
NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 87

To Infinity and Beyond: Time-Warped Network Emulation

Diwaker Gupta, Kenneth Yocum, Marvin McNett,
Alex C. Snoeren, Amin Vahdat, and Geoffrey M. Voelker

University of California, San Diego
{dgupta,kyocum,mmcnett,snoeren,vahdat,voelker}@cs.ucsd.edu

Abstract

The goal of this work is to subject unmodified appli-
cations running on commodity operating systems and
stock hardware to network speeds orders of magnitude
faster than available at any given point in time. This
paper describes our approach to time dilation, a tech-
nique to uniformly and accurately slow the passage of
time from the perspective of an operating system by a
specified factor. As a side effect, physical devices—
including the network—appear relatively faster to both
applications and operating systems. Both qualitative and
statistical evaluations indicate our prototype implemen-
tation is accurate across several orders of magnitude. We
demonstrate time dilation’s utility by conducting high-
bandwidth head-to-head TCP stack comparisons and ap-
plication evaluation.

1 Introduction

This work explores the viability and benefits of time
dilation—providing the illusion to an operating system
and its applications that time is passing at a rate dif-
ferent from physical time. For example, we may wish
to convince a system that, for every 10 seconds of wall
clock time, only one second of time passes in the op-
erating system’s dilated time frame. Time dilation does
not, however, change the arrival rate of physical events
such as those from I/O devices like a network interface
or disk controller. Hence, from the operating system’s
perspective, physical resources appear 10 times faster:
in particular, data arriving from a network interface at a
physical rate of 1 Gbps appears to the OS to be arriving
at 10 Gbps.

We refer to the ratio between the rate at which time
passes in the physical world to the operating system’s
perception of time as the time dilation factor, or TDF; a
TDF greater than one indicates the external world ap-
pears faster than it really is. Figure 1 illustrates the

Figure 1: This figure compares a system operating in real time
(left) and a system running with a TDF of 2 (right). Note that
time dilation does not affect the timing of external events, such
as network packet arrival.

difference between an undilated (TDF of 1) operating
system on the left and a dilated OS with TDF of 2 on
the right. The same period of physical time passes for
both machines. Each OS receives external events such as
timer (on top) and device (on bottom) interrupts. Timer
interrupts update the operating systems’ notion of time;
in this example, time dilation halves the frequency of
delivered timer interrupts.

Critically, physical devices such as the network con-
tinue to deliver events at the same rate to both OSes. The
dilated OS, therefore, perceives twice the network I/O
rate because it experiences only half the delay between
I/O events. In particular, the “undilated” OS observes a
delay of 100 ms between packet arrivals, while the di-
lated OS observes only 50 ms between packet arrivals.
From the dilated frame of reference, time dilation scales
the observed I/O rate by the TDF (in this case two).

Interestingly, time dilation scales the perceived avail-
able processing power as well. A system will experience
TDF times as many cycles per perceived second from the
processor. Such CPU scaling is particularly relevant to
CPU-bound network processing because the number of
cycles available to each arriving byte remains constant.
For instance, a machine with TDF of 10 sees a 10 times

faster network, but would also experience a tenfold in-
crease in CPU cycles per second.

By employing large TDF values, time dilation enables
external stimuli to appear to take place at higher rates
than would be physically possible, presenting a number
of interesting applications. Consider the following sce-
narios:

• Emerging I/O technologies. Imagine a complex
cluster-based service interconnected by 100-Mbps
and 1-Gbps Ethernet switches. The system develop-
ers suspect overall service performance is limited by
network performance. However, upgrading to 10-
GigE switches and interfaces involves substantial
expense and overhead. The developers desire a low-
cost mechanism for determining the potential ben-
efits of higher performance network interconnects
before committing to the upgrade.

• Scalable network emulation. Today large ISPs
cannot evaluate the effects of modifications to their
topology or traffic patterns outside of complex and
high-level simulations. While they would like to
evaluate internal network behavior driven by real-
istic traffic traces, this often requires accurate emu-
lation of terabits per second of bisection bandwidth.

• High bandwidth-delay networking. We have
recently seen the emergence of computational
grids [4, 12] inter-connected by high-speed and
high-latency wide-area interconnects. For instance,
10-Gbps links with 100–200 ms round-trip times
are currently feasible. Unfortunately, existing trans-
port protocols, such as TCP, deliver limited through-
put to one or more flows sharing such a link. A num-
ber of research efforts have proposed novel proto-
cols for high bandwidth-delay product settings [11,
14, 16–18, 28, 30]. However, evaluation of the ben-
efits of such efforts is typically relegated to simula-
tion or to those with access to expensive wide-area
links.

This work develops techniques to perform accurate
time dilation for unmodified applications running on
commodity operating systems and stock hardware with
the goal of supporting the above scenarios. To facilitate
dilating time perceived by a host, we utilize virtual ma-
chine (VM) technology. Virtual machines traditionally
have been used for their isolation capabilities: applica-
tions and operating systems running inside a VM can
only access physical hardware through the virtual ma-
chine monitor. This interposition provides the additional
potential to independently dilate time for each hosted vir-
tual machine. In this paper, we are particularly interested
in time dilation with respect to network devices; we leave
faithful scaling of other subsystems to future work.

This paper makes the following contributions:

• Time-dilated virtual machines. We show how to
use virtual machines to completely encapsulate a
host running a commodity operating system in an
arbitrarily dilated time frame. We allow process-
ing power and I/O performance to be scaled inde-
pendently (e.g., to hold processing power constant
while scaling I/O performance by a factor of 10, or
vice versa).

• Accurate network dilation. We perform a detailed
comparison of TCP’s complex end-to-end protocol
behavior—in isolation, under loss, and with com-
peting flows—under dilated and real time frames.
We find that both the micro and macro behavior of
the system are indistinguishable under dilation. To
demonstrate our ability to predict the performance
of future hardware scenarios, we show that the time-
dilated performance of an appropriately dilated six-
year old machine with 100-Mbps Ethernet is indis-
tinguishable from a modern machine with Gigabit
Ethernet.

• End-to-end experimentation. Finally we demon-
strate the utility of time dilation by experimenting
with a content delivery overlay service. In par-
ticular, we explore the impact of high-bandwidth
network topologies on the performance of BitTor-
rent [9], emulating multi-gigabit bisection band-
widths using a traffic shaper whose physical capac-
ity is limited to 1Gbps.

The remainder of the paper is organized as follows:
We present our prototype implementation in Section 2.
We evaluate the accuracy of time dilation with compre-
hensive micro-benchmarks in Section 3 and present ap-
plication results in Section 4. Section 5 presents related
work before concluding in Section 6.

2 Design and implementation

Before describing the details of our implementation, we
first define some key terminology. A Virtual Machine
(VM) or domain is a software layer that exports the in-
terface of a target physical machine. Multiple VM’s may
be multiplexed on a single physical machine. A Guest
OS is the Operating System that runs within a VM. Fi-
nally, a Virtual Machine Monitor (VMM) or hypervisor is
the hardware/software layer responsible for multiplexing
several VMs on the same physical machine.

Critical to time dilation is a VMM’s ability to mod-
ify the perception of time within a guest OS. Fortu-
nately, VMMs must already perform this functionality,
for example, because a guest OS may develop a back-
log of “lost ticks” if it is not scheduled on the physical

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association88

processor when it is due to receive a timer interrupt.
VMMs typically periodically synchronize the guest OS
time with the physical machine’s clock. One challenge
is that operating systems often use multiple time sources
for better precision. For example, Linux uses up to five
different time sources [19]. Exposing so many differ-
ent mechanisms for time keeping in virtual machines be-
comes challenging (see [27] for a discussion).

