
Learning for Control from Multiple Demonstrations

Adam Coates acoates@cs.stanford.edu

Pieter Abbeel pabbeel@cs.stanford.edu

Andrew Y. Ng ang@cs.stanford.edu

Stanford University CS Department, 353 Serra Mall, Stanford, CA 94305 USA

Abstract

We consider the problem of learning to follow
a desired trajectory when given a small num-
ber of demonstrations from a sub-optimal ex-
pert. We present an algorithm that (i) ex-
tracts the—initially unknown—desired tra-
jectory from the sub-optimal expert’s demon-
strations and (ii) learns a local model suit-
able for control along the learned trajectory.
We apply our algorithm to the problem of
autonomous helicopter flight. In all cases,
the autonomous helicopter’s performance ex-
ceeds that of our expert helicopter pilot’s
demonstrations. Even stronger, our results
significantly extend the state-of-the-art in au-
tonomous helicopter aerobatics. In particu-
lar, our results include the first autonomous
tic-tocs, loops and hurricane, vastly superior
performance on previously performed aero-
batic maneuvers (such as in-place flips and
rolls), and a complete airshow, which requires
autonomous transitions between these and
various other maneuvers.

1. Introduction

Many tasks in robotics can be described as a trajectory
that the robot should follow. Unfortunately, specify-
ing the desired trajectory and building an appropriate
model for the robot dynamics along that trajectory are
often non-trivial tasks. For example, when asked to
describe the trajectory that a helicopter should follow
to perform an aerobatic flip, one would have to spec-
ify a trajectory that (i) corresponds to the aerobatic
flip task, and (ii) is consistent with the helicopter’s dy-
namics. The latter requires (iii) an accurate helicopter
dynamics model for all of the flight regimes encoun-
tered in the vicinity of the trajectory. These coupled
tasks are non-trivial for systems with complex dynam-
ics, such as helicopters. Failing to adequately address
these points leads to a significantly more difficult con-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

trol problem.

In the apprenticeship learning setting, where an ex-
pert is available, rather than relying on a hand-
engineered target trajectory, one can instead have the
expert demonstrate the desired trajectory. The expert
demonstration yields both a desired trajectory for the
robot to follow, as well as data to build a dynamics
model in the vicinity of this trajectory. Unfortunately,
perfect demonstrations can be hard (if not impossible)
to obtain. However, repeated expert demonstrations
are often suboptimal in different ways, suggesting that
a large number of suboptimal expert demonstrations
could implicitly encode the ideal trajectory the subop-
timal expert is trying to demonstrate.

In this paper we propose an algorithm that ap-
proximately extracts this implicitly encoded opti-
mal demonstration from multiple suboptimal expert
demonstrations, and then builds a model of the dy-
namics in the vicinity of this trajectory suitable for
high-performance control. In doing so, the algorithm
learns a target trajectory and a model that allows the
robot to not only mimic the behavior of the expert but
even perform significantly better.

Properly extracting the underlying ideal trajectory
from a set of suboptimal trajectories requires a signifi-
cantly more sophisticated approach than merely aver-
aging the states observed at each time-step. A simple
arithmetic average of the states would result in a tra-
jectory that does not even obey the constraints of the
dynamics model. Also, in practice, each of the demon-
strations will occur at different rates so that attempt-
ing to combine states from the same time-step in each
trajectory will not work properly.

We propose a generative model that describes the ex-
pert demonstrations as noisy observations of the unob-
served, intended target trajectory, where each demon-
stration is possibly warped along the time axis. We
present an EM algorithm—which uses a (extended)
Kalman smoother and an efficient dynamic program-
ming algorithm to perform the E-step—to both infer
the unobserved, intended target trajectory and a time-
alignment of all the demonstrations. The time-aligned
demonstrations provide the appropriate data to learn

Learning for Control from Multiple Demonstrations

good local models in the vicinity of the trajectory—
such trajectory-specific local models tend to greatly
improve control performance.

Our algorithm allows one to easily incorporate prior
knowledge to further improve the quality of the learned
trajectory. For example, for a helicopter performing
in-place flips, it is known that the helicopter can be
roughly centered around the same position over the
entire sequence of flips. Our algorithm incorporates
this prior knowledge, and successfully factors out the
position drift in the expert demonstrations.

We apply our algorithm to learn trajectories and dy-
namics models for aerobatic flight with a remote con-
trolled helicopter. Our experimental results show that
(i) our algorithm successfully extracts a good trajec-
tory from the multiple sub-optimal demonstrations,
and (ii) the resulting flight performance significantly
extends the state of the art in aerobatic helicopter
flight (Abbeel et al., 2007; Gavrilets et al., 2002). Most
importantly, our resulting controllers are the first to
perform as well, and often even better, than our ex-
pert pilot.

We posted movies of our autonomous helicopter flights
at:

http://heli.stanford.edu

The remainder of this paper is organized as follows:
Section 2 presents our generative model for (multi-
ple) suboptimal demonstrations; Section 3 describes
our trajectory learning algorithm in detail; Section 4
describes our local model learning algorithm; Section 5
describes our helicopter platform and experimental re-
sults; Section 6 discusses related work.

