
1

Rome: Performance and Anonymity
using Route Meshes

Krishna P. N. Puttaswamy, Alessandra Sala, Omer Egecioglu,and Ben Y. Zhao
Computer Science Department, University of California at Santa Barbara

{krishnap, alessandra, omer, ravenben}@cs.ucsb.edu

Abstract—Deployed anonymous networks such as Tor focus
on delivering messages through end-to-end paths with high
anonymity. Selection of routers in the anonymous path construc-
tion is either performed randomly, or relies on self-described
resource availability from each router, which makes the system
vulnerable to low-resource attacks. In this paper, we investi-
gate an alternative router and path selection mechanism for
constructing efficient end-to-end paths with low loss of path
anonymity. We propose a novel construct called a “route mesh,”
and a dynamic programming algorithm that determines optimal-
latency paths from many random samples using only a small
number of end-to-end measurements. We prove analytically that
our path search algorithm finds the optimal path, and requires
exponentially lower number of measurements compared to a
standard measurement approach. In addition, our analysis shows
that route meshes incur only a small loss in anonymity for its
users. Meanwhile, experimental deployment of our anonymous
routers on Planet-lab shows dramatic improvements in path
selection quality using very small route meshes that incur low
measurement overheads.

I. I NTRODUCTION

Privacy of online communications is more important today
than ever before. With different aspects of our lives being
digitized and moving online, each of us is accumulating a
large volume of personal information in the form of online
records and logs. Sufficiently motivated, a malicious entity
can use social networks, blogs and online logs to obtain
information about our shopping and reading habits, travel
plans, personal opinions and friends and family. As shown
in the recent Viacom vs. Youtube ruling [6], online privacy
for the average Internet user may be sacrificed to protect
content owners against the misbehavior of the few. Similar
shifts in U.S. policies may also signal the advent of Internet
wiretapping as a common intelligence tool [16].

Use of anonymous communication tools such as the Tor
network [3] can protect users by preventing third parties
from monitoring personal web traffic and associating specific
IP addresses with private URLs or webpages. Tor provides
anonymity by routing user traffic through a random sequence
of encrypted tunnels, each linking two nodes in the public
Tor network of more than 1000 nodes. Although popular, the
deployed systems provide poor performance even for low-
overhead traditional applications like email and web brows-
ing [10], [17], [13]. Paths are built by connecting a set of
randomly chosen Tor nodes with highly varying resource ca-
pacity and load values. A recent TOR measurement study [10]
suggests that even the top quartile of Tor paths have round-
trip times around 2 seconds! These round trip times provide

unacceptable performance for general web browsing, and
completely rule out the use of latency-sensitive applications
such as Voice-over-IP.

Unlike traditional overlay networks, where paths are eas-
ily optimized for end-to-end (E2E) latency, optimizing for
low latency paths on Tor poses a significant challenge. Any
optimization scheme must preserve anonymity of the E2E
path. The key challenge is gathering information about router
latencies and capacities without information leakage. One
approach is to use a directory service (as used in Tor) that
advertises node capacities. However, malicious nodes can
attract large volume of flows and lower system anonymity by
falsely advertising highly desirable qualities. Recent studies
have demonstrated the effectiveness of this attack on a large
fraction of the users in the network even with low-resource
attacker nodes [1]. A more reliable alternative would be to
perform active measurements on E2E paths. However, this
requires the source node to contact a large number of first
hop nodes, thus increasing its exposure to malicious nodes
performing passive timing attacks such as the predecessor
attack [22], [21].

The goal of our work is to design a path construction
algorithm for anonymous routing networks that provides a
user-tunable tradeoff between performance and anonymity that
improves upon E2E path measurements. We propose the use of
structured anonymous “route meshes,” an overlay construction
that embeds a large number of random paths. We then describe
a dynamic programming algorithm that systematically detects
the optimal path for different hop lengths through the mesh,
finally selecting an efficient anonymous path. Our dynamic
programming algorithm is proven to be optimal, and supports
the simultaneous discovery of multiple node-exclusive backup
paths, all while minimizing the exposure of the source node
to potential attackers in the network. Our solution, Rome,
is general and can be adopted by all path-based anonymous
systems,e.g. [5], [3]. By performing selective measurements,
our approach achieves accurate and trustworthy results while
minimizing impact on anonymity.

This paper makes three key contributions. First, we describe
in Section III a general route mesh design for anonymous
path construction, and atestdrivealgorithm for scalable route
selection. Second, we use detailed analysis in Section IV to
prove the optimality of our algorithm, and bound the tradeoff
between anonymity and number of random paths searched.
Third, we present extensive simulation and measurement re-
sults that quantify the performance improvement of Rome over

2

existing path construction approaches.

II. PRELIMINARIES

Anonymous routing networks such as Tor construct
E2E anonymous tunnels from randomly chosen nodes in
the overlay. While this random selection supports strong
anonymity [3], [12], it ignores heterogeneity of node capacities
in the overlay, easily overloading low-resource nodes and
creating performance bottlenecks. Our goal is to improve
performance by allowing users to tradeoff performance and
anonymity by performing informed path selection followinga
small number of E2E measurements.

We first introduce the terminology we use in the rest of the
paper. All participants in the anonymous system are called
nodes. A node that initiates an anonymous communication
session is called thesourceand the destination of the con-
nection is referred as thereceiver. A specific communication
flow between a source and a receiver routes through several
nodes that we callrelay nodes, and we refer to the combination
of the source, receiver and relay nodes as thepath. The length
of time a source remains connected to the same receiver is a
session. If nodes fail and a path needs to be rebuilt, we refer
to the time between each path rebuild process as around.

In this section, we first discuss the performance versus
anonymity tradeoff in the context of the Tor anonymous
network. We then set the groundwork for our proposed system
by defining our assumptions and threat model.

A. Anonymity versus Performance

Chaum-mix based anonymous protocols include Tor [3],
Salsa [12], Tarzan [5] and others [24], [14], all of which
share a common tradeoff between anonymity and performance.
Practical requirements for performance require that the path
construction algorithm take into account the load or perfor-
mance of heterogeneous nodes in the overlay. The key question
is how information about potential routers is gathered and
accessed, without exposing the source node or making it
vulnerable to false advertisements.