To be useful, time dilation must be pervasive and
transparent. Pervasiveness implies that the system is
completely isolated from the passage of physical time.
Similarly, transparency implies that network protocols
and applications require no modification to be used in
a dilated time frame. To address these requirements,
we implemented a time dilation prototype using the Xen
VMM [7] (Our implementation is based on Xen 2.0.7).
We chose Xen for the following reasons: (1) it is eas-
ier to modify behavior of timer interrupts in software
than in hardware; (2) we can observe time dilation in
isolated, controlled environments; (3) Xen allows us to
provide each virtual machine with an independent time
frame; (4) Xen source code is publicly available; and iv)
the VMM CPU scheduler provides a facility for scaling
CPU. Though our implementation is Xen-specific, we
believe the concepts can apply to other virtual machine
environments.

Alternative implementation targets for time dilation
include directly modifying the operating system, simu-
lation packages, and emulation environments. As dis-
cussed below, our modifications to Xen are compact and
portable, giving us confidence that our techniques will
be applicable to any operating system that Xen supports.
In some sense, time dilation is free in many simulation
packages: extrapolating to future scenarios is as sim-
ple as setting appropriate bandwidth values on particu-
lar links. However, we explicitly target running unmod-
ified applications and operating systems for necessary
realism. Finally, while network emulation does allow
experimentation with a range of network conditions, it
is necessarily limited by the performance of currently
available hardware. For this reason, time dilation is a
valuable complement to network emulation, allowing an
experimenter to easily extrapolate evaluations to future,
faster environments.

We now give a brief overview of time keeping in Xen,
describe our modifications to it, and discus the applica-
bility of time dilations to other virtualization platforms.

2.1 Time flow in Xen

The Xen VMM exposes two notions of time to VMs.
Real time is the number of nanoseconds since boot. Wall
clock time is the traditional Unix time-since-epoch (mid-
night, January 1, 1970 UTC). Xen also delivers periodic

timer interrupts to the VM to support the time keeping
mechanisms within the guest OS.

While Xen allows the guest OS to maintain and update
its own notion of time via an external time source (such
as NTP), the guest OS often relies solely on Xen to main-
tain accurate time. Real and wall clock time pass be-
tween the Xen hypervisor and the guest operating system
via a shared data structure. There is one data structure
per VM written by the VMM and read by the guest OS.

The guest operating system updates its local time
values on demand using the shared data structure —
for instance, when servicing timer interrupts or calling
getttimeofday. However, the VMM updates the
shared data structure only at certain discrete events, and
thus it may not always contain the current value. In par-
ticular, the VMM updates the shared data structure when
it delivers a timer interrupt to the VM or schedules the
VM to run on an available CPU.

Xen uses paravirtualization to achieve scalable per-
formance with virtual machines without sacrificing func-
tionality or isolation. With paravirtualization, Xen does
not provide a perfect virtualization layer. Instead, it ex-
poses some features of the underlying physical hardware
to gain significant performance benefits. For instance,
on the x86 architecture, Xen allows guest OSes (for our
tests, we use XenoLinux as our guest OS) to read the
Time-Stamp Count (TSC) register directly from hard-
ware (via the RDTSC instruction).

The TSC register stores the number of clock cycles
since boot and is incremented on every CPU cycle. The
Guest OS reads the TSC to maintain accurate time be-
tween timer interrupts. By contrast, kernel variables such
as Linux jiffies or BSD ticks only advance on
timer interrupts. In this case, we modify the guest OS
to prevent them from reading the true value of the TSC,
as described in the next section.

2.2 Dilating time in Xen

We now outline our modifications to the Xen hypervisor
and the XenoLinux kernel to support time dilation. We
focus on slowing down the passage of time so that the
external world appears faster. It is also possible to speed
the passage of time from the OS’s perspective, thereby
slowing processes in the external world. In general, how-
ever, speeding the passage of time is less useful for our
target scenarios and we do not explore it in this paper.

Our modifications to Xen are small: in all, we
added/modified approximately 500 lines of C and Python
code. More than 50% of our changes are to non-critical
tools and utilities; the core changes to Xen and Xeno-
Linux are less than 200 lines of code. Our modifi-
cations are less than 0.5% of the base code size of
each component.

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 89

Variable Original Dilated
Real time stime irq stime irq/tdf
Wall clock wc sec,

wc usec
wc sec/tdf,
wc usec/tdf

Timer interrupts HZ/sec (HZ/tdf)/sec

Table 1: Basic Dilation Summary

Modifications to the Xen hypervisor. Our modified
VMM maintains a TDF variable for each hosted VM. For
our applications, we are concerned with the relative pas-
sage of time rather than the absolute value of real time;
in particular, we allow—indeed, require—that the host’s
view of wall clock time diverge from reality. Thus the
TDF divides both real and wall clock time.

We modify two aspects of the Xen hypervisor. First we
extend the shared data structure to include the TDF field.
Our modified Xen tools, such as xm, allow specifying
a positive, integral value for the TDF on VM creation.
When the hypervisor updates the shared data structure, it
uses this TDF value to modify real and wall clock time.
In this way, real time is never exposed to the guest OS
through the shared data structure.

Dilation also impacts the frequency of timer interrupts
delivered to the VM. The VMM controls the frequency
of timer interrupts delivered to an undilated VM (timer
interrupts/second); in most OS’s a HZ variable, set at
compile time, defines the number of timer interrupts de-
livered per second. For transparency, we need to main-
tain the invariant that HZ accurately reflects the number
of timer interrupts delivered to the VM during a sec-
ond of dilated time. Without adjusting timer interrupt
frequency, the VMM will deliver TDF-times too many
interrupts. For example, the VMM will deliver HZ inter-
rupts in one physical time second, which will look to the
dilated VMM as HZ/(second/TDF) = TDF*HZ. Instead,
we reduce the number of interrupts a VM receives by a
factor of TDF (as illustrated earlier in Figure 1). Table 1
summarizes the discussion so far.

Finally, Xen runs with a default HZ value of 100,
and configures guests with the same value. However,
HZ = 100 gives only a 10-ms precision on system timer
events. In contrast, current 2.6 series of Linux kernels
uses a HZ value of 1000 by default—the CPU overhead
is not significant, but the accuracy gains are tenfold. This
increase in accuracy is desirable for time dilation because
it enables guests to measure time accurately even in the
dilated time frame. Thus, we increase the HZ value to
1000 in both Xen and the guest OS.

Modifications to XenoLinux. One goal of our imple-
mentation was to minimize required modifications to the
guest OS. Because the VMM appropriately updates the
shared data structure, one primary aspect of OS time-
keeping is already addressed. We further modify the

guest OS to read an appropriately scaled version of the
hardware Time Stamp Counter (TSC). XenoLinux now
reads the TDF from the shared data structure and adjusts
the TSC value in the function get offset tsc.

The Xen hypervisor also provides guest OS pro-
grammable alarm timers. Our last modification to the
guest OS adjusts the programmable timer events. Be-
cause guests specify timeout values in their dilated time
frames, we must scale the timeout value back to physical
time. Otherwise they may set the timer for the wrong
(possibly past) time.

2.3 Time dilation on other platforms

Architectures: Our implementation should work on
all platforms supported by Xen. One remark regarding
transparency of time dilation to user applications on the
x86 platform is in order: recall that we intercept calls to
read the TSC within the guest kernel. However, since
the RDTSC instruction is not a privileged x86 instruc-
tion, guest user applications might still issue assembly
instructions to read the hardware TSC register. It is
possible to work around this by watching the instruction
stream emanating from a VM and trapping to the VMM
on a RDTSC instruction, and then returning the appropri-
ate value to the VM. However, this approach would go
against Xen’s paravirtualization philosophy.

