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We identify three fundamental requirements for scalable net-

work services: incremental scalability aneedlow growth provi-
sioning, 24x7 wailability through &ult masking, and cost-
effectiveness. W ague that clusters of commodityovkstations
interconnected by a high-speed SAN areeptionally well-suited

to meeting these challenges for Internet-semworkloads, pro-
vided the softwre infrastructure for managing partialléires and
administering a laye cluster does not ¥ to be reimented for
each ne service. © this end, we propose a general, layered archi-
tecture for hilding clusterbased scalable netrk services that
encapsulates the alrequirements for reuse, and a service-pro-
gramming model based on composabtekers that perform trans-
formation, aggrgation, caching, and customizationAQC) of
Internet content. & both performance and implementation sim-
plicity, the architecture andATCC programming modelxgloit
BASE, a weakr-than-ACID data semantics that results from trad-
ing consisteng for availability and relying on soft state for not-

ness in &ilure management. Our architecture can be used asfan “of

the shelf” infrastructural platform for creatingwaetwork ser-
vices, allaving authors to focus on the “content” of the service (by
composing ACC huilding blocks) rather than its implementation.
We discuss tw real implementations of services based on this
architecture: TanSend, a Vb distillation proxy deplged to the
UC Berleley dialup population, and HotBot, the commercial
implementation of the Inktomi search engines Wesent detailed
measurements ofrfdnSend performance based on substantial cli-
ent traces, as well as anecdotadence from the fanSend and
HotBot experience, to support the claims made for the architecture

1 Introduction

“One of the werall design goals is to eate a computing
system whic is capable of meeting almost all of the
requirrments of a laje computer utilitySud systems must
run continuously andelfiably 7 days a week, 24 heua
day.. and must be capable of meeting wide service
demands.

“Because the system must ultimately be c@mh@nsive
and able to adapt to unknown futurequirrments, its
framavork must be gneal, and capable ofwlving over
time’

— Corbat6 and Vyssotgkon Multics, 1965[15]

Although it is normally vieved as an operating system, Multics
(Multiplexed Information and Computer Servicepsvoriginally

conceved as an infrastructural computing service, so it is not sur-

prising that its goals as stated adare similar to ourwn. The
primary obstacle to deptong Multics was the absence of the net-
work infrastructure, which is moin place. Netwrk applications
have exploded in popularity in part becauseyttae easier to man-
age and wolve than their desktop application counterpartsy the
eliminate the need for sofewe distrilution, and simplify customer
service and g tracking by woiding the dificulty of dealing with
multiple platforms and ersions. Also, basic queueing theory
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shaws that a lage central (virtual) seer is more dicient in both
cost and utilization than a collection of smaller sesy desktop
systems represent thegidmerate case of one “serV per userAll
of these aredy parts of the ument for Netwrk Computer$27].

However, network services remain di€ult to deply because
of three fundamental challenges: scalahilayailability and cost
effectiveness.

» By scalability we mean that when thefefed load to the
service increases, aimcremental and linearincrease in
hardware can maintain the same jpeser level of service.

» By availability, we mean that the service as a whole must be
available 24x7, despite transient partial haadevor softvare
failures.

* By cost efectivenesswe mean that the service must be
economical to administer andxpand, een though it
potentially comprises mgrworkstation nodes.

We obsere that clusters of @rkstations hee some fundamen-
tal properties that can bemoited to meet these requirements:
using commodity PCs as the unit of scalingwdiche service to
ride the leading edge of the cost/performance eutive inherent
redundang of clusters can be used to mask transiaihres, and
“embarrassingly parallel” netwk service wrkloads map well
onto netvorks of workstations. Haever, developing cluster soft-
ware and administering a running cluster remain coxaflee pri-
mary contrilutions of this wrk are the design and analysis of an
implemented layered fram@rk for building network services that
addresses this compley. New services can use this framerk as
an of-the-shelf solution to scalabilityavailability, and seeral
other problems, and focus instead on toatentof the service
being deeloped. The ler layer handles scalabiljitgvailability,
load balancing, support fouksty ofered load, and system moni-
toring and visualization, while the middle layer yides etensible
support for caching, transformation among MIME types, aggre
tion of information from multiple sources, and personalization of
the service for each of a ¢@ number of usersnass customiza-
tion). The top layer allws composition of transformation and
aggreation into a specific service, such as acceleratell bvovs-
ing or a search engine.

Penasie throughout our design and implementation sjiate
is the obseration that much of the data manipulated by a ogtw
service can tolerate semantics werathan ACID [25]. We combine
ideas from prior wrk on aailability vs. consistencand the use of
soft state for robst fault-tolerance to characterize the data seman-
tics of mary network services, which we refer to a®&\8BE seman-
tics (basically wailable, soft state, ventual consisteng. In
addition to demonstrating hoBASE simplifies the implementa-
tion of our architecture, we present a programming model for ser-
vice authoring that is a good fit foABE semantics and that maps
well onto our clustebased service frameark.

1.1 Validation: Two Real Services

Our framevork reflects the implementation ofdweal netvark
services in use today:rdhSend, a scalable transformation and
caching proxy for the 25,000 Belley dialup IP users (connecting
through a bank of 600 modems), and the Inktomi search engine
(commercialized as HotBot), which performs millions of queries
per day aginst a database ofer 50 million web pages.

The Inktomi search engine is an aggion serer that vas
initially developed to gplore the use of cluster technology to han-
dle the scalability andvailability requirements of netwvk ser-



vices. The commercialevsion, HotBot, handles &eral million
queries per day ainst a full-tet database of 54 million web

performance, since memorgisks, and nodes can all track the
leading edge; forxample, we changed thaiilling block eery

pages. It has been incrementally scaled from 5 to 26 nodes (antime we grev the HotBot clustereach time picking the reliable

soon to 66), pnades high gailability, and is &remely cost déc-
tive. Inktomi predates the framerk we describe, and thus faifs
from it in some respects. Mever, it strongly influenced the frame-
work’s design, and we will use it taldate particular design deci-
sions.

We focus our detailed discussion amiSend, which prades
Web caching and data transformation. In particutegl-time,
datatype-specific distillation and refinemgat] of inline Web
images results in an end-to-end lateneduction of 3-5x, ging
the user a much more respamsieb surfing gperience with only
modest image quality deadation. TanSend s deeloped at UC
Berkeley and has been depled for the 25,000 home-IP dialup
users there, and is in the process of being giedldo a similar
community at UC Dais.

In the remainder of this section wegae that clusters are an
excellent fit for Internet services, prided the challenges we
describe for cluster sofwe deelopment can be surmounted. In
Section 2 we describe the proposed layered architecturaifdr b

ing new services, and a programming model for creating services

that maps well onto the architecturee \8hev how TranSend and

high wlume preious-generation commodity units, helping to
ensure stability and roistness. Furthermore, since maommod-
ity vendors compete on service (particularly for PC hardyy it is
easy to get high-quality configured nodes in 48 hours or lesge Lar
SMPs typically hee a lead time of 45 days, are more cumbersome
to purchase, install, and upgrade, and are supported by a single
vendor so it is much harder to get help whenrfidifities arise.
Once agin, it is a “simple matter of soffwe” to tie a collection of
possibly heterogeneous commoditylBing blocks together

To summarize, clusters Vesignificant adantages in scalabil-
ity, grawth, availability, and cost. Although fundamental, these
adwantages are not easy to realize.

1.3 Challenges of Cluster Computing

There are a number of areas in which clusters are at a disadv
tage relatie to SMPS. In this section we describe some of these
challenges and hwthey influenced the architecture we will pro-
pose in Section 2.

Administration: Administration is a serious concern for sys-
tems of map nodes. & leverage ideas in prior avk [1], which

HotBot map onto this architecture, using HotBot to justify specific describes he a unified monitoring/reporting framerk with data
design decisions within the architecture. Sections 3 and 4 describvisualization support as an d&ctive tool for simplifying cluster
the TranSend implementation and its measured performanceadministration.

including experiments on its scalability anduit tolerance proper-
ties. Section 5 discusses relatearkvand the continuingvelution
of this work, and we summarize our obsatiens and contrilttions
in Section 6.

1.2 Advantagesof Clusters

Particularly in the area of Internet service dgphent, clusters
provide four primary benefitsver single lager machines, such as
SMPs: incremental scalabiljtyhigh aailability, and the cost/per-
formance and maintenance benefits of commodity P elabo-
rate on each of these in turn.

Scalability: Clusters are well suited to Internet servioerky
loads, which are highly parallel (mamdependent simultaneous

users) and for which the grain size typically corresponds to at mos

a fav CPU-seconds on a commodity PQir Rhese wrkloads,
large clusters can dwf the paver of the lagest machines. df

Component vs. system replication: Each commodity PC in a
cluster is not usually peerful enough to support an entire service,
but can probably support sornemponents of the service. Compo-
nent-level rather than whole-system replication thereforewallo
commodity PCs to seevas the unit of incremental scaling, pro-
vided the softwre can be naturally decomposed into loosely cou-
pled modules. \& address this challenge by proposing an
architecture in which each component has well-circumscribed
functional responsibilities and is ¢mly “interchangeable” with
other components of the same typer &ample, a cache node can
run arywhere that a disk isvailable, and a wrker that performs a
specific kind of data compression can rupveimere that significant
CPU gscles are wailable.

