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Abstract 

 
Peer-to-peer networks often use incentive policies to encourage cooperation between nodes. Such systems are gen-
erally susceptible to collusion by groups of users in order to gain unfair advantages over others. While techniques 
have been proposed to combat collusion, our lack of understanding of user collusion in existing systems makes 
evaluating such mechanisms difficult. In this paper, we report analysis and measurement results of user collusion in 
Maze, a large-scale peer-to-peer file sharing system with a point-based incentive policy. We search for the existence 
of colluding behavior by examining complete user logs of the entire system, and use a set of collusion detectors to 
identify several major collusion patterns. In addition, we evaluate how proposed reputation policies would perform 
in Maze, and identify reasons why they might miss their objectives. Our results are generally applicable to large-
scale peer-to-peer systems, and can help guide the design of more robust incentive schemes..  

1. Introduction 

File-sharing networks such as Kazaa and Gnutella have 
popularized the peer-to-peer (P2P) resource sharing 
model. In these large and distributed networks, selfish 
users often “free-ride”, or act in their self interests to 
exploit the system. Numerous research efforts have 
focused on the use of incentive systems to encourage 
sharing among users. Despite the effectiveness of these 
incentive systems, they are generally vulnerable to vari-
ants of the Sybil Attack [5]. In a Sybil attack, users take 
advantage of the zero-cost nature of online identities to 
create multiple identities. These online identities can 
then actively collude to cheat the incentive system.  
 While incentive systems are designed to discour-
age or prevent collusion [12], very little is known about 
how users actually collude in real systems, making col-
lusion prevention difficult. This information is ex-
tremely difficult to gather, simply because it requires a 
very complete view of the inner workings of the net-
work. Most measurements to date are performed by 
logging traffic at the edge nodes while performing que-
ries or membership operations [14][15].   
 In this paper, we present measurements of actual 
user collusion activity in the Maze peer-to-peer file-
sharing network. Maze is a popular Napster-like P2P 
network designed, implemented and deployed by an 
academic research team at Peking University, Beijing 
China. As a measurement platform, Maze is unique in 
two ways.  First, the Maze software is fully controlled 
by our research team, making it possible to deploy and 
embed measurement code inside clients. Second, 

Maze’s centralized architecture means we have access 
to all control and query traffic. Maze uses a simple in-
centive system based on a points system that increases 
with uploads and decreases with downloads. A trusted 
central server audits file transfers and adjusting user 
points accordingly.  
 For our purposes, we define collusion as collabora-
tive activity within groups of users that gives to group 
members benefits they would not be able to gain as 
individuals.  We note that it is impossible to determine 
users’ intent. Our study focuses purely on observable 
action patterns that produce results similar to those pro-
duced by colluding users.  In addition, our work is a 
first step towards understanding collusion behavior. 
Quantifying all forms of collusion is a topic to be ad-
dressed in ongoing work.  It is also difficult to deter-
mine definitively whether multiple identities belong to 
the same person. Issues such as DHCP, NATs and mo-
bile laptops prevent us from reliably detecting the use 
of multiple virtual identities. 
 This paper makes three key contributions. First, we 
gathered a month-long log of Maze that includes details 
of every file transfer performed in the system. For each 
transfer, we record the end peers, the file ID, transfer 
size and other data. We analyze this dataset for user 
collusion behavior. Second, we derive several collusion 
detectors based on our analysis of these logs, and use 
them to quantify the number and types of collusion in 
Maze. Finally, we apply the EigenTrust reputation sys-
tem [8][9] to our dataset, and show that colluding users 
are difficult to detect using traditional reputation sys-
tems. To the best of our knowledge, this is the first em-
pirical study of collusion behavior in an incentive-
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based P2P system. Our results validate conclusions of 
previous work on incentive mechanisms [4][8][9], but 
also show that certain types of collusion are difficult to 
detect and deter.  
 The rest of the paper is organized as follows. Sec-
tion 2 gives a brief description of Maze and the data 
used for this study. Then, Section 3 describes each of 
our collusion detectors in detail, along with their results 
when applied to the Maze dataset. Section 4 compares 
and contrasts the detectors. Then in Section 5, we apply 
the EigenTrust algorithm to the Maze dataset and ana-
lyze the results. Finally, we discuss related work in 
Section 6 and conclude in Section 7. 

2. The Maze Peer-to-Peer system 

Before we present our analysis of the Maze logs, we 
begin by giving background information on the Maze 
system. The Maze file-sharing system was originally 
deployed to address issues of data location and load-
balancing on FTP servers as part of the T-Net Web 
search project [20]. As T-Net became popular, its lim-
ited number of FTP servers led to significantly de-
graded performance. Maze provided a way to distribute 
content without incurring further infrastructure costs. 
 At login, Maze peers 1  authenticate to a central 
server, and upload an index of its locally available 
shared files. The central server maintains heartbeats 
with all online peers, and its index supports full-text 
queries across all of their shared files. In addition to 
searching the central index, users can browse three peer 
lists: a friend-list, a neighborhood-list, and an altruistic 
list.   
 The friend-list is a user-controlled list of friendly 
peers, initially bootstrapped as a random set of peers by 
the central server. Over time, these friend-lists form a 
continuously adaptive social network.  In contrast, the 
server provides each peer with a neighborhood-list of 
other peers sharing the same B-class IP address. These 
provide a list of local hosts with likely high-bandwidth, 
low latency links to the local host.  Finally, the altruis-
tic list is a collection of peers with the highest “Maze 
points” provided by the server.  These peers are hosts 
who have contributed the most to the system, as deter-
mined by the Maze incentive system. Their status as 
“celebrities” in the user population provides additional 
social incentive for sharing [18]. 

                                                           
1 We use the terms “user” and “peer” interchangeably 
in this paper. We also use “clients” of peer x to refer to 
the peers that download from x. 

 A peer can recursively browse the contents of the 
Maze directories of any level of these lists, and initiate 
downloads when they find interesting content. As of 
November 2004, more than two-thirds of all downloads 
are initiated through these peer lists. As will become 
clear later, these social lists have unexpected impacts 
on the design of a good incentive system. 
 Peers download from each other directly in a P2P 
fashion. Peers behind NATs can only connect to non-
firewalled peers. Peers perform “swarm downloads” 
whenever possible by simultaneously retrieving differ-
ent file chunks from multiple users, with priority given 
to peers that share IP address prefix. After each transac-
tion, peers involved report to the central server, which 
adjusts their points accordingly.  