2. Generative Model

2.1. Basic Generative Model

We are given M demonstration trajectories of length
Nk, for k = 0..M − 1. Each trajectory is a sequence
of states, sk

j , and control inputs, uk
j , composed into a

single state vector:

yk
j =

[

sk
j

uk
j

]

, for j = 0..Nk − 1, k = 0..M − 1.

Our goal is to estimate a “hidden” target trajectory of
length T , denoted similarly:

zt =

[

s⋆
t

u⋆
t

]

, for t = 0..T − 1.

We use the following notation: y = {yk
j | j = 0..Nk −

1, k = 0..M − 1}, z = {zt | t = 0..T − 1}, and similarly
for other indexed variables.

The generative model for the ideal trajectory is given
by an initial state distribution z0 ∼ N (µ0,Σ0) and an

approximate model of the dynamics

zt+1 = f(zt) + ω
(z)
t , ω

(z)
t ∼ N (0,Σ(z)). (1)

The dynamics model does not need to be particularly
accurate—in our experiments, we use a single generic
model learned from a large corpus of data that is not
specific to the trajectory we want to perform. In our
experiments (Section 5) we provide some concrete ex-
amples showing how accurately the generic model cap-
tures the true dynamics for our helicopter.1

Our generative model represents each demonstration
as a set of independent “observations” of the hidden,
ideal trajectory z. Specifically, our model assumes

yk
j = zτk

j
+ ω

(y)
j , ω

(y)
j ∼ N (0,Σ(y)). (2)

Here τk
j is the time index in the hidden trajectory to

which the observation yk
j is mapped. The noise term in

the observation equation captures both inaccuracy in
estimating the observed trajectories from sensor data,
as well as errors in the maneuver that are the result of
the human pilot’s imperfect demonstration.2

The time indices τk
j are unobserved, and our model

assumes the following distribution with parameters dk
i :

P(τk
j+1|τ

k
j) =

dk
1 if τk

j+1 − τk
j = 1

dk
2 if τk

j+1 − τk
j = 2

dk
3 if τk

j+1 − τk
j = 3

0 otherwise

(3)

τk
0 ≡ 0. (4)

To accommodate small, gradual shifts in time between
the hidden and observed trajectories, our model as-
sumes the observed trajectories are subsampled ver-
sions of the hidden trajectory. We found that hav-
ing a hidden trajectory length equal to twice the
average length of the demonstrations, i.e., T =

2(1
M

∑M
k=1 Nk), gives sufficient resolution.

Figure 1 depicts the graphical model corresponding to
our basic generative model. Note that each observa-
tion yk

j depends on the hidden trajectory’s state at

time τk
j , which means that for τk

j unobserved, yk
j de-

pends on all states in the hidden trajectory that it
could be associated with.

2.2. Extensions to the Generative Model

Thus far we have assumed that the expert demon-
strations are misaligned copies of the ideal trajectory

1The state transition model also predicts the controls
as a function of the previous state and controls. In our
experiments we predict u⋆

t+1 as u⋆
t plus Gaussian noise.

2Even though our observations, y, are correlated over
time with each other due to the dynamics governing the ob-
served trajectory, our model assumes that the observations
yk

j are independent for all j = 0..Nk
− 1 and k = 0..M − 1.

Learning for Control from Multiple Demonstrations

Figure 1. Graphical model representing our trajectory as-
sumptions. (Shaded nodes are observed.)

merely corrupted by Gaussian noise. Listgarten et
al. have used this same basic generative model (for
the case where f(·) is the identity function) to align
speech signals and biological data (Listgarten, 2006;
Listgarten et al., 2005). We now augment the basic
model to account for other sources of error which are
important for modeling and control.

2.2.1. Learning Local Model Parameters

For many systems, we can substantially improve our
modeling accuracy by using a time-varying model ft(·)
that is specific to the vicinity of the intended trajectory
at each time t. We express ft as our “crude” model,
f , augmented with a bias term3, β⋆

t :

zt+1 = ft(zt) + ω
(z)
t ≡ f(zt) + β⋆

t + ω
(z)
t .

To regularize our model, we assume that β⋆
t changes

only slowly over time. We have β⋆
t+1 ∼ N (β⋆

t ,Σ(β)).

We incorporate the bias into our observation model
by computing the observed bias βk

j = yk
j − f(yk

j−1)
for each of the observed state transitions, and mod-
eling this as a direct observation of the “true” model
bias corrupted by Gaussian noise. The result of this
modification is that the ideal trajectory must not only
look similar to the demonstration trajectories, but it
must also obey a dynamics model which includes those
errors consistently observed in the demonstrations.

2.2.2. Factoring out Demonstration Drift

It is often difficult, even for an expert pilot, during
aerobatic maneuvers to keep the helicopter centered
around a fixed position. The recorded position tra-
jectory will often drift around unintentionally. Since
these position errors are highly correlated, they are
not explained well by the Gaussian noise term in our
observation model.