Partial failures: Component-leel replication leads direcftly
to the fundamental issue separating clusters from SMPs: the need
to handlepartial failures, i.e. the ability to survie and adapt to

example, Inktomis HotBot cluster contains 60 nodes with 120 pro- failures of subsets of the systenraditional workstations and

cessors, 30 GB of ghical memoryand hundreds of commodity
disks. Wal-Mart uses a cluster fronefaData with 768 processors
and 16 terabytes of online storage.

Furthermore, the ability to gwo clusters incrementallyver

SMPs nger face this issue, since the machine is either upwndo
Shared state: Unlike SMPs, clusters kia no shared state.
Although much wrk has been done to emulate global shared state

through softvare distriluted shared memor{81,32,34] we can

time is a tremendous aaltage in areas such as Internet service improve performance and reduce conxitle if we can aoid or

deployment, where capacity planning depends on gelarumber

of unknavn variables. Incremental scalability replaces capacity

minimize the need for shared state across the cluster
These tw concerns, partiahflure and shared state, lead us to

planning with relatiely fluid reactionary scaling. Clusters corre- focus on the sharing semantics actually required by arktser-
spondingly eliminate the “forklift upgrade”, in which you must vices.

throv out the current machine (and related/estments) and
replace it via forklift with aneen lager one.

High Availability: Clusters hee natural redundag@ue to the
independence of the nodes: Each node hasitshosses, poer
supply disks, etc., so it is “merely” a matter of sadiw to mask
(possibly multiple simultaneous) transieatlts. A natural en-

1.4 BASE Semantics

We belive that the design space for netl services can be
partitioned according to the data semantics that each service
demands. At onexéreme is the traditional transactional database
model with the £ID properties (atomicityconsisteny, isolation,

sion of this capability is to temporarily disable a subset of nodesdurability) [25], providing the strongest semantics at the highest
and then upgrade them in place (“hot upgrade”). Such capabilitie:cost and compidty. ACID makes no guaranteesgarding avail-

are essential for netwk services, whose usersvieacome to
expect 24-hour uptime despite the vitable reality of hardare
and softvare fwlts due to rapid systermaaution.

Commodity Building Blocks: The final set of acntages of
clustering follavs from the use of commodityiiding blocks @er
high-end, lev-volume machines. The wvious adantage is cost/

ability; indeed, it is preferable for anCAD service to be unail-

able than to function in aay that relags the &AID constraints.
ACID semantics are well suited for Internet commerce transac-
tions, billing users, or maintaining user profile information for per-
sonalized services.



For other Internet services, wever, the primary alue to the
user is not necessarily strong consisyeac durability but rather
high availability of data:

« Stale data can be temporarily tolerated as long as all copies
of data gentually reach consistenafter a short timg19]
(e.g. DNS semrs do not reach consistgnantil entry
timeouts &pire[39]).

« Soft state [13], which can be igenerated at thexpense of
additional computation or file I/O, isxgloited to impree
performance; data is not durable.

« Approximate answers (based on stale data or incomplete
soft state) deliered quickly may be morealuable thanact
answers deliered slavly.

We refer to the data semantics resulting from the combinatior
of these techniques aBASE-Basically Available, Soft State,
Eventual Consistenyc By definition, ag data semantics that are
not strictly ACID are BASE. BASE semantics all® us to handle
partial filure in clusters with less comply and cost. Lile pio-
neering systems such as Gnape [7] , BASE reduces the com-
plexity of the service implementation, essentially trading
consisteng for simplicity; like later systems such as Bayjaq]
that allav trading consistenc for availability, BASE provides
opportunities for better performanceorFe<ample, where &ID
requires durable and consistent state across patilialels, BASE
semantics often alles us to goid communication and disk agty
or to postpone it until a more ocmient time.

In practice, it is simplistic to cagerize @ery service as either
ACID or BASE; instead, dferentcomponent®f services demand
varying data semantics. Directories such aBo6![64] maintain a
database of soft state wittABE semantics, i keep user customi-
zation profiles in an 81D database.rfinsformation proxieR2,57]
interposed between clients and sesvtransform Internet content
on-the-fly; so the transformed content IAFE data that can be
regenerated by computatiorytdf the service bills the user per ses-
sion, the billing should certainly be dgégted to an £ID database.

We focus on services that veaan ACID component, bt
manipulate primarily BSE data. b serers, search/aggyation
seners[58], caching proxiefl2,41}, and transformation proxies are
all examples of such services; our framoek supports a superset of
these services by priging integrated support for the requirements
of all four. As we will shav, BASE semantics greatly simplify the
implementation of dult tolerance andvailability and permit per-
formance optimizations within our framerk that would be pre-
cluded by ACID.

2 Cluster-Based Scalable Service Architecture

In this section we propose a system architecture and service
programming model forlding scalable neterk services on clus-
ters. The architecture attempts to address both the challenges
cluster computing and the challenges of dgipig network ser-
vices, while &ploiting clusters’ strengths. Wiev our contrilu-
tions as follevs:

« A proposed system architecture for scalable agtvgervices
that eploits the strengths of cluster computing,
exemplified by clustebased seers such asranSend and
HotBot.

Separation of theontentof network services—i.e., what the
services de-from their implementatiorby encapsulating the
“scalable netwrk service requirements” of higtvalability,
scalability and &ult tolerance in a reusable layer with narro
interfaces.

as
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Figure 1: Architecture of a generic SNS. Components include
front ends (FE), a pool of workers (W) some of which may be
caches ($), a user profile database, a graphical monitor, and a
fault-tolerant load manager, whose functionality logically
extends into the manager stubs (MS) and worker stubs (WS).

existing services map directly onto it.

* Detailed measurements of a production service that
instantiates the architecture andligdgates our performance
and reliability claims.

The remainder of this sectionviews the benefits and chal-
lenges of cluster computing, proposes a petvgervice architec-
ture that &ploits these obseations and allws encapsulation of
essential implementation requirements for scalable services, and
describes a programming model that minimizes servivelole-
ment efort by alloving implementation of e services entirely at
the higher layers.

2.1 Proposed Functional Organization of an SNS

The abee obserations lead us to the softne-component
block diagram of a generic SNS sho Figure 1.Each plsical
workstation in a N@/ supports one or more sofive components
in the figure, bt each component in the diagram is confined to one
node. In general, the components whose tasks are naturally paral-
lelizable are replicated for scalabilitiault tolerance, or both. In
our measurements (Section 4), we witjue that the performance
demands on the non-replicated components are not significant for
the implementation of a Ige class of services, and that the practi-
cal bottlenecks are bandwidth into and out of the system and band-
width in the SAN.

Front Ends provide the interfice to the SNS as seen by the
outside weorld (e.g. HTTP semr). Thg “shepherd”
incoming requests by matching them up with the appropriate
user pofile from the customization database, and queueing
them for service by one or moreorkers. Front ends
maximize system throughput by maintaining state foryman
simultaneous outstanding requests, and can be replicated for
both scalability and\milability.l

The Worker Pool consists of caches and service-specific
modules that implement the actual service (data
transformation/filtering, content aggegion, etc.) Each type

e A programming model that maps well onto our system
architecture, based on composition of stateleswkev
modules into n& services, and demonstrate that numerous

1: Although aailability and coarse-grained load balancingeéehaypi-
cally been achieed using DNS round-robin [10] or IP patkredirection
[14], todays Web clients support these mechanisms within the client itself,
using JaaScript [43].



we also achiee scalability: when the f#red load to the system

Service: Service-specific code saturates the capacity of some component class, more instances of

* Workers that present human incé to what ACC that component can be launched on additional nodes that are incre-

modules do, including dée-specific presentation mentally added to the system. The duties of our replicated compo-
« User interfice to control the service nents are laely independent of each other (because of the nature
« comple services: implement directly on SNS layer of the internet services’ avkload), which means the amount of

additional resources required is a linear function of the increase in

TACC: Transformation,Aggmgation, Caching, Customizatign offered load. Although the components are mostly independent,
« API for composition of stateless data transformatfo they do have some dependence on the shared, non-replicated sys-
and content agggation modules tem components: the SAN, the resource managel possibly the
« Uniform caching of original, post-aggy&tion and post- user profile database. Our measurements in Section 4 confirm that
transformation data even for \ery lage systems, these shared components do not
o become a bottleneck.
* Transparent access to Customization database The static partitioning of functionality between front ends and
SNS: Scalable Netark Service support workers reflects the desire tedp vorkers as simple as possible,
« Incremental and absolute scalability by localizing in the front ends the control decisions associated with

. . satisfying user requests. In addition to managing theanktstate
Worker load palgqcmg andverflow managemgnt for outstanding requests, front ends encapsulate service-specific

* Front-end aailability, fault tolerance mechanisms dispatch logic that selects whiclowkers to ivoke, access the pro-

» System monitoring and logging file database to pass the appropriate parameters todtiers

notify the end user in a service-specifiayw(e.g., constructing an

- - - ~ HTML page describing the error) when one or mowekers fils

of module may be instantiated zero or more times, dependinqunrecaerably provide the user intesice to the profile database,

Figure 2: Scalable Network Service Layered Model

on ofered load. and so forth. This dision of responsibility alls workers to
The Customization Database stores user profiles that ailo remain simple and stateless, andwaidhe behdor of theservice
mass customization of request processing. as a whole to be defined almost entirely in the front end. If the