2.1 The Maze incentive system 

Maze currently operates using a point system, where 
peers consume points by downloading files and earn 
points by uploading files. Download requests are 
queued according to their points:  

PerequestTim 10log3⋅−  
where P is the requestor’s point total. Frequent uploads 
provide peers with higher points and faster downloads. 
While simple, this system faces two issues. First, do we 
keep the assignment of points as a zero-sum game, 
where the points lost by one peer are gained by the 
other? Enforcing such a policy imposes hardships on 
peers with slow links and those who hold many un-
popular items. As a result, the Maze community dis-
cussed and voted for a rule which gives uploading more 
points than downloading in order to encourage upload-
ing. This enables more flexibility, but has the side ef-
fect of allowing two interactive peers to create a net 
gain in points after mutual interaction. The other issue 
is bootstrapping points for new peers. Peers must have 
sufficient initial points to download content for it to 
share later. In the current system, Maze allows a peer to 
download > 1GB of data before its downloads are 
throttled at a rate of 300 kbps. 
 

1. New users are initialized with 4096 points. 
2. Uploads: +1.5 points per MB uploaded 
3. Per file downloaded: 

• -1.0/MB downloaded within first 100MB 
• -0.7/MB per additional MB between 100MB and 

400MB 
• -0.4/MB between 400MB and 800MB 
• -0.1/MB per additional MB over 800MB 

4. Service differentiation: 
• Each peer orders download requests by  

T = requestTime – 3logP, where P is the re-
quester’s point total. 

• Users with P < 512 are limited to 200Kb/s. 
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Fig. 1. The Maze point system 

 
 Maze uses service differentiation to reward and 
punish users for their behavior. The point system gives 
downloading preference to users with high scores. 
These users add to their request time a negative offset 
whose magnitude grows logarithmically with their 
score. The parameters of the credit system are designed 
to optimize for large downloads in a user population 
where the majority of users have access to high-
bandwidth links. Since the majority of bytes exchanged 
on Maze are part of large multimedia files, download 
point deductions are graduated to weigh less heavily on 
extremely large files.  For instance, a user can use up 
her initial points by downloading 4GB worth of 1MB-
sized files, 5.2GB worth of 400MB-sized files, or 
6.8GB of 800MB files.  

Note that Maze policies award at least 50% more 
points for uploading than downloading. This system 
rewards uploaders and encourages additional partici-
pants to join the system. We recognize that this allows 
a net points gain as a result of a symmetric operation. 
This property is likely a source of user collusion. We 
discuss evidence of this later in Section 3.1. While the 
total points in the system will increase over time, we 
have yet to observe any negative impact on the overall 
system.  

2.2 Data collection 

While continuous logs of Maze traffic are maintained, 
we perform our analysis on a log segment gathered 
during the span of one-month period from 2/19/05 to 
3/24/05. During this period, more than 161,000 active 
users participated in a total of more than 32 million file 
transfers. Data traffic totaled up to more than 437 Tera-
bytes. 
 The data gathered for this study consists of a col-
lection of user points during this month and the detailed 
traffic log. When two peers report the completion of a 
file transfer to the server, our log keeps only the data 
from the uploading peer. Each traffic log entry contains 

the following: uploading peer-id, downloading peer-id, 
log upload time (server), transfer start time (source), 
transfer end time (source), bytes transferred, file size, 
downloader IP, file md5 hash, and full file path. The 
bytes transferred can be different from the file size if 
the transfer was interrupted, or if the transfer is sourc-
ing from multiple peers.  
 Note that the log only records the downloading 
peer’s IP address as seen from the uploading peer. Thus, 
if both peers are behind the same firewall, the IP ad-
dress of the downloader can be an internal IP (e.g. 
192.168.*.*, 10.*.*.*). Otherwise it will be either a 
public IP or the NAT address, depending on whether 
the downloader has a public IP or not. A single ma-
chine can thus be tracked as a list of different IP ad-
dresses, including changes due to DHCP and host mo-
bility in the case of laptops.  In analyzing the colluding 
behavior, we frequently need to infer the network vi-
cinity of the peers based on IP. To simplify this, we use 
the peer’s most frequently used IP address.  
 As we discuss later, we also need to associate 
online identities with the physical machine the peer 
uses. We began by to using the hash of the hard drive 
serial number, first reported when the client logs onto 
Maze. We later discovered, however, that the serial 
number is not guaranteed to be unique. Thus to 
uniquely identify the machine that a peer uses, we con-
catenate the peer’s IP address with the hash of the hard 
drive serial number. As ongoing work, we are investi-
gating the use of network MAC addresses as an alterna-
tive identifier. 
 We anonymize our logs to protect the privacy of 
Maze users.  User identities are hashed into random 
strings.  In this paper, we refer to distinct users using 
common names from a dictionary (e.g. Alice and Bob), 
and random alphabetic letters to represent 8-bit blocks 
of an IP address (e.g. C.H.97.140). 

3. Identifying collusion topologies 

We now discuss our efforts to detect collusion attempts 
in the Maze system.  Based on our experiences and 
analysis of the traffic logs, we design a number of col-
lusion detectors aimed at locating different types of 
collusion patterns.  We describe these in detail in this 
section, and later summarize their strengths and weak-
nesses. 

3.1 Repetition-based collusion detection 

Our first attempt starts by drawing a crude picture of 
colluding activities in Maze by looking at how users 
use uploading to generate Maze points. Given that 
Maze does not explicitly guard against collusion, and 



 

4 

the point system generates a net gain from a symmetric 
operation, colluders can benefit from using only a small 
“working set” of files to generate points.  We use this 
assumption to generate our first collusion detector. 
 
Detector 1: (Repetition detector) Colluders generate 
large amounts of upload traffic with repeated content.  
 
 We examine all transactions recorded in the one-
month log, and construct a large graph, where vertices 
represent individual users and edges represent aggre-
gated file transfers between users. This results in a di-
rected graph with roughly 4.5 million individual edges.  
Out of all edges, 221,000 contain duplicate files in the 
transfer traffic. This accounts for roughly 4.9% of all 
peer relationships. We define duplication degree be the 
ratio of total upload traffic in bytes over the size of the 
unique data in bytes. A high duplication degree means 
a low proportion of all traffic across the link is unique.  
 We plot the duplication degree of all edges against 
their total upload traffic as a scatter plot in. For duplica-
tion degrees of 5, 10 and 20, there are 890, 148, 27 
edges with duplication degree greater than each respec-
tive threshold.  Given that this data is generated from 
activities performed over the span of a month, it is 
highly likely that a good fraction of these peers are ac-
tively colluding. We also note that colluders are likely 
to use nearby machines to perform the transfers.  Such 
network locality will maximize throughput and gain 
from collusion.  We show this in Figure 2: Duplication 
degree in uploading from peer A to peer B by classify-
ing edges by the IP affinity between the two peers. The 
IP affinity data also confirms that edges with larger 
amount of repeat traffic are more likely to be across 
peers with similar IP addresses.  

