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Abstract

Techniques for modeling and simulating channel conditions
play an essential role in understanding network protocol and ap-
plication behavior. We demonstrate that time-varying effects on
wireless channels result in non-stationary wireless traces. We
present an algorithm that divides traces into stationary compo-
nents in order to provide analytical channel models that, relative
to traditional approaches, more accurately represent character-
istics, such as burstiness, statistical distribution of errors, and
packet loss processes. In [11], we demonstrated that inaccurate
modeling using a traditional analytical model yielded significant
errors in error control protocol parameters choices.

Our algorithm also generates artificial traces with the same
statistical characteristics as actual collected network traces. Us-
ing these traces in a simulator environment enables future protocol
and application testing under different controlled and repeatable
conditions.

For validation, we develop a channel model for the circuit-
switched data service in GSM and show that it: (1) more closely
approximates GSM channel characteristics than a traditional
Gilbert model and (2) generates artificial traces that closely match
collected traces’ statistics.

1 Introduction

As communication networks evolve, the design of com-
munication protocols increases in complexity. Evaluating
the performance of existing networks provides insights into
techniques for optimizing future communication protocols.
The most common techniques include simulation, analysis
of empirical data, and analytical models (e.g., channel mod-
els). Accurate modeling of network events, especially the
error behavior, at link layer and above is essential to the un-
derstanding of network behavior and to the design of com-
munication protocols. For example, a detailed understand-
ing of the packet loss process and burstiness of the errors
is necessary for the proper design and parameter tuning of
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error control protocols, such as Automatic Repeat reQuest
(ARQ) protocols.

Streaming audio and video multimedia applications can
also benefit from a better understanding of the underlying
network behavior. For example, video and audio codecs can
perform real-time predictive rate control by using a model
of network traffic characteristics to estimate traffic condi-
tions in real-time.

The traditional network modeling approach to error
modeling is to create a Gilbert model [16] (i.e., a two state
discrete Markov chain) based upon collected network traffic
traces. Using this model, one can then dynamically generate
artificial network traces for the network under study and use
the traces to simulate, and thus, better understand the per-
formance of existing and new network protocols and appli-
cations. These traces provide network protocol and applica-
tion developers with ease of use and repeatability, two crit-
ical characteristics for developing and improving network
and application performance. More importantly, for new
networks that are under development (or for which there are
only limited prototype facilities), it is often difficult to col-
lect a reasonable amount of traces or run experiments. By
generating synthetic traces that simulate the network being
tested, multiple users can simultaneously gain network ac-
cess and perform experiments.

Unfortunately, as we will show, the Gilbert model has
several significant shortcomings in the accuracy of its error
modeling, which directly affects the validity of results based
upon traces generated by a Gilbert model. Models based
upon Markov processes require that the error statistics re-
main constant over time. Many networks experience time
varying effects, such as congestion-related losses. Wireless
channels, in particular, experience effects, such as Raleigh
fading, multipath fading, shadowing, etc.

To confirm that wireless traces are by their nature non-
stationary, we utilize a previously published, but not widely
known algorithm for testing stationarity [2]. Using this al-
gorithm, we tested a sample wireless trace and confirmed
its non-stationarity. This implies that traditional stochastic
analysis of wireless traces are likely to be less accurate than
ideal.

Thus, we propose and evaluate a novel algorithm, the

1



Markov-based Trace Analysis (MTA) algorithm, for the de-
sign of channel error models. Our approach is to derive
a statistical constant from the wireless trace, and use this
constant to divide the previously non-stationary trace into
stationary subtraces representing good and bad segments of
transmission. By analyzing the length distributions of these
segments, we can effectively characterize the transitions be-
tween them, and create a model that more accurately repre-
sents the original trace.

In practice, this MTA algorithm allows a more accurate
analysis of network traces which accounts for their non-
stationary behavior. This characteristic makes MTA a gen-
eral purpose algorithm, meaning that it can be applied to
network traces such as wireless traces which experience dif-
ferent error statistics over time. However, the purpose of
this work is not to show that the MTA algorithm is general
purpose, but to argue that the MTA algorithm generates ac-
curate analytical models for wireless channels.

We validate the benefits and accuracy of the MTA algo-
rithm by applying it to 215 minutes of GSM digital wireless
cellular network [14] data traces collected at the reliable
link layer (Radio Link Protocol layer [5, 7]) to generate a
model we call the MTA GSM channel model. We then show
that, unlike traces generated by the Gilbert model, artificial
MTA model network traces have the same statistical proper-
ties as traces collected from the actual network. Such traces
will provide more accurate simulations of the network being
tested, yielding results that more closely match the results
obtained on actual networks.

