
Appears in Proceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03).

Towards a Common API for Structured Peer-to-Peer Overlays�

Frank Dabek� Ben Zhao� Peter Druschel� John Kubiatowicz� Ion Stoica�

�MIT Laboratory for Computer Science, Cambridge, MA.
�University of California, Berkeley, CA.

�Rice University, Houston, TX.

Abstract
In this paper, we describe an ongoing effort to define com-
mon APIs for structured peer-to-peer overlays and the key
abstractions that can be built on them. In doing so, we
hope to facilitate independent innovation in overlay pro-
tocols, services, and applications, to allow direct experi-
mental comparisons, and to encourage application devel-
opment by third parties. We provide a snapshot of our
efforts and discuss open problems in an effort to solicit
feedback from the research community.

1 Introduction
Structured peer-to-peer overlay networks have recently
gained popularity as a platform for the construction or re-
silient, large-scale distributed systems [6, 7, 8, 10, 11].
Structured overlays conform to a specific graph structure
that allows them to locate objects by exchanging������
messages where � is the number of nodes in the overlay.

Structured overlays can be used to construct services
such as distributed hash tables [4], scalable group multi-
cast/anycast [3, 12], and decentralized object location [5].
These services in turn promise to support novel classes
of highly scalable, resilient, distributed applications, in-
cluding cooperative archival storage, cooperative content
distribution and messaging.

Currently, each structured overlay protocol exports a
different API and provides services with subtly different
semantics. Thus, application designers must understand
the intricacies of each protocol and the services they pro-
vide to decide which system best meets their needs. Sub-
sequently, applications are locked into one system and un-
able to leverage innovations in other protocols. Moreover,
the semantic differences make a comparative evaluation
of different protocol designs difficult.

This work attempts to identify the fundamental abstrac-
tions provided by structured overlays and to define APIs
for the common services they provide. As the first step,
we have identified and defined a key-based routing API
(KBR), which represents basic (tier 0) capabilities that are

�This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National Sci-
ence Foundation under Cooperative Agreement No. ANI-0225660.

common to all structured overlays. We show that the KBR
can be easily implemented by existing overlay protocols
and that it allows the efficient implementation of higher
level services and a wide range of applications. Thus, the
KBR forms the common denominator of services pro-
vided by existing structured overlays.

In addition, we have identified a number of higher level
(tier 1) abstractions and sketch how they can be built upon
the basic KBR. These abstractions include distributed
hash tables (DHT), group anycast and multicast (CAST),
and decentralized object location and routing (DOLR).
Efforts to define common APIs for these services are cur-
rently underway.

We believe that defining common abstractions and APIs
will accelerate the adoption of structured overlays, facili-
tate independent innovation in overlay protocols, services,
and applications, and permit direct experimental compar-
isons between systems.

Our APIs will not be universal. Certain applications
will wish to use protocol-specific APIs that allow them to
exploit particular characteristics of a protocol. This is nec-
essary and desirable to facilitate innovation. However, we
expect that such non-standard APIs, once properly under-
stood and abstracted, can be added to the common APIs
over time.

The rest of this paper is organized as follows. Section 2
provides an overview of structured overlays and the key
services they provide. Next, Section 3 defines and differ-
entiates current tier 1 services. Section 4 describes our
KBR API and Section 5 evaluates our proposed API by
demonstrating how it can be used to implement a vari-
ety of services and how existing overlay protocols can ef-
ficiently implement the API. Section 6 discusses future
work: developing commons API for higher level tier 1
services like distributed hash tables. We conclude in Sec-
tion 6.