 
Figure 2: Duplication degree in uploading from peer 
A to peer B 

To better understand this behavior, we take a 
closer look at the temporal distribution of duplicate 

traffic by individual users. Table 1 lists the top-6 edges 
with the most duplicate traffic. The table shows each 
user’s total uploads, and uploads on the edge with the 
most repeat traffic (max edge). Each table entry also 
includes a temporal locality graph. Each bar stands for 
one day, and the height of the bar is proportional to that 
day’s upload traffic. These results show that there is 
strong temporal locality present. If the same file is up-
loaded multiple times close in time, then it is more 
likely to be used as a colluding tool than legitimate 
sharing.   

 
Src ID, U/D (GB) Unique data 

on max edge
Total traffic 
on max edge 

Temporal locality 
(x: date, y: upload) 

Alice 158/76 7.5 GB 126 GB  
Bob 251/12 6.0 GB 98 GB  

Cindy 104/31 1.9 GB 81 GB  
David 114/149 3.1 GB 62 GB  
David 114/149 10.1 GB 52 GB  
Eric 78/18 7.4 GB 44 GB  

Table 1: Top 6 edges with the most redundant 
traffic 
 

The temporal locality provides strong evidence that 
all 5 of these peers are colluding aggressively. The 
maximum duplication degree is close to 43 by peer 
Cindy. Peer David colludes with two different peers, 
with non-overlapping temporal behavior. Our data 
shows that the data transferred during these colluding 
sessions are generally large files or directories. For ex-
ample, peer Alice uploaded the MSDN DVD image 
(~3GB) repeatedly for 29 times. 

 
Figure 3: Collusion link topology of 100 links with 
the highest ratio of duplicate transfers 

 
Locating nodes that carry large amounts of dupli-

cate traffic has given us a starting point in detecting 
collusion. The next step is to better understand collu-
sion topologies. For this, we built a visualization tool 
that draws edges with highest ratio of duplicate traffic. 
Figure 3 gives a snapshot of the top-100 duplicate traf-
fic links. This figure shows graphically the collusion 
patterns. There are pair-wise collusions, which is a re-
sult of the asymmetric point system (upload earns more 
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than download for the same amount of bytes). There is 
also a more sophisticated 3-party topology. Interest-
ingly enough, it also shows a number of star-shaped 
topologies, which is not what we have expected. The 
following two sections deal with these two kinds of 
collusion in greater detail.  

3.2 Group-based collusion detection 

After examining collusion based on duplicate traffic, 
we turn our attention to mutually colluding peers. In 
Maze, group collusion occurs when peers exchanging 
large amount of data among themselves to earn points. 
This is a consequence of the asymmetric point assign-
ment in Maze. If two peers upload 10GB data to each 
other, each of them will acquire at least 5 thousand 
points. The asymmetric point system was a result of 
extensive discussions and voting on the Maze forum, 
where users wanted to encourage uploading more than 
downloading. Through this and other studies, we are 
trying to quantify the impact of this incentive policy. 

Examining topologies in Figure 3 shows three pair-
wise colluding groups and one 3-party colluding group. 
We refer to them as (Fred, Gary), (Olga, Pam), (Harry, 
Cindy), and (David, Alice, Quincy). Our data shows 
that most group collusions are pair-wise groups, and 
groups of three or more are rare. Intuitively, the traffic 
pattern for a pair-wise colluding group is where two 
peers upload a relatively large amount of their total 
upload traffic to each other. To quantify this, we define 
the property pair-wise degree. For two peers A and B, 
pair-wise degree is the sum of all bidirectional traffic 
between A and B, divided by the sum of total traffic 
uploaded by A and B. This gives rise to the detector of 
group collusion. 
 
Detector 2: (Pair-wise detector) large amounts of mu-
tual upload traffic compared to total uploads. 

 
Figure 4: Pair-wise collusion detector by the ratio of 
mutual upload traffic over total traffic. 

Figure 4 shows the statistic results of applying this 
detector to our dataset. There are 28 thousands pairs of 
peers with mutual uploads, every point in the figure 
stands for such a pair. The x-axis is the total uploads by 
these two peers, and the y-axis is the corresponding 
pair-wise degree. The horizontal line denotes pair-wise 
degree equals to 0.5. Above that line are pairs whose 
mutual upload exceeds uploads to peers external to the 
pair, and there are 73 of them.  While it is possible for 
two friends to share large amounts of mutually interest-
ing content, but the highly concentrated nature of these 
uploads appear indicative of collusion. As Maze be-
comes popular, it may even be the case that a user uses 
Maze to transfer personal files between two of his ma-
chines. Regardless of the actual reasons, whether there 
is intent to collude, such behavior still results in artifi-
cially inflated point values for peers who are not con-
tributing to the community at large. 

One impediment to effective collusion of any kind 
is connectivity. It is laborious to transfer large amounts 
of data through a narrow pipe just for the purpose of 
colluding. One may argue that colluders might anyway 
do pair-wise colluding across wide-area if they are truly 
desperate. But they can more easily achieve sufficiently 
high points simply by whitewashing.  Thus, we expect 
that good connectivity between peers is a requirement 
for pair-wise collusion.  To verify this, we again ana-
lyzed the IP affinity of peer pairs, labeled with different 
symbols in Figure 4. We see that most colluding peers 
have similar IP addresses. IP address vicinity implies 
they are likely physically close to each other in the net-
work and therefore are connected using a higher band-
width connection. 

 
Peer 1 

external Peer 1 Mutual upload Peer 2 Peer 2 
external 

1.7GB Fred 24GB 23GB Gary 5GB 
23GB Cindy 81GB 27GB Harry 0GB 
52GB David 62GB 126GB Alice 32GB 

Table 2: Top-3 big mutual upload pairs. Peer 1/ex-
ternal includes all traffic from peer 1 not going to 2. 

 
We take a closer look at some specific examples of 

possible colluding peer-pairs.  Table 2 lists three top 3 
pairs ranked by pair-wise degree. Considering the 
asymmetry of the point system, even the most unbal-
anced peer (Harry) will end up with a net point gain 
(after uploading 27GB and then downloading 81GB). 
Recall that our repetition-based collusion detector 
found a 3-party collusion. Two of the peers in this col-
lusion are detected as a pair-wise collusion (peer David 
and Alice). However, this match does not necessarily 
mean that the pair-wise detector can detect larger collu-
sion topologies. If a group of N colluding peers collude 
by perfectly balancing their traffic across mutual links, 
the pair-wise degree between any two peers can drop as 
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low as 1/(N-1). With the possibility of creating much 
more sophisticated colluding topologies, designing a 
robust group-collusion detector clearly remains a great 
challenge. 