Two Approaches for Quantifying Performance. There are
two general approaches for gathering performance data about
overlay nodes, performing active measurements to estimate
node capacity, or asking the nodes for information.

One can imagine a system where a source node repeatedly
performs E2E measurements onp potential paths to select one
that provides the desired performance properties. This is akin
to building paths and tearing them down repeatedlyp times.
These repeated performance measurements expose the source
node top new nodes in the system, increasing its vulnerability
to passive logging attacks such as the Predecessor attack [21],
[22]. In addition, it is likely thatp remains a small value, and
the source can only sample the performance of a small number
of potential paths.

The alternative is to ask nodes directly for their performance
information, and is the simple approach adopted by the Tor
anonymous network. Tor uses a central directory to maintain
node statistics on uptime and bandwidth. While this is scalable
and preserves anonymity, it relies on truthful informationfrom

individual nodes. Malicious nodes can claim high resourcesin
order to bias flows to choose them as routers [1]. This increases
the probability of multiple attackers colluding together to
break the anonymity of a single flow. Researchers have pro-
posed verification techniques such as bandwidth measurements
and distributed reputation systems. However, attackers can
actually obtain high-powered machines and truthfully advertise
high resources to bias path formation. Such an attack cannot
be prevented as long as the path formation algorithm included
bias for resource availability.

Our insights. From studying the two approaches discussed
above, we arrive at two independent insights that ultimately
lead us to our proposed system, Rome. First, we believe that
performance should be quantified by measurements initiated
by the source node. Clearly, malicious attackers can report
arbitrarily high performance values. In addition, indirect al-
ternatives based on distributed reputations or collaborative
measurements are all vulnerable to the Sybil attack [4], where
a single attacker can instantiate multiple online identities
and use them to manipulate collaborative measurement or
reputation systems.

Second, existing attacks have shown that biasing path for-
mation for performance leads to increased vulnerability to
resource-based attacks [1]. Therefore, tuning must be donein
a controlled fashion that improves performance while avoiding
dependence on the “optimal” path. Performing limited tuning
will enable flows to avoid both performance bottlenecks and
resource-based attacks. Finally, in the case of measurement-
based approaches, limiting performance tuning will also pro-
tect the source node from passive logging attacks.

B. Assumptions and Threat Model

We consider a passive (non-active) attacker model in this
paper, similar to the model considered in prior work [21],
[22], [14]. Attackers can passively log traffic, monitor links
and perform passive attacks including timing attacks and the
predecessor attack. But they cannot perform active attackslike
inverting the encryption, modify message contents, etc. We
assume that a fraction of the network is malicious, and hence
can monitor the traffic in a fraction of the network. Formally,
c nodes are malicious out ofN total nodes in the network.
Attackers can collude and share their logs with no delay to
enhance the impact of their attack.

In addition, we also make an assumption that each source
node (S) using Rome has access to one or more other
nodes, calledaliases(S1, S2...Sk in Figure 1). As we describe
later, these aliases help the sourceS perform the initial
Testdrive measurements anonymously. The source trusts these
aliases, and we conservatively assume that compromising the
anonymity of an alias compromises the anonymity ofS.
These aliases can be additional instances the source user is
running on different machines, as in [7]; or they can be trusted
friends linked to the source via a social network. As shown
in other recent work, trusted friends from social networks can
effectively protect nodes from traffic logging attacks [15].

3

S

S1

S2

R

R2

R1

Mesh Link

Final Path

Fig. 1. A simple k = 3 route mesh for selecting a 3-hop (L = 4)
route. The dark line denotes the optimal path found by testdrive.

III. ROUTE MESHES ANDTESTDRIVE

Based on our observations in Section II, we proposeRome,
a user-controlled system for optimizing performance of anony-
mous routes. At the core of our approach is a new construct we
call a “route mesh.” Instead of connecting an anonymous path
between the source and destination through a set of random
nodes, Rome selectsk times as many random nodes, and
randomly places them into a route mesh arranged in the form
of a regular matrix, where there arek potential routers to
choose from at each hop. We also propose an accompanying
end-host driven measurement algorithm calledtestdrive that
uses end-to-end (E2E) light-weight probes to determine the
“best” hop path, out of all possible paths through the route
mesh. For aL-hop anonymous path, Rome builds a random
k, L mesh for each flow based on user specified values ofk,
uses testdrive to determine the best path through the mesh,
and uses that path to carry anonymous traffic for the flow. We
show in Figure 1 an example of a route mesh fork = 3, L = 4
(we explain the symmetric design of the mesh below).

Rome’s route meshes allow users to customize their level
of anonymity-performance tradeoff. While testdrive is proven
to determine the optimal path in the mesh in polynomial
time, users control the size of the mesh, and consequently the
number of random paths sampled in the path selection process.
Increasing the value of parameterk adds more random paths to
the search space, increasing the likelihood of finding a better
path, and along with it an increased vulnerability to a passive
logging by resource-rich attacker nodes.

In each route mesh withk rows andL columns, there are
a total of kL possibleL − 1-hop paths. To determine the
optimal path out of this sample set, Rome must address two
main challenges. First, Rome must measure the performance
of different pathsanonymouslywithout revealing the source or
any node’s position in the mesh. Second, testing many (kL)
paths is infeasible in practice, and also exposes the source
to malicious traffic loggers. Therefore, the source needs to
identify the best path with minimal number of measurements
(<< kL). We present our solutions to these challenges in detail
in the remainder of this section.

A. Mesh Construction Details

As shown in Figure 1, Rome organizeskL nodes intok
rows andL columns. The source and itsk − 1 aliases reside
in the first column, and the receiver and itsk−1 aliases reside
in the Lth column. In the otherL − 2 columns, Rome places
k(L− 2) randomly chosen nodes. In the rest of the paper, we
will use column and level interchangeably.