To capture such slow drift in the demonstrated trajec-

3Our generative model can incorporate richer local
models. We discuss our choice of merely using biases in our
generative trajectory model in more detail in Section 4.

tories, we augment the latent trajectory’s state with a
“drift” vector δk

t for each time t and each demonstrated
trajectory k. We model the drift as a zero-mean ran-
dom walk with (relatively) small variance. The state
observations are now noisy measurements of zt + δk

t

rather than merely zt.

2.2.3. Incorporating Prior Knowledge

Even though it might be hard to specify the complete
ideal trajectory in state space, we might still have prior
knowledge about the trajectory. Hence, we introduce
additional observations ρt = ρ(zt) corresponding to
our prior knowledge about the ideal trajectory at time
t. The function ρ(zt) computes some features of the
hidden state zt and our expert supplies the value ρt

that this feature should take. For example, for the
case of a helicopter performing an in-place flip, we use
an observation that corresponds to our expert pilot’s
knowledge that the helicopter should stay at a fixed
position while it is flipping. We assume that these ob-
servations may be corrupted by Gaussian noise, where
the variance of the noise expresses our confidence in
the accuracy of the expert’s advice. In the case of the
flip, the variance expresses our knowledge that it is,
in fact, impossible to flip perfectly in-place and that
the actual position of the helicopter may vary slightly
from the position given by the expert.

Incorporating prior knowledge of this kind can greatly
enhance the learned ideal trajectory. We give more
detailed examples in Section 5.

2.2.4. Model Summary

In summary, we have the following generative model:

zt+1 = f(zt) + β⋆
t + ω

(z)
t , (5)

β⋆
t+1 = β⋆

t + ω
(β)
t , (6)

δk
t+1 = δk

t + ω
(δ)
t , (7)

ρt = ρ(zt) + ω
(ρ)
t , (8)

yk
j = zτk

j
+ δk

j + ω
(y)
j , (9)

τk
j ∼ P(τk

j+1|τ
k
j) (10)

Here ω
(z)
t , ω

(β)
t , ω

(δ)
t , ω

(ρ)
t , ω

(y)
j are zero mean Gaussian

random variables with respective covariance matrices
Σ(z),Σ(β),Σ(δ),Σ(ρ),Σ(y). The transition probabili-
ties for τk

j are defined by Eqs. (3, 4) with parameters

dk
1 , dk

2 , dk
3 (collectively denoted d).

3. Trajectory Learning Algorithm

Our learning algorithm automatically finds the time-
alignment indexes τ , the time-index transition prob-
abilities d, and the covariance matrices Σ(·) by (ap-
proximately) maximizing the joint likelihood of the
observed trajectories y and the observed prior knowl-

Learning for Control from Multiple Demonstrations

edge about the ideal trajectory ρ, while marginalizing
out over the unobserved, intended trajectory z. Con-
cretely, our algorithm (approximately) solves

max
τ ,Σ(·),d

log P(y,ρ, τ ; Σ(·),d). (11)

Then, once our algorithm has found τ ,d,Σ(·), it finds
the most likely hidden trajectory, namely the trajec-
tory z that maximizes the joint likelihood of the ob-
served trajectories y and the observed prior knowledge
about the ideal trajectory ρ for the learned parameters
τ ,d,Σ(·).4

The joint optimization in Eq. (11) is difficult because
(as can be seen in Figure 1) the lack of knowledge of
the time-alignment index variables τ introduces a very
large set of dependencies between all the variables.
However, when τ is known, the optimization problem
in Eq. (11) greatly simplifies thanks to context spe-
cific independencies (Boutilier et al., 1996). When τ

is fixed, we obtain a model such as the one shown in
Figure 2. In this model we can directly estimate the
multinomial parameters d in closed form; and we have
a standard HMM parameter learning problem for the
covariances Σ(·), which can be solved using the EM al-
gorithm (Dempster et al., 1977)—often referred to as
Baum-Welch in the context of HMMs. Concretely, for
our setting, the EM algorithm’s E-step computes the
pairwise marginals over sequential hidden state vari-
ables by running a (extended) Kalman smoother; the
M-step then uses these marginals to update the covari-
ances Σ(·).

Figure 2. Example of graphical model when τ is known.
(Shaded nodes are observed.)

To also optimize over the time-indexing variables τ ,
we propose an alternating optimization procedure. For

4Note maximizing over the hidden trajectory and the
covariance parameters simultaneously introduces undesir-
able local maxima: the likelihood score would be highest
(namely infinity) for a hidden trajectory with a sequence
of states exactly corresponding to the (crude) dynamics
model f(·) and state-transition covariance matrices equal
to all-zeros as long as the observation covariances are non-
zero. Hence we marginalize out the hidden trajectory to
find τ ,d, Σ(·).

fixed Σ(·) and d, and for fixed z, we can find the opti-
mal time-indexing variables τ using dynamic program-
ming over the time-index assignments for each demon-
stration independently. The dynamic programming al-
gorithm to find τ is known in the speech recognition
literature as dynamic time warping (Sakoe & Chiba,
1978) and in the biological sequence alignment litera-
ture as the Needleman-Wunsch algorithm (Needleman
& Wunsch, 1970). The fixed z we use, is the one that
maximizes the likelihood of the observations for the
current setting of parameters τ ,d,Σ(·).5

In practice, rather than alternating between complete
optimizations over Σ(·),d and τ , we only partially op-
timize over Σ(·), running only one iteration of the EM
algorithm.