3.3 Spam account collusion 

In our repetition-based topology in Figure 3: Collusion 
link topology of 100 links with the highest ratio of du-
plicate transfers, we observed an unexpected colluding 
topology – the star-shaped colluding group. The center 
of the star gains points by uploading to many other 
peers. Compared to pair-wise colluding which involves 
a limited number of peers, this is counterintuitive: what 
would motivate these leaf-peers to download duplicate 
content from the central peer without any benefit in 
return? The traffic is only unidirectional. Even more 
puzzling is how the central peer found so many “self-
less” peers to cooperate?  

The truth is that the center peer is the colluder, and 
the leaf-peers are also controlled by the colluder. We 
call these leaf-peers spam accounts, peers that are cre-
ated and then discarded when they become useless. 
Using spam accounts is a creatively way of leveraging 
the zero-cost nature of identities in Maze. This strategy 
is similar to the link spam [17] problem in search en-
gines using page rank to sort results. Why would a 
Maze user use this strategy rather than just using a sin-
gle machine to restart with new identities, or whitewash? 
One possible reason is that users typically want to 
maintain one primary account for social status or to 
maintain Maze-related state such as. the Maze point 
total or the friends-list. To do this, a Maze user needs to 
maintain a persistent primary account active. This type 
of collusion is also efficient because it earns points 
much faster than pair-wise collusion for the same 
amount of traffic. In order for this to work, the colluder 
must have more than one machine. If a user has access 
to only one machine, then she can cheat the system 
only through account whitewashing. 

There are 4 star-shaped topologies caught by the 
repetition detector in Figure 3. Ted has fan-out of 8, 
Mary and Sam have fan-out of 4, and Ingrid has fan-out 
of 3. We take a closer look at them in Table 3. Except 
for Ted’s group, there is generally strong IP address 
similarity between the center peer and its leaf-peers. All 
of this indicates a high likelihood of collusion.  Peer 
Ted, however, turns out to be the Maze user with the 
highest uploads of the month (3.8TB). Since its 8 edges 
carrying duplicate traffic shows very little IP address 
similarity, Ted is likely not a colluder.  

While zero-cost identities are easy to generate, 
physically separate machines are expensive to obtain. 
This means spam accounts can be large in number, but 

live on relatively few machines. We define PM ratio 
(number of peers / number of machines) to describe 
how densely a peer’s clients are distributed across dif-
ferent physical machines.  
Detector 3: (Spam account detector) high Peer to Ma-
chine ratio can indicate spam account colluding. 

 
 

source 
peer 
U/D 

upload 
traffic client IP Client id

12GB A.B.220.148 C1 
6.0GB C.D.98.169 C2 
6.5GB C.E.135.202 C3 
14GB F.G.14.35 C4 
6.6GB C.H.110.166 C5 
6.9GB A.B.167.140 C6 
6.7GB A.B.121.135 C7 

Ted 
3.8TB/
124MB

4.3GB I.J.157.156 C8 
31GB C.H.97.140 C9 
9.6GB C.H.97.140 C10 
8.0GB C.H.97.140 C11 

Mary 
73GB/ 
5.2GB 

10GB C.H.97.140 C12 
17GB H.U.8.26 C13 
13GB H.U.8.26 C14 
9.7GB H.U.8.207 C15 

Sam 
47GB/ 
0.5GB 

5.8GB H.U.8.101 C16 
29GB K.L.0.150 C17 
16GB K.L.0.150 C18 

Ingrid 
78GB/ 
5.8GB 11GB K.L.0.165 C19 

Table 3: Peers suspicious of doing spam account 
colluding, as found by repetition detector 
 

We use the method described in Section 2.2 to as-
sociate a peer with its machine. One problem with the 
PM value is the signal to noise ratio. A single upload to 
some random peer will count as an additional peer-
machine pair and significantly reduce the PM value.  
We remove these noise values by discarding the bottom 
smallest uploads that, in aggregate, holds less than 20% 
of all upload traffic. Figure 5 presents the statistical 
result with each point representing one peer. 

 
Figure 5: Spam account detection by PM ratio. 
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source peer 

U/D 
Upload 
traffic Maze id Client 

total d/l 
Machine 

id 
Client activity 

temporal 
3.4GB C20 3.4GB M1 
3.2GB C21 3.2GB M1 
3.1GB C22 3.1GB M1 
2.5GB C23 2.5GB M1 
1.7GB C24 1.7GB M1 
1.5GB C25 1.5GB M1 

Jane 
19GB 

450MB 

1.1GB C26 1.1GB M1 
31GB C27 32GB M2 
10GB C28 10GB M2 
9.6GB C29 11GB M2 
8.0GB C30 8.0GB M2 

Mary 
73GB 
5.2GB 

6.8GB C31 8.3GB M2 
12GB C32 12GB M3 
11GB C33 11GB M3 
8.5GB C34 8.5GB M3 
8.5GB C35 8.5GB M3 
8.1GB C36 8.1GB M3 
6.6GB C37 6.6GB M3 
6.6GB C38 6.6GB M3 

Kelly 
87GB 
6.5GB 

6.6GB C39 6.6GB M3 
29GB C40 29GB M4 
16GB C41 16GB M4 
12GB C42 12GB M4 
11GB C43 11GB M5 
8.6GB C44 8.6GB M4 

Ingrid 
78GB 
5.8GB 

0.51GB C45 0.51GB M4 
10GB C46 10GB M6 
7.6GB C47 7.6GB M6 
7.1GB C48 7.1Gb M6 

Larry 
30GB 
2.0GB 

4.3GB C49 4.3GB M6 
Table 4: Some top spam account colluders 

 
The x-axis of Figure 5 is the total uploads made by 

the peer, and the y-axis is the peer’s PM ratio. We can 
see that most peers have PM ratio slightly above 1 and 
below 2. This is statistically normal because of a good 
portion of Maze users do whitewashing [19], which 
means that on average, every machine hosts more than 
1 peer. However, there are peers with exceptionally 
high PM ratios (the highest reaches 7). It means that 
these peers are mostly whitewashers acting as spam 
accounts helping a peer collude. Table 4 lists the peers 
whose upload > 10GB and have PM ratio > 3 (and thus 
some of the peers in Table 3 are not included).  The 
temporal column shows when each client generated its 
peak loads of Maze traffic.  Consistent temporal colli-
sions between virtual nodes on the same machine may 
signal collusion. 

We cannot be certain they are actually colluding. 
To dig deeper, we make use of three heuristics: 1) The 
spam accounts should have good connectivity to the 
colluder (the center peer). We use IP address similarity 
to infer this. 2) Spam accounts only download data 
from the center peer. 3) The spam accounts perform a 
large amount of downloads in a relatively short life-
span.  