In particular, we generate artificial traces using both the
MTA and Gilbert models, and perform retrace analysis [11]
on these artificial traces. Retrace analysis emulates an en-
hanced RLP layer using a fixed data frame size and fixed
per frame overhead (e.g., checksums, sequence numbers,
etc.), and calculates the predicted throughput over a range
of fixed RLP frames sizes. In our enhanced RLP implemen-
tation, frame sizes are multiples of the physical radio block
size of 30 bytes1. For a given frame size, there is a trade-off
between the increased throughput from reducing overhead
and the retransmission delay caused when a radio block of
an RLP frame is lost and the entire frame is retransmitted.
In other words, the greater the frame size, (1) the lower
the overhead, and (2) the greater the retransmission delay
(the more radio blocks that have to be retransmitted) when
a radio block is corrupted. Thus, throughput performance
results for each frame size are highly correlated with a col-
lected or synthetic trace’s error statistics. In [11], we used
retrace analysis to show that for bursty error traces (where
errors tend to occur in clusters), larger frames yield higher
throughput. Furthermore, we showed that incorrectly as-
suming an even distribution of errors in GSM, leads to the

1Note that the existing GSM RLP implementation uses a frame size of
one radio block.

wrong choice of optimal frame size.
These results show that the distribution of errors within

traces has a significant influence on models, analysis, and
simulations based upon such traces. This conclusion is es-
pecially true when the goal is to artificially generate traces
for the design, simulation, and analysis of new networking
protocols. To replicate and further explore the results from
our earlier work, we generate an artificial trace that we call
even trace, which has the same error rate as collected traces,
but has an even error distribution, (i.e., errors are individual
events, isolated, and have a constant distance between each
other).

The rest of this paper is organized as follows: We start
by discussing related work in the next section. Section 3
provides background information about the GSM’s Circuit-
Switched Data (CSD) service and an overview on Discrete
Time Markov Chains. Next, in Section 4, we describe our
measurement platform for collecting block level error traces
on the GSM wireless link. Then Section 5 shows the de-
velopment of the MTA algorithm, followed by Section 6,
where we develop two analytical models for GSM wireless
traffic: the MTA model and the Gilbert model. Finally, in
Section 7, we present our algorithm for generating artifi-
cial traces and evaluate the MTA algorithm by comparing
the traffic statistics of the collected and artificial traces. We
conclude and discuss our plans for future work in Section 8.

2 Related Work

Several researchers have explored ways of characteriz-
ing the loss process of various channels. Bolot et al. [3] use
a characterization of the loss process of audio packets to de-
termine an appropriate error control scheme for streaming
audio. They model the loss process as a two-state Markov
chain, and show that the loss burst distribution is approxi-
mately geometric. Yajnik et al. [19] characterize the packet
loss in a multicast network by examining the spatial (across
receivers) and temporal (across consecutive packets) corre-
lation in packet loss. Of particular interest is their modeling
of temporal loss as a third order Markov chain. Both these
efforts analyze the loss process of traces with static error
statistics (i.e., the error rates do not vary over time). How-
ever, our work addresses the greater challenge of modeling
traces with time-varying error statistics.

There is also interesting related work in wireless traffic
modeling. Nguyen et al. [15] use a trace-based approach for
modeling wireless errors. They present a two-state Markov
wireless error model, and develop an improved model based
on collected WaveLAN error traces. Building on this, Bal-
akrishnan and Katz [1] also collected error traces from
a WaveLAN network and developed a two-state Markov
chain error model (i.e., Gilbert model). Zorzi et al. [20] also
investigates the error characteristics in a wireless channel.
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They compare an independent and identically distributed
(IID) model to the Gilbert model, and claim that higher or-
der models are not necessary. Their results are drawn by
applying these models to artificial traces generated by as-
signing a fixed-average burst length and a constant bit error
rate.

While these previous works confirm that the Gilbert
model improves upon the simple IID model, we offer proof
in this paper that it has several significant shortcomings in
its error modeling accuracy. Furthermore, we argue that
there is a need to develop a more accurate model based
on real world statistics that better describes and handles
time-varying wireless channel error characteristics. Previ-
ous work such as that done by Yajnik et al. modeled loss
processes using higher-order Markov chains for improved
accuracy, but was limited to stationary traces. We show that
traces on wireless links are non-stationary, and provide an
algorithm that successfully models such behaviour.