Fortunately, the current generation of x86-compatible
hardware (such as the AMD Pacifica [6] and Intel VT
[13]) provides native virtualization support, making it
possible to make time dilation completely transparent to
applications. For instance, both VT and Pacifica have
hardware support for trapping the RDTSC instruction.

VMMs: The only fundamental requirement from a
VMM for supporting time dilation is that it have mech-
anisms to update/modify time perceived by a VM. As
mentioned earlier, due to the difficulties in maintaining
time within a VM, all VMMs already have similar mech-
anisms so that they can periodically bring the guest OS
time in sync with real time. For instance, VMWare has
explicit support for keeping VMs in a “fictitious time
frame” that is at a constant offset from real time [27].
Thus, it should be straightforward to implement time di-
lation for other VMMs.

Operating systems: Our current implementation pro-
vides dilation support for XenoLinux. Our experience
so far and a preliminary inspection of the code for other
guest OSes indicate that all of the guest OSes that Xen
supports can be easily modified to support time dilation.
It is important to note that modifying the guest OSes is
not a fundamental requirement. Using binary rewriting,

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association90

it would be possible to use unmodified guest OS executa-
bles. We expect that with better hardware and operat-
ing system support for virtualization, unmodified guests
would be able to run under dilation.

2.4 Limitations

This section discusses some of the limitations of time di-
lation. One obvious limitation is time itself: a 10-second
experiment would run for a 100 seconds for a dilation
factor of 10. Real-life experiments running for hours are
not uncommon, so the time required to run experiments
at high TDFs is substantial. Below we discuss other,
more subtle limitations.

2.4.1 Other devices and nonlinear scaling

Time dilation uniformly scales the perceived perfor-
mance of all system devices, including network band-
width, perceived CPU processing power, and disk and
memory I/O. Unfortunately, scaling all aspects of the
physical world is unlikely to be useful: a researcher may
wish to focus on scaling certain features (e.g., network
bandwidth) while leaving others constant. Consequently,
certain aspects of the physical world may need to be
rescaled accordingly to achieve the desired effect.

Consider TCP, a protocol that depends on observed
round-trip times to correctly compute retransmission
timeouts. These timing measurements must be made in
the dilated time frame. Because time dilation uniformly
scales the passage of time, it not only increases perceived
bandwidth, it also decreases perceptions of round-trip
time. Thus, a network with 10-ms physical RTT would
appear to have 1-ms RTT to dilated TCP. Because TCP
performance is sensitive to RTT, such a configuration
is likely undesirable. To address this effect, we inde-
pendently scale bandwidth and RTT by using network
emulation [23, 26] to deliver appropriate bandwidth and
latency values. In this example, we increase link delay
by a factor of 10 to emulate the jump in bandwidth-delay
product one expects from the bandwidth increase.

In this paper, we show how to apply time dilation to
extrapolate to future network environments, for instance
with a factor of 10 or 100 additional bandwidth while
accounting for variations in CPU power using the VMM
scheduler. However, we do not currently account for the
effects of increased I/O rates from memory and disk.

Appropriately scaling disk performance is a research
challenge in its own right. Disk performance depends
on such factors as head and track-switch time, SCSI-bus
overhead, controller overhead, and rotational latency. A
simple starting point would be to vary disk performance
assuming a linear scaling model, but this could poten-
tially violate physical properties inherent in disk drive

mechanics. Just as we introduced appropriate network
delays to account for non-linear scaling of the network,
accurate disk scaling would require modifying the virtual
machine monitor to integrate a disk simulator modified
to understand the dilated time frame. A well-validated
disk simulator, such as DiskSim [8], could be used for
this purpose. However, we leave dilating time for such
devices to future work.

Finally, hardware and software architectures may
evolve in ways that time dilation cannot support. For
instance, consider a future host architecture with TCP
offload [20], where TCP processing largely takes place
on the network interface rather than in the protocol stack
running in the operating system. Our current implemen-
tation does not dilate time for firmware on network inter-
faces, and may not extend to other similar architectures.

2.4.2 Timer interrupts

The guest reads time values from Xen through a shared
data structure. Xen updates this structure every time it
delivers a timer interrupt to the guest. This happens on
the following events: (1) when a domain is scheduled;
(2) when the currently executing domain receives a peri-
odic timer interrupt; and (3) when a guest-programmable
timer expires.

We argued earlier that, for successful dilation, the
number of timer interrupts delivered to a guest should
be scaled down by the TDF. Of these three cases, we can
only control the second and the third. Our implementa-
tion does not change the scheduling pattern of the virtual
machines for two reasons. First, we do not change the
schedule pattern because scheduling parameters are usu-
ally global and system wide. Scaling these parameters
on a per-domain basis would likely break the semantics
of many scheduling schemes. Second, we would like to
retain scheduling as an independent variable in our sys-
tem, and therefore not constrain it by the choice of TDF.
One might want to use round robin or borrowed virtual
time [10] as the scheduling scheme, independent of the
TDF. In practice, however, we find that not controlling
timer scheduling does not impact our accuracy for all of
the schedulers that currently ship with Xen.

2.4.3 Uniformity: Outside the dilation envelope

Time dilation cannot affect notions of time outside the
dilation envelope. This is an important limitation; we
should account for all packet processing or delays exter-
nal to the VM. The intuition is that all stages of packet
processing should be uniformly dilated. In particular,
we scale the time a packet spends inside the VM (since
it measures time in the dilated frame) and the time a
packet spends over the network (by scaling up the time

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 91

on the wire by TDF). However, we do not scale the time
a packet spends inside the Xen hypervisor and Domain-0
(the privileged, management domain that hosts the actual
device drivers), or the time it takes to process the packet
at the other end of the connection.

These unscaled components may affect the OS’s inter-
pretation of round trip time. Consider the time interval
between a packet and its ACK across a link of latency
R scaled by S, and let δ denote the portion of this time
that is unscaled. In a perfect world where everything is
dilated uniformly, a dilated host would measure the inter-
val to be simply Tperfect = R + δ. A regular, undilated
host measures the interval as Tnormal = S×R+ δ; a di-
lated host in our implementation would observe the same
scaled by S, so Tdilated = Tnormal/S = (S×R+δ)/S.

We are interested in the error relative to perfect dila-
tion:

ε =
(Tperfect − Tdilated)

Tperfect

=

(

1 −
1

S

) (

δ

R + δ

)

Note that ε approaches δ/(R + δ) when S is large. In
the common case this is of little consequence. For the
regime of network configurations we are most interested
in (high bandwidth-delay product networks), the value
of R is typically orders of magnitude higher than the
value of δ. As our results in Section 3 show, dilation
remains accurate over a wide range of round trip times,
bandwidths, and time-dilation factors that we consider.

3 Micro-benchmarks

We establish the accuracy of time dilation through a va-
riety of micro-benchmarks. We begin by evaluating the
accuracy of time dilation by comparing predictive results
using dilated older hardware with actual results using
undilated recent hardware. We then compare the behav-
ior of a single TCP flow subject to various network con-
ditions under different time dilation factors. Finally, we
evaluate time dilation in more complex settings (multiple
flows, multiple machines) and address the impact of CPU
scaling.

