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1. INTRODUCTION

Mobile computing is undergoing a significant shift right before
our eyes. In the past, the user was the center of the mobile net-
work, and her movements determined the operational properties of
the mobile network. But this is changing with the arrival of au-
tonomous mobile agents for a variety of applications. Today, semi-
autonomous drones are carrying out military missions in lieu of
manned-flights, while vacuum robots search for dirt in our homes.
In the near future, intelligent cars will be fully in control of deliv-
ering us to our destinations, and first responder robots will be first
on scene to find and rescue victims in disasters [13]].

One of the critical challenges limiting the growth of these au-
tonomous devices is the lack of accurate sensing systems, e.g. a
mobile imaging radar system that captures the position, shape and
surface material of nearby objects. These devices often operate in
less than ideal sensing environments: at night or in dark rooms, or
while moving at moderate speeds. Yet the desired level of accuracy
is very high, and errors in sensing can produce dire consequences.
For example, Google’s self-driving cars are reported to use maps
with inch-level precisions [18]], while devices that assist the visu-
ally impaired must have errors smaller than 10cm [3} [1T].

These constraints dramatically reduce the set of possible solu-
tions. Traditional imaging systems rely on visible light imaging
using cameras and object recognition. Unfortunately, they perform
poorly in dark or low-light conditions, and lack the precision de-
sired by these applications. Another approach relies on specialized
hardware such as large lens radar for accurate signal detection and
processing. But these devices are neither portable nor cost-effective
for commodity devices. Finally, acoustic solutions have been used
successfully for sensing over very short distances [24]], but are eas-
ily disrupted by background noise and fail over longer distances.

60GHz Imaging Radar. An intriguing and still unexplored so-
lution is a digital imaging radar system using reflective properties
of narrow beamforming wireless links. A radar system using high
frequency RF signals (e.g. 60GHz) has a number of key advan-
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tages over existing alternatives. First, 60GHz links are directional
and highly focused, making them relatively immune to interference
from environmental factors. Second, 60GHz beams exhibit good
reflective properties, and work reliably regardless of lighting con-
ditions under most indoor or outdoor conditions. Finally, 60GHz
radios are relatively inexpensive, and small enough to be included
in today’s smartphones and tablets.

In this paper, we present early results in our efforts to design
and evaluate a digital imaging radar system using reflections from
60GHz wireless beams. Such a system faces a fundamental chal-
lenge, that it is technically infeasible to build an accurate imaging
radar using wireless hardware on a static mobile device. A sim-
ple rule from imaging radar theory [7], defined by eq.(d, holds
for accuracy (radar resolution) and antenna size (aperture). For
smartphone-sized antennas, even the most high frequency radios
(5-120GHz) can produce resolutions no better than 1 meter, clearly
insufficient for our needs.

Resolution = wavelength x distance/aperture

)]
Virtual Antenna Arrays. We take an alternative approach, by
using user mobility to emulate a virtual antenna array with large
aperture. Our design includes the user’s mobile device as a receiver,
with a decoupled transmitter either embedded in the infrastructure
or “deployed” on-demand by the user (e.g. dropped by a drone). By
taking measurements of the same reflected signal at multiple loca-
tions, we can emulate the signals received by different elements of
a large antenna array. In addition, we can further improve the res-
olution of our “virtual antenna” using 60GHz transmissions. Since
60GHz has a carrier wavelength of Smm (12x shorter than WiFi
and cellular), using 60GHz links means a user can obtain fine-grain
resolution with just small movements in the measurement area.

In the remainder of this paper, we present Nightcrawler, a 60GHz-
based mobile radar system that leverages user mobility to emu-
late a large-aperture antenna array. We describe details of our de-
sign, including mechanisms for object detection, object imaging,
and controlling precision. We present experimental results on a
real 60GHz testbed, and show that we can achieve high precision
(~1 cm) imaging with as little user movement as half a meter.

Our work is a promising first step in the development of high pre-
cision, wireless imaging radar systems. Initial results show promis-
ing accuracy, as well as added potential for using loss profiles to in-
fer the surface material on detected objects. Ongoing work focuses
on tolerating location errors for the transmitter, as well as extending
imaging to multiple objects.