Building a Symmetric Mesh. Using multiple sources and
receivers makes the mesh completely symmetric, such that
each router node hask predecessors in the previous level and
k successors in the following level. The reason for source
and destination aliases is simple. Without them, the first and
last columns of the mesh only has one node (instead ofk),
the source and receiver respectively. Therefore, all nodesin
the second level receive messages only from one node (the
source), and can easily identify their predecessor as the real
source. Similarly, nodes at the(L− 1)th column can identify
the real receiver as the only node they route probes to. A
symmetric mesh prevents these attacks.

Interconnections in the Mesh. Each relay node hask
incoming edges andk outgoing edges connecting it to all
nodes in the adjoining levels of the route mesh. All edges
are unidirectional, and always flow from the source towards
the receiver (left to right in Figure 1). Formally, we adopt
matrix notation for naming vertices: a vertexvi,j identifies
the jth relay node on theith row of the mesh. There is an
edge between two nodes in the meshif and only if the two
nodes are in consecutive levels. We represent an edge in the
mesh as:(vi,j , vm,j+1).

Tradeoffs. Since our mesh ofkL nodes can form a total
of kL different paths, we can compare the merits of our mesh
to an alternative of exploringkL disjoint random paths. Both
cases have a total ofkL paths, but the mesh is constrained to
exploring paths on a fixedkL nodes, while disjoint paths can
cover a larger portion of the node space. This disadvantage
is more than offset by two key benefits of the mesh: lower
exposure of the source to first hop routers (k in the mesh, and
kL in disjoint paths), and fewer measurements (k2L using
Testdrive, andkL for disjoint paths). We use analysis and
measurements to quantify these tradeoffs in Sections IV andV.

B. Anonymous Performance Probes in Testdrive

Rome faces the unique challenge of maintaining anonymity
of the source while performing path measurements. As a result,
we cannot use existing performance measurement techniques
such as per-hop latency measurements. We also cannot mea-
sure the latency from the source to individual mesh nodes,
since that would expose the source to all nodes in the mesh.
Finally, to limit initial path setup overhead, we cannot use
bandwidth capacity measurement tools such as PathChar to
perform per-link measurements.

Testdrive uses E2E latency measurements to the receiver to
estimate path performance. The source constructs an encrypted
message (onion) for each path it wants totest, and drives it
along the path. The message payload contains a request for the
receiver to construct and send back an anonymous reply in the
reverse direction. Note that malicious relays on a path cannot
distinguish these probe messages from regular messages, and
therefore cannot manipulate routing to shorten the E2E latency.
In addition, a source node can add extra padding and dummy
data to vary packet sizes and avoid recognition by intermediate
relay nodes. Since packet padding and anonymous route reply
techniques are well-studied in literature [24], [3], we do not
describe them here.

4

S

S1

S2 R2

R1

R

Eliminated link

Selected link

Common Suffix Link

Fig. 2. A snapshot of Testdrive in action. Optimal paths have been
computed for nodes through column 3. Computing the optimal path
to v1,4 means comparing E2E latencies for 3 paths, each containing
an optimal subpath and sharing the same suffix fromv1,4 to R.

Algorithm 1 Finds Optimal End-to-End Path in Mesh
Path=Source.OptimalPath(Mesh mesh)

1: RandomTest();
2: < P1, P2, ..., Pk >= Best Path(L);
3: for i = 1 to i ≤ k do
4: mi = Measure(Pi);
5: end for
6: b = index i s.t.mi = mini{m1, m2, ..., mk};
7: ReturnPb

This simple measurement mechanism accomplishes the goal
of measuring the cumulative round-trip-time (RTT) of a path.
For a given path, however, it cannot identify (and thus avoid)
its latency bottleneck, the node that is most heavily-loaded
(and therefore contributing the most delay). Unfortunately,
traditional techniques that localize performance bottlenecks
either reveal too much information or incur very heavy mea-
surement overheads. Luckily, this is not essential to our goal.
We show below a recursive measurement technique that finds
the optimal path using dynamic programming.

C. Minimizing Testdrive Probes

Our goal is to locate the minimum latency path out of
kL paths in the mesh using the minimal number of testdrive
probes. Using only E2E measurements to the receiver, we
propose a novel algorithm that incrementally isolates and
determines optimal subpaths between the source and receiver.
The idea is to incrementally determine the shortest path to each
node in the mesh by comparing latencies across alternate paths
to that node that share common subpaths.

The algorithm begins as follows. For each first hop relay,
we compare all E2E paths that differ only in their first hop.
Because they share all links except the first hop, comparing
their E2E latencies reveals the shortest first hop link to this
relay. We use this to build a dictionary of shortest paths to all
relays in the second column. Then for each relayr in column
3, we constructk E2E paths by extending thek shortest paths
for column 2 to r in column 3, and add a common suffix
path fromr to a receiver. Comparing E2E latencies of these
paths reveals the shortest paths tor. This process recurses
for all relays in column 3, and across columns. Thus after
stepi, we have computed the shortest paths from the source
to all k nodes in columni. Since the shortest path to any
node on thei + 1th column must contain a shortest path to
column i, we only need to compare the relative latencies of
k possible candidates for each node. We provide formal proof
for optimality of this algorithm in Section IV.

Algorithm 2 Produces Random Sequence of Dummy Probes
RandomTest()

1: x= RandomNumber();
2: for i = 1 to i ≤ k do
3: Pi =Horizontal Path(i,1,L);
4: end for
5: for i = 1 to i ≤ x do
6: for j = 1 to i ≤ k do
7: Measure(Pj)
8: end for
9: end for

Algorithm 3 Generates Common Suffix Subpaths for Con-
catenation
Path= HorizontalPath(row i, first column j, last column
L)

1: Path=0;
2: for m = j to m ≤ L do
3: Path=Path◦(vi,m, vi,m+1);
4: end for
5: Return Path;

We show an example of Testdrive in action in Figure 2.
Here, Testdrive is computing the optimal paths to nodev1,4

(the4th relay node on the1st row), having already computed
shortest paths for each of thek nodes in the previous column
(chosen paths marked in thick arrows). Computing the shortest
path to v1,4 comes down to comparing E2E latencies ofk
possible paths generated from the concatenation of an optimal
path to a predecessorp of v1,4, the link betweenp andv1,4,
and a common suffix path fromv1,4 to a receiver (R).

