies along the path,
and its reliability (1 − lossrate) is the product of
the link reliabilities along the path. This approach
yields the lowest per-packet emulation overhead—
since each packet traverses a single hop—and it ac-
curately reflects the raw network latency, bandwidth,
and base loss rate between each pair of VNs. How-
ever, it does not emulate link contention among com-
peting flows except between each pair of VNs.

ModelNet provides a walk-in “knob” to select an ar-
bitrary balance along the continuum between these
extremes by “preserving” the first walk-in links from
the edges. A breadth-first traversal generates suc-
cessive frontier sets. The first frontier set is the set
of all VNs; the members of the i + 1 frontier set are
the nodes that are one hop from a member of the ith
frontier set, but are not members of any preceding
frontier set. The interior consists of all nodes that
are not members of the first walk-in frontier sets.

The distiller replaces the interior links of the target
topology with a full mesh interconnecting the inte-
rior nodes, as in the end-to-end approach. This ap-
proach reduces emulation cost relative to hop-by-hop
because each packet traverses at most (2*walk-in)+1
pipes, rather than the network diameter. A last-mile
emulation (walk-in = 1) preserves the first and last
hop of each path.

Distilled walk-in emulations do not model contention
in the interior, but this is a useful tradeoff assum-
ing that today’s Internet core is well-provisioned and
that bandwidth is constrained primarily near the
edges of the network at peering points and over the
last hop/mile. To model under-provisioned cores,
ModelNet extends the walk-in algorithm above to
preserve the inner core of breadth walk-out. This
extends the walk-in algorithm above to generate suc-
cessive frontier sets until a frontier of size one or zero
is found, representing the topological “center” of the
target topology. Suppose that this is frontier set c.
The interior corresponding to breadth walk-out is the
union of frontier sets c - walk-out through c. Dis-
tillation preserves links interconnecting the interior,
while collapsing paths between the walk-in and walk-
out frontiers as described above.

To illustrate distillation, we ran a simple experiment
with a ring topology. The ring has 20 routers inter-
connected at 20 Mb/s; each ring router has 20 VNs
directly connected to it by individual 2 Mb/s links.
The VNs are evenly partitioned into generator and
receiver sets of size 200. Each generator transmits
a TCP stream to a random receiver. This topology
then has 419 pipes shared among the 400 VNs. The
end-to-end distillation contains 79,800 pipes, one for
each VN pair, each with a bandwidth of 2 Mb/s. The
last-mile distillation preserves the 400 edge links to
the VNs, and maps the ring itself to a fully con-
nected mesh of 190 links. The last-hop configuration
can handle significantly more packets on a given em-
ulation platform, since each packet traverses 3 hops
rather than the average case of 7 in the original ring
topology.

Figure 5 plots a CDF for the distribution of band-
width achieved by the 200 flows in the various em-
ulations, and in full hop-by-hop simulations using
the ns2 simulator with both 20 Mb/s and 80 Mb/s
rings. The hop-by-hop emulation shows a roughly
even distribution of flow bandwidths, matching the
20 Mb/s ns2 results. Here, each 20 Mb/s transit
link has an offered load of 27.5 Mb/s, constraining
the bandwidth of flows passing through the ring. In

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f T
C

P
 te

st
 fl

ow
s

Bandwidth in Kbit/s

Hop by hop w/20Mb transit links
ns2 sim of Hop by Hop 20 Mb/s
ns2 sim of Hop by Hop 80 Mb/s
Last-mile only
End to end

Figure 5: The effects of distillation on distribution of
bandwidth in a ring topology.

the end-to-end emulation, which does not model con-
tention in the ring, all flows achieve their full 2 Mb/s
of bandwidth. The last-mile emulation models con-
gestion only for the 64% of flows that share the same
receiver; the bandwidths for these flows are 1 Mb/s
or less, depending on the number of flows sharing a
given receiver. The other 36% of flows all achieve
2Mb/s. The last-mile emulation is qualitatively sim-
ilar to the ns2 results with an 80 Mb/s ring, since
in this case the ring is adequately provisioned and
the only contention is on the last hop to the receiver.
The emulation results closely match the exhaustively
verified ns2 simulation environment, improving our
confidence in the accuracy of our implementation.

