

1

An Empirical Study of Collusion Behavior in the Maze P2P File-Sharing System

Qiao Lian†, Zheng Zhang†, Mao Yang †§, Ben Y. Zhao‡, Yafei Dai§, Xiaoming Li§
† Microsoft Research Asia, Beijing, China

‡ U. C. Santa Barbara, Santa Barbara, CA, USA
§ Peking University, Beijing, China

Abstract

Peer-to-peer networks often use incentive policies to encourage cooperation between nodes. Such systems are gen-
erally susceptible to collusion by groups of users in order to gain unfair advantages over others. While techniques
have been proposed to combat collusion, our lack of understanding of user collusion in existing systems makes
evaluating such mechanisms difficult. In this paper, we report analysis and measurement results of user collusion in
Maze, a large-scale peer-to-peer file sharing system with a point-based incentive policy. We search for the existence
of colluding behavior by examining complete user logs of the entire system, and use a set of collusion detectors to
identify several major collusion patterns. In addition, we evaluate how proposed reputation policies would perform
in Maze, and identify reasons why they might miss their objectives. Our results are generally applicable to large-
scale peer-to-peer systems, and can help guide the design of more robust incentive schemes..

1. Introduction

File-sharing networks such as Kazaa and Gnutella have
popularized the peer-to-peer (P2P) resource sharing
model. In these large and distributed networks, selfish
users often “free-ride”, or act in their self interests to
exploit the system. Numerous research efforts have
focused on the use of incentive systems to encourage
sharing among users. Despite the effectiveness of these
incentive systems, they are generally vulnerable to vari-
ants of the Sybil Attack [5]. In a Sybil attack, users take
advantage of the zero-cost nature of online identities to
create multiple identities. These online identities can
then actively collude to cheat the incentive system.
 While incentive systems are designed to discour-
age or prevent collusion [12], very little is known about
how users actually collude in real systems, making col-
lusion prevention difficult. This information is ex-
tremely difficult to gather, simply because it requires a
very complete view of the inner workings of the net-
work. Most measurements to date are performed by
logging traffic at the edge nodes while performing que-
ries or membership operations [14][15].
 In this paper, we present measurements of actual
user collusion activity in the Maze peer-to-peer file-
sharing network. Maze is a popular Napster-like P2P
network designed, implemented and deployed by an
academic research team at Peking University, Beijing
China. As a measurement platform, Maze is unique in
two ways. First, the Maze software is fully controlled
by our research team, making it possible to deploy and
embed measurement code inside clients. Second,

Maze’s centralized architecture means we have access
to all control and query traffic. Maze uses a simple in-
centive system based on a points system that increases
with uploads and decreases with downloads. A trusted
central server audits file transfers and adjusting user
points accordingly.
 For our purposes, we define collusion as collabora-
tive activity within groups of users that gives to group
members benefits they would not be able to gain as
individuals. We note that it is impossible to determine
users’ intent. Our study focuses purely on observable
action patterns that produce results similar to those pro-
duced by colluding users. In addition, our work is a
first step towards understanding collusion behavior.
Quantifying all forms of collusion is a topic to be ad-
dressed in ongoing work. It is also difficult to deter-
mine definitively whether multiple identities belong to
the same person. Issues such as DHCP, NATs and mo-
bile laptops prevent us from reliably detecting the use
of multiple virtual identities.
 This paper makes three key contributions. First, we
gathered a month-long log of Maze that includes details
of every file transfer performed in the system. For each
transfer, we record the end peers, the file ID, transfer
size and other data. We analyze this dataset for user
collusion behavior. Second, we derive several collusion
detectors based on our analysis of these logs, and use
them to quantify the number and types of collusion in
Maze. Finally, we apply the EigenTrust reputation sys-
tem [8][9] to our dataset, and show that colluding users
are difficult to detect using traditional reputation sys-
tems. To the best of our knowledge, this is the first em-
pirical study of collusion behavior in an incentive-

2

based P2P system. Our results validate conclusions of
previous work on incentive mechanisms [4][8][9], but
also show that certain types of collusion are difficult to
detect and deter.
 The rest of the paper is organized as follows. Sec-
tion 2 gives a brief description of Maze and the data
used for this study. Then, Section 3 describes each of
our collusion detectors in detail, along with their results
when applied to the Maze dataset. Section 4 compares
and contrasts the detectors. Then in Section 5, we apply
the EigenTrust algorithm to the Maze dataset and ana-
lyze the results. Finally, we discuss related work in
Section 6 and conclude in Section 7.

2. The Maze Peer-to-Peer system

Before we present our analysis of the Maze logs, we
begin by giving background information on the Maze
system. The Maze file-sharing system was originally
deployed to address issues of data location and load-
balancing on FTP servers as part of the T-Net Web
search project [20]. As T-Net became popular, its lim-
ited number of FTP servers led to significantly de-
graded performance. Maze provided a way to distribute
content without incurring further infrastructure costs.
 At login, Maze peers 1 authenticate to a central
server, and upload an index of its locally available
shared files. The central server maintains heartbeats
with all online peers, and its index supports full-text
queries across all of their shared files. In addition to
searching the central index, users can browse three peer
lists: a friend-list, a neighborhood-list, and an altruistic
list.
 The friend-list is a user-controlled list of friendly
peers, initially bootstrapped as a random set of peers by
the central server. Over time, these friend-lists form a
continuously adaptive social network. In contrast, the
server provides each peer with a neighborhood-list of
other peers sharing the same B-class IP address. These
provide a list of local hosts with likely high-bandwidth,
low latency links to the local host. Finally, the altruis-
tic list is a collection of peers with the highest “Maze
points” provided by the server. These peers are hosts
who have contributed the most to the system, as deter-
mined by the Maze incentive system. Their status as
“celebrities” in the user population provides additional
social incentive for sharing [18].

1 We use the terms “user” and “peer” interchangeably
in this paper. We also use “clients” of peer x to refer to
the peers that download from x.

 A peer can recursively browse the contents of the
Maze directories of any level of these lists, and initiate
downloads when they find interesting content. As of
November 2004, more than two-thirds of all downloads
are initiated through these peer lists. As will become
clear later, these social lists have unexpected impacts
on the design of a good incentive system.
 Peers download from each other directly in a P2P
fashion. Peers behind NATs can only connect to non-
firewalled peers. Peers perform “swarm downloads”
whenever possible by simultaneously retrieving differ-
ent file chunks from multiple users, with priority given
to peers that share IP address prefix. After each transac-
tion, peers involved report to the central server, which
adjusts their points accordingly.