We next describe our algorithm in detail with pseudo-code.
The source builds a mesh and callsOptimal Path, described in
Algorithm 1, which locates the optimal path in the mesh. This
in turn callsBest Path, Algorithm 4, to compute an optimal
path to each of thek receivers in the last column.

Algorithm 1 also callsRandomTest(Algorithm 2), which
introduces a random number of dummy probe messages. These
messages prevent nodes from determining their location in
the mesh by monitoring message flows. Without them, nodes
in each level can monitor messages and could distinguish
“waves” of measurement traffic, and use the index of the wave
to determine which column it resides in the mesh. Introducing
random number of dummy messages artificially inflates any
such estimate. We analyze this mechanism in Section IV.

Algorithm 3 generates fixed suffix paths,e.g. (v1,4, R) in
Figure 2, which are concatenated to a precomputed optimal
path and a link being evaluated. The result isk end to end
paths that, when compared, reveal the shortest path to the node
in question. Algorithm 4 implements the recursive functionto
compute the best path starting from all sources. This algorithm
computes the best path involving all nodes in each level using
information computed from the previous recursive call. When
it terminates, it returns an optimal path for each of thek
receivers.MeasurePath returns the round-trip-latency of a
given path, which is a cumulative measure of both link delays
and processing delays at intermediate routers.

Our algorithm assumes that the link latency and node
processing delays are stable during our mesh measurement

5

Algorithm 4 Recursive Search Function for Optimal Paths
< P1, P2, ..., Pk >=Best Path(level g)

1: if g==1 then
2: for i = 1 to i ≤ k do
3: M [i, j] =0;
4: Pi =0

5: end for
6: Return< P1, P2, ..., Pk >;
7: end if
8: < P1, P2, ..., Pk >= Best Path(g − 1);
9: for i = 1 to i ≤ k do

10: for j = 1 to j ≤ k do
11: mj= Measure(Pj◦(vj,g−1, vi,g)◦ Horizontal Path(i, g,L));
12: end for
13: b = index i s.t.mj = minj{m1, m2, ..., mk};
14: M [i, g] = Pb ◦ (vb,g−1, vi,g);
15: end for
16: for i = 1 to i ≤ k do
17: Pi = M [i, g]
18: end for
19: Return< P1, P2, ..., Pk >

phase. This assumption is not really restrictive, since our
algorithm runs in time polynomial to the mesh size (shown
in Section IV), and mesh sizes are quite small.

IV. A NALYTICAL RESULTS

First, we will present formal analysis of the optimality of
testdrive. We then bound the loss in anonymity using Rome
compared to Tor-like relay paths. Finally, we quantify our
performance improvement over single relay paths.

A. Optimality of the Testdrive Output

We will first prove the optimality of paths produced by
testdrive, then quantify the cost of our approach in terms
of total messages generated to test paths in the mesh. The
algorithm constructs the optimal paths from the source-aliases
to each node on the mesh incrementally level by level. The
paths are constructed at a level using the information computed
in the previous level. This recursive structure allows us to
formalize our problem as a dynamic programming algorithm.
The optimal path, for each nodei at level L, is constructed
using the following recursive formulation:

Pi(L)

8

>

>

>

<

>

>

>

:

0, if L=1 and 1 ≤ i ≤ k;

min

8

>

<

>

:

P1(L − 1) ◦ (v1,L−1, vi,L),
P2(L − 1) ◦ (v2,L−1, vi,L),
...,
Pk(L − 1) ◦ (vk,L−1, vi,L)

, otherwise.

(1)

Using this recursive relation, we later prove that our dy-
namic programming algorithmBest Path has the optimal
substructure and overlapping subproblems properties. These
properties are necessary to prove the optimality of the path
resulting from theBest Path algorithm.

Proof of Optimality. To prove optimality, we need to show
that in a mesh withkL total nodes, testdrive produces the path
with minimum delay amongkL possible paths. To simplify
notation,vi indicates one of the nodes in theith level. Note

that a path from the source to the receiver must go through
exactly one node in each level.

Theorem 1. Let P =< v1, v2, v3, .., vL > be a resultant path
betweenv1 andvL from our dynamic programming algorithm,
thenP is optimal.

Proof: A path P is the optimal path betweenv1 and
vL if the cumulating delay incurred in going through nodes
v2, v3, ..., vL−1 is the minimum compared to all the possible
paths in the mesh (i.e.kL in total). Suppose there exists a
path B =< u1, u2, ..., uL > 6= P such thatDelay(B) <
Delay(P), then there are three cases to analyze.

First, P and B are completely disjoint, which means∀i
vi 6= ui. Note that we compare only pairs at the same level
because, by construction, a path is defined as the concatenation
of exactly one relay from each level in increasing order, i.e.
for i = 1 to i = L. Because of the fact that these two
paths are completely disjoint they will be compared before
the functionSource.OptimalPath() returns. This means that
P won the test of the minimal path on the last-but-one line in
theSource.OptimalPath() function. Therefore, the hypothesis
that Delay(B) < Delay(P) results an absurd.

Second, it is similar to the previous case, whenP and
B share an prefix on their paths, which means that on the
prefix they have the same delay. Also in this case, the paths
P and B will be compared on the last-but-one line of the
Source.OptimalPath() function with the same previous result,
which means we find the same contradiction about theDelay
of P with respect toB.

Third, P andB share a common suffix. Again, suppose that
P is the optimal path returned from our algorithm, but there
existsB such thatDelay(B) < Delay(P). Formally, when
two paths share a common suffix, it means that∃ 2 ≤ i ≤ L−1
such thatvj = uj ∀j from i to L. Obviously, theDelayon this
suffix is exactly the same, and soDelay(prefix of B) has to
be less thanDelay(prefix of P) in order forDelay(B) <
Delay(P). Since the recursiveBest Path(i) function (for the
level i) compares the incoming paths, onvi = ui the test
betweenDelay(prefix of P) and Delay(prefix of B) is
won from Delay(prefix of P) because it is the optimal
and soDelay(prefix of B) < Delay(prefix of P) is
impossible. This concludes the proof.

Optimal Substructure. Here we show that the pathP
generated by our dynamic programming algorithm has the
optimal substructure property.