All of these heuristics confirm the likelihood that 
these peers are colluding. Most spam accounts live on 
the same machine; they generally download exclusively 
from the center peer; and they are only active for short 
life spans (1~2 days). One exception is Mary’s spam 
accounts (C27, C28, C29, C30 and C31). It turns out 
that they download from another peer with closely re-
lated content (several chapters of a Korean television 
episode). The center peer (Mary) also downloaded re-
lated content from the same source. Note that peer Ted, 
which was identified as a center of a star with 8 fan-
outs each carries large duplicate upload, is not included. 
As we mentioned earlier, Ted is the largest uploader of 
the month and seems to not be a colluder.   

3.4 Upload traffic concentration 

Pair-wise colluding and spam account colluding share 
one common trait: there is a high volume of upload to 
relatively a few destination machines. This observation 
is important, because we now shift our focus from the 
flow among peers to among physical machines. In pair-
wise colluding, two machines upload towards each 
other. In spam account colluding, uploads flow to a few 
machines on which the colluder repeatedly generate 
new spam accounts. This is intuitive because colluders, 
in general, control a limited number of machines.  

We define the traffic concentration degree or TC 
degree in short, as the ratio of a peer’s highest upload 
traffic to a single machine to his total upload traffic. 
For instance, if x uploads to 10 clients for a total of 
100GB, and the machine receiving the most traffic re-
ceives 90GB, then the TC degree of x is 0.9. On the 
other hand, if y has 100 clients each residing on a dif-
ferent machine, and each of them downloads 1GB from 
y, then y’s TC degree is only 0.01. The higher the TC 
degree, the more likely that the peer is performing ei-
ther pair-wise or spam-account colluding. This is our 
fourth detector:  

 
Detector 4: (Traffic concentration detector) peers with 
exceptionally high TC degree. 
 

The results are summarized in Figure 6, where 
each dot represents a single peer. The x-axis is the 
peer’s total upload, while the y-axis is the TC degree. 
In general, the more uploads a peer has, the more likely 
that uploads are scattered across a wider range of ma-
chines (and peers), resulting in a lower TC degree. 
Figure 6 confirms this in our data set. For peers who 
upload around 10GB, their TC degrees are roughly 
10%. For heavily uploaders who upload around 1TB, 
the TC degree drops to about 1%. However, colluders 
show up differently with exceptionally high TC degrees: 
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they are located in the middle towards the top of the 
graph (total uploads about 100GB and large ratios close 
to 1). There are seven peers that have uploaded more 
than 50GB and their TC degree is larger than 0.6. This 
means that more than 60% of its 50GB uploads is going 
to a single machine). We take a closer look at these 
specific peers in Table 5.  
 

 
Figure 6: Upload traffic vicinity detector result 

 

Peer ID, Total uploads, Peer IP Top client traffic

Cindy 104GB K.L.3.111 81GB 
Eric  78GB M.N.6.140 54GB 
Mary 73GB C.H.97.197 68GB 
Kelly 87GB F.O.181.118 69GB 
Ingrid 78GB C.D.29.37 66GB 
Alice 158GB C.D.156.182 158GB 
Nancy 50GB I.T.132.118 50GB 

Table 5: Top 7 colluders detected by TC detector 
 

We list seven peers in Table 5. For each peer, we 
list the total traffic going to the beneficiary node. Six of 
them are also detected by previous detectors, but there 
is a new peer: Nancy. The pair-wise detector missed it 
because Nancy has no pair-wise traffic with any other 
peer. The spam account detector missed Nancy because 
it mainly uploads to only one peer and its PM ratio is 

almost one. It turns out that it ranks #7 by repetition 
detector (we listed only the top 6 in Section 3.1). 

4. Comparing collusion detectors  

 
Figure 7: Venn diagram of collusion detectors. 

 
After presenting four different collusion detectors, we 
summarize the top colluders discussed in earlier sec-
tions in Figure 7, and graphically show how they were 
detected by each of our four detectors.  Table 6 lists the 
top-7 colluders according to the total upload traffics. It 
also shows (with shaded cell) which detector is respon-
sible for finding out the colluder.  

The first observation we make is that spam-account 
and pair-wise colluders do not overlap. This is logical, 
because the two detectors are designed specifically with 
these two patterns in mind. It does not mean that there 
are no colluders who engage in both activities simulta-
neously.  Doing so can potentially evade our detectors. 
However, given that we have no active collusion detec-
tion mechanism and that spam-account colluding earns 
points in a more “cost-effective” way, there is reason to 
believe that this is does not happen in practice. 

As we discussed earlier, the traffic concentration 
detector is reasoned out of one straightforward observa-
tion, that colluders generally control relatively few ma-
chines. Thus it looks only at how “concentrated” a 
peer’s upload traffic goes to other machines.  Figure 7 

 Table 6:  7 Top colluders and how our detectors have found and missed them 

missed 
peer 

repetition detector 
(max redundant traffic  
among all upload links) 

pair-wise detector 
(pair-wise degree 
/total upload) 

spam account detector 
(total upload/PM ratio) 

traffic concentration 
detector  (total upload 
/ratio of biggest) 

Bob 92 0.98%/253 251/1.1 251/0.39 
Fred 20 86%/55 26/1 26/0.93 
Gary 17 86%/55 29/1 29/0.80 
Harry 23 83%/131 27/1 27/1.0 
Larry 3.6 N/A 30/3 30/0.98 
Jane 2.9 1%20 19/7 9.3/0.94 
Nancy 36 N/A 50/ 1 50/0.95 
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shows that indeed, this detector covers a good portion 
of both spam-account and pair-wise colluders. To un-
derstand this further, we take a closer look of the cases 
that this detector missed. The colluders missed by traf-
fic concentration detector are Bob, Fred, Gary, Harry, 
Larry, and Jane (last column of  Table 6). We can see 
that Bob is missed because its TC degree is not high 
enough (0.39). All others have very larger TC degrees 
(the smallest being 0.80), and they are missing from 
this table simply because of their relatively small total 
upload traffic (we only looked at those have upload 
traffic greater than 50GB). This shows that the TC de-
tector is in fact quite effective at detecting colluders. 

While promising, it is still too early to conclude 
that the TC detector will successfully detect colluders 
in an online fashion. As discussed, identifying a peer’s 
machine in the presence of DHCP, NAT and other is-
sues is non-trivial. Choosing the threshold for collusion 
in TC degree detector is still quite ad hoc.  

 Table 6 shows that the repetition detector misses 
six colluders (column 2). All six peers have too small 
redundant traffic on a single link to be noticed. For 
example, peers Larry and Jane have a lot of collusion 
traffic, but their traffic is scattered across multiple up-
load links. The repetition can only be found if we ag-
gregate multiple links together (Figure 3). The pair-
wise detector missed four colluders. Two among the 
four colluders have little number of mutual upload with 
other peers. The other two have no mutual upload with 
any peer at all. Spam account detector missed five col-
luders. All the five colluders evaded the spam account 
detector because they have very low PM ratios. 