The Manager balances load acrossovkers and spans workers are analogous to processes in a Unix pipeline, the front

additional vorkers as dered load fluctuates omdilts occur ~ €Nd is analogous to an interaetshell.
When necessanjit may assign wrk to machines in the . .
Overflow Bol, a set of backup machines (perhaps on 222 Centralized L oad Balancing
desktops) that can be harnessed to handle loastsband Load balancing is controlled by a centralized polimple-
provide a smooth transition during incrementalvgto (e.g. mented in the ManageiThe Manager collects load information
as the load increases, the system notices increased usage from the vorkers, synthesizes load balancing hints based on the
the oserflov nodes and can notify the administrator to scale policy, and transmits the hints to the front ends, whicheriakal
up the system.) scheduling decisions based on the most recent hints. The load bal-
The Graphical Monitor for system management supports ancing and merfIqN poI|C|e§ are left to th? system opgrat(We
tracking and visualization of the system’behaior, d_escrlbe ourxperiments with load balancing andeoflow in Sec-
asynchronous_error notification via email or pagand tlon'Iflrllg-decision to centralize rather than disirébload balancing
temporary disabling of system f:omponents for hot upgrades. is intentional: If the load balancer can be mamiétftolerant, and if
The System-Area Network provides a lov-lateng, high- we can ensure it does not become a performance bottleneck, cen-
bandwidth interconnect, such as switched 100-Mb/s Ethemeigjization maks it easier to implement and reason about the
or Myrinet [40]. Its main goal is to pwent the interconnect  penaior of the load balancing poljcin Section 3.1.3 we discuss
from becoming the bottleneck as the system scales. how this was achieed and discuss thev@lution that led to this
design decision and its implications for performanesyjtftoler-

2.2 Separating Service Content From I mplementa- ance, and scalability

tion: A Reusable SNS Support Layer
Layered softwre models all@ layers to be isolated from each 2.2.3 Prolonged Burstsand Incremental Growth

other and all existing software in one layer to be reused in dif- Although we vould like to assume that there is a well-defined
ferent implementations. &/obsere that the components in the average load and that arrg trafic follows a Poisson distriltion,
above architecture can be grouped naturally into three layers ofburstiness has been demonstrated for Ethernéictjad], file sys-
functionality as shan in Figure 2: SNS (scalable netxk service tem trafic [26], and Wb request$16], and is confirmed by our
implementation), ACC (transformation, agggation, caching, traces of web trét (discussed later). In addition, Internet services
customization), and Service. Theykcontritutions of our architec-  can &perience relately rare lut prolonged brsts of high load:
ture are the reusability of the SNS Igyeemd the ability to add sim-  after the recent landing ofafhfinder on Mars, its web site sedv
ple, stateless ‘ilding blocks” at the ACC layer and the ability to  over 220 million hits in a 4-day periodd]. Often, it is during such
compose them in the Service layéfe discuss ACC in Section bursts that uninterrupted operation is most critical.

2.3. The SNS layemwhich we describe here, pides scalability Our architecture includes the notion of averflow pool for
load balancing,dult tolerance, and higtvailability; it comprises absorbing theseubsts. The werflov machines are not dedicated to
the Front Ends, Manage8AN, and Monitor in Figure 1. the service, and normally do noteanorkers running on themui

L the Manager can spa workers on the werflov machines on
2.2.1 Scalability demand when umpected load lrsts arwe, and release the

Our SNS architecture decomposes functionality into well- machines when theubst subsides. In an institutional or corporate

encapsulated components that may be replicated for tteeasak Setting, the erflow pool could consist of arkstations on indfid-

fault tolerance or highvailability. It is through this replication that ~Uals’ desktops. Becauseorker nodes are already interchangeable,
workers do not need to kmowhether thg are running on a dedi-



cated or an erflov node, since load balancing is handletee
nally. In addition to absorbing sustainedr&ts, the ability to
temporarily harnessverflov machines eases incrementalvgttu
when the werflov machines are being recruited unusually often, it
is time to purchase more dedicated nodes for the service.

2.2.4 Soft Statedr Fault Tolerance and Aailability
The technique of constructing nedi entities by relying on

and customization of Internet content ACC). Transformation is

an operation on a single data object that changes its contant: e
ples include filtering, transcoding, re-rendering, encryption, and
compression. Agggation inolves collecting data from geral
objects and collating it in a prespecifiedywyfor ekample, collect-

ing all listings of cultural eents from a prespecified set ofel/
pages, ®tracting the date andvent information from each, and
composing the result into a dynamically-generated “culture this

cached soft state refreshed by periodic messages from peers hWeek” page. Our initial implementation alte Unix-pipeline-lile

been enormously successful in wide-area TCP/IP arésv
[4,18,37} another arena in which transient componeiitife is a
fact of life. Correspondinglyour SNS components operate in this
manney and monitor one another usipgocess peer fault toler-
ance’: when a componenails, one of its peers restarts it (on a dif-

chaining of an arbitrary number of stateless transformations and
aggreations; this results in aewy general programming model
that subsumes transformation proxjes], proxy filters[67], cus-
tomized information agggators[59,11} and search engines. The
selection of which wrkers to ivoke for a particular request is ser-

ferent node if necessary), while cached stale state carries trvice-specific and controlled outside therkers themseks; for

surviving components through theilure. After the component is
restarted, it gradually relids its soft state, typically by listening to
multicasts from other componentseVve specific gamples of
this mechanism in Section 3.1.3.

We use timeouts as an additiorallt-tolerance mechanism, to

example, gven a collection of wrkers that cowert images
between pairs of encodings, a correctly chosen sequence of trans-
formations can be used for general imagevesion.

Customization represents a fundamentabatkge of the Inter-
net over traditional wide-area media such as visien. Mary

infer certain &ilure modes that cannot be otherwise detected. If theOnline services, including theal Street Journal, the Los Angeles

condition that caused the timeout can be automatically msolv

Times, and C/Net, v deplged “personalized” ersions of their

e.g. vorkers lost because of a SAN partition can be restarted orS€rvice as a ay to increase alty and the quality of the service.
still-visible nodes, the Manager performs the necessary actionsSUchmass customization requires the ability to track users and

Otherwise, the SNS layer reports the suspeaédré condition,
and the service layer determinesshto proceed (e.g. report the
error or &ll back to a simpler task that does not require &iled
worker).

2.2.5 Narmow Interface to Sewice-Specific Wrkers

To allow new services to reuse all theseilities, the Manager
and front ends prade a narrv API, shavn as the Manager Stubs
and Worker Stubs in Figure 1, for communicating with therkers,
the Managerand the graphical system monitdhe Worker Stub
provides mechanisms for awkers to implement some required

behaiors for participating in the system, e.g. supplying load data
to assist the Manager in load balancing decisions and reportin

detectabledilures in their wn operation. The Wker Stub hides

fault tolerance, load balancing, and multithreading consideration:

from the worker code, which may use all thecflities of the operat-
ing system, need not be thread-safe, and caagcindrash without
taking the system a@m. The minimal restrictions onatker code
allow worker authors to focus instead on toatent of the service,
even using dfthe-shelf code (as we ¥&) to implement the arker
modules.

The Manager Stub lirdd to the Front Ends pridles support
for implementing the dispatch logic that selects whiabrker
type(s) are needed to satisfy a request; since the dispatch logic
independent of the core load balancing amdtftolerance mecha-
nisms, a ariety of services can beiitt using the same set ofork-
ers.

2.3 TACC: A Programming Model for Inter net Sewvices

keep profile data for each usaelthough the content of the profiles
differs across services. Theustomization database, in most
respects a traditional @D [25] database, maps a user identifica-
tion token (such as an IP address or cookie) to a lisepivilue
pairs for each user of the service. Aykstrength of the ACC
model is that the appropriate profile information is automatically
delivered to verkers along with the input data for a particular user
request; this alles the same arkers to be reused for €ifent ser-
vices. or example, an image-compressioonker can be run with
one set of parameters to reduce image resolutionaiierf \¢b
browsing, and a dférent set of parameters to reduce image size
and bit depth for handheld dees. W hare found composable,
customizable wrkers to be a poerful building block for deelop-

ing new services, and we discuss ouperience with ACC and its
continuing &olution in Section 5.

Caching is important because recomputing or storing data has
become cheaper than wig it across the InternetoFexample, a
study of the UK National web cache sleal that gen a small
cache (400MB) can reduce the load on the asktvinfrastructure
by 40%[61], and SingNet, the Igest ISP in Singpore, has sad
40% of its telecom chges using web cachirfgo]. In the TACC
model, caches can stgpest-transformation (or post-aggrgation)
content and\een intermediate-state content, in addition to caching
original Internet content.