We provide the complete details of our algorithm in
the full paper (Coates et al., 2008).

4. Local Model Learning

For complex dynamical systems, the state zt used
in the dynamics model often does not correspond to
the “complete state” of the system, since the latter
could involve large numbers of previous states or unob-
served variables that make modeling difficult.6 How-
ever, when we only seek to model the system dynamics
along a specific trajectory, knowledge of both zt and
how far we are along that trajectory is often sufficient
to accurately predict the next state zt+1.

Once the alignments between the demonstrations are
computed by our trajectory learning algorithm, we can
use the time aligned demonstration data to learn a se-
quence of trajectory-specific models. The time indices
of the aligned demonstrations now accurately associate
the demonstration data points with locations along the
learned trajectory, allowing us to build models for the
state at time t using the appropriate corresponding
data from the demonstration trajectories.7

5Fixing z means the dynamic time warping step only
approximately optimizes the original objective. Unfortu-
nately, without fixing z, the independencies required to
obtain an efficient dynamic programming algorithm do not
hold. In practice we find our approximation works very
well.

6This is particularly true for helicopters. Whereas the
state of the helicopter is very crudely captured by the 12D
rigid-body state representation we use for our controllers,
the “true” physical state of the system includes, among
others, the airflow around the helicopter, the rotor head
speed, and the actuator dynamics.

7We could learn the richer local model within the tra-
jectory alignment algorithm, updating the dynamics model
during the M-step. We chose not to do so since these
models are more computationally expensive to estimate.
The richer models have minimal influence on the alignment
because the biases capture the average model error—the
richer models capture the derivatives around it. Given the
limited influence on the alignment, we chose to save com-
putational time and only estimate the richer models after

Learning for Control from Multiple Demonstrations

Figure 3. Our XCell Tempest autonomous helicopter.

To construct an accurate nonlinear model to predict
zt+1 from zt, using the aligned data, one could use lo-
cally weighted linear regression (Atkeson et al., 1997),
where a linear model is learned based on a weighted
dataset. Data points from our aligned demonstrations
that are nearer to the current time index along the
trajectory, t, and nearer the current state, zt, would
be weighted more highly than data far away. While
this allows us to build a more accurate model from
our time-aligned data, the weighted regression must
be done online, since the weights depend on the cur-
rent state, zt. For performance reasons8 this may often
be impractical. Thus, we weight data only based on
the time index, and learn a parametric model in the re-
maining variables (which, in our experiments, has the
same form as the global “crude” model, f(·)). Con-
cretely, when estimating the model for the dynamics
at time t, we weight a data point at time t′ by:9

W (t′) = exp

(

−
(t − t′)2

σ2

)

,

where σ is a bandwidth parameter. Typical values for
σ are between one and two seconds in our experiments.
Since the weights for the data points now only depend
on the time index, we can precompute all models ft(·)
along the entire trajectory. The ability to precompute
the models is a feature crucial to our control algorithm,
which relies heavily on fast simulation.

5. Experimental Results

5.1. Experimental Setup

To test our algorithm, we had our expert helicopter
pilot fly our XCell Tempest helicopter (Figure 3),

alignment.
8During real-time control execution, our model is

queried roughly 52000 times per second. Even with KD-
tree or cover-tree data structures a full locally weighted
model would be much too slow.

9In practice, the data points along a short segment of
the trajectory lie in a low-dimensional subspace of the state
space. This sometimes leads to an ill-conditioned param-
eter estimation problem. To mitigate this problem, we
regularize our models toward the “crude” model f(·).

which can perform professional, competition-level ma-
neuvers.10

We collected multiple demonstrations from our expert
for a variety of aerobatic trajectories: continuous in-
place flips and rolls, a continuous tail-down “tic toc,”
and an airshow, which consists of the following maneu-
vers in rapid sequence: split-S, snap roll, stall-turn,
loop, loop with pirouette, stall-turn with pirouette,
“hurricane” (fast backward funnel), knife-edge, flips
and rolls, tic-toc and inverted hover.

The (crude) helicopter dynamics f(·) is constructed
using the method of Abbeel et al. (2006a).11 The
helicopter dynamics model predicts linear and angular
accelerations as a function of current state and inputs.
The next state is then obtained by integrating forward
in time using the standard rigid-body equations.

In the trajectory learning algorithm, we have bias
terms β⋆

t for each of the predicted accelerations. We
use the state-drift variables, δk

t , for position only.

For the flips, rolls, and tic-tocs we incorporated our
prior knowledge that the helicopter should stay in
place. We added a measurement of the form:

0 = p(zt) + ω(ρ0), ω(ρ0) ∼ N (0,Σ(ρ0))

where p(·) is a function that returns the position co-
ordinates of zt, and Σ(ρ0) is a diagonal covariance ma-
trix. This measurement—which is a direct observation
of the pilot’s intended trajectory—is similar to advice
given to a novice human pilot to describe the desired
maneuver: A good flip, roll, or tic-toc trajectory stays
close to the same position.