3.1 Hardware validation

We start by evaluating the predictive accuracy of time
dilation using multiple generations of hardware. One of
the key motivations for time dilation is as a predictive
tool, such as predicting the performance and behavior
of protocol and application implementations on future
higher-performance network hardware. To validate time
dilation’s predictive accuracy, we use dilation on older

Configuration TDF Mean
(Mbps)

St.Dev.
(Mbps)

2.6 GHz, 1-Gbps NIC (re-
stricted to 500-Mbps)

1 9.39 1.91

1.13 GHz, 1-Gbps NIC
(restricted to 250-Mbps)

2 9.57 1.76

500 MHz, 100-Mbps NIC 5 9.70 2.04
500 MHz scaled down to
50 MHz, 10-Mbps NIC

50 9.25 2.20

Table 2: Validating performance prediction: the mean per-
flow throughput and standard deviations of 50 TCP flows for
different hardware configurations.

hardware to predict TCP throughput as if we were using
recent hardware. We then compare the predicted perfor-
mance with the actual performance when using recent
hardware.

We use time dilation on four hardware configurations,
listed in Table 2, such that each configuration resembles
a 2.5-GHz processor with a 500-Mbps NIC, under the
coarse assumption that CPU performance roughly scales
with processor frequency. The base hardware configura-
tions are 500-MHz and 1.13-GHz Pentium III machines
with 10/100-Mbps and 1-Gbps network interfaces, re-
spectively, and a 2.6-GHz Pentium IV machine with a
1-Gbps network interface. In cases where the exact
base hardware was not available (a 250-Mbps NIC or a
50-MHz CPU, for instance), we scaled them appropri-
ately using either network emulation (Dummynet [23])
or VMM scheduling (Section 3.4).

For each hardware configuration, we measured the
TCP throughput of 50 flows communicating with another
machine with an identical configuration. Using Dum-
mynet, we configured the network between the hosts
to have an effective RTT of 80 ms. We then calcu-
lated the mean per-flow throughput and standard devi-
ation across all flows. Both the mean and deviation of
per-flow throughput are consistent across the hardware
configurations, which span over an order of magnitude of
difference in hardware performance. For example, time
dilation using an effective 50 MHz CPU with a 10-Mbps
NIC dilated with a TDF of 50 is able to accurately predict
TCP throughput of a 2.6-GHz CPU with a 1-Gbps NIC.
As a result, we conclude that time dilation is an effec-
tive tool for making reasonable predictions of high-level
performance on future hardware trends.

3.2 Single flow packet-level behavior

Next we illustrate that time dilation preserves the per-
ceived packet-level timing of TCP. We use two end
hosts directly connected through a Dell Powerconnect
5224 gigabit switch. Both systems are Dell PowerEdge
1750 servers with dual Intel 2.8-GHz Xeon processors,
1 GB of physical memory, and Broadcom NetXtreme

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association92

� � � � � � � � � � � � � � � � � �� � 	
 � � � � �� � �� � �� � �� � �� � �� � �
� � � ������ � �
 � � � � � � � � �� � � �
(a) Native Linux: link bandwidth 100 Mbps, link delay 10ms

� � � � � � � ! � � " � � # $ � �% & ' () * +� � �� � ,$ � �$ � , � � � ,- � �
. / 0 1/23/4 5 $ (" 6 7 8 7 9 : 8 *7 ; : *

(b) Xen VM (TDF 1): link bandwidth 100 Mbps, link delay 10 ms

< = < < = > < = ? < = @ < = A B = <C D E F G H I< = << = JB = <B = J> = <> = JK = <
L M N OMPQMR S B F @ T U V U W X V HU Y X H

(c) Xen VM (TDF 10): link bandwidth 10 Mbps, link delay 100 ms

Z [Z Z [\ Z [] Z [^ Z [_ ` [Za b c d e f gZ [ZZ [h` [Z` [h\ [Z\ [hi [Z
j k l mknokp q ` d ^ r s t s u v t fs w v f

(d) Xen VM (TDF 100): link bandwidth 1 Mbps, link delay 1000 ms

Figure 2: Packet timings for the first second of a TCP connection with no losses for native Linux and three time dilation
configurations. In all cases, we configure link bandwidth and delay such that the bandwidth-delay product is constant.

BCM5704 integrated gigabit Ethernet NICs. The end
hosts run Xen 2.0.7, modified to support time dilation.
We use Linux 2.6.11 as the Xen guest operating system,
and all experiments run inside of the Linux guest VMs.
All protocols in our experiments use their default param-
eters unless otherwise specified. We use two identical
machines running Linux 2.6.10 and Fedora Core 2 for
our “unmodified Linux” results.

We control network characteristics such as bandwidth,
delay, and loss between the two hosts using Dummynet.
In addition to its random loss functionality, we extended
Dummynet to support deterministic losses to produce re-
peatable and comparable loss behavior. Unless otherwise
noted, all endpoints run with identical parameters (buffer
sizes, TDFs, etc.).

In this experiment, we first transfer data on TCP con-
nections between two unmodified Linux hosts and use
tcpdump [5] on the sending host to record packet be-
havior. We measure TCP behavior under both lossless
and deterministic lossy conditions.

We then repeat the experiment with the sending host
running with TDFs of {1, 10, 100}, spanning two or-
ders of magnitude. When dilating time, we configure
the underlying network such that a time-dilated host per-
ceives the same network conditions as the original TCP
experiment on unmodified hosts. For example, for the
experiment with unmodified hosts, we set the bandwidth
between the hosts to 100 Mbps and the delay to 10 ms.

To preserve the same network conditions perceived by a
host dilated by a factor of 10, we reduce the bandwidth
to 10 Mbps and increase the delay to 100 ms using Dum-
mynet. Thus, if we are successful, a time dilated host will
see the same packet timing behavior as the unmodified
case. We include results with TDF of 1 to compare TCP
behavior in an unmodified host with the behavior of our
system modified to support time dilation.

We show sets of four time sequence graphs in Fig-
ures 2 and 3. Each graph shows the packet-level timing
behavior of TCP on four system configurations: unmod-
ified Linux, and Linux running in Xen with our imple-
mentation of time dilation operating under TDFs of 1,
10, and 100. The first set of graphs shows the first second
of a trace of TCP without loss. Each graph shows the
data and ACK packet sequences over time, and illustrates
TCP slow-start and transition to steady-state behavior.
Qualitatively, the TCP flows across configurations have
nearly identical behavior.

Comparing Figures 2(a) and 2(b), we see that a dilated
host has the same packet-level timing behavior as an un-
modified host. More importantly, we see that time dila-
tion accurately preserves packet-level timings perceived
by the dilated host. Even though the configuration with a
TDF of 100 has network conditions two orders of magni-
tude different from the base configuration, time dilation
successfully preserves packet-level timings.

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 93

� � � � � � � � � � � � � � � � � �� � 	
 � � � � �� � �� � �� � �� � �� � �� � �
� � � ������ � �
 � � � � � � � � �� � � �� � � � � � �� � 	 � � � � �
(a) Native Linux: link bandwidth 100 Mbps, link delay 10 ms

� � � � � � � ! � � " � � # $ � �% & ' () * +� � �� � � � !� � "� � #$ � �$ �
, - . /-01-2 3 $ (" 4 5 6 5 7 8 6 *5 9 8 *4 : 7 5 9 8 *; 3 ' 6 7 8 6 *

(b) Xen VM (TDF 1): link bandwidth 100 Mbps, link delay 10 ms

< = < < = > < = ? < = @ < = A B = <C D E F G H I< = << = >< = ?< = @< = AB = <B = >
J K L MKNOKP Q B F @ R S T S U V T HS W V HR X U S W V HY Q E T U V T H

(c) Xen VM (TDF 10): link bandwidth 10 Mbps, link delay 100 ms

Z [Z Z [\ Z [] Z [^ Z [_ ` [Za b c d e f gZ [ZZ [\Z []Z [^Z [_` [Z` [\
h i j kilmin o ` d ^ p q r q s t r fq u t fp v s q u t fw o c r s t r f

(d) Xen VM (TDF 100): link bandwidth 1 Mbps, link delay 1000 ms

Figure 3: Packet timings for the first second of a TCP connection with 1% deterministic losses.