Theorem 2. LetP =< v1, v2, v3, .., vL > be the path between
v1 andvL returned from our dynamic programming algorithm,
then each prefix ofP is an optimal path∀vi with 2 ≤ i ≤
L − 1.

Proof: Let P =< v1, v2, v3, .., vL > be the optimal
path. Assume that∃ 2 ≤ i ≤ L − 1 and ∃ a pathA =<
u1, u2, ..., ui > such that theDelay of A is the minimum for
the nodeui andvi = ui. In this setting,A is the optimal path
for the nodeui by assumption, and becauseui = vi we can
construct a new pathB =< u1, u2, ..., ui, vi+1, .., vL > which
hasDelay(B) = Delay(A) + Delay(suffix of P) that is

6

less or equal toDelay(P) because by assumptionDelay(A)
is the minimum for the nodeui. BecauseP is the optimal
path, the assumption about the optimality ofA is absurd –
which means thatDelay(A) ≥ Delay(< v1, v2, v3, .., vi >).
This result confirms the existence of the optimal substructure
property.

Overlapping Subproblems. An indispensable characteristic
of an optimization problem solved using dynamic program-
ming that the optimal solutions to subproblems have to be
reused over and over in order to generate the optimal solution
for bigger problems.

The optimal path is constructed level by level and so when
the algorithm computes the optimal paths for the nodes at level
i it reuses the optimal paths from each node at leveli−1 that
have been computed using the optimal paths from each node
at leveli−2 and so on. Formally,∀ level i and for each ones
of the k nodes in the leveli, the optimal paths are computed
using all thek optimal paths at leveli − 1.

Because our algorithm reuses the previously computed solu-
tions for subproblems to find the solution to bigger problems,
we are able to show the overlapping subproblem property. In
addition, by using the recursive subproblem solution, we will
show later (see Theorem 3) that the final cost of this algorithm
is polynomial in the input size (of the mesh).

Quantifying the Costs of Testdrive. In order to understand
the measurement overhead due to testdrive mechanism, we
quantify the amount of traffic introduced, in terms of the
number of messages sent, during the testdrive phase to find
the optimal path.

Theorem 3. The number of messages sent during the testdrive
phase isO(k2L2).

Proof: The algorithm tests each level once. To test a
level, the algorithm has to testk2 edges. The paths going
through these edges produce a total ofk2(L − 1) messages.
This must be repeated for each level, producing a total number
of messages equal to(L−1)k2(L−1), which is asymptotically
O(k2L2).

In real systems,k andL are very small (L = 3 in Tor [3]).
Considering that this is a one-time up-front cost that improves
the performance for an entire round, this overhead seems quite
reasonable. Next, we will quantify the loss in anonymity from
mesh-based probing.

B. Anonymity of the Mesh

Anonymous paths use relay to protect endpoint identities
from attackers. Previous work has shown that rebuilding paths
between the same end-points makes the flow increasingly
vulnerable to passive anonymity attacks [21], [22].

Attacks to Identify the Position of Relay Nodes.Attackers
are interesting in knowing their position in the path. This
knowledge enables attackers to launch attacks such as timing
attacks, and simplify the execution of predecessor attacks.
Hence, we need to guarantee that malicious nodes cannot
recognize their position on the mesh by counting messages.

During testdrive phase, the source sends measurement pack-
ets along different paths. Careful analysis ofBest Path shows

that there is an asymmetry in the measurement phase that
attackers can exploit to identify the source. During measure-
ments, a node in the second level (the level after the source),
sees packets from all its incoming links in one phase, then
in the next phase forwards traffic to all of its outgoing links.
However, the nodes in the other level see packets only from
the horizontal link first, and see packets from other links after
a few measurements. To avoid this asymmetry, we introduced
RandomTest()in testdrive, as described in Algorithm 2. This
procedure sends an initial random numberr of dummy packets
from the source along each horizontal path before starting real
measurements. We have the following:

Lemma 1. After the testdrive phase, a malicious relay node
in the second column (the column after the sources) can infer
that it is in the second position in the mesh with probability:

1
⌊ r

k
⌋+1 .

Proof: The testdrive mechanism tests the levels one
by one, and in each test levelk2 messages are involved. A
malicious node in the second level receivesr random messages
(indistinguishable from the test-path messages) and then it is
involved in the test phase. Because of these initial messages,
a node in the second level can only guess that it can be in
any position between the second and(⌊ r

k⌋ + 1)th level in the
mesh. As a result, the probability with which it can guess to
be a member of the second level is only:1⌊ r

k
⌋+1 .

Thus, the more the random messages sent, the lower the
probability with which a malicious node can guess its position.
It is possible that two or more attackers are in the mesh,
collude by counting the number of messages they receive and
derive their relative position in the mesh based on this count.
This helps the attackers perform predecessor attack faster.
However, this attack is valid only when the path length is
fixed. The source node can easily build meshes of different
lengths and avoid this attack.

Anonymity Lost Under Predecessor Attack.Next, we quan-
tify the anonymity of the mesh whenc colluding attackers
perform the predecessor attack. We compare the anonymity
of the mesh both with Tor-like paths, and the case where a
source exploreskL disjoint paths (the same number of paths
supported by Rome).

In Tor-like paths, the probability to compromise just the two
nodes directly in contact with the source and the receiver, the
source’s successor and the receiver’s predecessor, has been
shown to be(c

N)2 [21], [22]. To analyze the amount of
anonymity thatc colluding attackers can gain in an mesh-
based path, we need to figure out which are the positions
that the attackers should compromise in order to log the right
information about the endpoints. We do this in the next lemma.

Lemma 2. In each round,c colluding malicious nodes can
compromise position in which they are able to log the right
source and receiver with probability:1 − (1 − (c

N)2)k+1.

