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Abstract. In this paper we look closely at the popular metric of anony-
mity, the anonymity set, and point out a number of problems associated
with it. We then propose an alternative information theoretic measure
of anonymity which takes into account the probabilities of users sending
and receiving the messages and show how to calculate it for a message
in a standard mix-based anonymity system. We also use our metric to
compare a pool mix to a traditional threshold mix, which was impossible
using anonymity sets. We also show how the maximum route length re-
striction which exists in some fielded anonymity systems can lead to the
attacker performing more powerful traffic analysis. Finally, we discuss
open problems and future work on anonymity measurements.

1 Introduction

Remaining anonymous has been an unsolved problem ever since Captain Nemo.
Yet in some situations we would like to provide guarantees of a person remaining
anonymous. However, the meaning of this, both on the internet and in real
life, is somewhat elusive. One can never remain truly anonymous, but relative
anonymity can be achieved. For example, walking through a crowd of people does
not allow a bystander to track your movements (though be sure that your clothes
do not stand out too much). We would like to express anonymity properties in
the virtual world in a similar fashion, yet this is more difficult. The users would
like to know whether they can be identified (or rather the probability of being
identified). Similarly, they would like to have a metric to compare different ways
of achieving anonymity: what makes you more difficult to track in London —
walking through a crowd or riding randomly on the underground for a few hours?

In this paper, we choose to abstract away from the application level issues
of anonymous communication such as preventing the attacker from embedding
URLs pointing to the attacker’s webpage in messages in the hope that the vic-
tim’s browser opens them automatically. Instead, we focus on examining ways of
analysing the anonymity of a messages going through mix-based anonymity sys-
tems [Cha81] in which all network communication is observable by the attacker.

In such a system, the sender, instead of passing the message directly to the
recipient, forwards it via a number of mizes. Each mix waits for n messages to



arrive before decrypting and forwarding them in a random order, thus hiding
the correspondence between incoming and outgoing messages.

Perhaps the most intuitive way of measuring the anonymity of a message M
in a mix system is to just count the number of messages M has been mixed
with while passing through the system. However, as pointed out in [Cot94] and
[GT96], this is not enough as all the other messages could, for instance, come
from a single known sender. Indeed, the attacker may mount the so called n —1
attack based on this observation by sending n — 1 of their own messages to each
of the mixes on M’s path. In this case, the receiver of M ceases to be anonymous.

Another popular measure of anonymity is the notion of anonymity set. In the
rest of this section we look at how anonymity sets have previously been defined
in the literature and what systems they have been used in.

1.1 Dining Cryptographers’ Networks

The notion of anonymity set was introduced by Chaum in [Cha88] in order to
model the security of Dining Cryptographers’ (DC) networks. The size of the
anonymity set reflects the fact that even though a participant in a Dining Cryp-
tographers’ network may not be directly identifiable, the set of other participants
that he or she may be confused with, can be large or small, depending on the
attacker’s knowledge of particular keys. The anonymity set is defined as the set
of participants who could have sent a particular message, as seen by a global
observer who has also compromised a set of nodes. Chaum argues that its size
is a good indicator of how good the anonymity provided by the network really
is. In the worst case, the size of the anonymity set is 1, which means that no
anonymity is provided to the participant. In the best case, it is the size of the
network, which means that any participant could have sent the message.

1.2 Stop and Go Mixes

In [KEB98] Kesdogan et al. also use sets as the measure of anonymity. Fur-
thermore, they define the anonymity set of users as those who had a non-zero
probability of having the role R (sender or recipient) for a particular message.
The size of the set is then used as the metric of anonymity. Furthermore, de-
terministic anonymity is defined as the property of an algorithm which always
yields anonymity sets of size greater than 1.