2 Background
In this section, we define application-visible concepts
common to all structured overlay protocols.

A noderepresents an instance of a participant in the
overlay (one or more nodes may be hosted by a sin-

1

 CAST

Tier 0

DHT

OceanStoreCFS PAST I3 Scribe SplitStream Bayeux

Tier 1

Tier 2

DOLR

Key−based Routing Layer (KBR)

Figure 1: Basic abstractions and APIs, including Tier 1 in-
terfaces: distributed hash tables (DHT), decentralized ob-
ject location and routing (DOLR), and group anycast and
multicast (CAST).

gle physical IP host). Participating nodes are assigned
uniform random nodeIdsfrom a large identifier space.
Application-specific objects are assigned unique iden-
tifiers called keys, selected from the same id space.
Tapestry [11, 5], Pastry [8] and Chord [10] use a circu-
lar identifier space of �-bit integers modulo �� (� � ���
for Chord and Tapestry, � � ��	 for Pastry). CAN [7]
uses a �-dimensional cartesian identifier space, with 128-
bit nodeIds that define a point in the space.

Each key is dynamically mapped by the overlay to a
unique live node, called the key’s root. To deliver mes-
sages efficiently to the root, each node maintains a rout-
ing table consisting of the nodeIds and IP addresses of
the nodes to which the local node maintains overlay links.
Messages are forwarded across overlay links to nodes
whose nodeIds are progressively closer to the key in the
identifier space.

Each system defines a function that maps keys to nodes.
In Chord, keys are mapped to the live node with the clos-
est nodeId clockwise from the key. In Pastry, keys are
mapped to the live node with the closest nodeId. Tapestry
maps a key to the live node whose nodeId has the longest
prefix match, where the node with the next higher nodeId
value is chosen for each digit that cannot be matched ex-
actly. In CAN, neighboring nodes in the identifier space
agree on a partitioning of the space surrounding their
nodeIds; keys are mapped to the node responsible for the
space that contains the key.

3 Abstractions
All existing systems provide higher level abstractions
built upon the basic structured overlays. Examples are
Distributed Hash Tables (DHT), Decentralized Object Lo-
cation and Routing (DOLR), and group anycast/multicast
(CAST).

Figure 1 illustrates how these abstractions are related.
Key-based routing is the common service provided by
all systems at tier 0. At tier 1, we have higher level ab-

stractions provided by some of the existing systems. Most
applications and higher-level (tier 2) services use one
or more of these abstractions. Some tier 2 systems, like
�
 [9], use the KBR directly.

The KBR API at tier 0 will be defined in detail in the
following section. Here, we briefly explain the tier 1 ab-
stractions and their semantic differences. The key opera-
tions of each of these abstractions are sketched in Table 1.

The DHT abstraction provides the same functionality as
a traditional hashtable, by storing the mapping between a
key and a value. This interface implements a simple store
and retrieve functionality, where the value is always stored
at the live overlay node(s) to which the key is mapped by
the KBR layer. Values can be objects of any type. For ex-
ample, the DHT implemented as part of the DHash inter-
face in CFS [4] stores and retrieves single disk blocks by
their content-hashed keys.

The DOLR abstraction provides a decentralized direc-
tory service. Each object replica (or endpoint) has an
objectIDand may be placed anywhere within the system.
Applications announce the presence of endpoints by pub-
lishing their locations. A client message addressed with
a particular objectID will be delivered to a nearbyend-
point with this name. Note that the underlying distributed
directory can be implemented by annotating trees associ-
ated with each objectID; other implementations are pos-
sible. One might ask why DOLR is not implemented on
top of a DHT, with data pointers stored as values; this is
not possible because a DOLR routes messages to the near-
est available endpoint—providing a locality property not
supported by DHTs. An integral part of this process is the
maintenance of the distributed directory during changes
to the underlying nodes or links.

The CAST abstraction provides scalable group commu-
nication and coordination. Overlay nodes may join and
leave a group, multicast messages to the group, or any-
cast a message to a member of the group. Because the
group is represented as a tree, membership management is
decentralized. Thus, CAST can support large and highly
dynamic groups. Moreover, if the overlay that provides
the KBR service is proximity-aware, then multicast is effi-
cient and anycast messages are delivered to a group mem-
ber near the anycast originator.