4.2 VN Multiplexing

The mapping of VNs to physical edge nodes also
affects emulation accuracy and scalability. Higher
degrees of multiplexing enable larger-scale emula-
tions, but may introduce inaccuracies due to con-
text switch overhead, scheduling behavior, and re-
source contention on the edge nodes. The maximum
degree of safe multiplexing is application-dependent.
For many interesting application scenarios (e.g., Web
load generators), the end node CPU is not fully
utilized and higher multiplexing degrees are allow-
able. The multiplexing degree is lower for resource-
intensive VNs, such as Web servers.

The accuracy cost of VN multiplexing also varies
with the concurrency model. In general, each VN
runs as one or more processes over the edge node
host OS; all sockets open in those processes bind to
the VN’s assigned IP address. Mapping the sock-
ets of a single process onto multiple VNs may allow

65000

70000

75000

80000

85000

90000

95000

100000

50 55 60 65 70 75 80 85 90 95 100

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
kb

it/
s)

Instructions per byte

Number of
Processes

1
4
8
16
32
60
80
100

Figure 6: Effects of multiplexing processes on an edge
node.

higher VN multiplexing degrees with less likelihood
of saturating the edge node if the process manages
its concurrency efficiently using threads or an event-
driven model. ModelNet users can achieve this per-
socket VN mapping in a straightforward manner us-
ing a variant of the socket interposition library that
maps each open socket to a different VN.

To illustrate the accuracy tradeoff of VN multiplex-
ing, we ran an experiment to show its effect on VNs
running modified netperf/netserver processes that
exchange 1500-byte UDP packets with a configurable
amount of computation per packet. The experiment
uses three physical nodes: one for netperf sources,
one for netserver sinks, and one for the ModelNet
core. We ran experiments with varying multiplexing
degrees, varying the emulated topology so that each
of nprog netperf/netserver pairs is configured with
1/nprog of the physical 100 Mb/s link.

Figure 6 plots aggregate bandwidth across all pro-
cesses as a function of the number of instructions
delay (per byte) after each packet transmission, for
a multiplexing degree nprog ranging from 1 to 100.
The actual delay in instructions between packet
transmissions on the x-axis should be multiplied by
the packet size (1500 bytes). We expect context
switch overhead to consume an increasing fraction
of system resources as we increase nprog. With zero
delay, the processes deliver an aggregate of approx-
imately 95 Mb/s. With nprog = 1, there is no loss
of throughput up to a delay of 76 instructions/byte.
The theoretical maximum is 1Ghz*8/100Mb/s = 80
instructions per byte (assuming a CPI of 1.0). With
nprog = 2, the allowable total computation per-byte
degrades to 73 instructions due to context switching
overheads; with nprog = 100 it falls to 65 instruc-

tions per transmitted byte.

We plan to use such a benchmarking tool to auto-
mate the process of determining the computation
versus communication ratio of individual applica-
tions (with the help of the Pentium’s cycle and in-
struction counters). Such an evaluation will assist
ModelNet users to determine the accuracy tradeoff
at various multiplexing degrees.

4.3 Changing Network Characteristics

An important goal of ModelNet is to enable re-
searchers to evaluate adaptive Internet systems by
subjecting them to competing traffic and observing
their responses to the resulting variations in net-
work performance. ModelNet users may do this
directly by incorporating generators for competing
traffic with specified properties (TCP, constant bit
rate, etc.) into the VN application mix. While this
is the most accurate way to emulate “background”
cross traffic, it consumes resources at the edge nodes
as well as ModelNet emulation bandwidth at the
core. Another option is to modify the core kernels to
insert dummy packets into the pipes according to a
specified pattern. However, this approach also con-
sumes significant core resources to generate the cross
traffic and propagate it through the pipe network.