3 Background

In this section we present a brief background on the
technology behind circuit-switched data in GSM networks.
We also define Discrete Time Markov Chains (DTMC) and
some of their relevant properties.

3.1 Circuit-Switched Data in GSM

The Global System for Mobility (GSM) wireless digi-
tal cellular network is a second generation cellular network,
providing nearly 700 million subscribers with global roam-
ing capabilities in several hundred countries. GSM im-
plements several error control techniques, including adap-
tive power control, frequency hopping, Forward Error Cor-
rection (FEC), and interleaving. The primary uses of the
GSM network are for Circuit-Switched Voice service (CSV)
and Short Message Service (SMS). However, an increasing
number of subscribers are using GSM’s Circuit-Switched
Data service (CSD), which provides an optional reliable
link layer protocol, the Radio Link Protocol (RLP). We pro-
vide a brief summary below; more details about GSM, the
CSD service, and RLP can be found in [14].

GSM is a TDMA-based (Time Division Multiple Ac-
cess) circuit-switched network. At call-setup time, a mobile
terminal is assigned a user data channel, defined as the tuple
<carrier frequency number, slot number>. The slot cycle
time is 5 milliseconds on average. This timing allows 114
bits to be transmitted in each slot, yielding a gross data rate
of 22.8 Kbit/s. The fundamental transmission unit in GSM
is a radio data block. A Forward Error Correction (FEC) ra-
dio data block is 456 bits, representing the payload of 4 time
slots. In GSM-CSD, the size of an unencoded data block is

240 bits, resulting in a raw data rate of 12 Kbit/s (240 bits
every 20 milliseconds) [6].

Interleaving is a technique that is used in combination
with FEC to combat burst bit errors. Instead of transmit-
ting a data block in four consecutive slots, the block is di-
vided into smaller fragments. Fragments from different data
blocks are then interleaved before transmission. The in-
terleaving scheme chosen for GSM-CSD interleaves a sin-
gle data block over 22 TDMA slots [8]. A few of these
smaller fragments can be completely corrupted while the
corresponding data block can still be reconstructed by the
FEC decoder. The primary disadvantage of this deep inter-
leaving is that it introduces a significant one-way latency of
approximately 90 milliseconds2. This high latency can have
a significant adverse effect on interactive protocols [12].

RLP [5, 7] is a full-duplex logical link layer protocol that
uses selective reject and checkpointing for error recovery.
The RLP frame size is fixed at 240 bits aligned to the above
mentioned radio data block. RLP introduces an overhead
of 48 bits per RLP frame, yielding a user data rate of 9.6
Kbit/s in the ideal case (no retransmissions)3. RLP trans-
ports user data as a transparent byte stream (i.e., RLP does
not “know” about IP packets). However, RLP may lose data
if a link reset occurs (e.g., after a maximum number of re-
transmissions of a single frame has been reached).

3.2 Discrete Time Markov Chains

A Discrete Time Markov Chain (DTMC) [16] is a ran-
dom process fXn j n � 0g that takes values in a discrete
space E. A DTMC is defined by its memory and its transi-
tion probabilities and is characterized as follows,

Pr(Xn+1 = j j X0 = i0; X1 = i1; :::; Xn = in) =

Pr(Xn+1 = j j Xn�z+1; 1 � z � K); (1)

where Pr(Xn+1 = j j Xn�z+1; 1 � z � K) are the Kstep

transition probabilities, and K defines the memory.
To calculate the memory of a DTMC, we find the order

of the Markov chain as first proposed in [13]. To aid in de-
termining the order of the Markov chain, we introduce the
concept of conditional entropy. The conditional entropy is
an indication of the randomness of the next element of a
trace, given the past history. We determine the amount of
past history necessary by calculating the ith order entropy
for 1 � i � M , where M is an upper bound on the maxi-
mum amount of history we want to record. We chooseM to
be 6 because maintaining history for 26 or 64 states yields

2Note that voice is treated differently in GSM. Unencoded voice data
blocks have a size of 260 bits and the interleaving depth is 8 slots.