The DOLR and CAST abstractions are closely related.
Both maintain sets of endpoints in a decentralized manner
and by their proximity in the network, using a tree con-
sisting of the routes from the endpoints to a common root
associated with the set. However, the DOLR abstraction is
more tailored towards object location, while the CAST ab-
straction targets group communication. Thus, their imple-
mentations combine different policies with the same ba-
sic mechanism. The DHT abstraction, on the other hand,
provides a largely orthogonal service, namely a scalable
repository for key, value pairs.

2

DHT DOLR CAST

put (key, data) publish (objectId) join(groupId)
remove (key) unpublish (objectId) leave(groupId)

value = get (key) sendToObj (msg, objectId, [n]) multicast(msg, groupId)
anycast(msg, groupId)

Table 1: Tier 1 Interfaces

Defining APIs for the DHT, DOLR and CAST inter-
faces is the subject of ongoing work. By defining an API
for key-based routing and identifying the key tier 1 ab-
stractions, we have taken a major first step.

4 Key-based routing API
In this section we describe the proposed key-based routing
API. We begin by defining notation and data types we will
use to describe the API. Section 5.1 will show how we can
use these calls to implement the DHT, DOLR and CAST
higher level abstractions.

4.1 Data types
A keyis a 160-bit string. A nodehandleencapsulates the
transport address and nodeId of a node in the system. The
nodeId is of type key; the transport address might be, for
example, an IP address and port. Messages (type msg)
contain application data of arbitrary length.

We adopt a language-neutral notation for describing the
API. A parameter p will be denoted as�p if it is a read-
only parameter and�p if it is a read-write parameter. We
denote an ordered set p of objects of type T as T[] p .

4.2 Routing messages
void route(key�K, msg�M, nodehandle�hint) This
operation forwards a message, M, towards the root of key
K. The optional hint argument specifies a node that should
be used as a first hop in routing the message. A good hint,
e.g. one that refers to the key’s current root, can result in
the message being delivered in one hop; a bad hint adds at
most one extra hop to the route. Either K or hint may be
NULL, but not both. The operation provides a best-effort
service: the message may be lost, duplicated, corrupted,
or delayed indefinitely.

The route operation delivers a message to the key’s
root. Applications process messages by executing code in
upcalls which are invoked by the KBR routing system at
nodes along a message’s path and at its root. To permit
event-driven implementations, upcall handlers must not
block and should not perform long-running computations.

void forward(key �K, msg �M, nodehandle
�nextHopNode) This upcall is invoked at each node
that forwards message M, including the source node, and
the key’s root node (before deliver is invoked). The upcall
informs the application that message M with key K is
about to be forwarded to nextHopNode. The application

may modify the M, K, or nextHopNodeparameters or
terminate the message by setting nextHopNodeto NULL.

By modifying the nextHopNodeargument the applica-
tion can effectively override the default routing behavior.
We will demonstrate examples of the use of this flexibility
in Section 5.1.

void deliver(key �K, msg �M) This function is in-
voked on the the node that is the root for key K upon the
arrival of message M. The deliver upcall is provided as a
convenience for applications.

4.3 Routing state access
The API allows applications to access a node’s routing
state via the following calls. All of these operations are
strictly local and involve no communication with other
nodes. Applications may query the routing state to, for
instance, obtain nodes that may be used by the forward
upcall above as a next hop destination.

Some of the operations return information about a key’s
�-root. The �-root is a generalization of a key’s root. A
node is an �-root for a key if that node becomes the root
for the key if all of the �-roots fail for � � �. The node may
be the �-root for keys in one or more contiguous regions
of the ID space.

nodehandle[] local lookup(key �K, int �num,
boolean�safe) This call produces a list of nodes that
can be used as next hops on a route towards key K, such
that the resulting route satisfies the overlay protocol’s
bounds on the number of hops taken.