2.1 The Maze incentive system

Maze currently operates using a point system, where
peers consume points by downloading files and earn
points by uploading files. Download requests are
queued according to their points:

PerequestTim 10log3⋅−
where P is the requestor’s point total. Frequent uploads
provide peers with higher points and faster downloads.
While simple, this system faces two issues. First, do we
keep the assignment of points as a zero-sum game,
where the points lost by one peer are gained by the
other? Enforcing such a policy imposes hardships on
peers with slow links and those who hold many un-
popular items. As a result, the Maze community dis-
cussed and voted for a rule which gives uploading more
points than downloading in order to encourage upload-
ing. This enables more flexibility, but has the side ef-
fect of allowing two interactive peers to create a net
gain in points after mutual interaction. The other issue
is bootstrapping points for new peers. Peers must have
sufficient initial points to download content for it to
share later. In the current system, Maze allows a peer to
download > 1GB of data before its downloads are
throttled at a rate of 300 kbps.

1. New users are initialized with 4096 points.
2. Uploads: +1.5 points per MB uploaded
3. Per file downloaded:

• -1.0/MB downloaded within first 100MB
• -0.7/MB per additional MB between 100MB and

400MB
• -0.4/MB between 400MB and 800MB
• -0.1/MB per additional MB over 800MB

4. Service differentiation:
• Each peer orders download requests by

T = requestTime – 3logP, where P is the re-
quester’s point total.

• Users with P < 512 are limited to 200Kb/s.

3

Fig. 1. The Maze point system

 Maze uses service differentiation to reward and
punish users for their behavior. The point system gives
downloading preference to users with high scores.
These users add to their request time a negative offset
whose magnitude grows logarithmically with their
score. The parameters of the credit system are designed
to optimize for large downloads in a user population
where the majority of users have access to high-
bandwidth links. Since the majority of bytes exchanged
on Maze are part of large multimedia files, download
point deductions are graduated to weigh less heavily on
extremely large files. For instance, a user can use up
her initial points by downloading 4GB worth of 1MB-
sized files, 5.2GB worth of 400MB-sized files, or
6.8GB of 800MB files.

Note that Maze policies award at least 50% more
points for uploading than downloading. This system
rewards uploaders and encourages additional partici-
pants to join the system. We recognize that this allows
a net points gain as a result of a symmetric operation.
This property is likely a source of user collusion. We
discuss evidence of this later in Section 3.1. While the
total points in the system will increase over time, we
have yet to observe any negative impact on the overall
system.

2.2 Data collection

While continuous logs of Maze traffic are maintained,
we perform our analysis on a log segment gathered
during the span of one-month period from 2/19/05 to
3/24/05. During this period, more than 161,000 active
users participated in a total of more than 32 million file
transfers. Data traffic totaled up to more than 437 Tera-
bytes.
 The data gathered for this study consists of a col-
lection of user points during this month and the detailed
traffic log. When two peers report the completion of a
file transfer to the server, our log keeps only the data
from the uploading peer. Each traffic log entry contains

the following: uploading peer-id, downloading peer-id,
log upload time (server), transfer start time (source),
transfer end time (source), bytes transferred, file size,
downloader IP, file md5 hash, and full file path. The
bytes transferred can be different from the file size if
the transfer was interrupted, or if the transfer is sourc-
ing from multiple peers.
 Note that the log only records the downloading
peer’s IP address as seen from the uploading peer. Thus,
if both peers are behind the same firewall, the IP ad-
dress of the downloader can be an internal IP (e.g.
192.168.*.*, 10.*.*.*). Otherwise it will be either a
public IP or the NAT address, depending on whether
the downloader has a public IP or not. A single ma-
chine can thus be tracked as a list of different IP ad-
dresses, including changes due to DHCP and host mo-
bility in the case of laptops. In analyzing the colluding
behavior, we frequently need to infer the network vi-
cinity of the peers based on IP. To simplify this, we use
the peer’s most frequently used IP address.
 As we discuss later, we also need to associate
online identities with the physical machine the peer
uses. We began by to using the hash of the hard drive
serial number, first reported when the client logs onto
Maze. We later discovered, however, that the serial
number is not guaranteed to be unique. Thus to
uniquely identify the machine that a peer uses, we con-
catenate the peer’s IP address with the hash of the hard
drive serial number. As ongoing work, we are investi-
gating the use of network MAC addresses as an alterna-
tive identifier.
 We anonymize our logs to protect the privacy of
Maze users. User identities are hashed into random
strings. In this paper, we refer to distinct users using
common names from a dictionary (e.g. Alice and Bob),
and random alphabetic letters to represent 8-bit blocks
of an IP address (e.g. C.H.97.140).

3. Identifying collusion topologies

We now discuss our efforts to detect collusion attempts
in the Maze system. Based on our experiences and
analysis of the traffic logs, we design a number of col-
lusion detectors aimed at locating different types of
collusion patterns. We describe these in detail in this
section, and later summarize their strengths and weak-
nesses.

3.1 Repetition-based collusion detection

Our first attempt starts by drawing a crude picture of
colluding activities in Maze by looking at how users
use uploading to generate Maze points. Given that
Maze does not explicitly guard against collusion, and

4

the point system generates a net gain from a symmetric
operation, colluders can benefit from using only a small
“working set” of files to generate points. We use this
assumption to generate our first collusion detector.

Detector 1: (Repetition detector) Colluders generate
large amounts of upload traffic with repeated content.

 We examine all transactions recorded in the one-
month log, and construct a large graph, where vertices
represent individual users and edges represent aggre-
gated file transfers between users. This results in a di-
rected graph with roughly 4.5 million individual edges.
Out of all edges, 221,000 contain duplicate files in the
transfer traffic. This accounts for roughly 4.9% of all
peer relationships. We define duplication degree be the
ratio of total upload traffic in bytes over the size of the
unique data in bytes. A high duplication degree means
a low proportion of all traffic across the link is unique.
 We plot the duplication degree of all edges against
their total upload traffic as a scatter plot in. For duplica-
tion degrees of 5, 10 and 20, there are 890, 148, 27
edges with duplication degree greater than each respec-
tive threshold. Given that this data is generated from
activities performed over the span of a month, it is
highly likely that a good fraction of these peers are ac-
tively colluding. We also note that colluders are likely
to use nearby machines to perform the transfers. Such
network locality will maximize throughput and gain
from collusion. We show this in Figure 2: Duplication
degree in uploading from peer A to peer B by classify-
ing edges by the IP affinity between the two peers. The
IP affinity data also confirms that edges with larger
amount of repeat traffic are more likely to be across
peers with similar IP addresses.

