Y Bd YN) bl

7 Rx Treatlng Bugs AS
- Allergies: A Safe.Method to
y‘ Survive Software Failures

" Feng Qin, Joseph Tuccek, Jagadeesan
Sundaresan and Yuanyuan Zhou

University of lllinois at Urbana Champaign

Presented at SOSP 05

- ..4’
-

Outline

¥ Introduction

¥ Main idea

¥ Architecture

¥ Design and Implementation Issues
¥ Evaluation and Results

¥ Related work

¥ Conclusion

A d

Ay .

po—

Motivation

¥ An hour of downtime for a financial
company costs company costs $6mil

¥ Software failures reduce system availability
¥ Software defects - 40%

¥ Memory-related+concurrency bugs - 60%
¥ Cannot get rid of bugs

¥ Need highly available applications

-
S

-

" Previous Solutions

=N ¥ Four categories:
f % Rebooting
% checkpointing, rollback, re-execute
* % Application-specific recovery
% Speculate on programmer intentions

A4

M_

" Allergies are an inspiration

N

r

A 4

¥ When a person suffers from an allergy, the most
common treatment is to remove the allergens from
their living environment

¥ In software, many bugs resemble allergies: their
manifestation can be avoided by changing the
execution environment

¥ The idea

% Rollback the program to a recent checkpoint when a bug is
detected

& Dynamically change the execution environment based on
the failure symptoms

% Re-execute the buggy code region in the new environment

VA(Y

Ad

Examples of allergen bugs

¥ Memory corruption
¥ Buffer overrun

¥ Un-initialized reads
¥ Data races

¥ malicious request

Rx does It better

¥ Comprehensive
¥ Safe

¥ Noninvasive

¥ Efficient

¥ |nformative

Main Idea

Fail

Rol!back Cha_nge Succeed _\
Environmen

H i . i
l\ HF Ll

G

¥ Checkpoint
¥ Sense bug
¥ Analyze symptoms and determine cure

¥ Re-execute from checkpoint
& New environment

¥ Repeat until it goes away
& Or time out

N4

4

The execution environment

¥ Definition: Almost everything that is external
to application:

% Low level. hardware devices, processor
architecture..

mid level: OS kernel scheduling, virtual memory
manager, drivers, file system, network

% High level: standard libraries, third party libraries
¥ Requirement for environmental change

% Correctness-preserving: execute according to the
APIs

% Useful: potentially avoid software bugs

."///

~ -

.

Liud

'\.{?‘*4

—

M
S
777 ,

B

y

Categorizing useful changes

Category | Environmental Changes Potentially-Avoided Bugs Determimnistic?
delayed recycling of freed buffer double free, dangling ponter YES
Memory padding allocated memorv blocks dynanuc buffer overfiow YES
Management | allocating memory 1n an alternate location | memory corruption YES
zero-filling newly allocated memory buffers | ummtialized read YES
scheduling data race NO
Asynchronous | signal delivery data race NO
message reordering data race NO
User-Related | dropping user requests bugs related to the dropped request Depends

Table 1: Possible environmental changes and their potentially-avoided bugs

Working with the changes

¥ Successful change - record

¥ Fallure - see If It occurred before
¥ Else
% Try low overhead changes first

¥ If failure doesn’t go away with useful change

% keep rollback to previous checkpoint OR
% Make another change

Rx Design

[Server Application]@
Proxy

PR |

1

1

Sensors E
|

Environment Cbcc]rigom t i
Wrapper & Rollback Rx System E
|

1

Gontrol Uit sepas 5

v

A 4

Sensors

¥ dynamically monitoring application
execution
% Exception sensors
% Bug-specific sensor

¥ Dynamic bug detection tools
¥ send fallure signature to Control Unit

v Ny

A4

Checkpoint & Rollback

¥ Memory snapshots
¥ File versioning
¥ Less checkpoint maintenance

-

__4 Environment Wrappers

~ ¥ Perform changes in the execution
! environment (re-execution)

% Memory wrapper
< % Message wrapper

% Process scheduling

% Signal delivery

% Dropping user requests

A4

(a) Proxy behavior in normal mode

Client

Server

(b) Proxy behavior in recovery mode

.

__J Control Unit

¥ Coordinates all of the components In
! the RX

¥* Three functions

‘ % Directs the checkpointing and rollback
Drocess

% Diagnose failure based on symptoms and
experiences

% Provides feedback to programmer

A 4

-

fatio'n

Design and Implemen

Design and Implementation
ISsues

¥ Inter-Server Communication
¥ Multi-threaded Process Checkpointing
¥ Unavoidable Bug/Fallure of Rx

" 4
r

)

1

Evaluation

\ A V Bug #FLOC | App Description
] , MvSQL | 4.1.1.a | datarace 588K | adatabase server
f, :‘ d Squd 2.3.s5 | buffer overflow 93K | a Web proxy
’ Squd-ua1 | 2355 | unmmmtialized read cache server
C Squid-dp | 2.3.50 | dangling pointer

4 ,.‘ Apache 2.0.47 | stack overflow 283K | a Web server

,;,:" CVsS I.11F | double free IT4K | a version

- - control server

Table 2: Applications and Bugs (App means Application. Ver
means Version. LOC means lines of code).

Effectiveness

Performance

Squid
. e 3 M —— Restan
2 g0 & 25 - Rx
g 2T 2L
= 60 > 3
2 Ty 15
& 40 SE
3 £
£ 2 —+— Restart 2 o5}
L — Rx 0
0 A) A . M L —— .
0 002 004 006 008 0.1 0 002 004 006 008 0.1
Bug Arrival Rate (bugs/sec) Bug Arrival Rate (bugs/sec)
(a) Throughput (b) Average Response Time

Figure §: Throughput and average response time with different bug arrival rates

Performance

Squid-Baseline
120 B 120 120
100 | g 100 g 100
80 t s 80 € 8
60 | 3 60 3 i
40 | g 40 §' 40
20 £ 20 g 20
o A A A A " A A o A A A A A A o A A A A " A A
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Elapsed Time (sec) Elapsed Time (sec) Elapsed Time (sec)
(a) Throughput
Squid-Baseline Squid-Restart
014 | e o4t | 0.14
012 y g___ 012 + g" 012
01t 4 01} 0.1
008 5 gg 008 gﬁ 0.08
0.06 | M §.§ 0.06 | §.§ 0.06
0.04 | §*’ 0.04 | §" 0.04
0.02 - < 0.02 < 0.02 -
o 2 " 2 2 2 2 A o 2 2 " | Y 2 " 2 o " 2 A " 2 " 2
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Elapsed Time (sec) Elapsed Time (sec) Elapsed Time (sec)

(b) Average Response Time

Ay

Ad

Related Work

¥ Recovery-Oriented Computing
¥ Shadow drivers
¥ Noisemakers

N4

Conclusion

¥ safe, non-invasive and informative
method for quickly surviving software

fallures

% Caused by common software defects

¥ Like all approaches it has Its

¥ It can effectively and efficient
from many software failures,

Imitations
y recover

out not all