Many existing services are subsumed by t#eCT model and
fit well with it. (In Section 5.4 we describe some that do nair) F
example, the HotBot search engine collects search results from a
number of database partitions and collates the resu#tssfbrma-
tion involves comerting the input data from one form to another
TranSend, graphic images can be scaled and filtered through a lo

Having encapsulated the “SNS requirements” into a separatass filter to tune them for a specific client or to reduce their size. A

software layer we nav require a programming model fouiting
the services themsas in higher layers. B/focus on a particular
subset of services, based toansformation, aggregation, caching,

2: Not to be confused withprocess pairs, a diferent fiult-tolerance

key strength of our architecture is the easeonfiposition of tasks;
this afords considerable fidbility in the transformations and
aggreations the service can perform, without requiringrkers to
understand task-chain formation, load balancing, ety.,naore
than programs in a Unix pipelif&l] need to understand the imple-

mechanism for hard-state processes, discussed in [5]. Process peers are smentation of the pipe mechanism.

ilar to the &ult tolerance mechanisnx@ored in the early “Wrm” pro-
grams [55] and to “Robin Hood/Friau@k” fault tolerance: “Each ghost-
job would detect thedct that the other had been killed, anould start a
new copy of the recently slain program within arfenilliseconds. The only
way to kill both ghosts as to kill them simultaneously € difficult) or to
deliberately crash the systér#9]

We claim that a lagje number of interesting services can be
implemented entirely at the service amtCIC layers, and that rela-
tively few services will benefit from direct modification to the SNS
layer unless thehave ery specific lav-level performance needs.



In Section 5.1 we describe owperience adding functionality at  stub The manager stub (at the front end) caches the information in
both the RCC and service layers. these beacons and uses lottery schedyéigigto select a distiller
for each request. The cached informatiorvighes a backup so that
; ; the system can continue to operate (using slightly stale load data)
3 Se_lvlce Implementatlon ] ] even if the manager crashes.dftually the fwlt tolerance mecha-
This section focuses on the implementation cdnBend, a  nisms (discussed in Section 3.1.3) restart the manager and the sys-
scalable Wb distillation proxyand compares it with HotBot. The  tem returns to normal.
goals of this section are to demonstratevheach component To allow the system to scale as the load increases, the manager
shawvn in Figure 1 maps into the layered architecture, to discuss relpgs a tuning mechanism. If it detects@ssve load on distillers of
evant implementation details and tradésplnd to preide the nec- g particular class, it can automatically wpaa nev instance on an

essary contd for the measurements we report in thetrsection. unused node. (The spaing and load balancing policies are
described in detail in Section 4.5.) Another mechanism used for

3.1 TranSend SNS Components adjusting to brsts in load igverflow if all the nodes in the system
are used up, the manager can resort to starting up temporary distill-

3.1.1 Font Ends ers on a set ofverflow nodes. Once theubst subsides, the distill-

TranSend runs on a cluster of ARCstation 10 and 20 ers may be reaped.
machines, interconnected by switched 10baseT Ethernet and col
nected to the dialup pool by a single 10basegmemt. The 9-1.3 Fault Tolerance and Crash Receery
TranSend front end presents an HTTP irtesfto the client popu- In the original prototype for the managarformation about
lation. A thread is assigned to each\ang TCP connection.  distillers was lept as hard state, using a log file and crashvezgo
Request processingviolves fetching Wb data from the caching protocols similar to those used byCHD databases. Resilience
subsystem (or from the Internet on a cache miss), pairing up thiagainst crashes as via procespair fault tolerance, as if5]: the
request with the user’customization preferences, sending the primary manager processas/mirrored by a secondary whose role
request and preferences to a pipeline of one or dietidlers (the was to maintain a current oppf the primarys state, and takover
TranSend lossy-compressioromkers) to perform the appropriate the primarys tasks if it detects that the primary hasefd. In this

transformation, and returning the result to the client. Alterelyi scenario, crash regery is seamless, since all state in the second-
if an appropriate distilled representationvsitble in the cache, it ary process is up-to-date.
can be sent directly to the client. Adarthread pool alles the However, by maring entirely to BASE semantics, we were able

front end to sustain throughput and maximabpleit parallelism  to simplify the manager greatly and increase our confidence in its
despite the lae number of potentially long, blocking operations correctness. In fEinSend, all state maintained by the manager is
associated with each task, and vides a clean programming now explicitly designed to be soft state. When a distiller starts up,
model. The productionr&nSend runs with a single front-end of it registers itself with the managewhose gistence it learns of by

about 400 threads. subscribing to a well-knon multicast channel. If the avker
. crashes before degistering itself, the manager detects the brok
3.1.2 Load Balancing Manager connection; if the manager crashes and restarts, the distillers detect

Client-side JeaScript supporf43] balances load across multi- beacons from the memanager and re-gester themselks. Tme-
ple front ends, although other mechanisms such as round-robiouts are used as a backup mechanism to iaferés. Since all

DNS [10] or commercial routerd4] could also be usedoFinter-  state is soft and is periodically beaconed, xlieit crash recoery
nal load balancing, rinSend uses a centralized manager whose0r state mirroring mechanisms are required generate lost state.
responsibilities include tracking the location of distillersyegiag Similarly, the front end does not requireyaspecial crash regery

new distillers on demand, balancing load across distillers of thecode, since it can reconstruct its state as itvesehe net the nat
same class, and priding the assurance odlt tolerance and sys-  few beacons from the manager

tem tuning. V¢ ague for a centralized as opposed to distet With this use of soft state, eachdteher” process only needs
manager because it is easier to change the load balancing polito detect that its peer is\adi (rather than mirroring the peestate)
and reason about its befiar; the nat section discusses thault- ~ and, in some cases, be able to restart the peer (rather thameak
tolerance implications of this decision. The front ends and distillersits duties). Brokn connections, timeouts, or loss of beacons are
are linked with libraries (themanayer stub and distiller stub, used to infer componeraifures and restart thaifed process. The
respectiely) that encapsulate communication among the front end managerdistillers, and front ends are process peers:
distillers, and the manager * The manager reports distilleaifures to the manager stubs,
The manager periodically beacons istence on an IP multi- which update their caches of where distillers are running.

cast group to which the other components subscribe. The use of | . The manager detects and restarts a crashed front end.
multicast preides a leel of indirection and reliees components « The front end detects and restarts a crashed manager
of haring to eplicitly locate each otheiWhen the front end has a . . o o

This process peer functionality is encapsulated within the man-

task for a wrker, the manager stub code contacts the managerager stub code. Simply by linking @igst the stub, front ends are

which locates an appropriatevker, spavning a nev one if neces- A ticall ited fih
sary The manager stub caches the/merker’s location for future ~ @utomatically recruited as process peers of the manager

requests. .

The distiller stub attached to each distiller accepts and queue3'l'4 User Pofile Database
requests on behalf of the distiller and periodically reports®load  The service integfce to TanSend allws each user to géster a
information to the managefhe manager aggyates load informa-  series of customization settings, using either HTML forms or a
tion from all distillers, computes weighted wing averages, and  Java/JaaScript combination applet. The actual database is imple-
piggybacks the resulting information on its beacons to the managemented usinggdbmbecause it is freelyvailable and its perfor-
mance is adequate for our needs: user preference reads are much
more frequent than writes, and the reads are absorbed by a write-
through cache in the front end.

3: In the current implementation, distiller load is characterized in terms
of the queue length at the distilleptionally weighted by thexpected cost
of distilling each item.



Figure 3: Scaling this JPEG image by a factor of 2 in each
dimension and reducing JPEG quality to 25 results in a size

reduction from 10KB to 1.5KB.
® refine image expert
® refine all selttings

Figure 4: User Interface for manipulating preferences.

3.1.5 Cache Nodes

TranSend runs Haest object cache avkers[8] on four sepa-
rate nodes. Haest sufers from three functional/performance defi-
ciencies, tw of which we resokd.

First, although a collection of Hagst caches can be treated as
“siblings”, by deault all siblings are queried on each request, so
that the cache service timeould increase as the load increases
even if more cache nodes were added. Therefore, for both scalabi
ity and impraed fault tolerance, the Manager Stub supports man-
aging a number of separate cache nodes as a single virtual cact
hashing the & space across the separate caches and automatical
re-hashing when cache nodes are added orvein@econd, we
modified Harest to allev data to be injected into it, alling work-
ers (via the Wrker Stub) to store post-transformed or intermediate-
state data into the Ige virtual cache. Finall\pecause the interte
to each cache instance is HTT® separate TCP connection is
required for each cache requese did not repair this deficiepc
due to the compiaty of the Harest code, and as a result some of
the measurements reported in Section 4.4 are slightly pessimistic.

Caching in TanSend is only an optimization. All cached data
can be thran avay at the cost of performance—cache instances
are workers whose only job is the management ASE data.

low high
eecCcee

slow

i mae Huality

# enable java
#® disable java

sading Speced fast

3.1.6 Datatype-Specific Distillers

The second group of avkers is the distillers, which perform
transformation and agggation. As a result, we were able tode-
age a lage amount of dfthe-shelf code for our distillers. \hare
built three parameterizable distillers forahSend: scaling andvie
pass filtering of JPEG images using thietbé-shelfjpeg-6a library
[28], GIF-to-JPEG coversion usingietpbm [47] followed by JPEG
d@radatioﬁ, and a Perl HTML “munger” that marks up inline
image references with distillation preferences, adtis éinks net
to distilled images so that users can re&i¢he original content,
and adds a “toolbar” (Figure 4) to each page thatvallosers to
control \arious aspects ofranSend operation. The user intade
for TranSend is thus controlled by the HTML distillender the
direction of the user preferences from the front end.