Proof: Each node in the column immediately after the
sources see all the sources. In a standard anonymous system,in
order to perform a successful predecessor attack the attackers
have to control the first position after the source and the

7

last before the receiver. In these systems in each round there
is only one path between source and receiver, and so the
probability that the attackers are in the right positions is(c

N)2,
as proven in [21], [22]. The mesh involves more nodes and
gives more opportunity to the attackers to log the source and
the receiver. The mesh structure allows malicious nodes to
attack the mesh usingk +1 different configurations –k cases
when the successor of a source inith row colludes with
a predecessor of a receiver in the sameith row, and one
case when the successor of the source and the predecessor
of the receiver on the optimal path collude. Formally, to
perform a successful predecessor attack, the malicious nodes
must compromise at least one of the following pairs of relay
nodes:∀ 1 <= i <= k vi,2 and vi,L−1 or the successor
of the source and the predecessor of the receiver on the
optimal path. The total probability of this happening can be
expressed as:

∑k+1
i=1

(

k+1
i

)

((c
N)2)i(1 − (c

N)2)k+1−i = 1 −
(

k+1
0

)

((c
N)2)0(1 − (c

N)2)k+1 = 1 − (1 − (c
N)2)k+1.

Now that we know the probability that the attackers can log
the right source and the receiver in a given round, we need
to next prove the number of rounds the attackers have to log
information in order to guess the right source and receiver
with high probability.

Theorem 4. The end-points of the mesh-based anony-
mous communication path can be discovered byc collud-
ing malicious nodes, performing the predecessor attack, in
O(N2k+2

N2k+2−(N2−c2)k+1 loge N) rounds, with high probability.

Proof: The predecessor attack logs information in each
round. The probability that the attackers are in the right
position has been presented in the Lemma 2. Let A be the
event that the malicious nodes control the relay nodes that
logs the right source-receiver information.

Let X1, X2, ..., XT be T random variables such that:

Xi =

{

1, if the event A is true during the i-th round
0, otherwise.

Let pi be the probability thatXi = 1, in our case
pi = P [A is true during i − th rounf] and let µ =
E[X] =

∑T−1
i=0 pi. By Chernoff bound [11] we have

P (X < (1 − δ)µ) < e
−µ(δ)2

2 . In particular, pi = 1 −

(N2−c2

N2)k+1 andδ = 1/2 we have:

µ =
T−1
∑

i=0

1 − (
N2 − c2

N2
)k+1 = (1 − (

N2 − c2

N2
)k+1)T

and so, P (X < (1 − δ)µ) =

P
(

X < 1/2(1 − (N2−c2

N2)k+1)T
)

<

e−1/8((1−(N2
−c2

N2)k+1)T). This probability is < 1
N iff:

T > 8(N2k+2

N2k+2−(N2−c2)k+1) loge N . We can see that with

probability N−1
N the number of rounds used from the attackers

is T = O
(

N2k+2

N2k+2−(N2−c2)k+1 loge N
)

.

As discussed in Section III-A, our mesh provideskL dif-
ferent paths, but only useskL different nodes. This limited
number of nodes limits the search space for possible paths,
but helps maintain anonymity against passive attackers, aswe
now show.

TABLE I
ASYMPTOTICAL BOUNDS TO ATTACK DIFFERENT ANONYMOUS SYSTEMS.

Strategies Rounds to attack W.H.P
Tor-like paths O((N

c)2 loge N)

Mesh-based paths O(N2k+2

N2k+2−(N2−c2)k+1 loge N)

kL disjoint paths O(N2kL

N2kL−(N2−c2)kL loge N)

Theorem 5. The end-points of an anonymous communication
system usingkL disjoint paths between them in each round,
can be discovered byc colluding malicious nodes performing

the predecessor attack inO(N2kL

N2kL−(N2−c2)kL loge N) rounds.

This proof follows the same scheme as Theorem 4, and so
we omit it. We summarize in the Table I results comparing the
vulnerability of three different approaches to the predecessor
attack: the standard Tor-like single path, Rome, and thekL

disjoint paths.

C. Quantifying the Probability of Finding a Fast Path

We wish now to analytically quantify the performance
impact gained by using route meshes in Rome. Specifically, we
will model a heterogeneous network and compare analytically
the probabilistic performance of Rome paths against both
randomly chosen Tor-like paths and selecting an optimal path
from kL disjoint random paths. We assign to each node in the
network a unique number that represents the delay that a node
brings into a path when it is added to an anonymous path.
This delay is a cumulative measure that represents multiple
factors such as CPU processing delay for crypto operations
and local network I/O processing delay. This delay measure
is continuous, and we can use it to order all network nodes
by their “quality.” We also assume that the network contains
a number of links, each characterized by a link latency. For
simplicity, we assume each node is associated with a link that
represents its access network.

We model a path as a combination of nodes and their links.
Because of the random selection of nodes, every couple of
nodes can be chosen as consecutive in the anonymous path
and so a link between each possible couple of nodes can be
selected. Finally, we can see a path as a chain of elements
“node-link-node”. In this setting there areN(N − 1)1 “node-
link-node” segments in the network that can be used to form
the anonymous path. Each of these has aweight that is the
sum of the link latency and the delay on the second node. We
do not consider the delay of the first node to avoid duplicate
delays when we combine elements to form a path. We can
sort theseN(N − 1) segments by their weight,i.e. from the
fastest segment to the slowest.

We now examine our three approaches to path formation,
and for each, present results that compute the probability of
building a path that is composed of segments belonging to the
top x segments sorted by lowest segment weight. We quickly
present the results in sequence, then compare them.

1We considerN(N − 1) items instead ofN2 because we do not admit
self-loop, which means, in our case, twice the same node in the same path in
consecutive position.

8

Tor-like paths. Let Ω be the set of tuples of segments of
sizeL− 1 from a population ofN(N − 1) segments. We will
selectL − 1 disjoint segments fromN(N − 1). Therefore:
Ω = {(n1, n2, ..., nL−1) : 1 ≤ ni ≤ N(N − 1) and n1 6=
n2 6= ... 6= nL−1}

Let x be a portion of segments from theN(N − 1) with
the lowest “weight.”

Claim 1. Let A be the event that a Tor-like system selects a
path within the bestx elements of the space, withL − 1 ≤
x ≤ N(N − 1), then the probability ofA is:

P [A] =

(

x
L−1

)

(

N(N−1)
L−1

)

The key result is that as paths grow longer (higherL), P [A]
decreases, since the chance of choosing a poor (high weight)
segment increases.