Figure 7 shows that the repetition detector also 
works quite well. However, the reason that it works at 
all is because the current version of Maze has no ex-
plicit defense mechanism against collusion. This detec-

tor can easily be circumvented by a colluder if it simply 
modifies the content slightly, even by just flipping one 
single bit. Also, differentiating legitimate repeated 
downloads from colluders will be a challenging task. 
For example, peers could lose their local cache and be 
required to repeat previous downloads. We have used 
this detector in the study to lead the ways to other more 
robust detectors, taking advantage of the very fact that 
colluders today do not bother to cover their tracks by 
randomizing their colluding working set.  

5.  EigenTrust and collusion 

Another way to look at the Maze point system is that it 
uses a peer’s upload amount as a way to calculate its 
global reputation score. While we have shown that it 
has been effective in encouraging sharing [19], the cur-
rent scheme is flawed in the sense that a peer’s contri-
bution is measured only by its aggregate upload, but 
not by how widely its contribution benefits the commu-
nity at large. This is why the TC degree, though quite 
crude, would have been a better way to capture a peer’s 
contribution. 

According to the taxonomy proposed in [6], incen-
tive mechanisms can be categorized into those using 
private history, shared history, or subjective shared 
history. The authors pointed out that non-subjective 
shared history based schemes such as Maze are vulner-
able to the collusion attack. To some extent, our results 
have validated their conclusions. The authors proposed 
a maxflow algorithm based on subjective shared history 
as the counter measure. The algorithm basically calcu-
lates the services that the downloading requester has 
provided to the uploader in the past, whether directly or 
indirectly. The comparison is done from the uploader’s 
point of view, and therefore is “subjective.” While the 
algorithm is interesting, it also means that there will not 

Table 7: Detector strength and weakness summary 

Detector Heuristic Strength Weakness 

Repetition Colluders use a small 
colluding working set 

General detector, and helps 
us find complex collusion 
topology 

Easily defeated by 
randomized colluding 
working set  

Pair-wise There is more mutual upload 
than upload to external 

Can pin-point the pair with 
high accuracy 

Specialized for pair-wise 
colluding, and does not 
work for more complicated 
group colluding topology 

Spam 

Upload to a large number of 
whitewashed accounts 
located on small number of 
machines 

Works fine for finding spam 
collusion specifically  

Specialized for spam-
account colluding 
 

Traffic concentration Colluder control relatively 
small number of machines 

General detector, and works 
fine for most collusions we 
found 

Setting the right parameter 
will be tricky 
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be any global ranking of peer reputation. This, in turn, 
means that there will be no list of “celebrities” such as 
the “altruistic list” that Maze uses. Our experience with 
operating Maze thus far proves one thing: the P2P file-
sharing system is much like a society, and things like 
the “altruistic list” is highly useful, even though it logi-
cally leads to a global ranking system and thus opens 
the door to collusion.  

One of the best known algorithms of global rank-
ing system is the EigenTrust proposal [8]. The Eigen-
Trust ranking can be used for both reputation manage-
ment [8] (used for clients to choose the trustworthy 
download sources) and free rider detection [9] (used for 
uploader to choose trustworthy clients). Although our 
primary focus of the paper is to understand collusion 
behavior, it would be interesting to run the EigenTrust 
algorithm over our logs. Intuitively, if the algorithm is 
robust, it should give the colluders low scores. 

5.1 EigenTrust description 

We first give a high level description of the EigenTrust 
system [8]. EigenTrust calculates global trust values for 
all peers based on Power iteration in peer-to-peer file-
sharing systems. The algorithm is similar to the PageR-
ank algorithm. First, peer i can assign another peer j 
trust values Cij based on its downloading experience 
from j. The trust values for all j are normalized locally 
by each peer i. At this point, we obtain a matrix C con-
taining the trust value of the pairs of peers of the entire 
system. The trust vector t is defined as the left principal 
eigenvector of C. The component ti is called the Eigen-
Rank of peer i, this value represents the peer’s global 
reputation. This achieve the goal: “the global reputation 
of each peer i is given by the local trust values assigned 
to peer i by other peers, weighted by the global reputa-
tions of the assigning peers.” [8]. The algorithm can 
also be explained by “random walk” as follows. Imag-
ine a great number of ants randomly walking among 
peers, with probability Cij to move from peer i to peer j. 
At the stable state, the number of ants at each peer will 
be proportional to its EigenRank. 

The basic algorithm can be further improved to en-
hance its robustness against malicious users. To do that, 
it incorporates the notion of some pre-trusted peers in 
the set P.  So, for peer i, we define pi=1/|P| if i∈P, and 
pi = 0 otherwise. The algorithm is described in Figure 8.  

The parameter a is a constant less than 1, used to 
primarily deal with malicious collectives including col-
luders. It means that, when calculating the trust vector, 
each peer will place some trust on the pre-trusted peers. 
A higher value of a implies more confidence on the 
pre-trusted peers. 
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Figure 8: Basic EigenTrust algorithm 
 

5.2 Applying EigenTrust to Maze 

We map the EigenTrust algorithm to Maze system as 
follows. First, we define the trust value cij be propor-
tional to the total downloading of peer i from peer j 
during the log period. Then, we normalize the local 
trust value cij such that: 

1
1

=∑
=

N

j
ijc  

From the Maze forum, we select ten peers that we 
are confident that they can act as the pre-trust peers (i.e. 
|P|=10). At this point, we have obtained the matrix C 
and the pre-trust peer set P. Finally, we set a=0.1. We 
are now ready to run the EigenTrust algorithm.   

5.3 Experiment results 

Figure 9 shows the EigenTrust values for the 9568 
peers whose total uploads are more than 10GB. There 
are two interesting observations we can make about the 
result. First, generally speaking, the more uploads a 
peer has, the higher its score will be. Thus, if the Maze 
system did not have colluders and whitewashers, its 
primitive point system should have been sufficient. 
Second, the peers are spread in two noticeable bands. 
We drew a line and partitioned peers into two (H and L) 
regions, as shown in Figure 9. Out of roughly 9600 
peers, 551 are in region L. If we focus on peers with the 
same upload traffic, this means that the reputation val-
ues of those in region H are far higher than those in 
region L (about 103 times). Does that imply that peers 
of region L are colluders? 