Time dilation also accurately preserves packet-level
timings under lossy conditions. The second set of time
sequence graphs in Figure 3 shows the first second of
traces of TCP experiencing 1% loss. As with the lossless
experiments, the TCP flows across configurations have
nearly identical behavior even with orders of magnitude
differences in network conditions.

We further evaluated the performance of a single TCP
flow under a wide range of time dilation factors, network
bandwidths, delays and loss rates with similar results.
For brevity, we omit those results.

Figures 2 and 3 illustrate the accuracy of time dilation
qualitatively. For a more quantitative analysis, we com-
pared the distribution of the inter-arrival packet recep-
tion and transmission times for the dilated and undilated
flows. Figure 4 plots the cumulative distribution function
for inter-packet transmission times for a single TCP flow
across 10 runs under both lossy and lossless conditions.
Visually, the distributions track closely. Table 3 presents
a statistical summary for these distributions, the mean
and two indices of dispersion — the coefficient of vari-
ance (CoV) and the inter quartile range (IQR) [15]. An
index of dispersion indicates the variability in the given
data set. Both CoV and IQR are unit-less, i.e., they take
the unit of measurement out of variability consideration.
Therefore, the absolute values of these metrics is not
of concern to us, but that they match under dilation is.
Given the inherent variability in TCP, we find this simi-
larity satisfactory. The results for inter-packet reception
times are similar.

Metric No loss 1% loss
TDF
1

TDF
10

TDF
100

TDF
1

TDF
10

TDF
100

Mean
(ms)

0.458 0.451 0.448 0.912 1.002 0.896

CoV 0.242 0.218 0.206 0.298 0.304 0.301
IQR 0.294 0.248 0.239 0.202 0.238 0.238

Table 3: Statistical summary of inter-packet transmission
times.

3.3 Dilation with multiple flows

To demonstrate that dilation preserves TCP behavior un-
der a variety of conditions, even for short flows, we per-
formed another set of experiments under heterogeneous
conditions. In these experiments, 60 flows shared a bot-
tleneck link. We divided the flows into three groups of
20 flows, with each group subject to an RTT of 20 ms, 40
ms, or 60 ms. We also varied the bandwidth of the bottle-
neck link from 10 Mbps to 600 Mbps. We conducted the
experiments for a range of flow lengths from 5 seconds
to 60 seconds and verified that the results were consistent
independent of flow duration.

We present data for one set of experiments where each
flow lasts for 10 seconds. Figure 5 plots the mean and
standard deviation across the flows within each group
for TDFs of 1 (regular TCP) and 10. To visually dif-
ferentiate results in each graph for different TDFs, we
slightly offset their error bars on the graph although in
practice they experienced the same network bandwidth
conditions. For all three groups, the results from dilation

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association94

� � � � � � � �� � � � � � 	 �
 � � � � � �� � �� � �� � �� � �� � �� � �
� � ���� � � � � � � � � !� � � ! !

(a) Distribution under no loss

" # $ " $ # % "& ' () ' * +) , - . / 0 (1 2" 3 "" 3 %" 3 4" 3 5" 3 6$ 3 "
7 8 9:;< = > ? @ A B? @ A B C? @ A B C C

(b) Distribution under 1% loss

Figure 4: Comparison of inter-packet transmission times for a single TCP flow across 10 runs.

agree well with the undilated results: the throughputs for
TDF of 1 match those for TDF of 10 within measured
variability. Note that these results also reflect TCP’s
known throughput bias towards flows with smaller RTTs.

In our experiments thus far, all flows originated at a
single VM and were destined to a single VM. However,
when running multiple VMs (as might be the case to
support, for instance, scalable network emulation exper-
iments [26, 29]) one has to consider the impact of VMM
scheduling overhead on performance. To explore the is-
sue of VMM scheduling, we investigate the impact of
spreading flows across multiple dilated virtual machines
running on the same physical host. In particular, we ver-
ify that simultaneously scheduling multiple dilated VMs
does not negatively impact the accuracy of dilation.

In this experiment, for a given network bandwidth we
create 50 connections between two hosts with a lifetime
of 1000 RTTs and measure the resulting throughput of
each connection. We configure the network with an 80
ms RTT, and vary the perceived network bandwidth from
0–4 Gbps using 1-Gbps switched Ethernet. Undilated
TCP has a maximum network bandwidth of 1 Gbps, but
time dilation enables us to explore performance beyond
the raw hardware limits (we revisit this point in Sec-
tion 4.1). We repeat this experiment with the 50 flows
split across 2, 5 and 10 virtual machines running on one
physical machine.

Our results indicate that VMM scheduling does not
significantly impact the accuracy of dilation. Figure 6
plots the mean throughput of the flows for each of the
four configurations of flows divided among virtual ma-
chines. Error bars mark the standard deviation. Once
again, the mean flow throughput for the various configu-
rations are similar.

3.4 CPU scaling

Time dilation changes the perceived VM cycle budget; a
dilated virtual machine sees TDF times as many CPU cy-
cles per second. Utilizing VMM CPU schedulers, how-

 0
 2

 4
 6
 8

 10
 12
 14

 16
 18

 0 100 200 300 400 500 600

P
er

 fl
ow

 th
ro

ug
hp

ut

 (
M

bp
s)

Bandwidth (Mbps)

TDF 1
TDF 10

(a) 20 flows subject to 20-ms RTT

 0
 2

 4
 6
 8

 10
 12
 14

 16
 18

 0 100 200 300 400 500 600

P
er

 fl
ow

 th
ro

ug
hp

ut

 (
M

bp
s)

Bandwidth (Mbps)

TDF 1
TDF 10

(b) 20 flows subject to 40-ms RTT

 0
 2

 4
 6
 8

 10
 12
 14

 16
 18

 0 100 200 300 400 500 600

P
er

 fl
ow

 th
ro

ug
hp

ut

 (
M

bp
s)

Bandwidth (Mbps)

TDF 1
TDF 10

(c) 20 flows subject to 60-ms RTT

Figure 5: Per-flow throughput for 60 flows sharing a bottle-
neck link. Each flow lasts 10 seconds. The mean and deviation
are taken across the flows within each group. To visually dif-
ferentiate results in each graph for different TDFs, we slightly
offset their error bars on the graph.

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 95

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

 fl
ow

 th
ro

ug
hp

ut
 (

M
bp

s)

Bandwidth (Mbps)

TDF=10(1VM)
TDF=10(2VMs)
TDF=10(5VMs)

TDF=10(10VMs)

Figure 6: Mean throughput of 50 TCP flows between two
hosts on a network with an 80ms RTT as a function of network
bandwidth. The 50 flows are partitioned among 1–10 virtual
machines.

ever, we can scale available processing power indepen-
dently from the network. This flexibility allows us to
evaluate the impact of future network hardware on cur-
rent processor technology. In a simple model, a VM with
TDF of 10 running with 10% of the CPU has the same
per-packet cycle budget as an undilated VM running with
100% of the CPU. We validate this hypothesis by running
an experiment similar to that described for Figure 6. This
time, however, we adjust the VMM’s CPU scheduling
algorithm to restrict the amount of CPU allocated to each
VM. We use the Borrowed Virtual Time [10] scheduler
in Xen to assign appropriate weights to each domain, and
a CPU intensive job in a separate domain to consume
surplus CPU.