2. CONVENTIONAL VS. MOBILE RADAR

Before presenting our design of a high precision radar system,
we need to first describe the principle and hardware requirements
behind conventional imaging radars. We will then explain the dif-



ferences between personal mobile radar systems and conventional
imaging radar systems, and the challenges that arise as a result.

Traditional Radar Imaging. Imaging radars detect the presence,
position, and shape of an object by emitting directional RF signals
and capturing/analyzing the portion of signal reflected by the ob-
ject. Specifically, a radar estimates its distance to the object by
measuring the round trip time of the reflected signal, either directly
using a highly precise clock, or indirectly by transmitting frequency
modulation (FM) pulses and measuring the frequency offset of the
reflected signal [[7]. The radar also uses highly directional RF sig-
nals to “scan” the object. Because the signals reflected from the ob-
ject and its nearby spaces carry different signal strengths, the radar
can identify the object’s position and shape with high precision. Fi-
nally, high-end radars can identify object material using dispersion
analysis, where they emit RF signals at various carrier frequencies
and collect reflection results. Since different materials have differ-
ent reflection profiles across frequencies, one can estimate material
type by analyzing reflection results.

Overall, traditional imaging radars have strong requirements on
radio hardware, e.g. they require specialized FM circuits and highly
directional dish antennas. These are easily met for applications
where radar size and cost are not an issue, such as military radar
systems or radio telescopes for use in astronomy.

Why Mobile Radar Imaging is Hard. Our goal in this paper is
to design radar imaging systems to enable commodity mobile de-
vices to recognize their surrounding environments. This is highly
challenging, due to tight constraints on radio size, functionality and
cost. First, the small form factor of mobile devices puts a hard
limit on both antenna size (which determines aperture) and signal
directionality. As shown by the Radar Theory in eq. (1), the small
antenna size severely limits the maximum imaging resolution. For
smartphone-sized antennas (2.5c¢m aperture), the maximum imag-
ing resolution for an object of 10m away is 1m using 120GHz
transmissions or 24m at SGHz. Second, today’s mobile devices are
not equipped with FM pulse circuits, which are required for dis-
tance estimation by traditional radar imaging. Adding such circuits
would significantly increase costs for budget-conscious mobile ra-
dio chipsets. Similar cost constraints prohibit the inclusion of hard-
ware solutions to perform dispersion analysis for material detection
or clock-based distance computatiorL].

3. 60GHZ IMAGING RADAR

To overcome challenges of size and cost in mobile devices, we

propose to leverage human mobility to extend the reach of a single
mobile antenna. We proposes Nightcrawler, a mobile radar imag-
ing system using commodity 60GHz networking chipsetsﬂ Using
commodity chipsets, Nightcrawler performs object imaging using
just signal measurements, and improves imaging resolution far be-
yond the theoretical limit defined by eq. (. It achieves this by
leveraging user mobility and unique RF propagation properties of
60GH? transmissions. This section describes our core ideas and
sets the context for details of our prototype in §4]
Leveraging 60GHz. Today’s mobile devices are equipped with
multiple wireless interfaces, e.g. cellular, WiFi, Bluetooth, and
60GHz radio [22]. We implement Nightcrawler using 60GHz ra-
dios because its unique propagation properties present three signif-
icant advantages for our application.

!"To measure round trip time accurately, i.e. with 1cm accuracy, the
clock precision must be at least 0.033ns, which is extremely hard
to realize on smartphones and laptops.

*Low-cost 60GHz chipsets are available today on the mass market,
e.g. WiloCity chipsets cost $37.5 and has a 23m range 26].
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e 60GHz has a carrier wavelength of Smm, more than 12x shorter
than WiFi and cellular. According to eq. (1)), the required an-
tenna aperture for 60GHz is at least 12x smaller than WiFi/cellular
for the same imaging resolution.

e 60GHz’s short wavelength also makes its propagation much more

stable/predictable. With minimum multi-path effects, signal strength

remains stable over time, and is strongly correlated with propa-
gation distance. This increases the robustness of our imaging
design. For example, our imaging system can easily distinguish
between a line-of-sight signal and a reflected signal that traveled
over a longer distance, and use this fact to detect the presence of
objects in local neighborhood.

e The object reflection profile is more stable at 60GHz. For ex-
ample, the signal reflection loss has strong correlation with the
object material. This enables Nightcrawler to narrow down the
material type using signal strength measurements.