3Note that the transparent (without RLP) GSM-CSD service introduces
a wasteful overhead for modem control information, reducing the user data
rate to 9.6 Kbit/s.
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Figure 1. The GSM network and measurement platform.

a reasonable level of implementation and processing com-
plexity. An ith order entropy of 0 indicates that knowing the
last i elements of the chain totally predicts the next element
on the chain. As the entropy value increases, there is more
randomness in the next element on the chain. We follow the
same procedure used by Yajnik et al [19] to calculate the
conditional entropy for each value of i:

H(i) = �
X
~x

�(~x)

Tsamples

X
y2f0;1g

�(y; ~x)

�(~x)
log2

�(y; ~x)

�(~x)
(2)

In Equation 2, ~x represents the vector [x1:::xi] which
corresponds to one of the 2i different patterns of i consec-
utive elements in the chain; Tsamples represents the total
number of samples of length i in the chain; �(~x) indicates
the number of times the pattern ~x = [x1:::xi] shows up in
the chain; and the term �(y; ~x) corresponds to the number
of times the pattern ~x = [x1:::xi] appears in the chain fol-
lowed by y, where y 2 f0; 1g.

Given the implicit tradeoff between entropy and com-
plexity of the Markov model, we choose the order of the
Markov chain K, such that we gain the minimum entropy
possible at an acceptable complexity level. As entropy
decreases, the order K increases, meaning the number of
states (i.e., 2k) increases exponentialy.

4 Data Collection

In this section, we first introduce the concept of block
error traces. Then we describe the measurement platform
we developed to collect block error traces.

4.1 Block Error Traces

An accurate representation of a wireless channel’s error
characteristics for a given time period can be captured by a
bit error trace. A bit error trace contains information about
whether a particular bit was transmitted correctly (i.e., a “1”
represents a corrupted bit, while a “0” represents a correctly
transmitted bit). The average Bit Error Rate (BER) is the
first-order metric commonly used to describe such a trace.
The same approach can be applied on a block level instead
of on a bit level. A block error trace consists of a binary
sequence where each element represents the transmission
state of a data block. There are two block states, a “1” rep-
resents a corrupted data block, while a “0” represents a cor-
rect data block. Corrupted blocks are detected using an er-
ror detection code (e.g., Cyclic Redundancy Check). In this
paper, we refer to block error traces simply as traces. We
also use the BLock Error Rate (BLER) of a trace to define
the average rate of corrupted data blocks.

For a trace, we define an error burst to be a run of con-
secutive 1’s, and an error-free burst as a run of consecutive
0’s. A trace is stationary whenever the error statistics re-
main relatively constant over time. We identify trace sec-
tions that exhibit stationary properties by finding error-free
bursts of length equal to or greater than the change-of-state
constant C. The value of C is a design decision that we de-
fine as the mean plus one standard deviation of the length
of error bursts of a trace. By removing trace sections con-
sisting of error-free bursts of length equal to or greater than
C, we guarantee that the resulting trace will have station-
arity or constant error statistic properties. We explain the
reasoning behind our choice in more detail in Section 6.1.

We have collected traces under several different scenar-
ios. As shown in Figure 1, we vary the movement of the
mobile host (fixed, walking, and driving) while keeping the
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Figure 2. The separation of an error trace into two stationary traces.

other endpoint fixed. We collected 215 minutes of traces in
a fixed environment, where the mobile host’s signal strength
was below 4 on a scale of 1 to 5. In the following sections,
we refer to this trace as the real trace. In Section 6, we
use the real trace to develop an analytical traffic model for
RLP. Note that the error characteristics we have measured
in these traces are only valid for the particular FEC and in-
terleaving scheme implemented in GSM’s Circuit Switched
Data network (see Section 3.1). To analyze other types of
networks, the first step is to collect block or packet level
traces and then to apply the analysis described below.

4.2 Measurement Platform

We depict our measurement platform in Figure 1. A
single-hop network running the Point-to-Point Protocol
(PPP) [17] connects the mobile host to a fixed host that ter-
minates the circuit-switched GSM connection. We used the
sock tool [18] to generate traffic on the link. To collect traf-
fic traces at the RLP layer, we ported the RLP protocol im-
plementation of a commercial available GSM data PC-Card
to BSDi3.0 UNIX. In addition, we developed RLPDUMP,
a protocol monitor tool for RLP. RLPDUMP logs whether
or not a received block could be correctly recovered by the
FEC decoder. This determination is possible because every
RLP frame corresponds to an FEC encoded data block (see
Section 3.1). Thus, a received block suffers an error when-
ever the corresponding RLP frame has a frame checksum
error. We used sock to generate bulk data traffic and used
RLPDUMP to capture block error traces.