First, we find an undilated scenario that is CPU-
limited by increasing link capacity. Because the undi-
lated processor has enough power to run the network at
line speed, we reduce its CPU capacity by 50%. We com-
pare this to a VM dilated by TDF of 10 whose CPU has
been scaled to 5%. The experimental setup is identical
to that in Figure 6: 50 flows, 80ms RTT. For clarity, we
first throttled the sender alone, leaving the CPU uncon-
strained at the receiver; we then repeat the experiment
with the receiver alone throttled. Figures 7 and 8 show
the results. We plot the per-flow throughput, and error
bars mark the standard deviation.

If we successfully scale the CPU, flows across a di-
lated link of the same throughput will encounter identical
CPU limitations. Both figures confirm the effectiveness
of CPU scaling, as the 50% and 5% lines match closely.
The unscaled line (100%) illustrates the performance in a
CPU-rich environment. Moreover our system accurately
predicts that receiver CPU utilizations are higher than the
sender’s, confirming that it is possible to dilate CPU and
network independently by leveraging the VMMs CPU
scheduling algorithm.

 0
 2

 4
 6
 8

 10
 12
 14

 16
 18

 0 200 400 600 800 1000

P
er

 fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Bandwidth (Mbps)

100% (TDF 1)
50% (TDF 1)
5% (TDF 10)

Figure 7: Per-flow throughput of 50 TCP flows between a
CPU-scaled sender and unconstrained receiver. CPU utilization
at the sender is restricted to the indicated percentages.

 0
 2

 4
 6
 8

 10
 12
 14

 16
 18

 0 200 400 600 800 1000

P
er

 fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Bandwidth (Mbps)

100% (TDF 1)
50% (TDF 1)
5% (TDF 10)

Figure 8: Per-flow throughput of 50 TCP flows between an un-
constrained sender and a CPU-scaled receiver. CPU utilization
at the receiver is restricted to the indicated percentages.

4 Applications of dilation

Having performed micro-benchmarks to validate the ac-
curacy of time dilation, we now demonstrate the utility of
time dilation for two scenarios: network protocol evalu-
ation and high-bandwidth applications.

4.1 Protocol evaluation

A key application of time dilation is for evaluating the
behavior and performance of protocols and their imple-
mentations on future networks. As an initial demon-
stration of our system’s utility in this space, we show
how time dilation can support evaluating optimizations
to TCP for high bandwidth-delay network environments,
in particular using the publicly available BiC [30] exten-
sion to the Linux TCP stack. BiC uses binary search to
increase the congestion window size logarithmically —
the rate of increase is higher when the current transmis-
sion rate is much less than the target rate, and slows down
as it gets closer to the target rate.

For the network configuration, we use an 80 ms RTT
and vary the network bandwidth up to 100 Gbps using
underlying 1-Gbps hardware. We configure the machines
exactly as in Section 3.3. We perform this experiment for
two different protocols: TCP, and TCP with BiC enabled

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association96

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

P
er

 fl
ow

 th
ro

ug
hp

ut
 (

M
bp

s)

Bandwidth (Gbps)

Undilated
TDF=10

TDF=10 (BiC)

(a) Validating dilation: TCP performance under dilation matches ac-
tual, observed performance.

 0
 10

 20
 30
 40

 50
 60
 70

 80
 90

 1 2 3 4 5 6 7 8 9 10

P
er

 fl
ow

 th
ro

ug
hp

ut
 (

M
bp

s)

Bandwidth (Gbps)

TDF=10
TDF=10 (BiC)

(b) Using dilation for protocol evaluation: comparing TCP with TCP
BiC under high bandwidth.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

P
er

 fl
ow

 th
ro

ug
hp

ut
 (

M
bp

s)

Bandwidth (Gbps)

TDF=100
TDF=100 (BiC)

(c) Pushing the dilation envelope: using a TDF of 100 to evaluate
protocols under extremely high bandwidths.

Figure 9: Protocol Evaluation: Per-flow throughput of 50
flows for TCP and TCP BiC between two hosts on a network
with an 80-ms RTT as a function of network bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

P
er

 fl
ow

 n
or

m
al

iz
ed

 th
ro

ug
hp

ut

Perceived RTT (ms)

Undilated
TDF=10

TDF=10 (BiC)

Figure 10: Protocol evaluation: Normalized average per-flow
throughput of 50 flows for TCP and TCP BiC between two
hosts on a network with 150 Mbps bandwidth as a function
of RTT.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

P
er

 fl
ow

 T
hr

ou
gh

pu
t (

M
bp

s)

Bandwidth (Mbps)

 80% CPU
 40% CPU
 10% CPU

Figure 11: Per-flow throughput of 50 TCP flows across two
hosts as a function of network bandwidths. CPU utilization at
the sender is restricted to the indicated percentages. Experi-
ments run with TDF of 10.

(henceforth referred to as BiC). In all of the following ex-
periments, we adjust the Linux TCP buffers as suggested
in the TCP Tuning Guide [2].

Figure 9 shows per-flow throughput of the 50 connec-
tions as a function of network bandwidth. For one exe-
cution, we plot the average throughput per flow, and the
error bar marks the standard deviation across all flows. In
Figure 9(a), the x-axis goes up to 1 Gbps, and represents
the regime where the accuracy of time dilation can be
validated against actual observations. Figures 9(b) (1
to 10 Gbps) and 9(c) (10 to 100 Gbps) show how time
dilation can be used to extrapolate performance.

The graphs show three interesting results. First, time
dilation enables us to experiment with protocols beyond
hardware limits using implementations rather than sim-
ulations. Here we experiment with an unmodified TCP
stack beyond the 1 Gbps hardware limit to 100 Gbps.
Second, we can experimentally show the impact of high
bandwidth-delay products on TCP implementations. Be-
yond 10 Gbps, per-flow TCP throughput starts to level
off. Finally, we can experimentally demonstrate the ben-
efits of new protocol implementations designed for such
networks. Figure 9(b) shows that in the 1–10 Gbps
regime, BiC outperforms TCP by a significant margin.
However, in Figure 9(c) we see that TCP shows a steady,
gradual improvement and both BiC and TCP level off
beyond 10 Gbps.

TCP performance is also sensitive to RTT. To show
this effect under high-bandwidth conditions, we perform
another experiment with 50 connections between two
machines. However, we instead fix the network band-
width at 150 Mbps and vary the perceived RTT between
the hosts. For clarity, we present an alternative visual-
ization of the results: instead of plotting the absolute
per-flow throughput values, we instead plot normalized
throughput values as a fraction of maximum potential
throughput. For example, with 50 connections on a 150-

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 97

Mbps bandwidth link, the maximum average per-flow
throughput would be 3 Mbps. Our measured average
per-flow throughput was 2.91 Mbps, resulting in a nor-
malized per-flow throughput of 0.97. Figure 10 shows
the average per-flow throughput of the three protocols as
a function of RTT from 0–800 ms. We chose this config-
uration to match a recent study on XCP [16], a protocol
targeting high bandwidth-delay conditions. The results
show the well-known dependence of TCP throughput on
RTT, and that the two dilated protocols behave similarly
to undilated TCP.

We can also use time dilation as a tool to estimate the
computational power required to sustain a target band-
width. For instance, from Figure 11, we can see that
across a 4-Gbps pipe with an 80-ms RTT, 40% CPU on
the sender is sufficient for TCP to reach around 50% uti-
lization. This means that processors that are 4 times as
fast as today’s processors will be needed to achieve simi-
lar performance (since 40% CPU at TDF of 10 translates
to 400% CPU at TDF of 1).