Figure 2: Duplication degree in uploading from peer
A to peer B

To better understand this behavior, we take a
closer look at the temporal distribution of duplicate

traffic by individual users. Table 1 lists the top-6 edges
with the most duplicate traffic. The table shows each
user’s total uploads, and uploads on the edge with the
most repeat traffic (max edge). Each table entry also
includes a temporal locality graph. Each bar stands for
one day, and the height of the bar is proportional to that
day’s upload traffic. These results show that there is
strong temporal locality present. If the same file is up-
loaded multiple times close in time, then it is more
likely to be used as a colluding tool than legitimate
sharing.

Src ID, U/D (GB) Unique data

on max edge
Total traffic
on max edge

Temporal locality
(x: date, y: upload)

Alice 158/76 7.5 GB 126 GB
Bob 251/12 6.0 GB 98 GB

Cindy 104/31 1.9 GB 81 GB
David 114/149 3.1 GB 62 GB
David 114/149 10.1 GB 52 GB
Eric 78/18 7.4 GB 44 GB

Table 1: Top 6 edges with the most redundant
traffic

The temporal locality provides strong evidence that
all 5 of these peers are colluding aggressively. The
maximum duplication degree is close to 43 by peer
Cindy. Peer David colludes with two different peers,
with non-overlapping temporal behavior. Our data
shows that the data transferred during these colluding
sessions are generally large files or directories. For ex-
ample, peer Alice uploaded the MSDN DVD image
(~3GB) repeatedly for 29 times.

Figure 3: Collusion link topology of 100 links with
the highest ratio of duplicate transfers

Locating nodes that carry large amounts of dupli-

cate traffic has given us a starting point in detecting
collusion. The next step is to better understand collu-
sion topologies. For this, we built a visualization tool
that draws edges with highest ratio of duplicate traffic.
Figure 3 gives a snapshot of the top-100 duplicate traf-
fic links. This figure shows graphically the collusion
patterns. There are pair-wise collusions, which is a re-
sult of the asymmetric point system (upload earns more

5

than download for the same amount of bytes). There is
also a more sophisticated 3-party topology. Interest-
ingly enough, it also shows a number of star-shaped
topologies, which is not what we have expected. The
following two sections deal with these two kinds of
collusion in greater detail.

3.2 Group-based collusion detection

After examining collusion based on duplicate traffic,
we turn our attention to mutually colluding peers. In
Maze, group collusion occurs when peers exchanging
large amount of data among themselves to earn points.
This is a consequence of the asymmetric point assign-
ment in Maze. If two peers upload 10GB data to each
other, each of them will acquire at least 5 thousand
points. The asymmetric point system was a result of
extensive discussions and voting on the Maze forum,
where users wanted to encourage uploading more than
downloading. Through this and other studies, we are
trying to quantify the impact of this incentive policy.

Examining topologies in Figure 3 shows three pair-
wise colluding groups and one 3-party colluding group.
We refer to them as (Fred, Gary), (Olga, Pam), (Harry,
Cindy), and (David, Alice, Quincy). Our data shows
that most group collusions are pair-wise groups, and
groups of three or more are rare. Intuitively, the traffic
pattern for a pair-wise colluding group is where two
peers upload a relatively large amount of their total
upload traffic to each other. To quantify this, we define
the property pair-wise degree. For two peers A and B,
pair-wise degree is the sum of all bidirectional traffic
between A and B, divided by the sum of total traffic
uploaded by A and B. This gives rise to the detector of
group collusion.

Detector 2: (Pair-wise detector) large amounts of mu-
tual upload traffic compared to total uploads.

Figure 4: Pair-wise collusion detector by the ratio of
mutual upload traffic over total traffic.

Figure 4 shows the statistic results of applying this
detector to our dataset. There are 28 thousands pairs of
peers with mutual uploads, every point in the figure
stands for such a pair. The x-axis is the total uploads by
these two peers, and the y-axis is the corresponding
pair-wise degree. The horizontal line denotes pair-wise
degree equals to 0.5. Above that line are pairs whose
mutual upload exceeds uploads to peers external to the
pair, and there are 73 of them. While it is possible for
two friends to share large amounts of mutually interest-
ing content, but the highly concentrated nature of these
uploads appear indicative of collusion. As Maze be-
comes popular, it may even be the case that a user uses
Maze to transfer personal files between two of his ma-
chines. Regardless of the actual reasons, whether there
is intent to collude, such behavior still results in artifi-
cially inflated point values for peers who are not con-
tributing to the community at large.

One impediment to effective collusion of any kind
is connectivity. It is laborious to transfer large amounts
of data through a narrow pipe just for the purpose of
colluding. One may argue that colluders might anyway
do pair-wise colluding across wide-area if they are truly
desperate. But they can more easily achieve sufficiently
high points simply by whitewashing. Thus, we expect
that good connectivity between peers is a requirement
for pair-wise collusion. To verify this, we again ana-
lyzed the IP affinity of peer pairs, labeled with different
symbols in Figure 4. We see that most colluding peers
have similar IP addresses. IP address vicinity implies
they are likely physically close to each other in the net-
work and therefore are connected using a higher band-
width connection.

Peer 1

external Peer 1 Mutual upload Peer 2 Peer 2
external

1.7GB Fred 24GB 23GB Gary 5GB
23GB Cindy 81GB 27GB Harry 0GB
52GB David 62GB 126GB Alice 32GB

Table 2: Top-3 big mutual upload pairs. Peer 1/ex-
ternal includes all traffic from peer 1 not going to 2.

We take a closer look at some specific examples of

possible colluding peer-pairs. Table 2 lists three top 3
pairs ranked by pair-wise degree. Considering the
asymmetry of the point system, even the most unbal-
anced peer (Harry) will end up with a net point gain
(after uploading 27GB and then downloading 81GB).
Recall that our repetition-based collusion detector
found a 3-party collusion. Two of the peers in this col-
lusion are detected as a pair-wise collusion (peer David
and Alice). However, this match does not necessarily
mean that the pair-wise detector can detect larger collu-
sion topologies. If a group of N colluding peers collude
by perfectly balancing their traffic across mutual links,
the pair-wise degree between any two peers can drop as

6

low as 1/(N-1). With the possibility of creating much
more sophisticated colluding topologies, designing a
robust group-collusion detector clearly remains a great
challenge.