ModelNet allows users to inject cross traffic by mod-
ifying pipe parameters dynamically as the emula-
tion progresses. The cross traffic at each point in
time is specified as a matrix indicating communica-
tion bandwidth demand between each VN pair (i, j).
These matrices may be generated from a synthetic
background traffic pattern or probability distribu-
tion, or fetched from a stored set of “snapshot” pro-
files. An offline tool propagates the matrix values
through the routing tables to determine the impact
of the specified cross-traffic signals on each pipe in
the distilled topology. During the emulation, a con-
figuration script periodically installs derived pipe pa-
rameter settings into the ModelNet core nodes. The
new settings represent cross traffic effects by increas-
ing pipe latency to capture queueing delays, reducing
pipe bandwidth to capture the higher link utilization,
and reducing the queue size bound to model the im-
pact on the steady-state queue length. Thus, a flow
competing with synthetic cross traffic sees a reduced
ability to handle packet bursts without loss, as well
as increased latency and lower available bandwidth.
We derive the new settings from a simple analytical
queueing model for each impacted link.

This approach incurs low overhead and scales inde-
pendently of both the cross traffic rate and the actual
traffic rate. The drawback is that it does not cap-
ture all the details of Internet packet dynamics (slow
start, bursty traffic, etc.). In particular, synthetic
cross traffic flows are not responsive to congestion in
our current approach; thus they introduce an emula-
tion error that grows with the link utilization level.

ModelNet also adjusts pipe parameter settings to
emulate other dynamic network changes, e.g., fault
injection. For example, the user can direct Model-
Net to change the bandwidth, delay, and loss rate
of a set of links according to a specified probability
distribution every x seconds. For node or link fail-
ures, the configuration script also updates the system
routing tables. Currently, this is done by recalcu-
lating all-pairs shortest paths; we are currently in-
vestigating techniques for emulating realistic routing
protocols within ModelNet. In this way, users can
observe how their system responds to pre-specified
stimuli, for example, network partitions, sudden im-
provements in available bandwidth, sudden increase
in loss rate across a backbone link, etc. In particu-
lar, random stress tests are useful because it is often
just as important to identify conditions under which
services will fail than it is to demonstrate how well
they behave in the common case.

5 Case Studies

In this section, we demonstrate the utility and gen-
erality of our approach by evaluating four sample
distributed services on ModelNet. Beyond the tests
below, the largest single experiment completed in
our environment successfully evaluated system evo-
lution and connectivity of a 10,000 node network
of unmodified gnutella clients by mapping 100 VNs
to each of 100 edge nodes in our cluster. To fur-
ther explore the generality of our approach, we have
also implemented extensions to our architecture to
support emulation of ad hoc wireless environments.
These changes involve supporting the broadcast na-
ture of wireless communication (packet transmission
consumes bandwidth at all nodes within communica-
tion range of the sender) and node mobility (topology
change is the rule rather rather than the exception).
While complete, we omit a detailed evaluation of this
last case study for brevity.

 0

 50

 100

 150

 200

 0 100 200

S
pe

ed
 (

K
B

yt
es

/S
ec

on
d)

Prefetch Window (KBytes)

Modelnet 1 machine
Modelnet 12 machines

Original CFS data

Figure 7: Download speed as a function of prefetch win-
dow for CFS/RON and CFS/ModelNet.

5.1 CFS

As a first demonstration of the utility of ModelNet,
we set out to reproduce the published experimental
results of another group’s research in large-scale dis-
tributed computing. We chose the CFS implemen-
tation [6] running on top of the RON testbed [1].
CFS is an archival storage system layered on top of
Chord [20], a fully distributed hash table. A CFS
prototype was evaluated on 12 nodes spread across
the Internet. We chose CFS running on RON be-
cause of their exemplary experimental practice: The
CFS code is publicly available and the network char-
acteristics (bandwidth, latency, loss rate) among all
pairs of RON nodes are published.

We converted the publicly available RON intercon-
nectivity characteristics into a ModelNet topology.
The only limitation we encountered was that the au-
thors did not record exactly which 12 of the 15 RON
nodes hosted the reported experimental results. We
tried a number of permutations of potential partic-
ipants, but were not exhaustive because, as shown
below, we were able to closely reproduce the CFS
results in all cases.