Each of these distillers took approximately 5-6 hours to imple-
ment, delbg, and optimize. Although pathological input data occa-
sionally causes a distiller to crash, the process-estrtblerance
guaranteed by the SNS layer means that wetdwé to worry
about eliminating all such possiblads and corner cases from the

3.1.7 Graphical Monitor

Our etensible Tcl/Tki46] graphical monitor presents a unified
view of the system as single virtual entity. Components of the
system report state information to the monitor using a multicast
group, alleving multiple monitors to run at geographically dis-
persed locations for remote management. The monitor can page or
email the system operator if a serious error occurs xample, if
it stops receiing reports from some component.

The benefits of visualization are not just cosmeti@ ¥dn
immediately detect by looking at the visualization panel what state
the system as a whole is in, whethey @amponent is currently
causing a bottleneck (such as cache-miss time, distillation queue-
ing delay interconnect), what resources the system is using, and
other such figures of interest.

3.1.8 Hav TranSend Exploits BASE

Distinguishing ACID vs. BASE semantics in the design of ser-
vice components greatly simplifiesahiSends fault-tolerance and
improves its aailability. Only the useprofile database is @ID;
everything else xploits some aspect of ABE semantics, both in
manipulating application data (i.e.el¥ content) and in the imple-
mentation of the system components theneselv

Stale load balancing data The load balancing data in the
Manager Stub is slightly stale between updates from the
managerwhich arrve a fav seconds apart. The use of stale
data for the load balancing andesflow decisions imprees
performance and helps to hideufts, since using cached data
avoids communicating with the sourcaniBouts are used to
recover from cases where stale data causes an incorrect load
balancing choice, e.g., if a request is sent taeker that no
longer «ists, the request will time out and anothesrker
will be chosen. From the standpoint of performance, as we
will show in our measurements, the use of slightly stale data
is not problem in practice.

Soft state The two adwantages of soft state are imped
performance from widing (blocking) commits and tial
recovery. Transformed content is cached and can be
regenerated from the original (which may be also cached).

Approximate answers Users of TanSend request objects that
are named by the object URL and the user preferences,
which will be used to dere distillation parameters.
However, if the system is too loaded to perform distillation,
it can return a somehat diferent \ersion from the cache; if
the user clicks the “Reload”utton later they will get the
distilled representation thieasled for if the system mwo has
sufficient resources to perform the distillation. If the required
distiller has temporarily or permanentlgiled, the system
can return the original content. In all casas,approximate
answer delivered quickly is more useful than the exact
answer delivered slowly.

3.2 HotBot Implementation

In this section we highlight the principal fdifences between
the implementations ofrinSend and HotBot.The original Inktomi
work, which is the basis of HotBot, predates the layered model and
scalable sewer architecture presented here and as suchaddex
rather than generalized mechanisms in some places.

Front ends and sevice interface: HotBot runs on a mixture
of 26 single- and multiple-CPU 8RCstation sersr nodes, inter-
connected by Myring#0]. The HTTP front ends in HotBot run 50-

system. 80 threads per node and handle the presentation and customization

of results based on user preferences andd@otype. The presen-

~ 4 We chose this approach after digeng that the JPEG representation tation is performed using a form of “dynamic HTML” based on Tcl
is smaller andéfster to operate on for most images, and produces aesthetimacrogsa].

cally superior results.




Component TranSend HotBot

Dynamic, by queue

lengths at wrker Static partitioning

Load balancing of read-only data

nodes
N Composable ACC Fixed search-ser-
Application layer workers vice application

Worker dispatch
logic, HTML/JavaS-
cript Ul

Dynamic HTML
generation, HTML
ul

Service layer

Centralized bt
fault-tolerant using
process-peers

Distributed to each
node

Failure manage-
ment

All workers bound
to their nodes

FE'’s and caches
bound to their node

Berkeley DB+read
caches

Worker place-

ment 5

Parallel Informix
sener

User profile
(ACID) databasH

Harwest caches
store pre- and post;
transformation Wb

data

integrated cache of
recent searches, fd
incremental deliery

Caching

Table 1: Main differences between TranSend and HotBot.

Load balancing: HotBot workers statically partition the
search-engine database for load balancing. Thus eartenhan-
dles a subset of the database proportional to w&pfsome \urk-
ers run on multi-CPU nodes), andeey query goes to all avkers
in parallel.

Failure management:Unlike the vorkers in TanSend, Hot-
Bot worker nodes are not interchangeable, since eackewuses a
local disk to store its part of the databaSke original Inktomi
nodes cross-mounted databases, so that there wegsahultiple
nodes that could reachyadatabase partition. Thus, when a node
when devn, other nodes ould automatically tad over responsi-
bility for that data, maintaining 100% dateadability with grace-
ful degradation in performance.

Since the database partitioning distts documents ran-

domly and it is acceptable to lose part of the database temporarily

p

HotBot moved to a model in which RAID storage handles dak f
ures, while &st restart minimized the impact of nodéures. Br

example, with 26 nodes the loss of one machine results in the date

base dropping from 54M to about 51M documents, which is still
significantly lager than other search engines (such as Alta\at
30M).

The success of thadilt management of HotBot isemplified
by the fct that during February 1997, HotBotsv plysically
moved (from Berleley to San Jose) withouwer being dan, by

0.06 4

m— HTML

— GIF

0.05 4

Probability

- JPG

] ““%\\
(A
AN

']'.'0'000 o

Data Size (bytes)
Figure 5: Distribution of content lengths for HTML, GIF, and
JPEG files. The spikes to the left of the main GIF and JPEG
distributions are error messages mistaken for image data,
based on file name extension. Average content lengths: HTML -
5131 bytes, GIF - 3428 bytes, JPEG - 12070 bytes.

3.3 Summary

The TranSend implementation quite closely maps into the gen-
eral layered architecture presented in Section 2, while the HotBot
implementation dfers in the use of a disttbed managerstatic
load balancing by data partitioning, an@rkers that are tied to
particular machines. The careful separation of responsibility into
different components of the system, and the layering of compo-
nents according to the architecture made the implementation com-
plexity manageable. In the xi section, we present detailed
performance measurements ohiiSend.
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4 Measurements of the TanSend Implementation

We took measurements ofahSend using a cluster of 15 Sun
SFARC Ultra-1 workstations connected by 100-Mbit switched
Ethernet and isolated fromxternal load or neterk trafiic. For
measurements requiring Internet access, the aca@syiw a 10-
Mbit switched Ethernet netwk connecting our arkstation to the
outside vorld. In the follaving subsections we analyze the size dis-
tribution and hrstiness characteristics ofrahSends expected
workload, describe the performance ofotwhroughput-critical
components (the cache nodes and data-transformatidens) in
isolation, and report onxperiments that stressranSends fault
tolerance, responstness to trsts, and scalability

4.1 HTTP Traces and the Playback Engine

Many of the performance tests are based upon HTTP trace data
that we gthered from our intended user population, namely the
25,000 UC Berkley Dialup home-IP users, up to 600 of whom
may be connected via a bank of 14.4K or 28.8K modems. The
modems’ connection to the Internet passes through a single 10
Mbit Ethernet sgment; we placed a tracing machine running an IP

moving half of the cluster at a time and changing DNS resolutionPactet filter on this sgment for a month and a half period, and

in the middle. Although arious parts of the database werevaila
able at diferent times during the me, the @erall service \as still
up and useful—user feedback indicated that feeople were
affected by the transient changes.

User profile database:We expect commercial systems to use
a real database for@GAD components. HotBot uses Informix with
primary/backup dilover for the user profile and advemue track-
ing database, with each front end linking in an Informix SQL cli-
ent. Havever, all other HotBot data isASE, and as in fBnSend,
timeouts are used to rear from stale clustestate data.

unobtrusiely gathered a trace of approximately 20 million (ayron
mized) HTTP requests. GIHTML, and JPEG were byaf the
three most common MIME types obsedvin our traces (50%,
22%, and 18%, respeetly), and hence our three implemented
distillers caver these common cases. Data for which no distiller
exists is passed unmodified to the user

Figure 5 illustrates the distrition of sizes occurring for these
three MIME types. Most content access on the web is small (con-
siderably under 1 KB) hweever the &erage byte transferred is part
of large content (3-12 KB). This means that the users’ modems
spend most of their time transferring aféarge files. It is the goal
of TranSend to eliminate this bottleneck by distilling thigéacon-
tent into smallerbut still useful representation; data under 1 KB is
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Figure 6: The number of requests per second for traced home-
IP users, showing burstiness across different time scales. (a) 24
hours with 2 minute buckets, 5.8 reg/s avg., 12.6 reqg/s max. (b)
3 hr 20 min with 30 second buckets, 5.6 reg/s avg., 10.3 reqg/s
peak. (c) 3 min 20 sec, 8.1 reqg/s avg., 20 reqg/s peak.

transferred to the client unmodified, since distillation of such small cor
tent rarely results in a size reduction.

Figure 5 also neeals a number of interesting properties of the indi-
vidual data types. The GIF distition has tw plateaus - one for data
sizes under 1KB (which correspond to iconglldis, etc.) and one for
data sizes\er 1KB (which correspond to photos or cartoons). Our 1KB
distillation threshold thereforexactly separates these dvclasses of
data, and deals with each correclifEGs do not shothis same distinc-
tion - the distrilntion falls of rapidly under the 1KB mark.