Mobility enabled virtual antenna array. Nightcrawler exploits
the fact that as a user moves, her mobile device can take signal
measurements at multiple locations, emulating a virtual antenna ar-
ray whose antenna aperture is significantly largetﬂ. This enables
highly directional signal reception by a mobile device similar to
those required by conventional radar imaging, and overcomes the
limitation imposed by the size of mobile devices.

User mobility also increases the system’s detection range and
ability to detect surface curvature of objects. Surfaces with differ-
ent curvatures reflect the signal to different directions in the space.
Measuring reflections from different locations helps the radar cap-
ture the curvature of each of the object’s multiple faces.

Decoupling transmitter and receiver.  Given the small size of
mobile devices, any mobile radar system cannot rely on just a single
device to serve as both transmitter and receiver. Our design for
a mobile radar system involves the primary mobile device, which
acts as a receiver, and a decoupled transmitter, which can be either
infrastructure-based, or a separate mobile device.

For example, an imaging system to assist the visually impaired
may include an app on the user’s smartphone, which coordinates
with one or more transmitters embedded in the walls or ceiling. In
contrast, an autonomous device (e.g. first responder robots) can
“deploy” a secondary transmitter device.

Once deployed (or periodically for infrastructure devices), the
transmitter (TX) sends 60GHz beacons that reflect off of nearby ob-
jectsﬂ. Each beacon includes the angle of transmission, and if possi-
ble the transmitter’s location. Users hold a mobile device equipped
with a 60GHz receiver (RX), and move in pedestrian speeds. Each
RX periodically scand] and records signal strengths for beacons
across different directions. Nightcrawler processes these data on
the fly to identify, locate and image objects in the local area.

4. Nightcrawler: A FIRST LOOK

We now describe our initial design. Seen in Figure [l a primary
device (RX) and decoupled transmitter (TX) start from “sensing”
mode to identify the presence of any object. Upon detection, they
switch to “imaging” mode to build a physical map of the object(s).
We assume that the RX knows its relative position from the TX.

4.1 Object Sensing

Nightcrawler devices sense objects using the bootstrapping pro-
cedure defined by IEEE 802.11ad, the standard for 60GHz trans-

3 Aperture of virtual array is equal to distance traveled by the user.
“The beacon transmitters rotate their beam direction periodically
to cover multiple objects or larger objects.

>Today’s 60GHz antenna arrays can adjust beam direction every
50us. So each RX can scan multiple directions in real time.
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Figure 1: The high-level overview of the Nightcrawler radar imaging system.

missions [2]. The TX operates in the directional mode, steers its
beam to different directions, e.g. in sectors of 3° in width, and em-
beds the direction in the signal. Operating in the omni-directional
mode, the RX measures RSS and reports a list of TX beam direc-
tions where RSS exceeds the noise levefl. The RX then identifies
and removes from the list the set of TX beam directions whose
transmissions did not experience any reflection. The remaining list
of directions, if any, are those where the transmission was reflected,
implying that at least one object exists in the local neighborhood.

To identify TX beam directions that did not experience reflec-
tion, the RX uses simple geometry to locate a set of candidate LoS
beam directions based on the relative position of TX and RX and
their antenna radiation patterns. It then validates each candidate di-
rection by comparing its RSS to the model-predicted value without
any reflection. If a direction gets (partially) reflected, its RSS will
be lower than the model-predicted value due to longer propagation
path and possible reflection loss.

4.2 Object Imaging

After detecting the presence of objects, Nightcrawler devices en-
ter the “imaging” mode. Intuitively, Nightcrawler should use the
above collection of “reflected TX beam directions” to drive imag-
ing. That is, the TX focuses its transmissions on these directions
(by rotating its beam repeatedly across them in a round-robin fash-
ion) while the RX locates and images object(s) in each direction.
To improve imaging efficiency, it is desirable to identify a subset of
the directions that cover all the potential objects. In our preliminary
work, we leave this optimization to future work and simply assume
that the reflected direction set only has a single direction.

With this in mind, our following description on Nightcrawler as-
sumes that during imaging, the TX focuses its beam on the targeted
direction and transmits the same beacon signal repeatedly. The RX,
while moving, operates in the directional mode and steers its beam
around to capture signals at each measurement location. This is
done using the antenna alignment procedure defined by 802.11ad
— the RX steers its beam across various directions and reports the
direction with the strongest RSS. Once the movement distance is
sufficient, the RX executes the imaging algorithm on the measure-
ment data to locate and image the object.