5 The MTA Algorithm

The basic concept behind the MTA algorithm is the as-
sumption that a trace with non-stationary properties can be
decomposed into a set of piecewise stationary traces con-
sisting of what we define as “good” and “bad” states. The
MTA algorithm defines these states, and parameterizes tran-
sitions between them as a function of a preset parameter, the
change-of-state constant.

Good states contain only correctly transmitted blocks,

while bad states exhibit stationarity, and a sequence of bad
states can be modeled by a traditional DTMC. The MTA al-
gorithm computes the distribution of lengths for both good
and bad states, along with the memory and parameters for
the DTMC used on the sequence of bad states.

In this section, we first discuss stationarity properties and
how to test a trace for stationarity. We then present the MTA
algorithm and show how it is applied to a trace.

5.1 Stationarity

We consider a network traffic trace to be a random pro-
cess fXn j n � 0g with a discrete space E = f0; 1g
where a 1 denotes a corrupted frame, and a 0 denotes a
correct transmitted frame. If Xn = i, then the process
is said to have value i at time n. A process Xn that
takes values on the discrete space E = f0; 1g can also be
viewed as a binary time series [4]. One major challenge
in the analysis of time series is the concept of stationar-
ity. A process Xn is strictly stationary if the distribution
of (Xp+1; :::; Xp+k) is the same as that of (X1; :::; Xk) for
each p and k. Xn is second-order stationary if the mean
mn = E(Xn) is constant (independent of n), and the au-
tocovariance only depends on the difference k for all n
(Cov(k; n) = Cov(Xn; Xn� k) = Cov(k)). Given a
binary time series Xn that is second-order stationary, the
process can be modeled as a DTMC where the value of the
chain at time n is determined by the memory of the pro-
cess [10].

Checking a trace for stationarity is mathematically chal-
lenging. We use the test for stationarity introduced by Ben-
dat and Piersol called the Runs Test [2], summarized as fol-
lows:

1. Define a run as a number of consecutive ones (also re-
ferred to as an error burst).

2. Divide the trace into segments of equal lengths. The
segment length can be arbitrarily chosen, as long as all
the segments are of equal length.

3. Compute the lengths of runs in each segment.
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4. Count the number of runs of length above and below
the median value for run lengths in the trace.

5. Plot a histogram for the number of runs.

For a stationary trace, the number of runs distribution
between the 0.05 and 0.95 cut-offs will be close to 90 per-
cent [2].

5.2 Algorithm

The MTA algorithm views a trace as a process with two
types of states: bad and good. The algorithm divides the
trace into a bad trace consisting of a concatenation of bad
states, and a good trace consisting of a concatenation of
good states (see Figure 2). A bad state is defined as a se-
quence of zeros and ones (always started by a one), where
each run of zeros is not greater than the change-of-state con-
stant C (defined in Section 4.1 as the mean plus one stan-
dard deviation of the length of error bursts). If a run of zeros
is equal to or greater than C, then the trace enters the good
state.

We define two random processes with a discrete space
E = f0; 1; 2; :::g:

� The bad burst length process fBn j n � 0g, whereBn

represents the number of elements in the nth bad state,
(i.e, the length of the state).

� The good burst length process fGn j n � 0g, where
Gn represents the length of the nth good state.

The distributions ofBn andGn are found by plotting the
cumulative density function (CDF) and finding the “best”
fitting distributions. We provide an example of how to de-
termine these distributions in Section 7.1.

The good trace is a deterministic process, where each
value is zero. The bad trace is an stationary random pro-
cess, therefore it can be modeled as a DTMC with a certain
memory. The MTA algorithm calculates the memory of the
bad trace, and determines its transition probabilities.

The application of the MTA algorithm to an input trace
can be summarized as follows:

1. Calculate the mean (me) and standard deviation (sde)
values for error burst lengths in the trace.

2. Set C, the change-of-state constant, equal to (me +
sde).

3. Partition the trace into bad state and good state por-
tions using the following definitions:

� Bad state: runs of 1’s and 0’s, with the first el-
ement being a 1, and with runs of 0’s that have
length less than or equal to the C.
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Figure 3. Burst length in real trace.

� Good state: runs of 0’s that have length greater
than C.

4. Create bad trace and good trace stationary traces from
the bad and good state portions of the trace.

� Bad trace: concatenate the bad state portions of
the trace.

� Good trace: concatenate the good state portions
of the trace.