4.2 High-bandwidth applications

Time dilation can significantly enhance our ability to
evaluate data-intensive applications with high bisection
bandwidths using limited hardware resources. For in-
stance, the recent popularity of peer-to-peer environ-
ments for content distribution and streaming requires
significant aggregate bandwidth for realistic evaluations.
Capturing the requirements of 10,000 hosts with an av-
erage of 1 Mbps per host would require 10 Gbps of emu-
lation capacity and sufficient processing power for accu-
rate study—a hardware configuration that would be pro-
hibitively expensive to create for many research groups.

We show initial results of our ability to scale such
experiments using modest hardware configurations with
BitTorrent [9], a high-bandwidth peer-to-peer, content
distribution protocol. Our goal was to explore the bottle-
necks when running a large scale experiment using the
publicly available BitTorrent implementation [1] (ver-
sion 3.4.2).

We conducted our experiments using 10 physical ma-
chines hosting VMs running BitTorrent clients intercon-
nected through one ModelNet [26] core machine emulat-
ing an unconstrained network topology of 1,000 nodes.
The client machines and the ModelNet core are phys-
ically connected via a gigabit switch. The ModelNet
topology is unconstrained in the sense that the network
emulator forwards packets as fast as possible between
endpoints. We create an overlay of BitTorrent clients, all
of which are downloading a 46-MB file from an initial
“seeder”. We vary the number of clients participating in
the overlay, distributing them uniformly among the 10
VMs. As a result, the aggregate bisection bandwidth of

� � � � � � � � � � � � � � �� � � � � 	
 � � � � � � �� � �� � �� � �� � �� � �� � �� � � �
� � ������ �� ��� !� �"# $� % &'

� � � � � � � � � � � � � � �� �� �� �� �� � �� � �� � �� � �� � �
(!) �� *� * �+ *��# &', - - . / - 0 1 / 2 0 3 4 5 6 4 1 78 / 0 3 4 9 5 3 : 9 0 4 1 6 ; /

(a) VMs are running with TDF of 1 (no dilation). Performance de-
grades as clients contend for CPU resources.

< = < > < < > = < ? < < ? = <@ A B C D E F G H I J D K L MN < <O < <= < <P < <Q < <R < <S < <> < < <
T U UVWUXY WZ X[\]^\ Y_` aZ b cd

< = < > < < > = < ? < < ? = <O <P <R <> < <> ? <> O <> P <> R <
e^ f WY g\ g][h gX\` cdi j j k l j m n l o m p q r s q n tu l m p q v r p w v m q n s x l

(b) VMs are running with TDF of 10 and perceived network capacity
is 1 Gbps. Dilation removes CPU contention, but network capacity
becomes saturated with many clients.

y z y { y y { z y | y y | z y} ~ � � � � � � � � � � � � �{ y y y{ z y y| y y y| z y y� y y y� z y y� y y y� z y y
� � ������ �� ��� ��� ��� �� � ��

y z y { y y { z y | y y | z y{ y{ |{ �{ �{ �| y| || �
 � ¡ �� ¢� ¢��£ ¢��� ��¤ ¥ ¥ ¦ § ¥ ¨ © § ª ¨ « ¬ ® ¬ © ¯° § ¨ « ¬ ± « ² ± ¨ ¬ © ® ³ §

(c) VMs are running with TDF of 10. Perceived network capacity
is 10 Gbps. Increasing perceived network capacity removes network
bottleneck, enabling aggregate bandwidth to scale until clients again
contend for CPU.

Figure 12: Using time dilation for evaluating BitTorrent: In-
creasing the number of clients results in higher aggregate band-
widths, until the system reaches some bottleneck (CPU or net-
work capacity). Time dilation can be used to push beyond these
bottlenecks.

the BitTorrent overlay is limited by the emulation capac-
ity of ModelNet, resource availability at the clients, and
the capacity of the underlying hardware.

In the following experiments, we demonstrate how to
use time dilation to evaluate BitTorrent performance be-
yond the physical resource limitations of the test-bed.
As a basis, we measure a BitTorrent overlay running on
the VMs with a TDF of 1 (no dilation). We scale the
number of clients in the overlay from 40 to 240 (4–24
per VM). We measure the average time for downloading
the file across all clients, as well as the aggregate bisec-

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association98

tion bandwidth of the overlay; we compute aggregate
bandwidth as the number of clients times the average
per-client bandwidth (file size/average download time).
Figure 12(a) shows the mean and standard deviation for
10 runs of this experiment as a function of the number of
clients. Since the VMs are not dilated, the aggregate bi-
section bandwidth cannot exceed the 1-Gbps limit of the
physical network. From the graph, though, we see that
the overlay does not reach this limit; with 200 clients or
more, BitTorrent is able to sustain aggregate bandwidths
only up to 570 Mbps. Increasing the number of clients
further does not increase aggregate bandwidth because
the host CPUs become saturated beyond 20 BitTorrent
clients per machine.

In the undilated configuration, CPU becomes a bottle-
neck before network capacity. Next we use time dilation
to scale CPU resources to provide additional processing
for the clients without changing the perceived network
characteristics. To scale CPU resources, we repeat the
previous experiment but with VMs dilated with a TDF
of 10. To keep the network capacity the same as before,
we restrict the physical capacity of each client host link
to 100 Mbps so that the underlying network appears as
a 1-Gbps network to the dilated VMs. In effect, we
dilate time to produce a new configuration with hosts
with 10 times the CPU resources compared with the base
configuration, interconnected by an equivalent network.
Figure 12(b) shows the results of 10 runs of this experi-
ment. With the increase in CPU resources for the clients,
the BitTorrent overlay achieves close to the maximum
1-Gbps aggregate bisection bandwidth of the network.
Note that the download times (in the dilated time frame)
also improve as a result; due to dilation, though, the ex-
periment takes longer in wall clock time (the most no-
ticeable cost of dilation).

In the second configuration, network capacity now
limits BitTorrent throughput. When using time dilation
in the second configuration, we constrained the physical
links to 100 Mbps so that the network had equivalent
performance as the base configuration. In our last ex-
periment, we increase both CPU resources and network
capacity to scale the BitTorrent evaluation further. We
continue dilating the VMs with a TDF of 10, but now
remove the constraints on the network: client host phys-
ical links are 1 Gbps again, with a maximum aggregate
bisection bandwidth of 10 Gbps in the dilated time frame.
In effect, we dilate time to produce a configuration with
10 times the CPU and network resources as the base
physical configuration.

Figure 12(c) shows the results of this last experiment.
From these results, we see that the “faster” network leads
to a significant decrease in download times (in the di-
lated time frame). Second, beyond 200 clients we see
the aggregate bandwidth leveling out, indicating that we

are again running into a bottleneck. On inspection, at that
point we find that the end hosts are saturating their CPUs
again as with the base configuration. Note, however, that
in this case the peak bisection bandwidth exceeds 4 Gbps
— performance that cannot be achieved natively with the
given hardware.

Based upon these experiments, our results suggest that
time dilation is a valuable tool for evaluating large scale
distributed systems by creating resource-rich environ-
ments. Further exploration with other applications re-
mains future work.

5 Related work

Perhaps the work closest to ours in spirit is
SHRiNK [21]. SHRiNK reduces the overhead of
simulating large-scale networks by feeding a reduced
sample of the original traffic into a smaller-scale
network replica. The authors use this technique to
predict properties such as the average queueing delays
and drop probabilities. They argue that this is possible
for TCP-like flows and a network controlled by active
queue management schemes such as RED. Compared
to this effort, time dilation focuses on speed rather than
size and supports unmodified applications.