The Nightcrawler imaging algorithm includes three steps: (1)
coarse position estimation, (2) fine-grained imaging, and (3) mate-
rial detection. We now describe them in more details.

4.2.1 Coarse Position Estimation

Nightcrawler first estimates the object’s relative position and dis-
tance to the RX. This narrows down the search space for the next
step, which applies a more sophisticated approach to perform de-
tailed imaging. The RX estimates the object position by extracting
the angle of arrival (AoA) of the beacon signal. At each measure-

SThis step is slightly different from 802.11ad where the RX only
reports the direction with the strongest RSS.
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ment location, Nightcrawler derives the AoA as the strongest re-
ceive beam direction. Since the TX embeds the beam direction in
each beacon signal, the RX can estimate the object position as the
intersection of the TX beam direction and the AoA.

Ideally, Nightcrawler should identify object position reliably from
measurements at a single location. In practice, AoA detection can
be noisy due to hardware artifacts, imperfect reflection from un-
even surface, and the fact that each TX beam is not narrow enough.
For example, our testbed results show that when using a TX beam
of 10° beamwidth, the noise in AoA estimation can lead to up to
1m position error when the object is 6m away from the RX.

Nightcrawler overcomes this challenge by performing “major-
ity vote”” on measurements collected at multiple locations. Specif-
ically, Nightcrawler considers data from N locations, each pro-
ducing an estimated object position. It then identifies a cluster of
[N/2] + 1 positions with the minimum MSE among themselves,
and computes the center of the cluster, i.e. the position with the
minimum MSE to all the positions, as the final object position. This
solution, while simple, can effectively improve the positioning ac-
curacy. Our testbed results in §3]show that with N=9, the position
error in the above example reduces from 1m to below 10cm.

4.2.2 Fine-grained Imaging

This step derives the precise position and shape of the object
by implementing a large aperture virtual antenna array from ag-
gregating signal measurements at different locations. Specifically,
Nightcrawler identifies the object shape by detecting its boundaries
as well as surface curvature, i.e. flat, convex or concave.

Detecting Object Boundaries. Inspired by airplane radars that
implement synthetic aperture radar (SAR) to detect object size [7]],
Nightcrawler uses a small and moving RX antenna to emulate el-
ements of a large array. The resulting synthetic array has a very
narrow beam pattern and can identify signals at fine-grained direc-
tions. Thus the RX can observe a sharp decrease in RSS along the
object boundaries, and locate these boundaries with errors bounded
by the (very narrow) beamwidth of the synthetic array.

A key component of our design is how to aggregate measured
signals across locations to emulate the large array. This is done
by “reverse-engineering” the process of a phased array focusing its
beam. Specifically, let the estimated object position in the previous
step be Xo. Nightcrawler picks a set of reflection “focus points”
near X as the potential boundary positions. Given a target image
resolution r, any two neighboring focus points should be within a
distance of /2. For each focus point, Nightcrawler applies a focus
process to derive the RSS of signals reflected by the small area of
width r around the given focus point. This is done by first shifting
the phase of signals collected at each measurement location by its
distance to the focus point and then summing up all the signals
across locations. After applying this on all the focus points, the
RX obtains a reflected RSS map along the object itself. The object
boundaries are the two focus points where the RSS drops sharply.



Note that Nightcrawler emulates the large array without synchro-
nizing TX and RX. This is because all the measurements are done
by a single receiver RX. As long as the TX sends the same beacon
signal (per TX beam direction) during imaging, the RX can elimi-
nate any phase offset caused by differences in measurement time.

Inferring Surface Curvature. Nightcrawler recognizes the ob-
ject’s surface curvature based on a simple intuition — signals re-
flected by a flat surface display a standard sector shape that can be
reconstructed based on the antenna pattern and the signal propaga-
tion distance, while signals reflected by a convex (concave) surface
display a wider (narrower) sector shape. Driven by this intuition,
Nightcrawler infers the surface curvature by the RX constructing
the beam pattern of the received signal. Specifically, as the RX
moves, it measures the RSS at different segment of the signal beam
and aggregates them to build the received beam pattern.