3.3 Spam account collusion

In our repetition-based topology in Figure 3: Collusion
link topology of 100 links with the highest ratio of du-
plicate transfers, we observed an unexpected colluding
topology – the star-shaped colluding group. The center
of the star gains points by uploading to many other
peers. Compared to pair-wise colluding which involves
a limited number of peers, this is counterintuitive: what
would motivate these leaf-peers to download duplicate
content from the central peer without any benefit in
return? The traffic is only unidirectional. Even more
puzzling is how the central peer found so many “self-
less” peers to cooperate?

The truth is that the center peer is the colluder, and
the leaf-peers are also controlled by the colluder. We
call these leaf-peers spam accounts, peers that are cre-
ated and then discarded when they become useless.
Using spam accounts is a creatively way of leveraging
the zero-cost nature of identities in Maze. This strategy
is similar to the link spam [17] problem in search en-
gines using page rank to sort results. Why would a
Maze user use this strategy rather than just using a sin-
gle machine to restart with new identities, or whitewash?
One possible reason is that users typically want to
maintain one primary account for social status or to
maintain Maze-related state such as. the Maze point
total or the friends-list. To do this, a Maze user needs to
maintain a persistent primary account active. This type
of collusion is also efficient because it earns points
much faster than pair-wise collusion for the same
amount of traffic. In order for this to work, the colluder
must have more than one machine. If a user has access
to only one machine, then she can cheat the system
only through account whitewashing.

There are 4 star-shaped topologies caught by the
repetition detector in Figure 3. Ted has fan-out of 8,
Mary and Sam have fan-out of 4, and Ingrid has fan-out
of 3. We take a closer look at them in Table 3. Except
for Ted’s group, there is generally strong IP address
similarity between the center peer and its leaf-peers. All
of this indicates a high likelihood of collusion. Peer
Ted, however, turns out to be the Maze user with the
highest uploads of the month (3.8TB). Since its 8 edges
carrying duplicate traffic shows very little IP address
similarity, Ted is likely not a colluder.

While zero-cost identities are easy to generate,
physically separate machines are expensive to obtain.
This means spam accounts can be large in number, but

live on relatively few machines. We define PM ratio
(number of peers / number of machines) to describe
how densely a peer’s clients are distributed across dif-
ferent physical machines.
Detector 3: (Spam account detector) high Peer to Ma-
chine ratio can indicate spam account colluding.

source
peer
U/D

upload
traffic client IP Client id

12GB A.B.220.148 C1
6.0GB C.D.98.169 C2
6.5GB C.E.135.202 C3
14GB F.G.14.35 C4
6.6GB C.H.110.166 C5
6.9GB A.B.167.140 C6
6.7GB A.B.121.135 C7

Ted
3.8TB/
124MB

4.3GB I.J.157.156 C8
31GB C.H.97.140 C9
9.6GB C.H.97.140 C10
8.0GB C.H.97.140 C11

Mary
73GB/
5.2GB

10GB C.H.97.140 C12
17GB H.U.8.26 C13
13GB H.U.8.26 C14
9.7GB H.U.8.207 C15

Sam
47GB/
0.5GB

5.8GB H.U.8.101 C16
29GB K.L.0.150 C17
16GB K.L.0.150 C18

Ingrid
78GB/
5.8GB 11GB K.L.0.165 C19

Table 3: Peers suspicious of doing spam account
colluding, as found by repetition detector

We use the method described in Section 2.2 to as-
sociate a peer with its machine. One problem with the
PM value is the signal to noise ratio. A single upload to
some random peer will count as an additional peer-
machine pair and significantly reduce the PM value.
We remove these noise values by discarding the bottom
smallest uploads that, in aggregate, holds less than 20%
of all upload traffic. Figure 5 presents the statistical
result with each point representing one peer.

Figure 5: Spam account detection by PM ratio.

7

source peer

U/D
Upload
traffic Maze id Client

total d/l
Machine

id
Client activity

temporal
3.4GB C20 3.4GB M1
3.2GB C21 3.2GB M1
3.1GB C22 3.1GB M1
2.5GB C23 2.5GB M1
1.7GB C24 1.7GB M1
1.5GB C25 1.5GB M1

Jane
19GB

450MB

1.1GB C26 1.1GB M1
31GB C27 32GB M2
10GB C28 10GB M2
9.6GB C29 11GB M2
8.0GB C30 8.0GB M2

Mary
73GB
5.2GB

6.8GB C31 8.3GB M2
12GB C32 12GB M3
11GB C33 11GB M3
8.5GB C34 8.5GB M3
8.5GB C35 8.5GB M3
8.1GB C36 8.1GB M3
6.6GB C37 6.6GB M3
6.6GB C38 6.6GB M3

Kelly
87GB
6.5GB

6.6GB C39 6.6GB M3
29GB C40 29GB M4
16GB C41 16GB M4
12GB C42 12GB M4
11GB C43 11GB M5
8.6GB C44 8.6GB M4

Ingrid
78GB
5.8GB

0.51GB C45 0.51GB M4
10GB C46 10GB M6
7.6GB C47 7.6GB M6
7.1GB C48 7.1Gb M6

Larry
30GB
2.0GB

4.3GB C49 4.3GB M6
Table 4: Some top spam account colluders

The x-axis of Figure 5 is the total uploads made by

the peer, and the y-axis is the peer’s PM ratio. We can
see that most peers have PM ratio slightly above 1 and
below 2. This is statistically normal because of a good
portion of Maze users do whitewashing [19], which
means that on average, every machine hosts more than
1 peer. However, there are peers with exceptionally
high PM ratios (the highest reaches 7). It means that
these peers are mostly whitewashers acting as spam
accounts helping a peer collude. Table 4 lists the peers
whose upload > 10GB and have PM ratio > 3 (and thus
some of the peers in Table 3 are not included). The
temporal column shows when each client generated its
peak loads of Maze traffic. Consistent temporal colli-
sions between virtual nodes on the same machine may
signal collusion.

We cannot be certain they are actually colluding.
To dig deeper, we make use of three heuristics: 1) The
spam accounts should have good connectivity to the
colluder (the center peer). We use IP address similarity
to infer this. 2) Spam accounts only download data
from the center peer. 3) The spam accounts perform a
large amount of downloads in a relatively short life-
span.