We also used additional advice in the airshow to in-
dicate that the vertical loops, stall-turns and split-S
should all lie in a single vertical plane; that the hurri-
canes should lie in a horizontal plane and that a good
knife-edge stays in a vertical plane. These measure-
ments take the form:

c = N⊤p(zt) + ω(ρ1), ω(ρ1) ∼ N (0,Σ(ρ1))

where, again, p(zt) returns the position coordinates of
zt. N is a vector normal to the plane of the maneu-
ver, c is a constant, and Σ(ρ1) is a diagonal covariance
matrix.

10We instrumented the helicopter with a Microstrain
3DM-GX1 orientation sensor. A ground-based camera sys-
tem measures the helicopter’s position. A Kalman filter
uses these measurements to track the helicopter’s position,
velocity, orientation and angular rate.

11The model of Abbeel et al. (2006a) naturally general-
izes to any orientation of the helicopter regardless of the
flight regime from which data is collected. Hence, even
without collecting data from aerobatic flight, we can rea-
sonably attempt to use such a model for aerobatic flying,
though we expect it to be relatively inaccurate.

Learning for Control from Multiple Demonstrations

−5 0 5 10 15
10

20

30

40

East (m)

N
or

th
 (

m
)

(a) (b) (c) (d)

Figure 4. Colored lines: demonstrations. Black dotted line: trajectory inferred by our algorithm. (See text for details.)

5.2. Trajectory Learning Results

Figure 4(a) shows the horizontal and vertical position
of the helicopter during the two loops flown during
the airshow. The colored lines show the expert pi-
lot’s demonstrations. The black dotted line shows the
inferred ideal path produced by our algorithm. The
loops are more rounded and more consistent in the in-
ferred ideal path. We did not incorporate any prior
knowledge to this extent. Figure 4(b) shows a top-
down view of the same demonstrations and inferred
trajectory. The prior successfully encouraged the in-
ferred trajectory to lie in a vertical plane, while obey-
ing the system dynamics.

Figure 4(c) shows one of the bias terms, namely the
model prediction errors for the Z-axis acceleration of
the helicopter computed from the demonstrations, be-
fore time-alignment. Figure 4(d) shows the result after
alignment (in color) as well as the inferred acceleration
error (black dotted). We see that the unaligned bias
measurements allude to errors approximately in the -
1G to -2G range for the first 40 seconds of the airshow
(a period that involves high-G maneuvering that is not
predicted accurately by the “crude” model). However,
only the aligned biases precisely show the magnitudes
and locations of these errors along the trajectory. The
alignment allows us to build our ideal trajectory based
upon a much more accurate model that is tailored to
match the dynamics observed in the demonstrations.

Results for other maneuvers and state variables are
similar. At the URL provided in the introduction we
posted movies which simultaneously replay the differ-
ent demonstrations, before alignment and after align-
ment. The movies visualize the alignment results in
many state dimensions simultaneously.

5.3. Flight Results

After constructing the idealized trajectory and models
using our algorithm, we attempted to fly the trajectory
on the actual helicopter.

Our helicopter uses a receding-horizon differential dy-
namic programming (DDP) controller (Jacobson &
Mayne, 1970). DDP approximately solves general con-
tinuous state-space optimal control problems by taking
advantage of the fact that optimal control problems

with linear dynamics and a quadratic reward function
(known as linear quadratic regulator (LQR) problems)
can be solved efficiently. It is well-known that the so-
lution to the (time-varying, finite horizon) LQR prob-
lem is a sequence of linear feedback controllers. In
short, DDP iteratively approximates the general con-
trol problem with LQR problems until convergence, re-
sulting in a sequence of linear feedback controllers that
are approximately optimal. In the receding-horizon al-
gorithm, we not only run DDP initially to design the
sequence of controllers, but also re-run DDP during
control execution at every time step and recompute
the optimal controller over a fixed-length time interval
(the horizon), assuming the precomputed controller
and cost-to-go are correct after this horizon.

As described in Section 4, our algorithm outputs a
sequence of learned local parametric models, each of
the form described by Abbeel et al. (2006a). Our
implementation linearizes these models on the fly with
a 2 second horizon (at 20Hz). Our reward function
penalizes error from the target trajectory, s⋆

t , as well
as deviation from the desired controls, u⋆

t , and the
desired control velocities, u⋆

t+1 − u⋆
t .

First we compare our results with the previous state-
of-the-art in aerobatic helicopter flight, namely the in-
place rolls and flips of Abbeel et al. (2007). That
work used hand-specified target trajectories and a sin-
gle nonlinear model for the entire trajectory.

Figure 5(a) shows the Y-Z position12 and the collec-
tive (thrust) control inputs for the in-place rolls for
both their controller and ours. Our controller achieves
(i) better position performance (standard deviation of
approximately 2.3 meters in the Y-Z plane, compared
to about 4.6 meters and (ii) lower overall collective
control values (which roughly represents the amount
of energy being used to fly the maneuver).

Similarly, Figure 5(b) shows the X-Z position and the
collective control inputs for the in-place flips for both
controllers. Like for the rolls, we see that our con-
troller significantly outperforms that of Abbeel et al.
(2007), both in position accuracy and in control energy
expended.