While our first design of Nightcrawler identifies the type of sur-
face curvature (flat/convex/concave), our ultimate goal is to dis-
cover detailed surface feature such as the curvature radius. This
requires more sophisticated models on 60GHz signal reflection,
which we leave to future work.

4.2.3 Material Detection

Finally, Nightcrawler infers the object material based on the RSS
loss due to reflection. At 60GHz, the reflection loss correlates
strongly with the material type and the incident angle. Existing
measurements have built a comprehensive database on 60GHz re-
flection loss, covering 38 common materials and different incident
angles [[14]. Our own measurements on five different materials also
align with existing findings.

The key element is to accurately determine the amount of RSS
loss due to reflection and the reflection incident angle. To derive
the reflection loss, Nightcrawler first computes the signal propaga-
tion distance (TX — object — RX) and applies the Friis free-space
model to derive RSS without any reflection loss (RSS™). It then
subtracts from R.SS™ the measured RSS value to derive the reflec-
tion loss. Computing the signal incident angle is easy given the
relative position between TX and RX.

4.3 Imaging Overhead vs. Precision

Nightcrawler’s imaging computation overhead is low. Our MAT-
LAB implementation finishes in less than 15ms for all test cases.
We expect that a good native C implementation on mobile devices
should be comparable if not faster. Therefore, Nightcrawler’s over-
all overhead and delay are dominated by its signal measurements.

Nightcrawler’s measurement delay depends on user walking dis-
tance. The further the user walks, the larger the imaging delay. But
user walking distance also directly affects the size (or aperture) of
the synthetic array and thus imaging resolution. So there exists a
tradeoff between imaging response time and resolution.

We should also pay attention to measurement frequency, i.e. the
number of measurement locations for a given walk distance. Ide-
ally we should minimize measurement frequency to save energy.
However, since the number of measurement locations maps to the
number of elements in the synthetic array, we need sufficient num-
ber of measurements to remove array artifacts such as side lobes.
Our initial analysis suggests that for pedestrian speeds up to 1m/s,
the measurement frequency of 1 per 40ms (or 1 per 4cm move-
ment) is sufficient to produce a high-quality synthetic array.

S. INITIAL FEASIBILITY STUDY

We perform initial evaluation on Nightcrawler using both testbed
measurements and system simulations. We use commercial off-the-
shelf 60GHz radios to conduct microbenchmark experiments on
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Figure 2: 5 different objects used in our testbed measurements.

Nightcrawler, and to evaluate its end-to-end imaging performance
under simple scenarios. We also run simulations to identify poten-
tial performance of Nightcrawler under general scenarios.

5.1 Testbed Measurements

Our testbed consists of two HXI Gigalink 6451 60GHz radios,one
as the transmitter (TX) and the other as the mobile receiver (RX).
Compared with an ideal Nightcrawler system, the testbed has two
hardware limitations. First, since there is no suitable 60GHz steer-
able antenna array on the market, we emulate beam steering by set-
ting a horn antenna on a mechanical rotator and adjusting its beam
direction in units of 0.5°. This can provide accurate results because
60GHz signal strength is largely determined by directionality and
signal patterns of the main beam lobe, and our horn antenna’s main
lobe pattern closely aligns with that of a 10x10 array [26]. Since
60GHz propagation is stable over time (verified by others
and our own measurements), at each location the RX can accu-
rately measure RSS across different directions despite its slower
beam steering speed. Second, the HXI radio reports RSS without
any phase information, so in the computation we set the phase of
signals measured at all RX locations to the same value. This makes
it difficult to perfectly focus the beam during boundary detection,
and can potentially degrade the imaging performance.

Our experiments consider a simple scenario of object recogni-
tion. We place an object in the middle of a room. The TX is
2m away from the object and emits a fixed beam towards the ob-
ject. The RX starts from an arbitrary location in the room, and as
she walks around, Nightcrawler identifies the object position and
shape. We test five objects with different size and surface curva-
ture, shown in Figure 2l We also experiment with pedestrian users
as objects. By default, the user walks 45¢m and performs one RSS
measurements every lcm. As mentioned earlier, we assume the
RX knows her relative position to the TX.