Specifically, we reproduce the experimental results
from Figures 6, 7, and 8 of the CFS paper [6]. CFS
Figures 6 and 7 are two views of how varying the
Chord prefetch size changes the download bandwidth
for retrieving 1MB of data striped across all partic-
ipating CFS nodes. CFS Figure 8 shows the band-
width distribution for a series of pure TCP trans-
fers between the RON nodes and is presented as a
comparison between the transfer speeds delivered by
CFS relative to TCP. We were able to extract the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 D
ow

nl
oa

ds

Speed (KBytes/sec)

8 KBytes Modelnet
24 KBytes Modelnet
40 KBytes Modelnet
8 KBytes, CFS data

24 KBytes, CFS data
40 KBytes, CFS data

Figure 8: CDF of download speed for various prefetch
windows for CFS/RON and CFS/ModelNet.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 T
ra

ns
fe

rs

Speed (KBytes/sec)

8 KBytes Modelnet
64 KBytes Modelnet

1126 KBytes Modelnet
8 KBytes CFS data

64 KBytes CFS data
1126 KBytes CFS data

Figure 9: TCP transfer of 8, 64, and 1164KB files using
TCP running on both the RON testbed and ModelNet.

raw data for these experiments from information con-
tained within the encapsulated postscript of the fig-
ures in the publicly available postscript version of
the CFS paper. We plot these curves along with our
own experimental results of the CFS code running
on ModelNet in Figures 7, 8, and 9.

We replicate the Chord prefetch experiment (Fig-
ures 7 and 8) in two ways. The “Modelnet 12 node”
curve shows the results of running the experiment
on 12 individual edge nodes, each with a single VN
representing a RON node and running CFS code.
Next, to further demonstrate ModelNet’s ability to
accurately multiplex multiple logical nodes onto a
single physical node, we run 12 instances (VNs) of
CFS on a single machine. The “ModelNet 1 node”
curve in Figure 7 shows the results of this experi-
ment. Figure 8 depicts the Chord prefetch results in
more detail.

T T

TT

C2 R2

R1 C3 C4 R3

C1

50Mb, 50msT T

S S

SST 25Mb, 10ms

C 1Mb, 1ms

R 100Mb, 1msS

S

S

Figure 10: Sample network topology for investigating
the effects of replication on client-perceived latency.

A final experiment in CFS measures basic TCP
bandwidth between all RON nodes by transferring
files of 8, 64 and 1164 KB. Figure 9 shows the results
for each transfer size sorted by achieved throughput
for both our ModelNet experiments and the CFS
wide-area experiments. We used 12 physical edge
nodes for this experiment.

Overall, the results of CFS/ModelNet experiments
closely match the results for CFS/RON in all cases.
Several potential sources of error may explain the
discrepancies: i) the CFS experiments were run at a
different time than the RON network characteristics
were measured, ii) resource contention in the “mid-
dle” of the network were not captured by the end-
to-end network characterization available to us, and
iii) different hardware and operating systems were
used to carry out the wide-area versus ModelNet ex-
periments. Overall, however, we are quite satisfied
with how closely we were able to reproduce these re-
sults. Running experiments on ModelNet is also a
lightweight operation relative to coordinating exper-
iments across multiple wide-area nodes: One experi-
enced programmer was able to reproduce all the CFS
experiments on ModelNet in one day.

5.2 Replicated Web Services

Recently, there has been increasing interest in wide-
area replication of Internet services to improve over-
all performance and reliability. A principal moti-
vation for our work is to develop an environment
to support the study of replica placement and re-
quest routing policies under realistic wide-area con-
ditions. While such a comprehensive study is beyond
the scope of this paper, we present the results of some
initial tests to demonstrate the suitability of Model-
Net for evaluating replicated network services.

The goal of our experiment is to demonstrate that
ModelNet support for realistic Internet topologies

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

C
um

ul
at

iv
e

fr
ac

tio
n

of
 la

te
nc

ie
s

Latency (sec)

Server replicas

1
2
3

Figure 11: CDF of client-perceived latency as a function
of number of replicas.