The authors also state that it is necessary to protect users of anonymity
systems against the n — 1 attack described earlier and propose two different
ways doing so: the Stop-and-Go-mixes and a scheme for mix cascades!. Stop-
and-Go are a variety of mixes that, instead of waiting for a particular number
of messages to arrive, flush them according to some delay which is included in
the message. They protect against the n — 1 attack by discarding the messages
if they are received outside the specified time frame. Thus, the attacker cannot
delay messages which is required to mount the n — 1 attack.

! An anonymity system based on mix cascades is one where all the senders send all
their messages through one particular sequence of mixes.



1.3 Standard terminology

In an effort to standardise the terminology used in anonymity and pseudonymity
research publications and clarify different concepts, Pfitzmann and Koéhntopp
[PKOO] define anonymity itself as:

“Anonymity is the state of being not identifiable within a set of subjects,
the anonymity set.”

In order to further refine the concept of anonymity and anonymity set and
in an attempt to find a metric for the quality of the anonymity provided they
continue:

“Anonymity is the stronger, the larger the respective anonymity set is
and the more evenly distributed the sending or receiving, respectively,
of the subjects within that set is.”

The concept of “even distribution” of the sending or receiving of members
of the set identifies a new requirement for judging the quality of the anonymity
provided by a particular system. It is not obvious anymore that the size is a
very good indicator, since different members may be more or less likely to be
the sender or receiver because of their respective communication patterns.

2 Difficulties with Anonymity Set Size

The attacks against DC networks presented in [Cha88] can only result in par-
titions of the network in which all the participants are still equally likely to
have sent or received a particular message. Therefore the size of the anonymity
set is a good metric of the quality of the anonymity offered to the remaining
participants. In the Stop-and-Go system [KEB9S8] definition, the authors realise
that different senders may not have been equally likely to have sent a particular
message, but choose to ignore it. We note, however, that in the case they are
dealing with (mix cascades in a system where each mix verifies the identities of
all the senders), all senders have equal probability of having sent (received) the
message. In the standardisation attempt [PK00], we see that there is an attempt
to state, and take into account this fact in the notion of anonymity, yet a formal
definition is still lacking.

We have come to the conclusion that the potentially different probabilities
of different members of the anonymity set actually having sent or received the
message are unwisely ignored in the literature. Yet they can give a lot of extra
information to the attacker.

2.1 The Pool Mix

To further emphasise the dangers of using sets and their cardinalities to assess
and compare anonymity systems, we note that some systems have very strong



“anonymity set” properties. We take the scenario in which the anonymity set
of a message passing through a mix includes (at least) the senders of all the
messages which have ever passed through that mix.

This turns out to be the case for the “pool mix” introduced by Cottrell
in [Cot94]. This mix always stores a pool of n messages (see Figure 1). When
incoming N messages have accumulated in its buffer, it picks n randomly out of
the n+ N it has, and stores them, forwarding the other ones in the usual fashion.
Thus, there is always a small probability of any message which has ever been
through the mix not having left it. Therefore, the sender of every message should
be included in the anonymity set (we defer the formal derivation of this fact
until Section 5). At this point we must consider the anonymity provided by this
system. Does it really give us very strong anonymity guarantees or is measuring
anonymity using sets inappropriate in this case? Our intuition suggests the latter,
2 especially as the anonymity set seems to be independent of the size of the pool,
n.

Fig. 1. A Pool Mix

2.2 Knowledge Vulnerability

Yet another reason for being sceptical of the use of anonymity sets is the vulner-
ability of this metric against an attacker’s additional knowledge. Consider the
arrangement of mixes in Figure 2. The small squares in the diagram represent
senders, labelled with their name. The bigger boxes are mixes, with threshold of
2. Some of the receivers are labelled with their sender anonymity sets.