Position & Distance Accuracy. We first examine the accuracy
of the coarse position detection described in 2.1 with N = 9.
Table [T lists errors in estimated position, distance and surface ori-
entation when the RX is 3m away from the object. Across the
five different objects, the position offset ranges between 1.7cm and
12cm while the distance offset is even smaller (< 0.4cmﬂ. This
translates into less than 1° orientation error. Furthermore, we ob-
serve that the accuracy is higher for objects with planar surfaces,
compared to those with convex surfaces. This is because signals re-
flected by convex surfaces become more scattered compared with
planar surfaces, leading to larger variance in estimated reflection
points. We also repeat the experiments by varying the RX to ob-
ject distance between 2m and 6m and obtain similar results. Over-
all, Nightcrawler achieves an 10cm-level accuracy which should be
sufficient for most mobile applications.

Boundary Detection Performance. Table [2] lists the perfor-
mance of Nightcrawler’s boundary detection in terms of the off-

"The distance offset is the projection of the position offset along
the line of object—RX.



Objects in Figure 2] Position | Distance | Orientation
offset offset error

(a) Desktop (Metal) 1.7cm 0.lcm 0.2°

(b) Monitor (Plastic) 6.9cm 0.1Icm 0.6°

(c) Board (Wood) 5.5cm 0.1cm 0.5°

(d) Convex Box (Plastic) | 12.3cm 0.4cm 1.0°

(e) Cylinder (Metal) 10.4cm 0.3cm /

Table 1: Performance of Nightcrawler’s Position Estimation.

. . . Object-RX distance
Object Width (Material) T5m T3m o
24.5cm (Metal) 1.5cm | 3.0cm | 3.0cm
26¢cm (Plastic) 4.0cm | 5.0cm | 4.5cm
22cm (Wood) 4.0cm | 4.0cm | 4.5cm

Table 2: Accuracy of Nightcrawler’s boundary detection, in terms of
the offset in detected object width.

set in object width. Here we compare three objects of similar
size but different materials. Despite the lack of phase information,
Nightcrawler already achieves 5cm and less error in object width
estimation. Later in our simulation result confirms that when
phase information is available, the error in width detection is cut in
half. In addition, we also observe that the width accuracy for the
metal object is slightly better than those of the plastic and wooden
objects. This is mostly because the smoother metal surface enables
stronger signal reflection. Finally, we see that the closer the user
(RX) is to the object, the more accurate the imaging. This aligns
with the Radar Theory in eq.(I) as well as the common expectation
on imaging — as a user gets closer, she sees the object more clearly.

End-to-end Imaging Results. By combining the results on po-
sition, boundary and surface curvature, Nightcrawler can produce
a detailed map of the object surface. Figure [3] plots the imaging
result of a metal object at different user-to-object distances. The
thin blue dash line in Figure Blb)(c) marks the true object shape,
while the thick black line is the imaging result of a surface. We see
that Nightcrawler can identify the physical surface almost perfectly.
Notice that in this example the user’s walking path is in parallel
with the TX transmitting direction. This is not necessary. In our
experiments, the walking direction does not affect the results much
as long as the path is relatively straight. It is the user-to-object
distance and walking distance that matter the most.

Tracking Moving Pedestrian.  We also evaluate Nightcrawler
when the object is a moving pedestrian traveling at 1m/s towards
the RX (see Figure ). Here the RX user travels 0.8m in total
during imaging. In the first 0.4m, the RX detects a human 2.3m
away (with a 6.9cm offset); in the second 0.4m, the human is 1.5m
away and the position offset reduces to 0.27c¢m. This preliminary
result shows that Nightcrawler can potentially identify and track
moving pedestrian using signal reflection.

5.2 Simulation Results

We perform simulations to examine Nightcrawler in absence of
testbed artifacts. Our simulation reproduces the scenario in Fig-
ure 3[a). The metal object surface is represented by dense discrete
points and does not introduce any reflection loss. The propagation
follows the Friis free-space model for 60GHz transmissions.

Is phase information beneficial? Figure [Bla) compares the
imaging error on object width with and without phase informa-
tion. The simulation results without phase information are similar
to our testbed measurements. When phase information is available,
Nightcrawler’s error reduces by 50%. Therefore, a practical imple-
mentation of Nightcrawler can benefit significantly from obtaining
signal phase information from the underlying 60GHz chipset.

79

Impact of array elements. Due to cost and sizing limits, mobile
60GHz chipsets are likely to use small number of array elements,
e.g. the Wilocity chipset has a 2x8 array, which leads to weaker
directivity. We compare Nightcrawler performance using different
arrays with 2x8, 6 x 6 and 10 x 10 elements, and found that they
perform similarly if signal phase information is available.