and emulation of contention for shared pipes sup-
ports complex experiments involving replica place-
ment and request routing policies. We create a mod-
ified 320-node transit-stub [3] topology, as depicted
in Figure 10. Clouds labeled “S” in the figure repre-
sent stub domains with more complex internal con-
nectivity. These stub-stub links are set with 10 Mb/s
bandwidth, and 5 ms latency. Additional link char-
acteristics are set as described in the figure. For our
experiments, we use locally developed software to
play back in real time 2.5 minutes of a larger trace to
IBM’s main web site (www.ibm.com) from February
2001 [5]. Load varies from 60-100 requests/sec during
this period. We use eight machines for this experi-
ment: a single ModelNet core, 4 machines (hosting
clients labeled C1−C4 in Figure 10) simultaneously
play back the trace, and up to 3 machines (labeled
R1−R3 in Figure 10) host Apache (version 1.3.24-3)
servers. We map 30 VNs in the same stub domain
to each of C1−C4. Each VN has its own dedicated
1 Mb/s, 1 ms link to the rest of the stub domain.
We run three separate experiments. In the first, all
clients C1 − C4 make requests to R1. Server CPU
utilization was 10% even when all requests are di-
rected to this single server, indicating that the net-
work rather than host CPU was the bottleneck in
our experiments. In the second experiment, we man-
ually configure clients at C1 and C2 to direct their
requests to R2 (the remaining clients still go to R1).
In the final experiment, we configure C4 to direct its
requests to R3.

Figure 11 plots the cumulative distribution of all
client latencies for the three different experiments
described above. We see that with 1 server, client
latencies are relatively large, with 10% taking longer
than 5 seconds to complete. Instrumentation shows

that this results from contention on the transit-to-
transit links in the topology. An additional replica
greatly improves client latency by largely eliminat-
ing such contention. A third replica provides only
marginal benefit in this case. Note that these re-
sults would not be possible without ModelNet’s abil-
ity to accurately emulate contention on interior links
in the topology. Further, these simple results depict
an upper bound on the benefits of wide-area repli-
cation because we assume a perfect request routing
mechanism and static network conditions. Of course,
a more comprehensive experiment must support dy-
namic request routing decisions (e.g., leveraging DNS
in a content distribution network) and dynamically
changing network conditions.

5.3 Adaptive Overlays

We use ACDC [9], an application-layer overlay sys-
tem that dynamically adapts to changing network
conditions, to demonstrate ModelNet’s ability to
subject systems to dynamically changing network
conditions. ACDC attempts to build the lowest-cost
overlay distribution tree that meets target levels of
end-to-end delay. Cost and delay are two indepen-
dent and dynamically changing metrics assigned to
links in the underlying IP network. Nodes in the
overlay use a distributed algorithm to locate parents
that deliver better cost, better delay, or both. A
key goal is scalability: no node maintains more than
O(lg n) state or probes more than O(lg n) peers.

Full details of the algorithm and an ns2-based eval-
uation are available elsewhere [9]. We wrote ACDC
to a locally developed compatibility layer that allows
the same code to run both in ns2 and under live de-
ployment. Thus, we are able to reproduce the results
of an experiment running under both ns2 and Model-
Net. We begin with a 600-node GT-ITM transit-stub
topology and randomly choose 120 nodes to partici-
pate in the ACDC overlay. We assign transit-transit
links a bandwidth of 155 Mb/s and a cost of 20-40,
transit-stub links 45 Mb/s with a cost of 10-20 and
stub-stub links 100 Mb/s with a cost of 1-5. GT-
ITM determines propagation delay based on relative
location in the randomly generated graph. We run
ACDC using a single core and 10 edge nodes, each
hosting 12 VNs.

Nodes initially join at a random point in the overlay
and self-organize first to meet application-specified
delay targets (1500 ms in this experiment) and then
to reduce cost while still maintaining delay. Fig-

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

0 500 1000 1500 2000 2500 3000
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3

C
os

t v
s.

 M
S

T

D
el

ay
 (

s)

Time (s)

maximum AC/DC delay (ns)
maximum AC/DC delay (ModelNet)

SPT delay (ns)
cost (ns)

cost (ModelNet)

Figure 12: ACDC cost and delay running on ModelNet.

ure 12 plots as a function of time: i) the cost of
the overlay relative to a minimum cost spanning tree
(calculated offline) on the left y-axis, and ii) the
worst-case delay of the overlay on the right y-axis.
The graph also depicts the delay through the short-
est path tree (again calculated offline) connecting the
120 participants. The closer the SPT delay is to the
1500ms target, the more difficult it is to achieve the
performance goal. After allowing the overlay to sta-
bilize for 500 seconds, ModelNet increases the de-
lay on 25% randomly chosen IP links by between
0-25% of the original delay every 25 seconds. The
figure shows ACDC’s ability to self-organize to main-
tain target performance levels, sometimes sacrificing
cost to do so. At t = 1500, network conditions
subside and ACDC once again focuses on reducing
cost. For comparison, Figure 12 also plots the re-
sults of an identical experiment under ns2. Overall,
the results for ACDC/ns2 closely match those for
ACDC/ModelNet.