5. Model bad trace as a DTMC, and calculate its order
and transition probabilities.

6. Determine the best fitting distributions of the bad and
good burst length processes Bn and Gn.

In summary, to take advantage of the Markov Process
properties in non-stationary traces, we have used a novel
approach to traffic modeling: a Markov-based Trace Anal-
ysis (MTA) algorithm that divides a trace into subset traces
that have stationary properties.

6 Modeling GSM Wireless Channel

In this section, we demonstrate the process of extracting
characteric statistics from a given trace using both the MTA
and Gilbert models [16]. We apply both algorithms to real
trace to generate the statistics which we will later use to
generate artificial traces based on each model.

6.1 MTA GSM Channel Model

This section presents an application of the steps of the
MTA algorithm (as described in section 5) to real trace.
First, the MTA algorithm analyzes the error free and error
burstiness experienced by real trace (see Figure 3), and cal-
culates the mean and standard deviation for the error burst
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Figure 5. Burst length in bad trace.

length. In this case, the mean value was found to be 6 blocks
and the standard deviation was 14 blocks, yielding a state-
of-change constant value C of 20 (6 + 14) blocks. Figure 3
shows that the length of error-free bursts are significantly
longer than the length of error bursts. These long error free
bursts make the trace non-stationary. In particular, examin-
ing the trace using a window size value that is smaller than
the maximum error free burst makes the channel appear er-
ror free. More importantly, as the window size decreases
towards the size of error burst clusters, the channel exhibits
significantly different error characteristics.

We apply the Runs Test (as described in Section 5) to
test real trace for stationarity. Figure 4 shows that only 17
percent of the runs distribution lie between the 0.05 and 0.95
cut-offs, and 83 percent lays outside the left and right cut-
offs. Thus, from the Runs Test, we conclude that real trace
is a non-stationary process.

Since our goal is to isolate and analyze sections that ex-
perience stationarity, we use the MTA algorithm to create
two new traces, called bad trace and good trace, each con-
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trace.
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sisting of stationary trace sections. The MTA algorithm cre-
ates bad trace and good trace (as described in Section 5) by
first identifying good and bad states and then concatenat-
ing good states to form good trace and bad states to form
bad trace. Figure 5 shows the error-free bursts and error
burstiness experienced by bad trace. In this plot, the aver-
age error free burst is 3.26 blocks, with a maximum value
of 20 blocks (recall that the change-of-state constant C was
defined to be 20). The error free burst mean and maximum
values in bad trace are much smaller than the error burst
mean and maximum value in real trace. Thus, our choice
of C guarantees that bad trace will experience constant er-
ror statistic properties and therefore stationarity. To prove
that bad trace is an stationary process we apply the Runs
Test. Figure 7 shows that 87 percent of the runs distribution
lie between the 0.05 and 0.95 cut-offs. Therefore, this result
proves that bad trace is a stationary process and can thus be
modeled as a DTMC.
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Next, the MTA algorithm models bad trace as a DTMC
with memory K. To determine the memory K of the
DTMC, the MTA algorithm first calculates the conditional
entropy values. Table 1 shows the conditional entropy cal-
culated for different K values. Figure 6 illustrates how the
complexity of the DTMC measured in number of states in-
creases exponentially as entropy decreases. For this trace
we chose K to be 4 (i.e., 16 number of states), which cor-
responds to only 0.38 percent increase in entropy from the
chosen upper bound of K = 6. We could have chosen K
to be larger than 4, but we did not want to significantly in-
crease the complexity of the Markov model.

Table 2 shows the probabilities of the trace being in each
state and the associated transition probabilities. The transi-
tion probabilities were also calculated by frequency count-
ing.

Order K Entropy

6 0.5228
5 0.5240
4 0.5248
3 0.5290
2 0.5422
1 0.5585

Table 1. Entropy for the bad trace.
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Figure 8. Bad state burst length distribution.