If safeis true, the expected fraction of faulty nodes in
the list is guaranteed to be no higher than the fraction of
faulty nodes in the overlay; if false, the set may be cho-
sen to optimize performance at the expense of a poten-
tially higher fraction of faulty nodes. This option allows
applications to implement routing in overlays with byzan-
tine node failures. Implementations that assume fail-stop
behavior may ignore the safeargument. The fraction of
faulty nodes in the returned list may be higher if the
safeparameter is not true because, for instance, malicious
nodes have caused the local node to build a routing table
that is biased towards malicious nodes [1].

nodehandle [] neighborSet (int�num) This operation
produces an unordered list of nodehandles that are neigh-
bors of the local node in the ID space. Up to numnode
handles are returned.

3

nodehandle [] replicaSet (key�k, int �max rank)
This operation returns an ordered set of nodehandles on
which replicas of the object with key k can be stored.
The call returns nodes with a rank up to and includ-
ing maxrank. If maxrank exceeds the implementation’s
maximum replica set size, then its maximum replica set
is returned. Some protocols ([11], [7]) only support a
maxrankvalue of one. With protocols that support a rank
value greater than one, the returned nodes may be used for
replicating data since they are precisely the nodes which
become roots for the key k when the local node fails.

update(nodehandle�n, bool�joined) This upcall is
invoked to inform the application that node � has either
joined or left the neighbor set of the local node as that set
would be returned by the neighborSet call.

boolean range (nodehandle�N, rank �r, key�lkey,
key �rkey) This operation provides information about
ranges of keys for which the node � is currently a �-root.
The operations returns falseif the range could not be de-
termined, true otherwise. It is an error to query the range
of a node not present in the neighbor set as returned by
the updateupcall or the neighborSetcall. Certain imple-
mentations may return an error if � is greater than zero.
���	
� ��	
� denotes an inclusive range of key values.

Some protocols may have multiple, disjoint ranges of
keys for which a given node is responsible. The parame-
ter lkey allows the caller to specify which region should
be returned. If the node referenced by � is responsible
for key lkey, then the resulting range includes lkey. Oth-
erwise, the result is the nearest range clockwise from lkey
for which � is responsible.

5 Validating the API
To evaluate our proposed API, we show how it can be used
to implement the tier 1 abstractions, and give examples of
other common usages. We believe that the API is expres-
sive enough to implement all the applications known to
the authors that have to date been built on top of CAN,
Chord, Pastry and Tapestry. We also discuss how the API
can be supported on top of several representative struc-
tured overlay protocols.

5.1 Use of the API
Here we briefly sketch how tier 1 abstractions (DHT,
DOLR, CAST) can be implemented on top of the routing
API. We also show how to implement a tier 2 application,
Internet Indirection Infrastructure [9], and other mecha-
nisms and protocols such as caching and replication.

DHT. A distributed hash table (DHT) provides two op-
erations: (1) put(key, value), and (2) value = get(key). A
simple implementation of put routes a PUT message con-
taining valueand the local node’s nodehandle, �, using
route(key, [PUT,value,S], NULL). The key’s root, upon

receiving the message, stores the (key, value) pair in its
local storage. If the value is large in size, the insertion
can be optimized by returning only the nodehandle R of
the key’s root in response to the initial PUT message, and
then sending the value in a single hop using route(key,
[PUT,value], R)).

The get operation routes a GET message using
route(key, [GET,S], NULL) . The key’s root returns the
value and its own nodehandle in a single hop using
route(NULL, [value,R], S). If the local node remembers
R from a previous access to key, it can provide Ras a hint.

CAST. Group communication is a powerful building
block in many distributed applications. We describe one
approach to implementing the CAST abstraction de-
scribed in Section 3. A key is associated with a group,
and the key’s root becomes the root of the group’s multi-
cast tree. Nodes join the group by routing a SUBSCRIBE
message containing their nodehandle to the group’s key.