6 Related Work

Many previous efforts investigate the use of emula-
tion in support of their research [2, 11, 7, 14, 23].
Relative to ModelNet, these efforts largely focus on
specific, static, and relatively small-scale systems.
ModelNet, on the other hand, supports a scalable
and flexible emulation environment useful for a broad
range of research efforts and further performs full
hop-by-hop network emulation, allowing it to cap-
ture the effects of contention and bursts in the middle
of the network. Perhaps most closely related to our
effort is Netbed (an outgrowth of Emulab) [21]. This
tool allows users to configure a subset of network re-
sources for isolated distributed systems and network-
ing experiments. The testbed provides an integrated

environment that allows users to set up target oper-
ating systems and network configurations. Relative
to Emulab, we focus on scalable emulation of large-
scale network characteristics. Overall, we plan to
integrate our effort into this system in the future.

A number of collaborative efforts provide nodes
across the wide-area to support “live” experimen-
tation with new protocols and services. Examples
include Access, CAIRN, PlanetLab [16], Netbed,
RON [1] and the X-Bone. While these testbeds are
extremely valuable, they are also typically limited
to a few dozen sites and do not support controlled,
large-scale, and reproducible experiments. We view
ModelNet as complementary to these very necessary
efforts.

One recent effort [13] uses emulation to evaluate
the effects of wide-area network conditions on web
server performance. They advocate emulating net-
work characteristics at end hosts rather than in a
dedicated core for improved scalability. However,
this approach cannot capture the congestion of mul-
tiple flows on a single pipe, requires appropriate em-
ulation software on all edge nodes, and must share
each host CPU between the tasks of emulation and
executing the target application.

7 Conclusions

Ideally, an environment for evaluating large-scale dis-
tributed services should support: i) unmodified ap-
plications, ii) reproducible results, iii) experimenta-
tion under a broad range of network topologies and
dynamically changing network characteristics, and
iv) large-scale experiments with thousands of partic-
ipating nodes and gigabits of aggregate cross traffic.
In this paper, we present the design and evaluation of
ModelNet, a large-scale network emulation environ-
ment designed to meet these goals. ModelNet maps
a user-specified topology to a set of core routers that
accurately emulate on a per-packet basis the char-
acteristics of that topology, including per-link band-
width, latency, loss rates, congestion, and queueing.
ModelNet then multiplexes unmodified applications
across a set of edge nodes configured to route all their
packets through the ModelNet core.

Of course, no cluster can capture the full scale and
complexity of the Internet. Thus, a significant con-
tribution of this work is an evaluation of a set of
scalable techniques for approximating Internet con-
ditions. In addition to a detailed architectural evalu-

ation, we demonstrate the generality of our approach
by presenting our experience with running a broad
range of distributed services on ModelNet, includ-
ing a peer-to-peer file service, an adaptive overlay, a
replicated web service, and an ad hoc wireless com-
munication scenario.

References

[1] David G. Andersen, Hari Balakrishnan, M. Frans
Kaashoek, and Robert Morris. Resilient Overlay
Networks. In Proceedings of SOSP 2001, October
2001.

[2] Guarav Banga, Jeffrey Mogul, and Peter Druschel.
A Scalable and Explicit Event Delivery Mechanism
for UNIX. In Proceedings of the USENIX Annual
Technical Conference, June 1999.

[3] Ken Calvert, Matt Doar, and Ellen W. Zegura.
Modeling Internet Topology. IEEE Communications
Magazine, June 1997.

[4] Hyunseok Chang, Ramesh Govindan, Sugih Jamin,
Scott Shenker, and Walter Willinger. Towards Cap-
turing Representative AS-Level Internet Topologies.
In Proceedings of ACM SIGMETRICS, June 2002.