In order to realistically stress testafiSend, we created a high per-
formance playback engine that can replay traces at our.pFbgyplay-
back engine can generate requests at a constant (and dynamic
tunable) rate, or it carithfully play back a trace according to the times-
tamps in the trace file. #\thus had fine-grained controtes both the
amount and nature of the loadesed to our implementation during our
experimentation.

4.2 Burstiness

Burstiness is a fundamental property of a gresiety of computing
systems, and can be obsashacross all time scalgi$,26,33] Our HTTP
traces shw that the diered load to our implementation will contain
bursts—Figure 6 shws the request rate obsedsfrom the user base
across a 24 houB.5 houy and 3.5 minute time inteslz The 24 hour
intenal exhibits a strong 24 hourycle that is werlaid with shorter time-
scale lorsts. The 3.5 hour and 3.5 minute intésvreveal finer grained
bursts.

We described in Section 2.2.3vh@ur architecture alles an arbi-
trary subset of machines to be managed as aerflov pool” during
temporary kit prolonged periods of high load. Theedlow pool can
also be used to absorhrbkts on shorter time scalese\afgue that there
are two possible administrag avzenues for managing theerflon pool:

1. Select an werage desired utilization Vel for the dedicated
worker pool. Since we can obsera daily gcle, this amounts to
drawing a line across Figure 6a (i.e. picking a number of tasks/
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Figure 7: Average distillation latency vs. GIF size, based on GIF
data gathered from the home-IP trace.

sec) such that the fraction of black under the line is the desired
utilization level.

. Select an acceptable percentage of time that the system will
resort to the weerflov pool. This amounts to dréng a line
across Figure 6a such that the fraction of columns that cross the
line is this percentage.

Since we hee measured thevarage number of requests/s that a dis-

tiller of a gven class can handle, the number of tasks /s that wedpick

(from step 1 or 2 ahe) dictates he mary distillers will need to be in

the dedicated (nonverflow) pool.

4.3 Distiller Performance

If the system is beling well, the distillation of images is the most
expensve task performed byr@inSend, both in terms of the required
computational ycles and end-to-end latgndMe measured the perfor-
mance of our distillers by timing distillation latgnas a function of
input data size, calculated across approximately 100,000 items from the
home-IP trace file. Figure 7 shis that for the GIF distillethere is an
approximately linear relationship between distillation time and input
size, although a lge \ariation in distillation time is obsesd for ayy
particular data size. The slope of this relationship is approximately 8
milliseconds per kilobyte of input. Similar results were obsérfor the
JPEG and HTML distillers, although the HTML distiller & fmore €i-
cient.

4.4 Cache Partition Performance

In [8], a detailed performance analysis of the ldatwaching system
is presented. Wsummarize the results here:

* The aerage cache hit tak 27 ms to service, including netik
and OS werhead, implying a maximunverage service rate from
each partitioned cache instance of 37 requests per second. TCP
connection and teatowvn overhead is attribted to 15 ms of this
service time.

95% of all cache hits takless than 100 ms to service, implying
cache hit rate haswovariation.

The miss penalty (i.e. the time to fetch data from the Internet)
varies widely from 100 ms through 100 seconds. This implies that
should a cache miss ocgitr will lik ely dominate the end-to-end
lateny through the system, and therefore gre&brefshould be
expended to minimize cache miss rate.

As a supplement to these results, we ran a number of cache simula-
tions to eplore the relationship between user population size, cache
size, and cache hit rate, using WReplacement. \& obsered that the
size of the user population greatlyeats the attainable hit rate. Cache
hit rate increases monotonically as a function of cache sir@|dteaus

out at a lgel that is a function of the user population sizer. the user
population obserd across the traces (approximately 8000 peoe o

5: Note that the utilization el cannot necessarily be predictedegi a certain
acceptable percentage, and viezsa.



when the system is under high load. allow the nev distiller to
‘ 40 stabilize the system, the spaing mechanism is disabled for
§§3i§ - seconds; the parametBr represents a tradddbetween stability
5 Distller 4 - (rate of spaning and reaping distillers) and ug@eceptible delay
2or : offered foad == 132 Figure 8(a) shas the wariation in distiller queue lengthver
time. The system &s bootstrapped with one front end and the
manager On-demand spaning of the first distiller \as obsered
as soon as load as ofered. Wth increasing load, the distiller
queue gradually increased until the manager decided tonspa
second distillerwhich reduced the queue length of the first distiller
and balanced the load across both distillers withia figconds.
1s Continued increase in load caused a third distiller to start up, which
again reduced and balanced the queue lengths wittérséeonds.
L EIENT : Figure 8(b) shers an enlaged viev of the graph in Figure 8(a).
@ % w0 | o 0 "T.meé%%oms) 20 | a0 ss0 a0 Some time during thexperiment, we manually killed the first ow
Distler2  Distiler 3 Disiler 4 distillers, thereby causing the load on the remaining distiller to rap-
idly increase. The manager immediately reacted and started up a
‘ new distiller. Even afterD seconds, the manager digemed that
Bistier s the system ws werloaded and started up one more distitbeus-
i Bictiers 7 ing the load to stabilize.
I ; 1 As we first ran thisxperiment, we noticed rapid oscillations in
L queue lengths. Inspectionvealed that since the manager stubs
e 1 only periodically receied distiller queue length reports, yheere
i making load balancing decisions based on stale dataphir this,
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sufficient to eliminate the oscillations. The data in Figure 8 reflects
‘ : the modified load balancing functionality

4.6 Scalability
Time (seconds)

(b) Distiler 4 To demonstrate the scalability of the system, we needed to
eliminate tvwo bottlenecks that limit the load we couldeof the
Solaris limit on the number of open file descriptors, and the bottle-
neck 10Mb/s Ethernet connecting our cluster to the InternedoT
this, we prepared a trace file that repeatedly requesteeldanfisxm-
the 1.5 month period), six gifjytes of cache space (in total, parti- ber of JPEG images, all approximately 10KB in size, based on the
tioned wrer all instances)aye us a hit rate of 56%. Similaylwe distributions we obsered (Section 4.1). These imagesul then
obsenred that for a gien cache size, increasing the size of the userremain resident in the cache partitions, eliminating cache miss pen-
population increases the hit rate in the cache (due to an increase alty and the resultinguildup of file descriptors in the front end.
locality across the users), until the point at which the sum of theWe recognize that although a non-zero cache miss penalty does not
users’ working sets xceeds the cache size, causing the cache hitintroduce ag additional netwrk, stable storage, or computational
rate to &ll. burden on the system, it does result in an increase in the amount of
From these results, we can deduce that the capacity of a singlstate in the front end, which as we mentioned in Section 4.4 limits
front end will be limited by the high cache miss penalties. Thethe performance of a single front end. On the other hand, by turn-
number of simultaneous, outstanding requests at a front end iing off caching of distilled images, we force our system to re-distill
equal toN x T, whereN is the number of requests aimig per the image eery time it vas requested, and in that respect our mea-
second, and is the @erage service time of a request. A high cache SUréments are pessimistic refatio the systers’normal mode of
miss penalty implies thatwill be large. Because wTCP connec- ~ OPeration. i
tions (one between the client and front end, the other between th ~ OUr stratgy for the eperiment vas as follavs:

= L i Py
250 260 270 1 280 300 310 320

Figure 8: Distiller queue lengths observed over time as the load
presented to the system fluctuates, and as distillers are
manually brought down. (b) is an enlargement of (a).

front end and a cache partition) and one thread xbigemain- 1. Begin with a minimal instance of the system: one front
tained in the front end for each outstanding request, there is poter ~ end, one distillerthe managerand some fied number of
tially a very lage amount of stateelpt by the front end, implying cache partitions. (Since for thesgperiments we repeat-
state management and codtswitching werhead. As anample, edly requested the same subset of images, the caahe w
for offered loads of 15 requests per second to a front end, wee ha effectively not tested.)
obsered from 150-350 outstanding requests and therefore up tc 2. Increased the tdred load until some system component
700 open TCP connections and 300 4axtithread contes at ay saturates (e.g. distiller queues \greoo long, front ends
given time. The front end spends more than 70% of its time in the ~ cannot accept additional connections, etc.)
kernel (as reported by thep utility) under this load. 3. Add more resources to the system to eliminate this satura-
tion (in mary cases the system does this automaticalty
4.5 Self Tuning and L oad Balancing when it recruits eerflov nodes to run more avkers), and

record the amount of resources added as a function of the
increase in déred load, measured in requests per second.