When the forward upcall is invoked at a node, the node
checks if it is a member of the group. If so, it termi-
nates the SUBSCRIBE message; otherwise, it inserts its
nodehandle into the message and forwards the message
towards the group key’s root, thus implicitly subscribing
to the group. In either case, it adds the nodehandle of the
joining node to its list of children in the group multicast
tree.

Any overlay node may multicast a message to the
group, by routing a MCAST message using the group
key. The group key’s root, upon receiving this message,
forwards the message to its children in the group’s tree,
and so on recursively. To send an anycast message, a node
routes an ACAST message using the group key. The first
node on the path that is a member of the group forwards
the message to one of its children and does not forward
it towards the root (returns NULL for nexthop). The mes-
sage is forwarded down the tree until it reaches a leaf,
where it is delivered to the application. If the underlying
KBR supports proximity, then the anycast receiver is a
group member near the anycast originator.

DOLR. A decentralized object location and routing
(DOLR) layer allows applications to control the place-
ment of objects in the overlay. The DOLR layer provides
three operations: publish(objectId), unpublish(ObjectID),
and sendToObj(msg, objectId, [n]).

The publishoperation announces the availability of an
object (at the physical node that issues this operation)
under the name objectID. The simplest form of publish
calls route(objectId, [PUBLISH, objectId, S], NULL) ,
where S is the name of the originating node. At each hop,
an application upcall handler stores a local mapping from
objectIdto S. More sophisticated versions of publishmay
deposit pointers along secondary paths to the root. The
unpublishoperation walks through the same path and re-

4

moves mappings.
The sendToObjoperation delivers a message to �

nearby replicas of a named object. It begins by routing the
message towards the object root using route(objectId, [n,
msg], NULL) . At each hop, the upcall handler searches
for local object references matching objectId and sends a
copy of the message directly to the closest � locations.
If fewer than � pointers are found, the handler decre-
ments � by the number of pointers found and forwards
the original message towards objectID by again calling
route(objectId, [n, msg], NULL) .

Internet Indirection Infrastructure (i3). �
 is a commu-
nication infrastructure that provides indirection, that is, it
decouples the act of sending a packet from the act of re-
ceiving it [9]. This allows �
 to provide support for mobil-
ity, multicast, anycast and service composition.

There are two basic operations in �
: sources send pack-
ets to a logical identifierand receivers express interest in
packets by inserting a trigger into the network. In their
simplest form, packets are of the form ��� � ����� and trig-
gers are of the form ��� � ���� �, where ���� is either an
identifier or an IP address.1 Given a packet ��� � �����, �

will search for a trigger ��� � ���� � and forward ���� to
���� . �
 IDs in packets are matched with those in triggers
using longest prefix matching. �
 IDs are 256-bit long, and
their prefix is at least 128-bit long.

To insert a trigger ���� ����, the receiver calls
route(������������, [�������, addr], NULL) , where ���
is a hash function that converts an 128-bit string into
an unique 160-bit string (eventually by padding �� �������

with zeros). This message is routed to the node responsi-
ble for ������������, where the trigger is stored. Note that
all triggers whose IDs have the same prefix are stored at
the same node; thus the longest prefix matching is done lo-
cally. Similarly, a host sending a packet ���� ��� invokes
route(������������, [�������, data], NULL) . When the
packet arrives at the node responsible for ������������,
the packet’s �� is matched with the trigger’s �� and for-
warded to the corresponding destination. To improve effi-
ciency, a host may cache the address � of the server where
a particular �� is stored, and use � as a hint when invoking
the route primitive for that ��.

Replication. Applications like DHTs use replication to
ensure that stored data survives node failure. To replicate a
newly received key (�) � times, the application calls repli-
caSet (k,r) and sends a copy of the key to each returned
node. If the implementation is not able to return � suit-
able neighbors, then the application itself is responsible
for determining replica locations.