Notice that if the attacker somehow establishes the fact that, for instance,
A is communicating with R, he can derive the fact that S received a message
from E. Indeed, to expose the link £ — S, all the attacker needs to know is that

2 A side remark is in order here. In a practical implementation of such a mix, one
would, of course, put an upper limit on the time a message can remain on the mix
with a policy such as: “All messages should be forwarded on within 24 hours + K
mix flushes of arrival”.
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Fig. 2. Vulnerability of Anonymity Sets

one of A, B,C,D is communicating to R. And yet this is in no way reflected
in S’s sender anonymity set (although E’s receiver anonymity set, as expected,
contains just R and S).

It is also clear that not all senders in this arrangement are equally vulnerable
to this, as is the fact that other arrangements of mixes may be less so. Although
we have highlighted the attack here by using mixes with threshold of 2, it is clear
that the principle can be used in general to cut down the size of the anonymity
set.

3 Entropy

We have now discussed several separate and, in our view, important issues with
using anonymity sets and their cardinalities for measuring anonymity. We have
also demonstrated that there is a clear need to reason about information con-
tained in probability distributions. One could therefore borrow mathematical
tools from Information Theory [Sha48]. The concept of entropy was first intro-
duced to quantify the uncertainty one has before an experiment. We now proceed
to define our anonymous communication model and the metrics that use entropy
to describe its quality. The model is very close to the one described in [KEB9S].

Definition 1. Given a model of the attacker and a finite set of all users ¥, let
r € R be a role for the user (R = {sender, recipient}) with respect to a message
M. Let U be the attacker’s a-posteriori probability distribution of users u € ¥
having the role r with respect to M.

In the model above we do not have an anonymity set but an r anonymity
probability distribution U. For the mathematically inclined, & : ¥ x R — [0, 1]
s.t. 3 ucw U(u,r) = 1. In other words, given a message M, we have a probability
distribution of its possible senders and receivers, as viewed by the attacker.
U may assign zero probability to some users which means that they cannot
possibly have had the role r for the particular message M. For instance, if the
message we are considering was seen by the attacker as having arrived at @,



then U(receiver,Q) = 1 and VS # Q U(receiver,S) = 0.3. If all the users that
are not assigned a zero probability have an equal probability assigned to them,
as in the case of a DC network under attack, then the size of the set could be
used to describe the anonymity. The interesting case is when users are assigned
different, non zero probabilities.

Definition 2. We define the effective size S of an r anonymity probability dis-
tribution U to be equal to the entropy of the distribution. In other words

S=—" pulogy(pu)

uev
where p, = U(u,T).

One could interpret this effective size as the number of bits of additional
information that the attacker needs in order to definitely identify the user u
with role r for the particular message M. It is trivial to show that if one user is
assigned a probability of 1 then the effective size of is 0 bits, which means that
the attacker already has enough information to identify the user.

There are some further observations:

— It is always the case that 0 < S <log, |Z|.

— If S = 0 the communication channel is not providing any anonymity.

— If for all possible attacker models, S = log, |¥| the communication channel
provides perfect R anonymity.

We now go on to show how to derive the discrete probability distribution
required to calculate the information theoretic metric of anonymity presented
above.

3.1 Calculating the Anonymity Probability Distribution

We now show how to calculate the sender anonymity probability distribution for
a particular message passing through a mix system with the standard threshold
mixes. We assume that we have the ability to distinguish between the different
senders using the system. This assumption is discussed in Section 6. To analyse
a run of the system (we leave this notion informal), we have to have knowledge
of all of the messages which have been sent during the run. (This includes mix-
user, user-mix and mix-mix messages and is consistent with the model of the
attacker who sees all the network communications, but has not compromised
any mixes.) The analysis attaches a sender anonymity probability distribution
to every message. The starting state is illustrated in Figure 3a.

3 Alternatively, we may choose to view the sender/receiver anonymity probability
distribution for a message M as an extension of the underlying sender/receiver
anonymity set to a set of pairs of users with their associated (non-zero) probabilities
of sending or receiving it.