Disjoint Paths. In the case that we select the best
out of kL random disjoint paths, we can use the hyper-
geometric distribution to model our problem and compute
the desired probability. The selection ofkL paths with no
repetitions means choosing a set of tuples which size is
(L − 1)kL from a population ofN(N − 1) segments:Ω =
{(n1, n2, ..., n(L−1)kL) : 1 ≤ ni ≤ N(N − 1) and n1 6=
n2 6= ... 6= n(L−1)kL}

Let x again be the group of elements with lowest weight
among theN(N − 1) total segments.

Claim 2. Let B be the event that at least one of thekL paths
performs within the bestx elements. Let consider for simplicity
P [C] = 1−P [B] with (L−2) ≤ x ≤ N(N −1)− (L−1)kL

then the probability ofC is:

P [C] = 1 −

(L−1)kL

∑

i=(L−1)kL−(L−2)

(

x
(L−1)kL−i

)(

N(N−1)−x
i

)

(N(N−1)
(L−1)kL

)

Obviously it has to hold:

x∧kL(L−1)
∑

i=0∨kL(L−1)+x−N(N−1)

(

x
i

)(N(N−1)−x
kL(L−1)−i

)

(N(N−1)
kL(L−1)

)
= 1

The key result here is that increasingk increases the search
space and produces higher probability of a high-quality path.

Mesh Paths. In route meshes, we are buildingkL paths
using onlyk2(L − 1) segments from the same population of
N(N−1) total elements. The selection ofk2(L−1) items with
no repetitions produces:Ω = {(n1, n2, ..., n(L−1)k2) : 1 ≤
ni ≤ N(N − 1) and n1 6= n2 6= ... 6= n(L−1)k2}

Claim 3. Let D be the event that at least one of thekL paths
performs within the bestx elements. Let consider for simplicity
P [E] = 1−P [D] with (L− 2) ≤ x ≤ N(N − 1)− (L− 1)k2

then the probability ofE is:

P [D] = 1 −

(L−1)k2

∑

i=(L−1)k2−(L−2)

(

x
(L−1)k2−i

)(

N(N−1)−x
i

)

(N(N−1)
(L−1)k2

)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

P
[A

(x
)]

X Elements Sorted in Increasing Weight

kL Disjoint
Mesh

Tor-like

Fig. 3. Comparison of the different strategies withL = 3, k = 2.

Obviously it has to hold:

x∧k2(L−1)
∑

i=0∨k2(L−1)+x−N(N−1)

(

x
i

)(N(N−1)−x
k2(L−1)−i

)

(N(N−1)
k2(L−1)

)
= 1

In Figure 3 we compare the three strategies using typical
values forL and k (these results are representative of those
achieved using different parameter values). Clearly Rome
approximates the ideal gain from searchingkL disjoint paths,
and significantly outperforms the single path approach in Tor.

V. EVALUATION

We now present measurement results from a prototype of
Rome running on the PlanetLab Internet testbed.

Setup. We installed our software on 241 different PlanetLab
machines across the world, and ran our experiments for over
five days. This distributed network of shared machines closely
matches conditions on the public Tor network reported by
a recent measurement study [10]. Using this testbed, we
ran experiments for the Rome algorithm, a Tor-like path
construction algorithm, and for optimal path selection from
kL random disjoint paths. latency.

Implementation. We implemented the Rome algorithm, and
a simplified version of the Onion Router in Python. For each
datapoint, a source node selected a “best path” according
to each path formation approach, then measured its end-
to-end latency via repeated probes (averaging results of 5
probes). Each plot of the mesh and the Onion routing paths
in the following graphs is from 1000 such constructions, for
every combination of parameters. Plots ofkL disjoint paths
are from a subset of 15K disjoint onion path construction
measurements.

Metrics. In the graphs that follow, we plot the cumulative
distribution of the delays measured in our experiments. The
x-axis shows the actual delay values, while the y-axis shows
the percentage of paths that have latency less than or equal to
the corresponding latency on the x-axis.

Onion Routing Performance. As expected, we observed
in our measurements that the latencies of the Onion routing
for larger lengths degrade significantly. For example, in our
measurements, forL = 3 nearly 70% of the paths stay under
a latency of 1 second, while the latency of only around 40%
of the paths stay under 1 second when the pathL = 6.

Mesh Performance. Figure 4 shows the latencies from
mesh-based paths forL = 3, ask increases from 2 to 4. We

9

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

P
er

ce
nt

ag
e

of
 P

at
hs

)

Latency of Paths (Seconds)

Mesh (L=3, k=4)
Mesh (L=3, k=2)

Tor-like (L=3)

Fig. 4. Comparison of the Mesh-based and
Tor-like path latencies forL = 3 and different
values ofk. All legends sorted in the order of
plots.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

P
er

ce
nt

ag
e

of
 P

at
hs

)

Latency of Paths (Seconds)

kL Disjoint (L=3, k=4)
kL Disjoint (L=3, k=2)

Tor-like (L=3)

Fig. 5. Comparison of Tor-like and Min(kL

disjoint) path latencies forL = 3 and dif-
ferent values ofk. All legends sorted in the
order of plots.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
D

F
 (

P
er

ce
nt

ag
e

of
 P

at
hs

)

Latency of Paths (Seconds)

kL Disjoint (L=3, k=4)
Mesh (L=3, k=4)

kL Disjoint (L=3, k=2)
Mesh (L=3, k=2)

Tor-like (L=3)

Fig. 6. Comparison of Mesh-based and
Min(kL disjoint) path latencies forL = 3
and different values ofk. All legends sorted
in the order of plots.

also plot the Onion routing latencies forL = 3 for reference.
In all cases, nearly 90% of the mesh paths stay under 1 second
delay, while only around 70% of the onion paths stay under
1 second forL = 3 (and only 40% forL = 4). We can notice
that increasingk in the mesh improves the performance, but
the performance improvement diminishes for larger values of
k. We ran our experiments for larger values ofL, and observed
similar improvements. However, we noticed that Onion routing
performance degrades significantly for largerL. We do not
present the graphs for largerL for space reasons.