The last step of the MTA algorithm is to determine the
best fitting distribution for the bad burst length process Bn

and good burst length process Gn. Figures 8 and 9 show
the CDF for the processes Bn and Gn. Each figure shows
two plots, one plot is the CDF as calculated from the empir-
ical data, (i.e, the distribution of real trace), and the other
plot corresponds to the CDF of an exponential distribution
with parameter �. We assume that the distributions of Bn

State i Pr(i) Pr(1 j i) Pr(0 j i)

0000 0.1254 0.1699 0.8301
0001 0.0305 0.6414 0.3586
0010 0.0172 0.1832 0.8168
0011 0.0344 0.8009 0.1991
0100 0.0166 0.3073 0.6927
0101 0.0033 0.8129 0.1871
0110 0.0087 0.2683 0.7317
0111 0.0415 0.8889 0.1111
1000 0.0305 0.3022 0.6978
1001 0.0210 0.7037 0.2963
1010 0.0027 0.0547 0.9453
1011 0.0159 0.8820 0.1180
1100 0.0350 0.4556 0.5444
1101 0.0153 0.8623 0.1377
1110 0.0415 0.3118 0.6882
1111 0.5604 0.9341 0.0659

Table 2. Fourth order Markov model statistics.
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Figure 9. Good state burst length distribution.

and Gn are exponential with parameter �, (i.e. the CDF
F (x) = 1 � e��x, where x is the good or bad state burst
length). For each distribution, Bn and Gn, the MTA algo-
rithm plots the CDF of the exponential distribution with �
ranging from 0 to 1 in steps of 0.001, and then chooses a
value of � that provides the best approximation to the em-
pirical data’s CDF, (i.e., the distribution for real trace). We
denote ~x as the vector with the CDF values based on the
empirical data, and ~y as the vector with the CDF values
based on the predicted exponential distribution. We use the
standard error as a measure of the error between plots, and
choose the distribution with smallest standard error. The
equation for the standard error of the predicted ~y is
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Serror(~y; ~x) =

s
[

1

n(n� 2)
][f(y)�

[n
P

xy �
P

x
P

y]2

f(x)
]

(3)
where f(a) = n

P
a2� (

P
a)2, and n is the dimension

of the vectors ~y and ~x.
The predicted distributions for the bad and good bursts

are exponential distributions with parameters �b = 0:037
and �g = 0:04, respectively. The standard error values
for the predicted distributions of Bn and Gn are 0.013 and
0.025 respectively. Note that a lower standard error value
indicates a more accurate prediction.

6.2 The Gilbert GSM Model

To study the performance and accuracy of the MTA al-
gorithm, we compared the MTA model to the traditional
Gilbert model. The Gilbert model is a DTMC of order one
(i.e., with two states). In our traces, the Gilbert model states
correspond to the states of the data block f0; 1g, where a 1
denotes a corrupted frame and a 0 denotes a correct frame.
The Gilbert model predicts the state of the next block by
just looking at the previous received block. Figure 10 shows
the Gilbert model state transition diagram. Finally, Table 3
shows the results of the Gilbert model transition probability
calculations for real trace.

Pr(0|1)

0 1Pr(0|0) Pr(1|1)

Pr(1|0)

Figure 10. Gilbert model state transition dia-
gram.

State i Pr(i) Pr(1 j i) Pr(0 j i)

0 0.9449 0.0087 0.9913
1 0.0551 0.8509 0.1491

Table 3. Gilbert model statistics.

7 Trace Generation and Evaluation

A key capability of the MTA algorithm is the ability to
generate artificial traces (of any duration) with the same sta-
tistical characteristics as traces collected from any given

network. In this section, we demonstrate how to gener-
ate an artificial trace given characteristic statistics from the
MTA model. We also generate an artificial trace based on
the Gilbert model, and compare both artificial traces against
the real trace. We show that with respect to key character-
istics such as error burst length distribution and throughput
vs frame size, the MTA artificial trace provides a much im-
proved approximation of the original real trace.

7.1 MTA Artificial Trace Generation

The algorithm for trace generation from an MTA model
is as follows:

1. Choose the number of frames, N , to generate in the
artificial trace.

2. The algorithm repeats the following steps until all N
frames have been generated:

(a) Determine glen, the good state burst length from
the good state burst distribution Gn.

(b) Determine blen, the bad state burst length from
the bad state burst distribution Bn.

(c) Generate glen error free frames (i.e., a sequence
of “0” of length glen).

(d) Generate blen frames that are either error or error
free frames depending on the transition probabil-
ities calculated for the bad state trace in the MTA
model.

Recall that in the MTA model, we observed that the good
and bad state distributions, Gn and Bn, fit exponential dis-
tributions. Thus, to calculate glen and blen we can use the
inverse transformation method from [9]. Given a random
variable X with a CDF F (x), the variable u is uniformly
distributed between 0 and 1. We can generate a sample
value ofX by generating u and calculating x = F �1(u). In
the exponential case with parameter �, F (x) = 1�e��x =
u, x can be determined from x = �ln(u)=�. In this case,
x corresponds to glen and blen, respectively.