All of these heuristics confirm the likelihood that
these peers are colluding. Most spam accounts live on
the same machine; they generally download exclusively
from the center peer; and they are only active for short
life spans (1~2 days). One exception is Mary’s spam
accounts (C27, C28, C29, C30 and C31). It turns out
that they download from another peer with closely re-
lated content (several chapters of a Korean television
episode). The center peer (Mary) also downloaded re-
lated content from the same source. Note that peer Ted,
which was identified as a center of a star with 8 fan-
outs each carries large duplicate upload, is not included.
As we mentioned earlier, Ted is the largest uploader of
the month and seems to not be a colluder.

3.4 Upload traffic concentration

Pair-wise colluding and spam account colluding share
one common trait: there is a high volume of upload to
relatively a few destination machines. This observation
is important, because we now shift our focus from the
flow among peers to among physical machines. In pair-
wise colluding, two machines upload towards each
other. In spam account colluding, uploads flow to a few
machines on which the colluder repeatedly generate
new spam accounts. This is intuitive because colluders,
in general, control a limited number of machines.

We define the traffic concentration degree or TC
degree in short, as the ratio of a peer’s highest upload
traffic to a single machine to his total upload traffic.
For instance, if x uploads to 10 clients for a total of
100GB, and the machine receiving the most traffic re-
ceives 90GB, then the TC degree of x is 0.9. On the
other hand, if y has 100 clients each residing on a dif-
ferent machine, and each of them downloads 1GB from
y, then y’s TC degree is only 0.01. The higher the TC
degree, the more likely that the peer is performing ei-
ther pair-wise or spam-account colluding. This is our
fourth detector:

Detector 4: (Traffic concentration detector) peers with
exceptionally high TC degree.

The results are summarized in Figure 6, where
each dot represents a single peer. The x-axis is the
peer’s total upload, while the y-axis is the TC degree.
In general, the more uploads a peer has, the more likely
that uploads are scattered across a wider range of ma-
chines (and peers), resulting in a lower TC degree.
Figure 6 confirms this in our data set. For peers who
upload around 10GB, their TC degrees are roughly
10%. For heavily uploaders who upload around 1TB,
the TC degree drops to about 1%. However, colluders
show up differently with exceptionally high TC degrees:

8

they are located in the middle towards the top of the
graph (total uploads about 100GB and large ratios close
to 1). There are seven peers that have uploaded more
than 50GB and their TC degree is larger than 0.6. This
means that more than 60% of its 50GB uploads is going
to a single machine). We take a closer look at these
specific peers in Table 5.

Figure 6: Upload traffic vicinity detector result

Peer ID, Total uploads, Peer IP Top client traffic

Cindy 104GB K.L.3.111 81GB
Eric 78GB M.N.6.140 54GB
Mary 73GB C.H.97.197 68GB
Kelly 87GB F.O.181.118 69GB
Ingrid 78GB C.D.29.37 66GB
Alice 158GB C.D.156.182 158GB
Nancy 50GB I.T.132.118 50GB

Table 5: Top 7 colluders detected by TC detector

We list seven peers in Table 5. For each peer, we
list the total traffic going to the beneficiary node. Six of
them are also detected by previous detectors, but there
is a new peer: Nancy. The pair-wise detector missed it
because Nancy has no pair-wise traffic with any other
peer. The spam account detector missed Nancy because
it mainly uploads to only one peer and its PM ratio is

almost one. It turns out that it ranks #7 by repetition
detector (we listed only the top 6 in Section 3.1).

4. Comparing collusion detectors

Figure 7: Venn diagram of collusion detectors.

After presenting four different collusion detectors, we
summarize the top colluders discussed in earlier sec-
tions in Figure 7, and graphically show how they were
detected by each of our four detectors. Table 6 lists the
top-7 colluders according to the total upload traffics. It
also shows (with shaded cell) which detector is respon-
sible for finding out the colluder.

The first observation we make is that spam-account
and pair-wise colluders do not overlap. This is logical,
because the two detectors are designed specifically with
these two patterns in mind. It does not mean that there
are no colluders who engage in both activities simulta-
neously. Doing so can potentially evade our detectors.
However, given that we have no active collusion detec-
tion mechanism and that spam-account colluding earns
points in a more “cost-effective” way, there is reason to
believe that this is does not happen in practice.

As we discussed earlier, the traffic concentration
detector is reasoned out of one straightforward observa-
tion, that colluders generally control relatively few ma-
chines. Thus it looks only at how “concentrated” a
peer’s upload traffic goes to other machines. Figure 7

 Table 6: 7 Top colluders and how our detectors have found and missed them

missed
peer

repetition detector
(max redundant traffic
among all upload links)

pair-wise detector
(pair-wise degree
/total upload)

spam account detector
(total upload/PM ratio)

traffic concentration
detector (total upload
/ratio of biggest)

Bob 92 0.98%/253 251/1.1 251/0.39
Fred 20 86%/55 26/1 26/0.93
Gary 17 86%/55 29/1 29/0.80
Harry 23 83%/131 27/1 27/1.0
Larry 3.6 N/A 30/3 30/0.98
Jane 2.9 1%20 19/7 9.3/0.94
Nancy 36 N/A 50/ 1 50/0.95

9

shows that indeed, this detector covers a good portion
of both spam-account and pair-wise colluders. To un-
derstand this further, we take a closer look of the cases
that this detector missed. The colluders missed by traf-
fic concentration detector are Bob, Fred, Gary, Harry,
Larry, and Jane (last column of Table 6). We can see
that Bob is missed because its TC degree is not high
enough (0.39). All others have very larger TC degrees
(the smallest being 0.80), and they are missing from
this table simply because of their relatively small total
upload traffic (we only looked at those have upload
traffic greater than 50GB). This shows that the TC de-
tector is in fact quite effective at detecting colluders.

While promising, it is still too early to conclude
that the TC detector will successfully detect colluders
in an online fashion. As discussed, identifying a peer’s
machine in the presence of DHCP, NAT and other is-
sues is non-trivial. Choosing the threshold for collusion
in TC degree detector is still quite ad hoc.

 Table 6 shows that the repetition detector misses
six colluders (column 2). All six peers have too small
redundant traffic on a single link to be noticed. For
example, peers Larry and Jane have a lot of collusion
traffic, but their traffic is scattered across multiple up-
load links. The repetition can only be found if we ag-
gregate multiple links together (Figure 3). The pair-
wise detector missed four colluders. Two among the
four colluders have little number of mutual upload with
other peers. The other two have no mutual upload with
any peer at all. Spam account detector missed five col-
luders. All the five colluders evaded the spam account
detector because they have very low PM ratios.