4. Continue until the saturated resource cannot be replenished

TranSend uses queue lengths at the distillers as a metric fc
load balancing. As queue lengthswr@@ue to increased load), the
moving average of the queue length maintaine_d by the managel (i.e. we run out of hardare), or until adding more of the
starts increasing; when theesiage crosses a configurable threshold saturated resource no Iongér results in a linear or close-to-
H, the manager spas a nw distiller to absorb the load. The linear impravement in performance.
thresholdH maps to the greatest delay the user is willing to tolerate



Table 2: Results of the scalability experiment

profiles, can sees about 400 requests per second, significantly
Requests’ | #Front # Element that greater than HotBat'load.
Second Ends | Didtillers satur ated On the other hand, SAN saturation is a potential concern for
— communication-intense workloads such asr@nSends. The prob-
0-24 1 1 distillers lem of optimizing component placemenve a specific netork
25.47 1 2 distillers topology technologyand vorkload is an important topic for future
research. As a preliminarg@oration of hav TranSend behas as
48-72 1 3 distillers the SAN saturates, we repeated the scalabitipgements using a
73-87 1 4 FE Ethernet 10 Mb/s switched Ethernet. As the netlv was driven closer to
saturation, we noticed that most of our (unreliable) multicadictraf
88-91 2 4 distillers was being dropped, crippling the ability of the manager to balance
— load and the ability of the monitor to report system conditions.
92-112 2 S distillers One possible solution to this problem is the addition ofaa lo
distillers & FE speed utility netwrk to isolate control trit from data tréfc,
113-135 2 6 Ethernet allowing the system to more gracefully handle (and perhepis)a
SAN saturation. Another possibility is to use a higberformance
136-159 3 7 distillers SAN interconnect: a Myring0] microbenchmark run on the Hot-

Bot implementation measured 32 MBytes/s all-pairs fitraf
between 40 nodesaff greater than the tfaf experienced during

For example, at 24 requests per second, as tfereaf load
exceeded the capacity of the singlaitable distiller the manager
automatically spaned one additional, and then subsequent distill-
ers as necessarklso, at 87 requests per second, the Ethermget se 5 Discussion

ment leading into the front end saturated, requiringnafrent end
to be spaned. In previous sections we presented detailed measurements of a

Table2 presents the results of thigperiment. V& were unable  scalable netark service implementation that confirmed thieef
to test the system at rates higher than 159 requests per second, astiveness of our layered architecture. In this section of the paper
of our clusters machines were hosting distillers, front ends, or discuss some of the more interesting angdeh@spects of our

the normal use of the system, suggesting that Myrinet will support
systems of at least\gral tens of nodes.

playback engines. ¥/did obserg nearly perfectly linear gngh of
the system er the scaled range: a distiller can handle approxi-
mately 23 requests per second, and a 100 Mb/s Ethegreese

architecture, reflect on further potential applications of this
research, and compare ouonk with others’ eforts.

into a front-end can handle approximately 70 requests per sBcondd.1 Extensibility: New Workers and Composition

We were unable to saturate the front end, the cache partitions, ¢
fully saturate the interior SAN during thixperiment. V¢ drav
two conclusions from this result:

« Even with commodity a 100 Mb/s SAN, linear scaling is
limited primarily by bandwidth into the system rather than
bandwidth inside the system.

¢ Although we run TanSend on four $¥RC 10%, a single
Ultra-1 class machine auld sufice to sere the entire home-

IP population of UC Berdey (25,000 users &tially, over

8000 surfed during the trace).

Ultimately, the scalability of our system is limited by the
shared or centralized components of the system, namely the us
profile database, the managand the SAN. In oungerience, nei-
ther the database nor the managesmehaer been close to satura-
tion. The main task of the manager (in steady state) is tc
accumulate load announcements from all distillers and multicas
this information to the front ends.aMonducted anxperiment to

One of our goals as to mak the system easilytensible at
the TACC and Service layers by making it easy to createkavs
and chain them togethe®ur HTML and JPEG distillers consist
almost entirely of dfthe-shelf code, and each took an afternoon to
write. Delugging the pathological cases for the HTML distiller
was spread outver a period of days - since the system radsk
transient &ults by bypassing original content “around” thalfing
distiller, we could only deduce theistence of bhgs by noticing
(using the Monitor display) that the HTML distiller had been
restarted seeral times wer a period of hours.

The other aspect ofxeensibility is the ease with which we
services can be added by composimgykers and modifying the
service presentation intade. V& nav discuss seeral xamples of
new services in &rious stages of construction, indicating what
must be changed in théTC and Service layers for each. The ser-
vices share the folleing common features, which makhem ame-
nable to implementation using our franuek:

test the capability of the manager to handle these load announc * Compute-intensie transformation or aggyation

ments. Nine hundred distillers were created on four machines. Eac
of these distillers generated a load announcementepdaok the
manager eery half a second. The manageasieasily able to han-
dle this aggrgate load of 1800 announcements per secorith W
each distiller capable of processingep 20 front end requests per
second, the manager is computationally capable of sustaining
total number of distillers equalent to 18000 requests per second.
This number is nearly three orders of magnitude greater than th
peak load eer seen on UC Beekey’s modem pool which is com-
parable to a modest-sized |Smilarly, HotBot's ACID database
(parallel Informix serer), used for ad wenue tracking and user

6: We belizve that TCP connection setup and processugghead is the
dominating &ctor Using a more étient TCP implementation such aast
Soclets [52] may alleiate this limitation, although more\estigation is
needed.

» Computation is parallelizable with granularity of avf€EPU
seconds

 Substantial &lue added by mass customization
« Data manipulated hasASE semantics

Without loss of generalitywe restrict our discussion here to
services that can be implemented using the HTTP proxy model,
i.e., transparent interposition of computation betwee \Wients
and Wb serers.

Keyword Filtering: the leyword filter aggrgator is ‘ery
simple (about 10 lines of Perl). It alls users to specify a
Perl rgular epression as customization preference. This
regular epression is then applied to all HTML before
delivery. A simple eample filter is one that marks up all
occurences of someyword with lage, bold, red typefce.



Bay Area Culture Page: this service retriees scheduling  Amortized wer 1 yearthe maginal cost per user is an amazing 25
information from a number of cultural pages on the web, andcents/month.
collates the results into a single, comprehensialendar of If we include the sangs to the ISP due to a cache hit rate of
upcoming gents, bounded by dates stored as part of each50% or more, as we obsexVin our cachexperiments, then we
users profile. The service is implemented as a single can eliminate the equalent of 1-2 T1 lines perr@nSend installa-
aggrgator in the ACC layer and is composed with the tion, which reduces operating costs by about US$3000 per month.
unmodified TanSend service layedelivering the benefits of  Thus, we gpect that the seer would pay for itself in only tw
distillation automatically This service xploits BASE months. In this gument we hee ignored the cost of administra-
“approximate answers” semantics at the application layer:tion, which is nontuial, but we beli#e administration costs for
extremely general, layout-independent heuristics are used t(TranSend wuld be minimal— we runranSend at Begdey with
extract scheduling information from the cultural pages. essentially no administratiorxeept for feature upgrades andgb
These heuristics tend toork 80-90% of the time ; the fixes, both of which are performed without bringing the service
resulting 10-20% of the time, spurious results are retured todown.
the userwhich are simply ignored.

TranSend M etasearch: the metasearch service is similar to the 5.3 Related Work
Bay Area Culture &ge in that it collates content from other Content transformation by proxy: Filtering and on-the-fly
sources in the Internet. This contentwieeer, is dynamically compression he become particularly popular for HTTBO],
produced - an aggyator accepts a search string from a user whose proxy mechanismas originally intended for users behind
queries a number of popular search engines, and collates thsecurity firgvalls. The mechanism has been used to shield clients
top results from each into a single result page. Thisfrom the efects of poor (especially wireless) netks 21,35] per-
application is not neel: commercial metasearch engines form filtering [67] and anoymization, and perform alue-added
have been depled in the past (such as the Metadex transformations on content, including Kanji transcodibg],
service[58]). However, the TTanSend metasearch enginasw  Kanji-to-GIF comwversion[65], and application-kel stream trans-
implemented using 3 pages of Perl code in roughly 2.5ducing[11,59]

hours, and inherits scalabiljityfault tolerance, and high Fault tolerance and high availability: The Worm programs
availability from the SNS layer [55] are an early>ample of process-peeadlt tolerance. @ndem
Anonymous Rewebber: just as anoymous remailer chaing3] Computer and othersxplored a related mechanisiprocess-pair

allow email authors to angmously disseminate their fault tolerance[s] in which a secondary (backup) process ran in
content, an anonymous rewebber network allows web parallel with the primary and maintained a mirror of the pr|n$_ary’
authors to angmmously publish their content. Thewebber ~ Internal state by processing the same messagi taf the pri-
described irf24] was implemented in one person-week using Many allowing it to immediately replace the primary in thest of
our TACC architecture. The weebbers workers perform  failure. Tandem also acated the use of simpledfitding blocks™
encryption and decryption, the user profile database!© €nsure highwailability [5]. The Open Group SHAIS project
maintains public & information for anopmous serers, and (48] plans to hild scalable highly wilable web sewrs using a
the cache stores decryptedrsions of frequently accessed fault tolerance toolkit called CORDSytithat project appears to be
pages. Since encryption and decryption of distinct pages' It early stages. ,
requested by independent users is both computationally BASE: Grapeine[7] was an important earlyample of trad-
intensize and highly parallelizable, this service is a natural fit "9 consisteng for simplicity; Bayou 19] later eplored trading
for our architecture. consisteny for availability in application-specific ays, praiding
) an operational spectrum betwee@IB and BASE for a distrilnted
Regjlrgzg?/ A;t?fgefgr _'; ?.ézn%ndtfmfﬂ Epz?fn;fagr\ﬁaﬁ'aé& datak_:)ase. The use of soft state tovjg® improved performan_ce
. ; e . and increasealllt tolerance ralstness has been wekpgored in
browsing on the USR @mPilot [62], a typical *thin client the wide-area Internet, in the coxttef IP paclet routing[37], mul-
gev!ce. EI’WIOfUS aéteméots tctnhpmle Y\bbt th“'VS'r_‘g on sgctt] ticast routing[18], and wireless TCP optimizations such as TCP
sri/:acllesscféeenzunlirﬂfe dor;omi)ﬁlt?r% '?;Sé\'gﬁ;;}rgp%iiteré’ Snoop[z}]; the. lessons learned in those areas strongly influenced
programming évironments, and virtually all ha fallen ourfggldgrl;ajpgggisnogm;fﬁé :]C;Egcv\?:ggs?ég?lﬁgungBH{Z]
bacrlf_tto ;ery stlmple tEt-onIbe_rONs_lr;g. 5’:“ the %b"'ty °|I our  have eploited the gtensibility of client bravsers via Jea and Jé
?a:tchelf(t:hlgr? tr?e ncfui:‘an(t:ognuptsa% Itrc1> Oapp?o :fr:wtch?s v:)rrc?kglsem aScript to enhance scalability of netk-based services bywii-
f diferent  perspeate. We hae Hilt Transend ing labor between the (_:Ilent and_wr\)\/ve notg_tha_t our system
rom a perspeate. does not preclude, and iact benefits from,x@loiting intelligence
workers that output simplified markup and scaledatio o4 computational resources at the client, as we do for the
g‘;:g::r rgﬁ‘gzt togigﬁ Ifr?gvcl)g déeed O]EO tﬁ:t"z“n;?g :'CT(Q% TranSend user intex€e and coarse-grained load balancingnHo