12These are the position coordinates projected into a
plane orthogonal to the axis of rotation.

Learning for Control from Multiple Demonstrations

−15 −10 −5 0 5 10 15 20

0

5

10

A
lti

tu
de

 (
m

)

North Position (m)

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

C
ol

le
ct

iv
e

In
pu

t

Time (s)

−20 −15 −10 −5 0 5 10 15

0

5

10

A
lti

tu
de

 (
m

)

East Position (m)

0 5 10 15 20 25 30 35
−1

−0.5

0

0.5

1

C
ol

le
ct

iv
e

In
pu

t

Time (s)
−10 −5 0 5

−6

−4

−2

0

2

4

6

8

10

12

14

North Position (m)

A
lti

tu
de

 (
m

)

(a) (b) (c)
Figure 5. Flight results. (a),(b) Solid black: our results. Dashed red: Abbeel et al. (2007). (c) Dotted black: autonomous
tic-toc. Solid colored: expert demonstrations. (See text for details.)

Besides flips and rolls, we also performed autonomous
“tic tocs”—widely considered to be an even more chal-
lenging aerobatic maneuver. During the (tail-down)
tic-toc maneuver the helicopter pitches quickly back-
ward and forward in-place with the tail pointed toward
the ground (resembling an inverted clock pendulum).
The complex relationship between pitch angle, hori-
zontal motion, vertical motion, and thrust makes it ex-
tremely difficult to create a feasible tic-toc trajectory
by hand. Our attempts to use such a hand-coded tra-
jectory with the DDP algorithm from (Abbeel et al.,
2007) failed repeatedly. By contrast, our algorithm
readily yields an excellent feasible trajectory that was
successfully flown on the first attempt. Figure 5(c)
shows the expert trajectories (in color), and the au-
tonomously flown tic-toc (black dotted). Our con-
troller significantly outperforms the expert’s demon-
strations.

We also applied our algorithm to successfully fly a
complete aerobatic airshow, which consists of the fol-
lowing maneuvers in rapid sequence: split-S, snap roll,
stall-turn, loop, loop with pirouette, stall-turn with
pirouette, “hurricane” (fast backward funnel), knife-
edge, flips and rolls, tic-toc and inverted hover.

The trajectory-specific local model learning typically
captures the dynamics well enough to fly all the afore-
mentioned maneuvers reliably. Since our computer
controller flies the trajectory very consistently, how-
ever, this allows us to repeatedly acquire data from
the same vicinity of the target trajectory on the real
helicopter. Similar to Abbeel et al. (2007), we incorpo-
rate this flight data into our model learning, allowing
us to improve flight accuracy even further. For exam-
ple, during the first autonomous airshow our controller
achieves an RMS position error of 3.29 meters, and this
procedure improved performance to 1.75 meters RMS
position error.

Videos of all our flights are available at:

http://heli.stanford.edu

6. Related Work

Although no prior works span our entire setting of
learning for control from multiple demonstrations,
there are separate pieces of work that relate to var-
ious components of our approach.

Atkeson and Schaal (1997) use multiple demonstra-
tions to learn a model for a robot arm, and then find an
optimal controller in their simulator, initializing their
optimal control algorithm with one of the demonstra-
tions.

The work of Calinon et al. (2007) considered learning
trajectories and constraints from demonstrations for
robotic tasks. There, they do not consider the system’s
dynamics or provide a clear mechanism for the inclu-
sion of prior knowledge. Our formulation presents a
principled, joint optimization which takes into account
the multiple demonstrations, as well as the (complex)
system dynamics and prior knowledge. While Calinon
et al. (2007) also use some form of dynamic time warp-
ing, they do not try to optimize a joint objective cap-
turing both the system dynamics and time-warping.

Among others, An et al. (1988) and, more recently,
Abbeel et al. (2006b) have exploited the idea of
trajectory-indexed model learning for control. How-
ever, contrary to our setting, their algorithms do not
time align nor coherently integrate data from multiple
trajectories.

While the work by Listgarten et al. (Listgarten, 2006;
Listgarten et al., 2005) does not consider robotic con-
trol and model learning, they also consider the prob-
lem of multiple continuous time series alignment with
a hidden time series.

Our work also has strong similarities with recent work
on inverse reinforcement learning, which extracts a re-
ward function (rather than a trajectory) from the ex-
pert demonstrations. See, e.g., Ng and Russell (2000);
Abbeel and Ng (2004); Ratliff et al. (2006); Neu and
Szepesvari (2007); Ramachandran and Amir (2007);
Syed and Schapire (2008).

Learning for Control from Multiple Demonstrations

Most prior work on autonomous helicopter flight only
considers the flight-regime close to hover. There
are three notable exceptions. The aerobatic work
of Gavrilets et al. (2002) comprises three maneuvers:
split-S, snap-roll, and stall-turn, which we also include
during the first 10 seconds of our airshow for com-
parison. They record pilot demonstrations, and then
hand-engineer a sequence of desired angular rates and
velocities, as well as transition points. Ng et al. (2004)
have their autonomous helicopter perform sustained
inverted hover. We compared the performance of our
system with the work of Abbeel et al. (2007), by far
the most advanced autonomous aerobatics results to
date, in Section 5.