It should be clear by inspection that an artificial trace cre-
ated by the above algorithm is guaranteed to have the same
characteristics as those extracted by the MTA algorithm.

7.2 Trace Comparison

Here we evaluate the MTA algorithm by comparing the
error statistics of the real trace against the two artificial
traces. Figure 11 plots each CDF for the error burst lengths
of the three traces. The mean, standard deviation, and maxi-
mum values are summarized in Table 4. Note that real trace
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Figure 11. Corrupted burst length distribu-
tion.

and the MTA artificial trace experience similar bursty char-
acteristics with 95 percent of the corrupted burst lengths be-
ing smaller than 22 frames long, while in the Gilbert trace
95 percent of the corrupted burst lengths are of size one.
These results show that the error burst distribution of the
MTA trace represents a much closer approximation to the
collected trace, real trace.

Trace Mean St Deviation Maximum
real trace 6 14 126
mta trace 7.0 8.1 82

gilbert trace 1.8 0.4 4

Table 4. Error Length Statistics

To demonstrate the importance of an accurate model
for setting system parameters, we cite an example where
a naive assumption about the channel statistics can lead to
poor performance. In [11], we showed how an inaccurate
channel model can lead to poor decision on the optimal RLP
frame size of an enhanced multiple radio block implementa-
tion (see Section 1). We repeat this demonstration using the
real trace, artificial traces from MTA and Gilbert, and an ar-
tificial trace based on trivial assumptions we call even trace.
We artificially generated even trace with the same BLER as
real trace, but with an even error distribution. We then per-
form retrace analysis on the four traces, yielding the results
shown in Figure 12. Note that the throughput for even trace
decreases dramatically as frame size increases, yielding an
optimal frame size of only 60 bytes or 2 radio blocks. The
Gilbert trace experiences higher throughput values for small
frame sizes, but throughput decreases rapidly as the frame
size increases. Its optimal frame size is 150 bytes (5 radio
blocks). In contrast, the throughput plots for real trace and
the MTA trace follow similar paths. Furthermore, they both
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Figure 12. Retrace analysis of four traces.

yield an optimal frame size of 210 bytes (7 radio blocks).
In this particular case, retrace analysis shows that the im-
proved accuracy of the MTA artificial trace over the Gilbert
artificial trace leads to a more optimal design decision.

We used the standard error equation (see Equation 3) to
measure how closely each artificial trace approximates the
real trace. The standard error for even trace was 48, for
gilbert trace was 22, and for mta trace was 8. Small stan-
dard error values signify that the traces experience similar
error statistics.

In summary, we used the characteristics from the MTA
and Gilbert models to generate artificial traces, and used
these traces to measure how accurately both algorithms
model real traces. Both CDF and retrace analysis show
that the artificial trace from the MTA model more accurately
portrays the original real trace. Thus, we conclude that the
MTA model provides a more accurate approximation tech-
nique than the traditional Gilbert model.

8 Conclusion

In this paper, we present a novel algorithm for model-
ing networks channels that experience time varying error
statistics. The time varying nature of wirelss and some
wired channels has been a limiting factor in the analysis
or modeling using Discrete Time Markov Chains. How-
ever, our Markov-based Trace Analysis algorithm and tech-
niques allow us to separate a non-stationary network trace
into stationary traces and to accurately model the traces us-
ing DTMCs.

We compare the application of the MTA model and the
traditional Gilbert model to traces collected in the GSM
wireless digital cellular networks and show that MTA model
synthetic traces have burst error distributions that are closer
to the real distributions of collected traces than the distribu-
tion of traces generated from the Gilbert model.
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We further show that when using retrace analysis to
calculate the throughput for different frame sizes, our
MTA model yields the correct optimal frame size decision,
whereas less accurate models including the Gilbert model
and an even error distribution model yield incorrect and
non-optimal frame sizes. The results of the retrace anal-
ysis gives an example where a less accurate traffic model
leads to the wrong design decision.

We are in the process of applying the MTA model to
the problem of modeling next-generation 2.5 generation
and 3rd generation GSM networks, including the General
Packet Radio Service (GPRS). Both networks currently
have limited prototype deployment, making experimenta-
tion difficult. However, by creating MTA models for each
network, we will enable easy, rapid experimentation and
prototyping.
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