We take the case of the attacker performing “pure” traffic analysis. In other
words, he does not have any a-priori knowledge about the senders and receivers
and the possible communications between them. * The attacker’s assumption
arising from this is that a message, having arrived at a mix, was equally likely
to have been forwarded to all of the possible “next hops”, independent of what
that next hop could be.

{(4, 1)}
A Lo
{(B,1)} L
B A
{(C,1)}
C Ln—l
a) b)

Fig. 3. a) The start of the analysis. b) Deriving the anonymity probability distribution
of messages going through a mix.

For a general mix with n incoming messages with anonymity probability
distributions Lg...L,_1, which we view as sets of pairs, we observe that the
anonymity probability distributions of all of the messages coming out of the
mix, are going to be the same. This distribution A is defined as follows:

(z,p) € Aiff Ji.(z,p') € L; and

_ Zi-(zam)eLi Pj
n

Thus, the anonymity probability distribution on each of the outgoing arrows
on Figure 3a is {(4,3), (B, 3),(C, 5)}.

In the next section we will discuss how we can calculate the effective anony-
mity size of systems composed of other mixes.

3.2 Composing mix systems

Given some arrangement of individual mixes connected together, it is possible to
calculate the maximum effective anonymity size of the system from the effective
anonymity size of its components. The assumption necessary to do this is that
the inputs to the different entry points of this system originate from distinct

4 This is a simplification. In practice, the attacker analysing email can choose to assign
lower probabilities to, for example, potential Greek senders of an email in Russian
which arrived in Novosibirsk.



users. In practice this assumption is very difficult to satisfy, but at least we can
get an upper bound on how well a “perfect” system would perform.

Assume that there are [ mixes each with effective sender anonymity size
Si,0 < i < 1. Each of these mixes sends some messages to a mix we shall call
sec. The probability a message going into sec originated from mix 4 is p;,0 <

Using our definitions it is clear that Ssec = D g.;<; Pilog(p;) is the effective
anonymity size of this second mix.

The effective sender anonymity size of messages going through the system
described above is 37, _;; qug(i) p;pilog(p;p;) which simplifies to

Stotal = Ssec + Z piSi

0<i<i

where f(i) is the number of inputs that mix ¢ takes and p;,0 < j < f(¢) is the
probability corresponding to the j** input of i.

Using this rule we can calculate the effective sender anonymity set size of mix
systems or other anonymous communication channels using the effective sizes of
their components and information about how they are interconnected. A similar
approach can be used to calculate the effective recipient anonymity set size.

In the next section, we look at how knowledge about the system available to
the attacker can be used to perform a better anonymity analysis.

4 Route length

Having included probabilities in the model and demonstrated that they can give
the attacker more information about the system than just anonymity sets, we
note that the standard attacks aimed at reducing the size of the anonymity set
will now have the effect of narrowing the anonymity probability distribution.
If we consider this distribution as a set of pairs (of a sender and its respective
non-zero probability of having sent the message), then narrowing the probability
distribution is the process of deriving that some senders have zero probability of
sending the message and can therefore be safely excluded from the set.

We now look at an attack which not only has the ability to narrow the prob-
ability distribution, but also to alter it in such a way as to reduce the entropy
of the anonymity probability distributions without affecting the underlying ano-
nymity set.

As suggested in [BPS00], route length is important and some arrangements
of mixes are more vulnerable to route length based attacks than others. Here,
we demonstrate that maximum route length should be taken into account when
calculating anonymity sets. Note that, of course, the maximum route length in
a traditional mix-based anonymity system exists and is known to the attacker®.
Several mix systems have been designed to remove the maximum route length

% The reason for this is standard, as follows: All the messages in a mix-based system
have to have the same size, otherwise an attacker could trace particular messages.



constraint, for instance via tunnelling in Onion Routing [STRLO0] or Hybrid
mixes [OA00], but it exists in fielded systems such as Mixmaster [MC00] (max-
imum route length of 20) and so can be used by the attacker.