7. Conclusion

We presented an algorithm that takes advantage of
multiple suboptimal trajectory demonstrations to (i)
extract (an estimate of) the ideal demonstration, (ii)
learn a local model along this trajectory. Our algo-
rithm is generally applicable for learning trajectories
and dynamics models along trajectories from multi-
ple demonstrations. We showed the effectiveness of
our algorithm for control by applying it to the chal-
lenging problem of autonomous helicopter aerobatics.
The ideal target trajectory and the local models out-
put by our trajectory learning algorithm enable our
controllers to significantly outperform the prior state
of the art.

Acknowledgments

We thank Garett Oku for piloting and building our
helicopter. Adam Coates is supported by a Stanford
Graduate Fellowship. This work was also supported
in part by the DARPA Learning Locomotion program
under contract number FA8650-05-C-7261.

References

Abbeel, P., Coates, A., Quigley, M., & Ng, A. Y. (2007).
An application of reinforcement learning to aerobatic he-
licopter flight. NIPS 19.

Abbeel, P., Ganapathi, V., & Ng, A. Y. (2006a). Learning
vehicular dynamics with application to modeling heli-
copters. NIPS 18.

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning
via inverse reinforcement learning. Proc. ICML.

Abbeel, P., Quigley, M., & Ng, A. Y. (2006b). Using inac-
curate models in reinforcement learning. Proc. ICML.

An, C. H., Atkeson, C. G., & Hollerbach, J. M. (1988).
Model-based control of a robot manipulator. MIT Press.

Atkeson, C., & Schaal, S. (1997). Robot learning from
demonstration. Proc. ICML.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Lo-
cally weighted learning for control. Artificial Intelligence
Review, 11.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D.
(1996). Context-specific independence in Bayesian net-
works. Proc. UAI.

Calinon, S., Guenter, F., & Billard, A. (2007). On learn-
ing, representing and generalizing a task in a humanoid
robot. IEEE Trans. on Systems, Man and Cybernetics,
Part B.

Coates, A., Abbeel, P., & Ng, A. Y. (2008). Learning
for control from multiple demonstrations (Full version).
http://heli.stanford.edu/icml2008.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. J. of the Royal Statistical Society.

Gavrilets, V., Martinos, I., Mettler, B., & Feron, E. (2002).
Control logic for automated aerobatic flight of minia-
ture helicopter. AIAA Guidance, Navigation and Con-
trol Conference.

Jacobson, D. H., & Mayne, D. Q. (1970). Differential dy-
namic programming. Elsevier.

Listgarten, J. (2006). Analysis of sibling time series data:
alignment and difference detection. Doctoral disserta-
tion, University of Toronto.

Listgarten, J., Neal, R. M., Roweis, S. T., & Emili, A.
(2005). Multiple alignment of continuous time series.
NIPS 17.

Needleman, S., & Wunsch, C. (1970). A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Biol.

Neu, G., & Szepesvari, C. (2007). Apprenticeship learning
using inverse reinforcement learning and gradient meth-
ods. Proc. UAI.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J.,
Tse, B., Berger, E., & Liang, E. (2004). Autonomous in-
verted helicopter flight via reinforcement learning. ISER.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse
reinforcement learning. Proc. ICML.

Ramachandran, D., & Amir, E. (2007). Bayesian inverse
reinforcement learning. Proc. IJCAI.

Ratliff, N., Bagnell, J., & Zinkevich, M. (2006). Maximum
margin planning. Proc. ICML.

Sakoe, H., & Chiba, S. (1978). Dynamic programming al-
gorithm optimization for spoken word recognition. IEEE
Transactions on Acoustics, Speech, and Signal Process-
ing.

Syed, U., & Schapire, R. E. (2008). A game-theoretic ap-
proach to apprenticeship learning. NIPS 20.

Learning for Control from Multiple Demonstrations

A. Trajectory Learning Algorithm

As described in Section 3, our algorithm (approxi-
mately) solves

max
τ ,Σ(·),d

log P(y,ρ, τ ; Σ(·),d). (12)

Then, once our algorithm has found τ ,d,Σ(·), it finds
the most likely hidden trajectory, namely the trajec-
tory z that maximizes the joint likelihood of the ob-
served trajectories y and the observed prior knowledge
about the ideal trajectory ρ for the learned parameters
τ ,d,Σ(·).

To optimize Eq. (12), we alternatingly optimize over
Σ(·), d and τ . Section 3 provides the high-level de-
scription, below we provide the detailed description of
our algorithm.

1. Initialize the parameters to hand-chosen defaults.
A typical choice: Σ(·) = I, dk

i = 1
3 , τk

j = ⌈j T−1
Nk−1

⌉.

2. E-step for latent trajectory: For the current set-
ting of τ ,Σ(·) run a (extended) Kalman smoother
to find the distributions for the latent states,
N (µt|T−1,Σt|T−1).