Figure 7 shows that the repetition detector also
works quite well. However, the reason that it works at
all is because the current version of Maze has no ex-
plicit defense mechanism against collusion. This detec-

tor can easily be circumvented by a colluder if it simply
modifies the content slightly, even by just flipping one
single bit. Also, differentiating legitimate repeated
downloads from colluders will be a challenging task.
For example, peers could lose their local cache and be
required to repeat previous downloads. We have used
this detector in the study to lead the ways to other more
robust detectors, taking advantage of the very fact that
colluders today do not bother to cover their tracks by
randomizing their colluding working set.

5. EigenTrust and collusion

Another way to look at the Maze point system is that it
uses a peer’s upload amount as a way to calculate its
global reputation score. While we have shown that it
has been effective in encouraging sharing [19], the cur-
rent scheme is flawed in the sense that a peer’s contri-
bution is measured only by its aggregate upload, but
not by how widely its contribution benefits the commu-
nity at large. This is why the TC degree, though quite
crude, would have been a better way to capture a peer’s
contribution.

According to the taxonomy proposed in [6], incen-
tive mechanisms can be categorized into those using
private history, shared history, or subjective shared
history. The authors pointed out that non-subjective
shared history based schemes such as Maze are vulner-
able to the collusion attack. To some extent, our results
have validated their conclusions. The authors proposed
a maxflow algorithm based on subjective shared history
as the counter measure. The algorithm basically calcu-
lates the services that the downloading requester has
provided to the uploader in the past, whether directly or
indirectly. The comparison is done from the uploader’s
point of view, and therefore is “subjective.” While the
algorithm is interesting, it also means that there will not

Table 7: Detector strength and weakness summary

Detector Heuristic Strength Weakness

Repetition Colluders use a small
colluding working set

General detector, and helps
us find complex collusion
topology

Easily defeated by
randomized colluding
working set

Pair-wise There is more mutual upload
than upload to external

Can pin-point the pair with
high accuracy

Specialized for pair-wise
colluding, and does not
work for more complicated
group colluding topology

Spam

Upload to a large number of
whitewashed accounts
located on small number of
machines

Works fine for finding spam
collusion specifically

Specialized for spam-
account colluding

Traffic concentration Colluder control relatively
small number of machines

General detector, and works
fine for most collusions we
found

Setting the right parameter
will be tricky

10

be any global ranking of peer reputation. This, in turn,
means that there will be no list of “celebrities” such as
the “altruistic list” that Maze uses. Our experience with
operating Maze thus far proves one thing: the P2P file-
sharing system is much like a society, and things like
the “altruistic list” is highly useful, even though it logi-
cally leads to a global ranking system and thus opens
the door to collusion.

One of the best known algorithms of global rank-
ing system is the EigenTrust proposal [8]. The Eigen-
Trust ranking can be used for both reputation manage-
ment [8] (used for clients to choose the trustworthy
download sources) and free rider detection [9] (used for
uploader to choose trustworthy clients). Although our
primary focus of the paper is to understand collusion
behavior, it would be interesting to run the EigenTrust
algorithm over our logs. Intuitively, if the algorithm is
robust, it should give the colluders low scores.

5.1 EigenTrust description

We first give a high level description of the EigenTrust
system [8]. EigenTrust calculates global trust values for
all peers based on Power iteration in peer-to-peer file-
sharing systems. The algorithm is similar to the PageR-
ank algorithm. First, peer i can assign another peer j
trust values Cij based on its downloading experience
from j. The trust values for all j are normalized locally
by each peer i. At this point, we obtain a matrix C con-
taining the trust value of the pairs of peers of the entire
system. The trust vector t is defined as the left principal
eigenvector of C. The component ti is called the Eigen-
Rank of peer i, this value represents the peer’s global
reputation. This achieve the goal: “the global reputation
of each peer i is given by the local trust values assigned
to peer i by other peers, weighted by the global reputa-
tions of the assigning peers.” [8]. The algorithm can
also be explained by “random walk” as follows. Imag-
ine a great number of ants randomly walking among
peers, with probability Cij to move from peer i to peer j.
At the stable state, the number of ants at each peer will
be proportional to its EigenRank.

The basic algorithm can be further improved to en-
hance its robustness against malicious users. To do that,
it incorporates the notion of some pre-trusted peers in
the set P. So, for peer i, we define pi=1/|P| if i∈P, and
pi = 0 otherwise. The algorithm is described in Figure 8.

The parameter a is a constant less than 1, used to
primarily deal with malicious collectives including col-
luders. It means that, when calculating the trust vector,
each peer will place some trust on the pre-trusted peers.
A higher value of a implies more confidence on the
pre-trusted peers.

;

;)1(
;

;

)()1(

)1()1(

)()1(

)0(

εδ

δ

<

−=

+−=

=

=

+

++

+

until

tt

patat
tCt

repeat
pt

kk

kk

kTk

rr

rrr

rr

rr

Figure 8: Basic EigenTrust algorithm

5.2 Applying EigenTrust to Maze

We map the EigenTrust algorithm to Maze system as
follows. First, we define the trust value cij be propor-
tional to the total downloading of peer i from peer j
during the log period. Then, we normalize the local
trust value cij such that:

1
1

=∑
=

N

j
ijc

From the Maze forum, we select ten peers that we
are confident that they can act as the pre-trust peers (i.e.
|P|=10). At this point, we have obtained the matrix C
and the pre-trust peer set P. Finally, we set a=0.1. We
are now ready to run the EigenTrust algorithm.

5.3 Experiment results

Figure 9 shows the EigenTrust values for the 9568
peers whose total uploads are more than 10GB. There
are two interesting observations we can make about the
result. First, generally speaking, the more uploads a
peer has, the higher its score will be. Thus, if the Maze
system did not have colluders and whitewashers, its
primitive point system should have been sufficient.
Second, the peers are spread in two noticeable bands.
We drew a line and partitioned peers into two (H and L)
regions, as shown in Figure 9. Out of roughly 9600
peers, 551 are in region L. If we focus on peers with the
same upload traffic, this means that the reputation val-
ues of those in region H are far higher than those in
region L (about 103 times). Does that imply that peers
of region L are colluders?

To answer this question, we label the positions of
the fourteen colluders detected from earlier sections
using squares (see Figure 9). Peer Mary is absent be-
cause its EigenTrust value is 0 and is outside the y-axis
scope. The result is somewhat unexpected. While a
portion of the colluders have low scores and belong to
region L, many others are in fact in region H. Therefore,
generally speaking, the split of the two regions can not
be simply attributed to collusion. So what is the reason?