It may also be possible to obtain relevant information by compromising a mix.
Some mix systems will allow a mix to infer the number of mixes a message has
already passed through and therefore the maximum number of messages it may
go through before reaching the destination. Such information would strengthen
our attack, so care needs to be taken to design mix systems (such as Mixmaster
[Cot94]) which do not give it away.

C S

Fig. 4. Using maximum route length to reduce anonymity sets

We illustrate the problem by example. Consider the situation in Figure 4,
where each arrow represents a message observed by the attacker. Now let us
suppose that the maximum route length is 2, i.e. any message can pass through
no more than 2 mixes. The arrow from the bottom to the rightmost mix could
only have been the message from C as otherwise this message, coming from A
or B would have gone through 3 mixes. From this, we infer that C' was not
communicating to S, which makes S’s sender anonymity set {4, B}. Of course,
without taking maximum route length into account, this anonymity set would
have been {A, B,C}.

We now illustrate how the same fact can alter the sender anonymity proba-
bility distribution of a particular receiver and therefore reduce its entropy.

Here we use the same arrangement of mixes, but look at a different receiver,
Q. The anonymity probability distribution worked out using the algorithm (with-
out the route length constraint) in the previous section is shown in Figure 5. If
the attacker knows that the maximum route length is 2, the arrow from mix 2 to
mix 3 has the sender probability distribution of: {(C, 1)} and thus the probabil-
ity distribution at Q (or R) is {(4, 1), (B, 1), (C, 3)}. This reduced the entropy
from 1.5613 down to 1.5. Compare this with the entropy of 1.585 for a uniform

Yet each message (when leaving the sender) has to include inside it all the addresses
of all the servers it will be forwarded via. Thus, there is a limit on the number of
the mixes a message can pass through, and it is known to the attacker.



{(4,9), (B, 3),(C, 5)}
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Fig. 5. Using maximum route length to alter anonymity probability distribution

distribution. It is also worth noting that an attack which eliminated one of the
possible senders, would reduce the entropy to at most 1 bit and an attack which
would expose a single host as the sender of a particular message to Q — to 0
bits. Thus, our metric is capable of not only comparing the effectiveness of sys-
tems, but also the power of different attacks. A similar idea has been proposed
by [DSCP02]. However, comparing “the effectiveness” of different attacks using
this method in general is beyond the scope of this paper and is the subject of
future work.

5 Analysis of the Pool Mix

Recall from Section 2.1 that a pool mix stores n messages and receives N mes-
sages every round. It then puts together the stored and received messages and
outputs N of them (chosen randomly). The remaining n messages are stored for
the next round. On round zero the mix stores n “dummy messages” that look
to outsiders as if they were real, but were created by the mix itself.

First, we calculate the sender anonymity set and the sender anonymity set
size. Denote the anonymity sets associated with the N messages arriving at
round ¢, K;1 ... K; v and let K; = K; 1 U...UK; n. Now the sender anonymity
set of the outgoing messages after round k will be the union of the anonymity
sets of the messages stored in the mix (all of which are the same and are equal to
the anonymity sets of all the messages which left the mix at the previous round)
and the messages which arrived from the network.

Ag = {miz}
Ai=Si 1 UK,

Now, assume that all of the messages arrive at the pool mix directly from
senders, which are all different from each other. Formally, Vi, j,k,1.(i # j V k #
) = K; j # Ky,. This implies that the size of the set after round k is

|Ak|=NXk‘+].



and for k — oo
lim |A] —» o0
k—oo

It is clear that the size of A; does not provide us with a useful insight on how
well this mix performs. In particular, it does not capture the fact that senders
of past rounds have smaller probabilities of being the senders of messages that
come out of the mix at the last round. Finally, this metric does not allow us to
compare the pool mix with other mixing architectures, including conventional
threshold mixes.

We therefore compute the effective size, based on the entropy, of the sender
anonymity set.