3. M-step for latent trajectory: Update the covari-
ances Σ(·) using the standard EM update.

4. E-step for the time indexing (using hard assign-
ments): run dynamic time warping to find τ

that maximizes the joint probability P(z̄,y,ρ, τ),
where z̄ is fixed to µt|T−1, namely the mode of the
distribution obtained from the Kalman smoother.

5. M-step for the time indexing: estimate d from τ .

6. Repeat steps 2-5 until convergence.

A.1. Steps 2 and 3 details—EM for non-linear

dynamical systems

Steps 2 and 3 in our algorithm correspond to the stan-
dard E and M steps of the EM algorithm applied to a
non-linear dynamical system with Gaussian noise. For
completeness we provide the details below.

In particular, we have:

zt+1 = f(zt) + ωt, ωt ∼ N (0, Q),

yt+1 = h(zt) + νt, νt ∼ N (0, R).

In the E-step, for t = 0..T − 1, the Kalman smoother
computes the parameters µt|t and Σt|t for the distribu-
tion N (µt|t,Σt|t), which is the distribution of zt condi-
tioned on all observations up to and including time t.
Along the way, the smoother also computes µt+1|t and
Σt+1|t. These are the parameters for the distribution
of zt+1 given only the measurements up to time t. Fi-
nally, during the backward pass, the parameters µt|T−1

and Σt|T−1 are computed, which give the distribution
for zt given all measurements.

After running the Kalman smoother (for the E-step),
we can use the computed quantities to update Q and
R in the M-step. In particular, we can compute13:

δµt = µt+1|T−1 − f(µt|T−1),

At = Df(µt|T−1),

Lt = Σt|tA
⊤
t Σ−1

t+1|t,

Pt = Σt+1|T−1 − Σt+1|T−1L
⊤
t A⊤

t − AtLtΣt+1|T−1,

Q =
1

T

T−1
∑

t=0

δµtδµ
⊤
t + AtΣt|T−1A

⊤
t + Pt,

δyt = yt − h(µt|T−1),

Ct = Dh(µt|T−1),

R =
1

T

T−1
∑

t=0

δytδy
⊤
t + CtΣt|T−1C

⊤
t .

A.2. Steps 4 and 5 details—Dynamic time

warping

In Step 4 our goal is to compute τ̄ as:

τ̄ = arg max
τ

log P(z̄,y,ρ, τ ; Σ(·),d)

= arg max
τ

log P(y|z̄, τ)P(ρ|z̄)P(z̄)P(τ) (13)

= arg max
τ

log P(y|z̄, τ)P(τ)

where z̄ is the mode of the distribution computed
by the Kalman smoother (namely, z̄t = µt|T−1) and
Eq. (13) made use of independence assumptions im-
plied by our model (see Figure 2). Again, using inde-
pendence properties, the log likelihood above can be
expanded to:

τ̄ =

arg max
τ

M−1
∑

k=0

Nk−1
∑

j=0

[

ℓ(yk
j |z̄τk

j
, τk

j) + ℓ(τk
j |τ

k
j−1)

] (14)

Note that the inner summations in the above expres-
sion are independent—the likelihoods for each of the
M observation sequences can be maximized separately.
Hence, in the following, we will omit the k superscript,
as the algorithm can be applied separately for each se-
quence of observations and indices.

At this point, we can solve the maximization over τ us-
ing a dynamic programming algorithm known in the
speech recognition literature as dynamic time warp-
ing (Sakoe & Chiba, 1978) and in the biological se-
quence alignment literature as the Needleman-Wunsch

13The notation Df(z) is the Jacobian of f evaluated at z.

Learning for Control from Multiple Demonstrations

algorithm (Needleman & Wunsch, 1970). For com-
pleteness, we provide the details for our setting below.

We define the quantity Q(s, t) to be the maximum
obtainable value of the first s + 1 terms of the inner
summation if we choose τs = t.

For s = 0 we have:

Q(0, t) = ℓ(y0|z̄τ0
, τ0 = t) + ℓ(τ0 = t) (15)

And for s > 0:

Q(s, t) = ℓ(ys|z̄τs
, τs = t)

+ max
τ1,...,τs−1

[ℓ(τs = t|τs−1)

+

s−1
∑

j=0

[

ℓ(yj |z̄τj
, τj) + ℓ(τj |τj−1)

]]

The latter equation can be written recursively as:

Q(s, t) = ℓ(ys|z̄τs
, τs = t)+

max
t′

[ℓ(τs = t|τs−1 = t′) + Q(s − 1, t′)]
(16)

The equations (15) and (16) can be used to compute
maxt Q(Nk − 1, t) for each observation sequence (and
the maximizing solution, τ), which is exactly the max-
imizing value of the inner summation in Eq. (14). The
maximization in Eq. (16) can be restricted to the rel-
evant values of t′. In our application, we only allow
t′ ∈ {t − 3, t − 2, t − 1}. As is common practice,
we typically restrict the time-index assignments to a
fixed-width band around the default, equally-spaced
alignment. In our case, we only compute Q(s, t) if
2s − C ≤ t ≤ 2s + C, for fixed C.

In Step 5 we compute the parameters d using standard
maximum likelihood estimates for multinomial distri-
butions.