[5] Jeffrey S. Chase, Darrell C. Anderson, Prachi N.
Thakar, Amin M. Vahdat, and Ronald P. Doyle.
Managing Energy and Server Resources in Hosting
Centers. In Proceedings of the 18th ACM Sympo-
sium on Operating System Principles (SOSP), Oc-
tober 2001.

[6] Frank Dabek, M. Frans Kaashoek, David Karger,
Robert Morris, and Ion Stoica. Wide-area Cooper-
ative Storage with CFS. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles
(SOSP’01), October 2001.

[7] NIST Internetworking Technology Group. See http:
//www.antd.nist.gov.

[8] Yang hua Chu, Sanjay Rao, and Hui Zhang. A Case
For End System Multicast. In Proceedings of the
ACM Sigmetrics 2000 International Conference on
Measurement and Modeling of Computer Systems,
June 2000.

[9] Dejan Kostić, Adolfo Rodriguez, and Amin Vah-
dat. The Best of Both Worlds: Adaptivity in Two-
Metric Overlays. Technical Report CS-2002-10,
Duke University, May 2002. http://www.cs.duke.

edu/~vahdat/ps/acdc-full.pdf.

[10] Balachander Krishnamurthy, Craig Wills, and Yin
Zhang. On the Use and Performance of Content
Distribution Networks. In SIGCOMM Internet Mea-
surement Workshop, 2001 November.

[11] Richard P. Martin, Amin M. Vahdat, David E.
Culler, and Thomas E. Anderson. Effects of Com-
munication Latency, Overhead, and Bandwidth in a

Cluster Architecture. In Proceedings of the 1997 In-
ternational Symposium on Computer Architecture,
June 1997.

[12] Alberto Medina, Anukool Lakhina, Ibrahim Matta,
and John Byers. BRITE: An Approach to Universal
Topology Generation. In Proceedings of the Interna-
tional Workshop on Modeling, Analysis and Simula-
tion of Computer and Telecommunications Systems
(MASCOTS), August 2001.

[13] Erich M. Nahum, Marcel Rosu, Srinivasan Seshan,
and Jussara Almeida. The Effects of Wide-Area
Conditions on WWW Server Performance. In
Proceedings of ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems,
June 2001.

[14] Brian Noble, M. Satyananarayanan, Giao Nguyen,
and Randy Katz. Trace-based Mobile Network Em-
ulation. In Proceedings of SIGCOMM, September
1997.

[15] The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[16] Larry Peterson, Tom Anderson, David Culler, and
Timothy Roscoe. A Blueprint for Introducing Dis-
ruptive Technology into the Internet. In Proceedings
of ACM HotNets-I, October 2002.

[17] Sylvia Ratnasamy, Paul Francis Mark Handley,
Richard Karp, and Scott Shenker. A Content Ad-
dressable Network. In Proceedings of SIGCOMM
2001, August 2001.

[18] Luigi Rizzo. Dummynet and Forward Error Correc-
tion. In Proceedings of the USENIX Annual Techni-
cal Conference, June 1998.

[19] Antony Rowstron and Peter Druschel. Pastry:
Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems. In Middle-
ware’2001, November 2001.

[20] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A Scal-
able Peer to Peer Lookup Service for Internet Ap-
plications. In Proceedings of the 2001 SIGCOMM,
August 2001.

[21] Brian White, Jay Lepreau, Leigh Stoller, Robert
Ricci, Shashi Guruprasad, Mac Newbold, Mike Hi-
bler, Chad Barb, and Abhijeet Joglekar. An Inte-
grated Experimental Environment for Distributed
Systems and Networks. In Proceedings of the 5th
Symposium on Operating Systems Design and Im-
plementation (OSDI), December 2002.

[22] Kenneth G. Yocum and Jeffrey S. Chase. Payload
Caching: High-Speed Data Forwarding for Network
Intermediaries. In Proceedings of the USENIX Tech-
nical Conference, June 2001.

[23] Haifeng Yu and Amin Vahdat. The Costs and Lim-
its of Availability for Replicated Services. In Pro-
ceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP), October 2001.

