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Motivation

¥ An hour of downtime for a financial
company costs company costs $6mil

¥ Software failures reduce system availability
¥ Software defects - 40%

¥ Memory-related+concurrency bugs - 60%
¥ Cannot get rid of bugs

¥ Need highly available applications
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" Previous Solutions

=N ¥ Four categories:
f % Rebooting
% checkpointing, rollback, re-execute
* % Application-specific recovery
% Speculate on programmer intentions

A4
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" Allergies are an inspiration
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¥ When a person suffers from an allergy, the most
common treatment is to remove the allergens from
their living environment

¥ In software, many bugs resemble allergies: their
manifestation can be avoided by changing the
execution environment

¥ The idea

% Rollback the program to a recent checkpoint when a bug is
detected

& Dynamically change the execution environment based on
the failure symptoms

% Re-execute the buggy code region in the new environment
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Examples of allergen bugs

¥ Memory corruption
¥ Buffer overrun

¥ Un-initialized reads
¥ Data races

¥ malicious request



Rx does It better

¥ Comprehensive
¥ Safe

¥ Noninvasive

¥ Efficient

¥ |nformative







Main Idea
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¥ Checkpoint
¥ Sense bug
¥ Analyze symptoms and determine cure

¥ Re-execute from checkpoint
& New environment

¥ Repeat until it goes away
& Or time out
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The execution environment

¥ Definition: Almost everything that is external
to application:

% Low level. hardware devices, processor
architecture..

# mid level: OS kernel scheduling, virtual memory
manager, drivers, file system, network

% High level: standard libraries, third party libraries
¥ Requirement for environmental change

% Correctness-preserving: execute according to the
APIs

% Useful: potentially avoid software bugs
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Categorizing useful changes

Category | Environmental Changes Potentially-Avoided Bugs Determimnistic?
delayed recycling of freed buffer double free, dangling ponter YES
Memory padding allocated memorv blocks dynanuc buffer overfiow YES
Management | allocating memory 1n an alternate location | memory corruption YES
zero-filling newly allocated memory buffers | ummtialized read YES
scheduling data race NO
Asynchronous | signal delivery data race NO
message reordering data race NO
User-Related | dropping user requests bugs related to the dropped request Depends

Table 1: Possible environmental changes and their potentially-avoided bugs




Working with the changes

¥ Successful change - record

¥ Fallure - see If It occurred before
¥ Else
% Try low overhead changes first

¥ If failure doesn’t go away with useful change

% keep rollback to previous checkpoint OR
% Make another change
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Sensors

¥ dynamically monitoring application
execution
% Exception sensors
% Bug-specific sensor

¥ Dynamic bug detection tools
¥ send fallure signature to Control Unit
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Checkpoint & Rollback

¥ Memory snapshots
¥ File versioning
¥ Less checkpoint maintenance
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~ ¥ Perform changes in the execution
! environment (re-execution)

% Memory wrapper
< % Message wrapper

% Process scheduling

% Signal delivery

% Dropping user requests
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(a) Proxy behavior in normal mode

Client

Server

(b) Proxy behavior in recovery mode
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¥ Coordinates all of the components In
! the RX

¥* Three functions

‘ % Directs the checkpointing and rollback
Drocess

% Diagnose failure based on symptoms and
experiences

% Provides feedback to programmer
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Design and Implemen




Design and Implementation
ISsues

¥ Inter-Server Communication
¥ Multi-threaded Process Checkpointing
¥ Unavoidable Bug/Fallure of Rx
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Evaluation

\ A V Bug #FLOC | App Description
] , MvSQL | 4.1.1.a | datarace 588K | adatabase server
f, :‘ d Squd 2.3.s5 | buffer overflow 93K | a Web proxy
’ Squd-ua1 | 2355 | unmmmtialized read cache server
C Squid-dp | 2.3.50 | dangling pointer

4 ,.‘ Apache 2.0.47 | stack overflow 283K | a Web server

,;,:" CVsS I.11F | double free IT4K | a version

- - control server

Table 2: Applications and Bugs (App means Application. Ver
means Version. LOC means lines of code).
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Figure §: Throughput and average response time with different bug arrival rates
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Related Work

¥ Recovery-Oriented Computing
¥ Shadow drivers
¥ Noisemakers
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Conclusion

¥ safe, non-invasive and informative
method for quickly surviving software

fallures

% Caused by common software defects

¥ Like all approaches it has Its

¥ It can effectively and efficient
from many software failures,

Imitations
y recover

out not all