i - 4 Tont metrics. Thi ty simolif lient ever, as discussed in the Introduction, wgect the utility of cen-
IMensions and Tont metrics. 1nis greatly SIMpIMes CIent- y4i;64 highly-sailable services to continue to increase, and this
side code since no HTML parsing, layout, or image

= ; ‘ cannot occur without the greh path preided by linear incremen-
processing is necessaand as a side benefit, the smaller and gran path p y

; - . .~ tal scalability in the SNS sense.
more eficient data representation reduces transmission time
to the client. 5.4 Future Work

5.2 Economic Feasibility Our past wrk on adaptation via distillatioj22,21] described
Given the impreed quality of service prided by FanSend how distillation could be dynamically tuned to match the béra
an interesting question is the additional cost required toachie ©f the uses netvork connection, and we i@ successfully demon-
this service. Gien our performance data, a US$5000 Pentium ProStrated adaptation to naw_k changes by c_o_mb_lnlng our or!glnal
sener should be able to support about 750 modems, or abou’VWW Proxy prototype with the Eant Notification mechanisms
15,000 subscribers (assuming a 20:1 subscriber to modem ratiode/€loped by Velling and Badrinatfig], and plan to leerage these



mechanisms to puide an adapie solution for Véb access from Wide Web.Proceedings of ADL ‘96, Forum on Research and Technol-
wireless clients. ogy Advances in Digital Libraries, IEEE, Washington D.C., May 1996
We hare not irvesticated hav well our proposed architecture
works for write-intensie services where the writes carry hard state,
such as for commerce serg or online @ting systems. &suspect,
however, that if the ratio of writes to reads is small, our architecture

[3] B. R. Badrinath and G. Welling\ Framework for Environment Aware
Mobile Applications. International Conference on Distributed Com-
puting Systems, May 1997 (to appear)

will be adequately fiible. [4] H. Balakrishnan, S. Seshan, E. Amir, R. _Kanmroving TCP/IP Per-
The programming model forAICC services is still embryonic. formance over Wireless Networks. Proeedings. of the 1st ACM Con-
We plan to deelop it into a well-defined programming wvémon- ference on Mobile Computing and Networking, Berkeley, CA,
ment with an SDK, and encourage our colleagues to author service =~ November 1995.
of their avn using our system. [5] J. F. BartlettA NonStop Kernel. Proc. 8th SOSP and Operating Systems
Review 15(5), December 1981
6 Conclusions [6] Berkeley Home IP Service FAQ. http://ack.berkeley.edu/dcns/modems/
We proposed a layered architecture for clubtsed scalable hip/hip_fag.html.
network services. W identified challenges of clusteased com-  [7] A.D. Birrell et al.Grapevine: An Exercise in Distributed Computing.
puting, and sheed hav our architecture addresses these chal- Communications of the ACM 25(4), Feb. 1984,

lenges. The architecture is reusable: authors of network
services write and compose statelesskers that transform, aggre-
gate, cache, and customize AQC) Internet content, U are
shielded from the softare complgity of automatic scaling, high
availability, and &ilure management. &Vagued that a lge class  [9] Tim Bray.Measuring the Web. Proc. WWW-5, Paris, May 1996.
of network services can get by WithABE, a weakrthan-ACID 110} 1. grisco.RFC 1764: DNS Support for Load Balancing, April 1995.
data semantics that results from the combination of trading consis ] o N
teng for availability and eploiting soft state for performance and [11] C. Brooks, M.S. Mazer, S. Meeks and J. Milkgpplication-Specific
failure management. Proxy Serversas HTTP Stream Transducers. Proc. WWW-4, Boston,
We discussed in depth the design and implementation ®f tw May 1996. http://www.w3.org/pub/Conferences/WWW4/Papers/56.
clusterbased scalable netrk services: the ranSend distillation  [12] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz and K.
Web proxy and the HotBot search engine. Usixtgresice client J. Worrell.A Hierarchical Internet Object Cache. Proceedings of the
traces, \éive C?ﬂdUCtehd .detailﬁd performance measurementlsd« 1996 Usenix Annual Technical Conference, 153-163, January 1996.
Egzggﬂd. up\)/\{ol Z(lEO %It?&{ﬂ%ﬂ(tstzlﬁgnsmseeE;\S/iunrgn:?_ggti\ylet\)Nfeqngti [13] D.Clark.Poalicy Routing in Internet Protocols. Internet Request for
per second, and demonstrated that a single sodkstation is suf- Comments 1102, May 1989,
ficient to sere the needs of the entire 600 modem UC Bleyk [14] Cisco Systems.ocal Director. http://www.cisco.com/warp/public/
home-IP dialup bank. 751/lodir/index.html.
Slpce t.h.e class of Clustbased §Calable nedrk services we [15] F.J. Corbaté and V. A. Vyssotsky. Introduction and Overview of the
have identified can substantially increase tteug of Internet Multics SystemAFIPS Conference Proceedings, 27, 185-196, (1965

access to end users while remaining cditiefit to deply and Fall Joint Computer Conference), 1965. http:/ww.illi.com/ficcL.ht-
administer we beliee that clustebased alue-added netwrk ser- mi

vices it will become an important Internet-service paradigm. o ]
[16] M.E. Crovella and A. BestavroBxplaining World Wide Web Traffic
Sdf-Smilarity. Tech Rep. TR-95-015, Computer Science Department,

[8] C.M. Bowman et al. Harves& Scalable, Customizable Discovery and
Access System. Technical Report CU-CS-732-94, Department of
Computer Science, University of Colorado, Boulder, August 1994

7 ACknOWIedgmentS Boston University, October 1995.

This paper has benefited from the detailed and peveepin- ;71 p B panzig, R. S. Hall and M. F. SchwaftCase for Caching File
ments of our reewers, especially our shepherd Hankvy.ewe Objects Inside Internetworks. Proceedings of SIGCOMM '93. 239-
also thank Randy Katz, Eric AndersonM2bCuller provided valu- 248, September 1993.

able feedback on theACC model and its potential as a model for ] ) ] ) ) )
cluster programming. & Lutz and Eric Fraser configured and [18] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei.

administered the test netvk on which the fanSend scaling An Architecture for Wide-Area Multicast Routing. Proceedings of
experiments were performed. Glifrost of the UC Beriley Data SIGCOMM 94, University College London, London, U.K., Septem-
Communications and Netwks Services group alled us to col- ber 1994.

lect traces on the Begley dialup netverk and has wrked with us [19] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, B. Welch.
to deply and promote fanSend within Berdey. Undegraduate The Bayou Architecture: Support for Data Sharing Among Mobile Us-
researchers AnthgnPolito, Benjamin Ling, and Andne Huang ers.

implemented &rious parts of lanSend user profile database and
user interce. lan Goldberand Daid Wagner helped us deb
TranSend, especially through their implementation of tivelober [21] A. Fox and E. A. BreweReducing W Latency and Bandwidth Re-
quirements via Real-Time Distillation. Proc. WWW-5, Paris, May
1996.

[22] A. Fox, S. D. Gribble, E. Brewer and E. AmAdapting to Network

lof N K of Workstati d NOW Worksh and Client Variation Via On-Demand Dynamic Distillation. Proceed-
Console for a Network of Workstations. Second NO orkshop at ings of ASPLOS-VII, Boston, October 1996.
ASPLOS-VII, Boston, October 1996ttp://now.cs.berkeley.edu/
Sysadmin/slides/ASPLOS7.ps.gz [23] lan Goldberg, David Wagner, and Eric BrewRnivacy-enhancing
. . Technologiesfor the Internet. Proc. of IEEE Spring COMPCON, 1997
[2] D. Andresen, T. Yang, O. Egecioglu, O. H. Ibarra, and T. R. SBuith.

ability Issues for High Performance Digital Libraries on the World [24] lan Goldberg and David Wagn@AZ Servers and the Rewebber Net-
work: Enabling Anonymous Publishing on the World Wide Web. Un-

[20] Firefly Network, Inc. http://www.ffly.com
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