The idea of changing the flow of time to explore faster
networks is not a new one. Network simulators [3, 22,
25] use a similar idea; they run the network in virtual
time, independent of wall-clock time. This allows net-
work simulators to explore arbitrarily fast or long net-
work pipes, but the accuracy of the experiments depends
on the fidelity of the simulated code to the actual imple-
mentation. Complete machine simulators such as SimOS
[24] and specialized device simulators such as DiskSim
have also been proposed for emulating and evaluating
operating systems on future hardware. In contrast, time
dilation combines the flexibility to explore future net-
work configurations with the ability to run real-world ap-
plications on unmodified operating systems and protocol
stacks.

6 Conclusion

Researchers spend a great deal of effort speculating
about the impacts of various technology trends. In-
deed, the systems community is frequently concerned
with questions of scale: what happens to a system when
bandwidth increases by X , latency by Y , CPU speed
by Z , etc. One challenge to addressing such questions
is the cost or availability of emerging hardware tech-
nologies. Experimenting at scale with communication
or computing technologies that are either not yet avail-
able or prohibitively expensive is a significant limitation

NSDI ’06: 3rd Symposium on Networked Systems Design & ImplementationUSENIX Association 99

to understanding interactions of existing and emerging
technologies.

Time dilation enables empirical evaluation at speeds
and capacities not currently available from production
hardware. In particular, we show that time dilation en-
ables faithful emulation of network links several orders
of magnitude greater than physically feasible on com-
modity hardware. Further, we are able to independently
scale CPU and network bandwidth, allowing researchers
to experiment with radically new balance points in com-
putation to communication ratios of new technologies.

Acknowledgments

We would like to thank Charles Killian for his assis-
tance with setting up ModelNet experiments, Kashi Vish-
wanath for volunteering to use time dilation for his re-
search and Stefan Savage and all the anonymous review-
ers for their valuable comments and suggestions. Special
thanks to our shepherd, Jennifer Rexford, for her feed-
back and guidance in preparing the camera-ready ver-
sion. This research was supported in part by the National
Science Foundation under CyberTrust Grant No. CNS-
0433668 and the UCSD Center for Networked Systems.

References

[1] http://bittorrent.com.

[2] Linux TCP tuning guide. http://www-didc.lbl.gov/
TCP-tuning/linux.html. Last accessed 03/25/2006.

[3] The network simulator - ns-2. http://www.isi.edu/
nsnam/ns/. Last accessed 3/13/2006.

[4] Teragrid. http://www.teragrid.org/. Last accessed
03/25/2006.

[5] tcpdump/libpcap. http://www.tcpdump.org. Last
accessed 03/25/2006.

[6] AMD. Amd64 secure virtual machine architecture reference
manual. http://www.amd.com/us-en/assets/
content type/white papers and tech docs/
33047.pdf. Last accessed 3/13/2006.

[7] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art of virtualization. In Proceedings
of the 19th ACM SOSP (2003), ACM Press, pp. 164–177.

[8] BUCY, J. S., GANGER, G. R., AND CONTRIBUTORS. The
DiskSim Simulation Environment. http://www.pdl.cmu.
edu/DiskSim/index.html. Last accessed 3/13/2006.

[9] COHEN, B. Incentives Build Robustness in BitTorrent. Workshop
on Economics of Peer-to-Peer Systems (2003).

[10] DUDA, K. J., AND CHERITON, D. R. Borrowed-virtual-
time (BVT) scheduling: supporting latency-sensitive threads in
a general-purpose scheduler. In Proceedings of the 17th ACM
SOSP (New York, NY, USA, 1999), ACM Press, pp. 261–276.

[11] FLOYD, S. High Speed TCP for Large Congestion
Windows. http://www.icir.org/floyd/papers/
rfc3649.txt, 2003. RFC 3649.

[12] FOSTER, I., KESSELMAN, C., NICK, J., AND TUECKE, S. The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. http://www.globus.
org/alliance/publications/papers/ogsa.pdf,
January 2002. Last accessed 03/29/2006.

[13] INTEL. Intel virtualization technology. http://www.intel.
com/technology/computing/vptech/index.htm.
Last accessed 3/13/2006.

[14] JACOBSON, V., BRADEN, R., AND BORMAN, D. TCP Exten-
sions for High Performance. http://www.rfc-editor.
org/rfc/rfc1323.txt, 1992. RFC 1323.

[15] JAIN, R. The Art of Computer Systems Performance Analysis.
John Wiley & Sons, 1991. Chapter 12.

[16] KATABI, D., HANDLEY, M., AND ROHRS, C. Congestion con-
trol for high bandwidth-delay product networks. In SIGCOMM
(2002), ACM Press, pp. 89–102.

[17] KELLY, T. Scalable TCP: improving performance in highspeed
wide area networks. SIGCOMM Comput. Commun. Rev. 33, 2
(2003), 83–91.

[18] LAKSHMAN, T. V., AND MADHOW, U. The performance of
TCP/IP for networks with high bandwidth-delay products and
random loss. IEEE/ACM Trans. Netw. 5, 3 (1997), 336–350.

[19] LOVE, R. Linux Kernel Development. Novell Press, 2005.

[20] MOGUL, J. C. TCP offload is a dumb idea whose time has come.
In 9th Workshop on Hot Topics in Operating Systems (2003),
USENIX.

[21] PAN, R., PRABHAKAR, B., PSOUNIS, K., AND WISCHIK, D.
SHRiNK: A method for scaleable performance prediction and
efficient network simulation. In Proceedings of IEEE INFOCOM
(2003).

[22] RILEY, G. F. The Georgia Tech Network Simulator. In MoMe-
Tools ’03: Proceedings of the ACM SIGCOMM workshop on
Models, methods and tools for reproducible network research
(2003), pp. 5–12.

[23] RIZZO, L. Dummynet: A simple approach to the evaluation
of network protocols. SIGCOMM Comput. Commun. Rev. 27,
1 (1997), 31–41.

[24] ROSENBLUM, M., BUGNION, E., DEVINE, S., AND HERROD,
S. A. Using the SimOS machine simulator to study complex
computer systems. ACM Trans. Model. Comput. Simul. 7, 1
(1997), 78–103.

[25] SZYMANSKI, B. K., SAIFEE, A., SASTRY, A., LIU, Y., AND

MADNANI, K. Genesis: A System for Large-scale Parallel Net-
work Simulation. In Proceedings of the 16th Workshop on Paral-
lel and Distributed Simulation (PADS) (May 2002).

[26] VAHDAT, A., YOCUM, K., WALSH, K., MAHADEVAN, P.,
KOSTIC, D., CHASE, J., AND BECKER, D. Scalability and
accuracy in a large-scale network emulator. SIGOPS Oper. Syst.
Rev. 36 (2002), 271–284.

[27] VMWARE. Timekeeping in VMWare Virtual Machines. http:
//www.vmware.com/pdf/vmware timekeeping.pdf.
Last accessed 03/24/2006.

[28] WARKHEDE, P., SURIAND, S., AND VARGHESE, G. Fast packet
classification for two-dimensional conflict-free filters. In Pro-
ceedings of IEEE INFOCOM (July 2001).

[29] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
performance in the Denali isolation kernel. SIGOPS Oper. Syst.
Rev. 36 (2002), 195–209.

[30] XU, L., HARFOUSH, K., AND RHEE, I. Binary increase conges-
tion control (BiC) for fast long-distance networks. In Proceedings
of IEEE INFOCOM (2004).

NSDI ’06: 3rd Symposium on Networked Systems Design & Implementation USENIX Association100