To answer this question, we label the positions of 
the fourteen colluders detected from earlier sections 
using squares (see Figure 9). Peer Mary is absent be-
cause its EigenTrust value is 0 and is outside the y-axis 
scope. The result is somewhat unexpected. While a 
portion of the colluders have low scores and belong to 
region L, many others are in fact in region H. Therefore, 
generally speaking, the split of the two regions can not 
be simply attributed to collusion. So what is the reason? 
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Figure 9: The EigenRank of peers 
 
 

Region Average # of  
distinct client IP 

 Avg.  # of Class-B spaces 
clients located in 

H 299.5 59.38 
L 98.323 2.18 

Table 8: Client IP distribution of regions H and L 
 

Peer 
U/D 

Upload 
traffic 

Top  
clients 

Client 
total d/l 

Machine 
id 

Client activity 
temporal 

5.4GB C50 34.3GB M21 
4.6GB C51 15.7GB M22 

Wayne 
290GB 
3.9GB 4.5GB C52 7.9GB M23 

3.4GB C20 3.4GB M1 
3.2GB C21 3.2GB M1 
3.1GB C22 3.1GB M1 
2.5GB C23 2.5GB M1 
1.7GB C24 1.7GB M1 
1.5GB C25 1.5GB M1 

Jane 
19GB 
450M

B 

1.1GB C26 1.1GB M1 
Table 9: A comparison of a non-colluding region-L 
peer (Wayne) with a region-H spam-account col-
luder (Jane) 

In EigenTrust, a peer’s reputation depends on the 
reputations of its clients: if the clients have lower repu-
tations, then this peer suffers as well. Therefore, there 
must be something of the clients that tells these two 
groups apart. After analyzing the data, we found that 
there is significant difference in the IP address distribu-
tion of the clients of region-H and region-L peers. The 
data is shown in Table 8. On average, region-H peers 
upload to about 300 distinct IP addresses which are 
scattered in 60 class-B spaces. This means that each 
class-B space contains, on average, 5 IP addresses used 
by a region-H peer’s clients. On the other hand, region-
L peers upload to 98 distinct IP addresses scattered in 
2.2 class-B spaces. Thus, each class-B space contains 
about 45 IP addresses used by a region-L peer’s clients. 
Therefore, comparing against region-L peers, the key 
difference is that region-H peers have more clients, and 
they are more widely spread geographically. Region-L 

peers appear like a “local distributors” (marked as tri-
angle in Figure 9) 
 

Table 9 lists one of the region-L peers (Wayne) 
and compares it with a spam-account colluder (Jane) 
we found earlier. Wayne is in region-L, whereas Jane is 
in region-H (the reason that Jane ranks high will be 
discussed shortly). Peer Wayne’s 722 clients reside on 
614 different machines, all of which have temporal 
activities that are vastly different from the colluder; we 
show only its three top clients.   

 

 
Figure 10: Wayne’s school is a satellite cluster 

 
A closer look at Wayne’s uploading history reveals 

that many of its clients are also region-L peers. Thus, 
we speculate that due to the nature of good network 
connectivity, peers in a subnet tend to cluster together 
in their downloading activities. If this cluster does not 
upload heavily to external peers, even though there are 
many intra-cluster traffics, the net effect of the Eigen-
Trust algorithm is to treat it as a big misbehaving group. 
We query Wayne’s IP address in the APNIC whois 
database, and find that Wayne belongs to a university. 
Most of Wayne’s clients are in the same university. We 
calculate the internal and external traffic of this school 
and the results are shown in Figure 10.  

The total traffic that Wayne’s school consumes is 
the sum of its internal traffic (15TB), plus its download 
from external sites (5.6TB). On average, a peer in 
Wayne’s school is responsible for 4.9GB of traffic dur-
ing the log period. For the same period, a peer not in 
Wayne’s school has an average of 2.7GB traffic. While 
the difference is noticeable, it is not statistically signifi-
cant. The key problem is that Wayne’s school collec-
tively uploads (172GB) far less than it downloads 
(5.6TB): the upload volume is only 3% of the 
download volume. Therefore, everyone in this cluster 
(Wayne’s school) is punished by the EigenTrust algo-
rithm, including Wayne. While it is interesting that 
EigenTrust has helped to identify this satellite cluster 
with asymmetric traffic flow, we are not certain that the 
scores assigned to individual peers are justified: a non-
colluding region-L peer such as Wayne has contributed 
to a great number of other peers.  
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Total upload 
by Larry 

Total  
collusion 

Uploads 
to Ted 

Ted’s total 
downloads 

29.7GB 29GB 734KB 124M 

Table 10: A pre-trusted peer helps colluder Larry 
 

Now let’s turn to the problem of why some collud-
ers have such high EigenRanks. The colluder Larry has 
a much higher EigenRank than many other normal 
peers who have comparable uploads. Figure 9 shows 
that there are many colluders located in region-H. It is 
difficult to determine all the contributing factors. One 
possibility is that pre-trusted peers may have uninten-
tionally helped colluders to elevate their EigenRanks. 
Table 10 presents a case where a pre-trusted peer Ted 
helps colluder Larry. Larry uploads 29.7GB, mostly of 
which are colluding uploads. The pre-trusted peer Ted 
has a total of 3.8TB of uploads, and it has also 
downloaded 124MB data. Out of downloads totally 
124MB, 734KB is from colluder Larry. That is to say, 
only 0.59% comes from this colluder. This tiny traffic 
raises Larry’s EigenRank nearly 10 times (from 8.2e-6 
to 6.6e-5). Removing this upload would have dropped 
the colluder’s ranking from 334 to 1905. Further more, 
Larry also has some other uploads to reputable peers. If 
we remove its top 200MB uploads to “celebrity peers,” 
it drops into region L (EigenRank further drops to 7.4e-
8) Decreasing the value of a (which has a net effect of 
placing less trust on the pre-trust peers) produces simi-
lar effect.  However, these colluders may simply be 
lucky. These findings seem to suggest another vulner-
ability of the EigenTrust algorithm. It may be fair for 
peers outside of Wayne’s school to treat Wayne as col-
luder, but peers located inside his school should not. 
This implies that global ranking doesn’t work well in 
this instance. 

 
Figure 11: The TC plot with local distributors and 
colluders. 
 

To put things into perspective, we conclude this 
section by redrawing the results of using the traffic-
concentration detector in Figure 11, which is now an-
notated with the same colluders and local distributors as 
we did in Figure 9. Note that unlike EigenTrust, a 
lower value of TC degree means that a peer is not only 
contributing, but that its contribution flows are physi-
cally – not logically – diverse. It is interesting to see 
that all the 14 sample colluders have high TC degree, 
whereas the two sample local distributors have low TC 
degree. Thus, for the Maze system at least, the TC de-
gree appears to be a more robust and simpler add-on for 
the basic point system. 

6. Related work 
There is much work focused on incentive systems for 
peer-to-peer networks. They are categorized into three 
types according to the taxonomy in [6]: private history, 
shared history, and subjective shared history. Most of 
the early works focus on the free-rider problem. For 
example, the Choking algorithm in BitTorrent is a type 
of private history based on TIT for TAT. Its robustness 
and ability to deal with free-riders has been proven in 
practice [3].  