11

Figure 9: The EigenRank of peers

Region Average # of
distinct client IP

 Avg. # of Class-B spaces
clients located in

H 299.5 59.38
L 98.323 2.18

Table 8: Client IP distribution of regions H and L

Peer
U/D

Upload
traffic

Top
clients

Client
total d/l

Machine
id

Client activity
temporal

5.4GB C50 34.3GB M21
4.6GB C51 15.7GB M22

Wayne
290GB
3.9GB 4.5GB C52 7.9GB M23

3.4GB C20 3.4GB M1
3.2GB C21 3.2GB M1
3.1GB C22 3.1GB M1
2.5GB C23 2.5GB M1
1.7GB C24 1.7GB M1
1.5GB C25 1.5GB M1

Jane
19GB
450M

B

1.1GB C26 1.1GB M1
Table 9: A comparison of a non-colluding region-L
peer (Wayne) with a region-H spam-account col-
luder (Jane)

In EigenTrust, a peer’s reputation depends on the
reputations of its clients: if the clients have lower repu-
tations, then this peer suffers as well. Therefore, there
must be something of the clients that tells these two
groups apart. After analyzing the data, we found that
there is significant difference in the IP address distribu-
tion of the clients of region-H and region-L peers. The
data is shown in Table 8. On average, region-H peers
upload to about 300 distinct IP addresses which are
scattered in 60 class-B spaces. This means that each
class-B space contains, on average, 5 IP addresses used
by a region-H peer’s clients. On the other hand, region-
L peers upload to 98 distinct IP addresses scattered in
2.2 class-B spaces. Thus, each class-B space contains
about 45 IP addresses used by a region-L peer’s clients.
Therefore, comparing against region-L peers, the key
difference is that region-H peers have more clients, and
they are more widely spread geographically. Region-L

peers appear like a “local distributors” (marked as tri-
angle in Figure 9)

Table 9 lists one of the region-L peers (Wayne)
and compares it with a spam-account colluder (Jane)
we found earlier. Wayne is in region-L, whereas Jane is
in region-H (the reason that Jane ranks high will be
discussed shortly). Peer Wayne’s 722 clients reside on
614 different machines, all of which have temporal
activities that are vastly different from the colluder; we
show only its three top clients.

Figure 10: Wayne’s school is a satellite cluster

A closer look at Wayne’s uploading history reveals

that many of its clients are also region-L peers. Thus,
we speculate that due to the nature of good network
connectivity, peers in a subnet tend to cluster together
in their downloading activities. If this cluster does not
upload heavily to external peers, even though there are
many intra-cluster traffics, the net effect of the Eigen-
Trust algorithm is to treat it as a big misbehaving group.
We query Wayne’s IP address in the APNIC whois
database, and find that Wayne belongs to a university.
Most of Wayne’s clients are in the same university. We
calculate the internal and external traffic of this school
and the results are shown in Figure 10.

The total traffic that Wayne’s school consumes is
the sum of its internal traffic (15TB), plus its download
from external sites (5.6TB). On average, a peer in
Wayne’s school is responsible for 4.9GB of traffic dur-
ing the log period. For the same period, a peer not in
Wayne’s school has an average of 2.7GB traffic. While
the difference is noticeable, it is not statistically signifi-
cant. The key problem is that Wayne’s school collec-
tively uploads (172GB) far less than it downloads
(5.6TB): the upload volume is only 3% of the
download volume. Therefore, everyone in this cluster
(Wayne’s school) is punished by the EigenTrust algo-
rithm, including Wayne. While it is interesting that
EigenTrust has helped to identify this satellite cluster
with asymmetric traffic flow, we are not certain that the
scores assigned to individual peers are justified: a non-
colluding region-L peer such as Wayne has contributed
to a great number of other peers.

12

Total upload
by Larry

Total
collusion

Uploads
to Ted

Ted’s total
downloads

29.7GB 29GB 734KB 124M

Table 10: A pre-trusted peer helps colluder Larry

Now let’s turn to the problem of why some collud-
ers have such high EigenRanks. The colluder Larry has
a much higher EigenRank than many other normal
peers who have comparable uploads. Figure 9 shows
that there are many colluders located in region-H. It is
difficult to determine all the contributing factors. One
possibility is that pre-trusted peers may have uninten-
tionally helped colluders to elevate their EigenRanks.
Table 10 presents a case where a pre-trusted peer Ted
helps colluder Larry. Larry uploads 29.7GB, mostly of
which are colluding uploads. The pre-trusted peer Ted
has a total of 3.8TB of uploads, and it has also
downloaded 124MB data. Out of downloads totally
124MB, 734KB is from colluder Larry. That is to say,
only 0.59% comes from this colluder. This tiny traffic
raises Larry’s EigenRank nearly 10 times (from 8.2e-6
to 6.6e-5). Removing this upload would have dropped
the colluder’s ranking from 334 to 1905. Further more,
Larry also has some other uploads to reputable peers. If
we remove its top 200MB uploads to “celebrity peers,”
it drops into region L (EigenRank further drops to 7.4e-
8) Decreasing the value of a (which has a net effect of
placing less trust on the pre-trust peers) produces simi-
lar effect. However, these colluders may simply be
lucky. These findings seem to suggest another vulner-
ability of the EigenTrust algorithm. It may be fair for
peers outside of Wayne’s school to treat Wayne as col-
luder, but peers located inside his school should not.
This implies that global ranking doesn’t work well in
this instance.

Figure 11: The TC plot with local distributors and
colluders.

To put things into perspective, we conclude this
section by redrawing the results of using the traffic-
concentration detector in Figure 11, which is now an-
notated with the same colluders and local distributors as
we did in Figure 9. Note that unlike EigenTrust, a
lower value of TC degree means that a peer is not only
contributing, but that its contribution flows are physi-
cally – not logically – diverse. It is interesting to see
that all the 14 sample colluders have high TC degree,
whereas the two sample local distributors have low TC
degree. Thus, for the Maze system at least, the TC de-
gree appears to be a more robust and simpler add-on for
the basic point system.

6. Related work
There is much work focused on incentive systems for
peer-to-peer networks. They are categorized into three
types according to the taxonomy in [6]: private history,
shared history, and subjective shared history. Most of
the early works focus on the free-rider problem. For
example, the Choking algorithm in BitTorrent is a type
of private history based on TIT for TAT. Its robustness
and ability to deal with free-riders has been proven in
practice [3].