The probability that a message which comes out of the mix at round k was
introduced by a sender in the mix at round 0 < x < k is

N n k—x
Pround, = N—+n (m)

n k
DProundy = N +n

Definition 3. Now, assume that each message was coming directly from a sender
and all senders only send one message. Note that after round 0, the only sender
involved is the miz itself. The effective size of the sender anonymity set for round
k is

k N n k—x 1 n k—z
E,=— 1
k ;<N+n<N+n) Og<N+n<N+n) ))
k k
_ n log n
N+n N+n

After a large number of rounds (k — co) the above expression of the effective
size converges towards

lim E = (1+%)log(N+n)—%logn

k—o0

The effective size of the set provides us with useful information about how
the mix is performing. As one would expect if there is no pool then the effective
sender anonymity set is the same as for a threshold mix architecture with NV
inputs.

Ezample 1. When there is no pool (n = 0) the effective anonymity set size is

lim E =logN
k—o0



Ezample 2. When only one message is fed back to the mix (n = 1)

k—o0

lim E = <1+%) log (N + 1)

So a mix of this type that takes N = 100 inputs will have an effective size
of limy_,oo £ = 6.725. This is equivalent to a threshold mix that takes ~ 106
inputs.

Ezample 8. A pool mix with N = 100 inputs out of which n = 10 are fed back
will have an effective size of limy_, oo £ = 7.129. That is equivalent to a threshold
mix with N = 27127 ~ 140 inputs.

The additional anonymity that the pool mix provides is not “for free” since
the average latency of the messages increases from 1 round to 1+ & rounds with

2
a variance of "X(%ij”)

6 Discussion

Let us now examine the scenarios in which our analysis may be useful and
demonstrate that one would not be able to use other well-known attacks to
compromise anonymity.

The new entropy measure of anonymity is useful in analysing mix networks,
rather than cascades or DC nets where there is no possibility of members of
anonymity sets having different probabilities of taking on particular roles. The
route length techniques are applicable in mix network systems which have a
maximum route length constraint such as Mixmaster [MC00].

It is worth mentioning that a similar information theoretic metric was in-
dependently proposed in [DSCP02] and used to compare different anonymity
systems. Here we concentrate on using it for analysing mix systems and show
how it can be used to express new attacks.

7 Conclusion

We have demonstrated serious problems with using the notion of anonymity set
for measuring anonymity of mix-based systems. In particular, we exhibited the
pool mix as an illustration of the fact that we cannot always use anonymity sets
to compare the effectiveness of different mix flushing algorithms.

We have also proposed an information-theoretic metric based on the idea of
anonymity probability distributions. We showed how to calculate them and used
the metric to compare the pool mix to more traditional mixes.

We must note, however, that our new metric does not really deal with the
knowledge vulnerability problem discussed in Section 2.2. We feel that additional
structure to enrich the notion of anonymity sets and enable better analysis of
knowledge-based vulnerabilities is needed. However, having introduced proba-
bilities into the model, we want to go on and develop a framework capable of



answering questions like “What happens to the anonymity probability distribu-
tion of receiver S when the attacker knows that A is communicating to P with
probability % or R with probability %?”6. This is the subject of future work.

We then showed that care must be taken when calculating anonymity proba-
bility distributions as the same attacks as used against the anonymity set metric,
would also apply here. In particular, we demonstrated that if maximum route
length in a mix system exists, it is known to the attacker and can be used ex-
tract additional information and gain knowledge which was impossible to express
using anonymity sets.

We feel that more sophisticated probabilistic metrics of anonymity should be
developed. Moreover, perhaps, if combined with knowledge of the communication
protocols executed by the sender and recipient, they can yield powerful attacks
against mix-based systems. Moreover, we feel that in a subject like anonymity,
formal reasoning is essential if strong guarantees are to be provided. Yet another
direction is relating the above to unlinkability and plausible deniability. All these
are subjects of future work.
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