Impact of object size. We examine a broad range of object sizes
between 5¢m and 1m, and vary the user walk distance between
0.5m and 1m. Our results, omitted for brevity, show that the ab-
solute imaging error is independent of the object width, as long as
the object is not too wide so that its edges fall out of the scope of a
single 60GHz beam. To cover these objects, Nightcrawler needs to
rotate the TX beam during the measurement process (see $4.1)).

How far should users walk? Nightcrawler seeks to achieve high-
resolution imaging by a user walking a short distance. Figure[3{b)
plots the required walk distance vs. the resulting width error under
different user-to-object distances. Since the virtual antenna aper-
ture scales with the walk distance, it is no surprise that the further
the user walks, the higher the accuracy is. A practical implementa-
tion of Nightcrawler should exploit this tradeoff to achieve robust,
efficient and high responsive object imaging. Overall, the result is
very encouraging — even when the user is 8m away from the object,
traveling just 1m can achieve 2cm imaging accuracy.

6. RELATED WORK

Sonar and Radar Systems.  Sonar and radar systems are de-
ployed to detect the speed and position of moving targets, or to
measure the contour of the terrain [21]]. Portable radar devices are
available to detect concealed weapons in airports [10]. To provide
high-resolution imaging, these systems require either special hard-
ware, e.g. X-Ray or lenses too large for mobile devices [23]]. Dif-
ferent from existing works, Nightcrawler achieves high-resolution
imaging using 60GHz networking chipsets that are being integrated
into today’s mobile devices. While our design is inspired by the
SAR method used by airplane radars [[7]], our key contributions in-
clude the novel application of the SAR concept to mobile 60GHz
scenarios and the detailed system design and experimentation.

Camera-based Systems. Many have developed image-based ob-
ject recognition systems [9}[16] [17]. These methods, however, can-
not accurately measure distance between user and object. Google’s
Project Tango []] detects an object’s position and shape using three
bulky cameras, including an infrared depth camera and a fish-eye
lens. Yet it only works in environments with good visibility, and
cannot reliably identify object material. Nightcrawler overcomes
these challenges by leveraging 60GHz networking chipsets in mo-
bile devices. We show that reflections of 60GHz signals can reveal
key physical properties of the object surface even without any light.

RF-based Systems. Recent works on WiFi-based systems [4] [3]
target coarse-grained human or object tracking, e.g. detect-
ing relative movement of human body, recognizing predefined user
gestures [20], or scanning tumors or weapons on human body [6].
Nightcrawler differs from these works by performing detailed imag-
ing on objects, including its shape, surface curvature and material.
Nightcrawler chooses 60GHz as the underlying RF technology be-
cause compared with WiFi, 60GHz offers much smaller wavelength
and much more stable (and predictable) signal propagation. This
largely boosts the imaging performance, enabling Nightcrawler to
identify, locate and image various objects with high precision.

7. OPEN CHALLENGES

We present the initial design of Nightcrawler, a 60GHz imag-
ing radar that locates and images objects in local neighborhood.
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Figure 4: Testbed results: Nightcrawler de-
tects and locates a pedestrian user.

Our initial evaluation under simple scenarios confirms the feasibil-
ity of Nightcrawler in performing high-resolution object imaging.
As ongoing work, we seek to improve and further experiment on
Nightcrawler. In particular, we consider the following directions.

Handling device positioning errors.  Our basic design assumes
the RX knows her position to the TX and tracks her position pre-
cisely when walking. In practice, any positioning error translates
into inaccurate phase shifts during boundary detection (see §4.2.2),
and can largely affect imaging performance. Addressing this chal-
lenge requires mechanisms for reliable ranging and motion tracking
(e.g.[13]) and those for identifying and correcting phase errors.

Identifying curvature details. We take a data-driven approach to
extract surface curvature details — collect a large measurement on
different surfaces, identify key features and then develop efficient
classification algorithms.

Imaging multiple objects. ~ When multiple objects are in range,
Nightcrawler can potentially image them simultaneously. Doing
so requires the RX to first narrow down a subset of “reflected TX
beam directions” that cover all the objects (see §4.2.2). The TX
then beams along these subset of directions during the imaging
measurement process.
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