Systems based on private history generally do not 
scale well. In a large p2p network, peers will interact 
with a large amount of peers, most of which are new 
faces, and they will only interact once [4]. This limits 
BitTorrent to generally small groups in individual 
download sessions. To overcome this drawback, many 
shared history solutions are proposed. They can be gen-
erally categorized into two types (according to [11]): 
virtual currency based and reputation based, e.g., Mojo 
Nation [16] or Maze and Free Haven [4]. There is also 
a hybrid approach called Stamp [11], where any peer 
can issue stamps. These stamps act like currency. The 
value of each peer’s stamps is maintained by its ex-
change rates, which acts as a reputation value.  

The new problem introduced by shared history is 
collusion. Collusion can use forged shared history to 
increase the ranking of colluders [6]. There are two 
types of collusion. Group collusion builds mutually 
high ranking among group peers, and spam account 
collusion uses spam accounts to generate an artificially 
high ranking to a single colluder. The Stamp algorithm 
solves part of this problem by enabling exchange rate 
among various kinds of stamps. However, a more ge-
neric solution is to use subjective shared history [6], 
including both the maxflow [6] and EigenTrust [8][9] 
approaches. In maxflow each peer ranks other peer on 
its own perspective; while in EigenTrust the entire sys-
tem ranks all peers globally. Maxflow is an ideal solu-
tion but is expensive to implement in a real system.  
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Most of the incentive schemes focus on curbing the 
free-riding behavior. In other words, they want to moti-
vate users who otherwise do not want to share. Our 
experience is that there are some peers not following 
this assumption at all: some peers upload huge but sel-
dom download. According to Maze forum, their goal is 
to climb social ladder for the celebrity effect, and the 
incentive system becomes the tool for them to leverage. 
Such exceptionally high ranked peers break the basic 
assumption, and their random downloads elevate the 
colluder’s reputation as well, as we have showed.  

EigenTrust is similar in spirit to the page ranking 
algorithm [2]. Many issues we discuss also exist in the 
world of webpage ranking. For example, link spam 
collusion [17] is a combination of our spam account 
collusion and group collusion.  It would be worthwhile 
to apply some of their results to collusion in P2P file-
sharing systems. 

7. Conclusion 
Our work seeks to present a first-hand empirical 

analysis of colluding behavior in a real peer-to-peer file 
sharing system. With total access to the popular Maze 
file sharing system, we analyze a complete user and 
traffic log collected during the course of a month on 
Maze.  From our observations of collusion behavior, 
we build four different types of collusion detectors for 
file-sharing networks.  While obtaining definitive proof 
of intent to collude is difficult, application of our detec-
tors provides substantial evidence of collusion-like be-
havior.  

We also apply the popular EigenTrust reputation 
system to our data set, and compare the results to our 
knowledge of existing colluders.  Using our lessons 
from this study, we are developing incentive systems 
that will provide stronger resistance against observed 
user collusion behavior.  Finally, while our observa-
tions are made on Maze, the collusion patterns we ob-
serve are likely to occur in any system without point 
conservation.  Outside of BitTorrent’s tit-for-tat scheme, 
Maze is one of the few peer-to-peer systems with an 
active incentive structure, and our lessons should serve 
to guide the design and deployment of future distrib-
uted incentive schemes. 

 
References 
[1] R. Axelrod, “The Evolution of Cooperation”, New 

York: Basic Books, 1984. 
[2] S. Brin, L. Page, “The anatomy of a large-scale hyper-

textual Web search engine,” In Proceedings of WWW, 
Brisbane, Australia, April 1998. 

[3] B. Cohen, “Incentives Build Robustness in BitTorrent,” 
In Proceedings of Workshop on Economics of Peer-to-
Peer Systems, June 2003.  

[4] R. Dingledine, M. J. Freedman, and D. Molnar. “The 
free haven project: Distributed anonymous storage ser-
vice.” LNCS 2009, 2001. 

[5] J. Douceur. “The Sybil Attack.” In Proceedings of 
IPTPS, Cambridge, MA, 2002. 

[6] M. Feldman, K. Lai, I. Stoica, and J. Chuang, "Robust 
Incentive Techniques for Peer-to-Peer Networks," In 
Proceedings of EC, May 2004. 

[7] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, 
“Free-Riding and Whitewashing in Peer-to-Peer Sys-
tems,” In Proceedings of ACM Workshop on Practice 
and Theory of Incentives in Networked Systems (PINS), 
August 2004. 

[8] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina, 
“Incentives for Combating Freeriding on P2P Net-
works,” In Proceedings of Euro-Par, June 2003 

[9] S. D. Kamvar, M. T. Schlosser and H. Garcia-Molina, 
“The EigenTrust Algorithm for Reputation Manage-
ment in P2P Networks” In Proceedings of WWW, May 
2003 

[10] R. Ma, S. Lee, J. Lui, D. Yau, “A Game Theoretic Ap-
proach to Provide Incentive and Service Differentiation 
in P2P Networks,” In Proceedings of Sigmetrics-
Performance, New York, NY, June 2004. 

[11] T. Moreton, A. Twigg, “Trading in Trust, Tokens, and 
Stamps,” In Proceedings of 1st Workshop on Economics 
of Peer-to-Peer Systems, Berkeley CA, June 2003 

[12] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. “En-
forcing fair sharing of peer-to-peer resources.” In Pro-
ceedings of IPTPS, Berkeley, CA, February 2003. 

[13] A. Rowstron and P. Druschel, "Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems".  In Proceedings of ACM Middleware, 
Heidelberg, Germany, November, 2001. 

[14] S. Saroiu, K. P. Gummadi, R. Dunn, S. Gribble, and H. 
M. Levy, “An analysis of Internet content delivery sys-
tems,” In Proceedings of OSDI, December, 2002. 

[15] S. Saroiu, K. P. Gummadi, and S. Gribble, “A meas-
urement study of Peer-to-Peer File Sharing Systems,” 
In Proc. of Multimedia Computing and Networking, 
2002. 

[16] B. Wilcox-O'Hearn. “Experiences deploying a large-
scale emergent network.” In Proceedings of IPTPS, 
Cambridge, MA, 2002. 

[17] B. Wu, Brian D. Davison, “Identifying link farm spam 
pages,” In Proceedings of WWW, Chiba, Japan, May 
2005. 

[18] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang, 
“Deployment of a Large-scale Peer-to-Peer Social Net-
work,” In Proceedings of WORLDS, San Francisco, 
CA, Dec. 2004. 

[19] M. Yang, Z. Zhang, X. Li, Y. Dai, “An Empirical Study 
of Free-Riding Behavior in the Maze P2P File-Sharing 
System,” In Proceedings of IPTPS, Ithaca, NY. Febru-
ary 2005. 

[20] T-Net, http://e.pku.edu.cn 