Systems based on private history generally do not
scale well. In a large p2p network, peers will interact
with a large amount of peers, most of which are new
faces, and they will only interact once [4]. This limits
BitTorrent to generally small groups in individual
download sessions. To overcome this drawback, many
shared history solutions are proposed. They can be gen-
erally categorized into two types (according to [11]):
virtual currency based and reputation based, e.g., Mojo
Nation [16] or Maze and Free Haven [4]. There is also
a hybrid approach called Stamp [11], where any peer
can issue stamps. These stamps act like currency. The
value of each peer’s stamps is maintained by its ex-
change rates, which acts as a reputation value.

The new problem introduced by shared history is
collusion. Collusion can use forged shared history to
increase the ranking of colluders [6]. There are two
types of collusion. Group collusion builds mutually
high ranking among group peers, and spam account
collusion uses spam accounts to generate an artificially
high ranking to a single colluder. The Stamp algorithm
solves part of this problem by enabling exchange rate
among various kinds of stamps. However, a more ge-
neric solution is to use subjective shared history [6],
including both the maxflow [6] and EigenTrust [8][9]
approaches. In maxflow each peer ranks other peer on
its own perspective; while in EigenTrust the entire sys-
tem ranks all peers globally. Maxflow is an ideal solu-
tion but is expensive to implement in a real system.

13

Most of the incentive schemes focus on curbing the
free-riding behavior. In other words, they want to moti-
vate users who otherwise do not want to share. Our
experience is that there are some peers not following
this assumption at all: some peers upload huge but sel-
dom download. According to Maze forum, their goal is
to climb social ladder for the celebrity effect, and the
incentive system becomes the tool for them to leverage.
Such exceptionally high ranked peers break the basic
assumption, and their random downloads elevate the
colluder’s reputation as well, as we have showed.

EigenTrust is similar in spirit to the page ranking
algorithm [2]. Many issues we discuss also exist in the
world of webpage ranking. For example, link spam
collusion [17] is a combination of our spam account
collusion and group collusion. It would be worthwhile
to apply some of their results to collusion in P2P file-
sharing systems.

7. Conclusion
Our work seeks to present a first-hand empirical

analysis of colluding behavior in a real peer-to-peer file
sharing system. With total access to the popular Maze
file sharing system, we analyze a complete user and
traffic log collected during the course of a month on
Maze. From our observations of collusion behavior,
we build four different types of collusion detectors for
file-sharing networks. While obtaining definitive proof
of intent to collude is difficult, application of our detec-
tors provides substantial evidence of collusion-like be-
havior.

We also apply the popular EigenTrust reputation
system to our data set, and compare the results to our
knowledge of existing colluders. Using our lessons
from this study, we are developing incentive systems
that will provide stronger resistance against observed
user collusion behavior. Finally, while our observa-
tions are made on Maze, the collusion patterns we ob-
serve are likely to occur in any system without point
conservation. Outside of BitTorrent’s tit-for-tat scheme,
Maze is one of the few peer-to-peer systems with an
active incentive structure, and our lessons should serve
to guide the design and deployment of future distrib-
uted incentive schemes.

References
[1] R. Axelrod, “The Evolution of Cooperation”, New

York: Basic Books, 1984.
[2] S. Brin, L. Page, “The anatomy of a large-scale hyper-

textual Web search engine,” In Proceedings of WWW,
Brisbane, Australia, April 1998.

[3] B. Cohen, “Incentives Build Robustness in BitTorrent,”
In Proceedings of Workshop on Economics of Peer-to-
Peer Systems, June 2003.

[4] R. Dingledine, M. J. Freedman, and D. Molnar. “The
free haven project: Distributed anonymous storage ser-
vice.” LNCS 2009, 2001.

[5] J. Douceur. “The Sybil Attack.” In Proceedings of
IPTPS, Cambridge, MA, 2002.

[6] M. Feldman, K. Lai, I. Stoica, and J. Chuang, "Robust
Incentive Techniques for Peer-to-Peer Networks," In
Proceedings of EC, May 2004.

[7] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica,
“Free-Riding and Whitewashing in Peer-to-Peer Sys-
tems,” In Proceedings of ACM Workshop on Practice
and Theory of Incentives in Networked Systems (PINS),
August 2004.

[8] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina,
“Incentives for Combating Freeriding on P2P Net-
works,” In Proceedings of Euro-Par, June 2003

[9] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina,
“The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks” In Proceedings of WWW, May
2003

[10] R. Ma, S. Lee, J. Lui, D. Yau, “A Game Theoretic Ap-
proach to Provide Incentive and Service Differentiation
in P2P Networks,” In Proceedings of Sigmetrics-
Performance, New York, NY, June 2004.

[11] T. Moreton, A. Twigg, “Trading in Trust, Tokens, and
Stamps,” In Proceedings of 1st Workshop on Economics
of Peer-to-Peer Systems, Berkeley CA, June 2003

[12] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. “En-
forcing fair sharing of peer-to-peer resources.” In Pro-
ceedings of IPTPS, Berkeley, CA, February 2003.

[13] A. Rowstron and P. Druschel, "Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems". In Proceedings of ACM Middleware,
Heidelberg, Germany, November, 2001.

[14] S. Saroiu, K. P. Gummadi, R. Dunn, S. Gribble, and H.
M. Levy, “An analysis of Internet content delivery sys-
tems,” In Proceedings of OSDI, December, 2002.

[15] S. Saroiu, K. P. Gummadi, and S. Gribble, “A meas-
urement study of Peer-to-Peer File Sharing Systems,”
In Proc. of Multimedia Computing and Networking,
2002.

[16] B. Wilcox-O'Hearn. “Experiences deploying a large-
scale emergent network.” In Proceedings of IPTPS,
Cambridge, MA, 2002.

[17] B. Wu, Brian D. Davison, “Identifying link farm spam
pages,” In Proceedings of WWW, Chiba, Japan, May
2005.

[18] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang,
“Deployment of a Large-scale Peer-to-Peer Social Net-
work,” In Proceedings of WORLDS, San Francisco,
CA, Dec. 2004.

[19] M. Yang, Z. Zhang, X. Li, Y. Dai, “An Empirical Study
of Free-Riding Behavior in the Maze P2P File-Sharing
System,” In Proceedings of IPTPS, Ithaca, NY. Febru-
ary 2005.

[20] T-Net, http://e.pku.edu.cn