Performance ofkL Disjoint Onion Paths. Figure 5 com-
pares the performance ofkL disjoint Onion paths with a single
Onion path’s performance. We see thatkL is significantly
better, and that the performance improves with increase in the
value ofk, just like the performance of mesh.

Comparing kL Disjoint Onion Paths with a Mesh Path.
Figure 6 compares the performance ofkL disjoint Onion paths
with a single mesh for the same values ofk andL. The main
point to take away from the graph is this: the performance of a
single mesh is almost close to the performance ofkL disjoint
Onion paths for samek andL. In fact, for nearly 80% of the
paths, the performance of the mesh is slightly better than the
performance ofkL paths. This is a huge advantage of the mesh
considering the amount of traffic generated to testkL paths
and the loss in anonymity encountered in the process. The
performances of mesh is consistently close tokL for different
values ofk andL as shown in the Figure.

VI. RELATED WORK

Prior work has examined the impact of timing analysis
attacks on anonymous systems. Some assume global passive
attackers, and use packet counting or inter-packet arrival
delays to correlate flows [23]. The disclosure attack [8] re-
quires a large number of observations to compromise endpoint
anonymity, but has been improved by exploiting statistical
properties of its observations [2]. Finally, the HittingSet attack
on MIXes [9] used an alternative statistical model to reduce
endpoint anonymity.

Other projects have examined the tension between
anonymity and performance in anonymous protocols. [1]
showed the vulnerability of Tor’s biased path selection al-
gorithms to manipulation. Snader and Borisov proposed op-
portunistic bandwidth measurements to improve end-to-end

performance on Tor [17]. Finally, there are more powerful
and general timing analysis attacks that assume active attackers
that can compromise flows by inserting watermarks or stepping
stones into flow, and analyzing traffic characteristics at the
destination [18], [19], [20]. While powerful, these attacks are
difficult to perform in practice.

VII. C ONCLUSIONS ANDONGOING WORK

This paper proposes Rome, a user-managed approach to
tuning tradeoffs between performance and anonymity for
Chaum-MIX anonymous protocols. We show that together
with the testdrive algorithm, route meshes provide efficient
search for optimal paths using only end-to-end performance
measurements. Even small meshes (k=2 or 4) have a dramatic
effect on reducing end-to-end latency in our wide-area tests.
Finally, our analysis shows that this dramatic increase in
performance comes at a very low cost in anonymity.

We are currently investigating several interesting extensions
to route meshes. First, testdrive can be easily extended to build
node-disjoint optimal backup paths along with optimal paths
with no additional measurement costs. Second, we are actively
modifying Tor source code to evaluate Rome on the public Tor
network. When completed, source code for Rome extensions
to Tor will be made publicly available.

REFERENCES

[1] BAUER, K., ET AL . Low-resource routing attacks against tor. InProc.
of Workshop on Privacy in Electronic Society(Alexandria, VA, 2007).

[2] DANEZIS, G. The traffic analysis of continuous-time mixes. InProc.
of PET (May 2004).

[3] D INGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor: The
second-generation onion router. InUSENIX Security(2004).

[4] DOUCEUR, J. R. The Sybil attack. InProc. of IPTPS(March 2002).
[5] FREEDMAN, M. J.,AND MORRIS, R. Tarzan: A peer-to-peer anonymiz-

ing network layer. InProc. of CCS(Nov. 2002).
[6] HOLAHAN , C. Viacom vs. youtube: Beyond privacy. BusinessWeek,

July 2008.
[7] K ATTI , S., COHEN, J., AND KATABI , D. Information slicing:

Anonymity using unreliable overlays. Innsdi (2007).
[8] K ESDOGAN, D., AGRAWAL , D., AND PENZ, S. Limits of anonymity in

open environments. InProc. of IH (October 2002).
[9] K ESDOGAN, D., AND PIMENIDIS , L. The hitting set attack on

anonymity protocols. InProc. of IH (May 2004).
[10] MCCOY, D., ET AL . Shining light in dark places: A study of anonymous

network usage. Tech. Rep. CU-CS-1032-07, Univ. of CO, 2007.
[11] MOTWANI , R., AND RAGHAVAN , P. Randomized Algorithms. Cam-

bridge University Press, 1995.
[12] NAMBIAR , A., AND WRIGHT, M. Salsa: A structured approach to large-

scale anonymity. InProc. of CCS(Nov 2006).

10

[13] PRIES, R., ET AL . On performance bottleneck of anonymous commu-
nication networks. InProc. of IPDPS(Miami, FL, 2008).

[14] PUTTASWAMY, K. P. N.,ET AL . Defending anonymity against prede-
cessor attacks in bluemoon. InProc. of ICNP(October 2008).

[15] PUTTASWAMY, K. P. N., SALA , A., AND ZHAO, B. Y. Improving
anonymity using social links. InProc. of NPSec(October 2008).

[16] SCIENTIFIC AMERICAN. Internet eavesdropping: A brave new world of
wiretapping, August 2008.

[17] SNADER, R., AND BORISOV, N. A tune-up for tor: Improving security
and performance in the tor network. Inndss(San Diego, CA, 2008).

[18] WANG, X., CHEN, S.,AND JAJODIA, S. Tracking anonymous peer-to-
peer voip calls on the internet. InProc. of CCS(November 2005).

[19] WANG, X., AND REEVES, D. Robust correlation of encrypted attack
traffic through stepping stones by manipulating of interpackets delays.
In Proc. of CCS(2003).

[20] WANG, X., AND REEVES, D. Network flow watermarking attack on
low-latency anonymous communication systems. InProc. of IEEE
Symposium on Security and Privacy(2007).

[21] WRIGHT, M., ET AL . An analysis of the degradation of anonymous
protocols. InProc of NDSS(February 2002).

[22] WRIGHT, M. K., ET AL . The predecessor attack: An analysis of a threat
to anonymous communications systems.ACM TISS 7, 4 (2004).

[23] ZHU, Y., ET AL . Correlation attacks and countermeasures in mix
networks. InProc. of PET(May 2004).

[24] ZHUANG, L., ZHOU, F., ZHAO, B. Y., AND ROWSTRON, A. Cashmere:
Resilient anonymous routing. InProc. of NSDI(May 2005).