1To support service composition and scalable multicast, �� general-
izes the packet and trigger formats by replacing the �� of a packet and
the ���� field of a trigger with a stack of identifiers. However, since
these generalizations do not affect our discussion, we ignore them here.

Data Maintenance.When a node’s identifier neighbor-
hood changes, the node will be required to move keys to
preserve the mapping of keys to nodes, or to maintain a
desired replication level. When the update upcall indi-
cates that node (�) has joined the identifier neighborhood,
the application calls range (n, i)with � = � � � � � and trans-
fers any keys which fall in the returned range to �. This
has the effect of both transferring data to a node which has
taken over the local node’s key space (� � �) and main-
taining replicas (� � �). This description assumes that a
node is using � replicas as returned by replicaSet.

Caching. Applications like DHTs use dynamic caching
to create transient copies of frequently requested data in
order to balance query load. It is desirable to cache data
on nodes that appear on the route request messages take
towards a key’s root because such nodes are likely to re-
ceive future request messages. A simple scheme places a
cached a copy of a data item on the last node of the route
prior to the node that provides the data. Caching can be
implemented as follows. A field is added to the request
message to store the nodehandle of the previous node on
the path. When the forward upcall is invoked, each node
along the message’s path checks whether it stores the re-
quested data. If not, it inserts its nodehandle into the mes-
sage, and allows the lookup to proceed. If the node does
store the data, it sends the data to the requester and sends a
copy of the data to the previous node on the request path.
The node then terminates the request message by setting
nextHopNodeto NULL.

5.2 Implementation
Here we sketch how existing structured overlay protocols
can implement the proposed API. While the chosen exam-
ple systems (CAN, Chord, Pastry, Tapestry) do not consti-
tute an exhaustive list of structured overlays, they repre-
sent a cross-section of existing systems and support our
claim the the API can be widely implemented easily.

5.2.1 CAN
The route operation is supported by existing operations,
and the hint functionality can be easily added. The range
call returns the range associated with the local node,
which in CAN can be represented by a binary prefix. lo-
cal lookup is a local routing table lookup and currently
ignores the value of safe. The update operation is trig-
gered every time a node splits its namespace range, or
joins its range with that of a neighbor.

5.2.2 Chord
Route is implemented in an iterative fashion in Chord. At
each hop, the local node invokes an RPC at the next node
in the lookup path; this RPC invokes the appropriate up-
call (route or deliver) and returns a next hop node. If a hint
is given, it is used as the first hop in the search instead of a

5

node taken from the local routing table. The local lookup
call returns the closest ��� successors of K in the node’s
location table. Calls to neighborSetand replicaSetreturn
the node’s successor list; neighborSetcalls additionally
return the node’s predecessor. The range call can be im-
plemented by querying the successor list; given the �th
node, it returns the range ������������ ������ �����.
The exception to this rule is the predecessor; the range of
the predecessor cannot be determined.

5.2.3 Pastry
The route operation can be trivially implemented on top
of Pastry’s route operation. The hint argument, if present,
supersedes the routing table lookup. The rangeoperation
is implemented based on nodeId comparisons among the
members of Pastry’s leafset. local lookup translates into
a simple lookup of Pastry’s routing table; if safeis true,
the lookup is performed in Pastry’s constrainedrouting
table [1]. The updateoperation is triggered by a change in
Pastry’s leafset, and the neighbor set (returned by neigh-
borSet) consists of the leafset.

5.2.4 Tapestry
The route operation is identical to the Tapestry API
call TapestryRouteMsgforwarded to the hint argument, if
present. Tapestry routing tables optimize performance and
maintain a small set (generally three) of nodes which are
the closest nodes maintaining the next hop prefix match-
ing property. The local lookup call retrieves the opti-
mized next hop nodes. The saferouting mode is not used
by the current Tapestry implementation, but may be used
in future implementations. The range operation returns
a set of ranges, one each for all combinations of levels
where the node can be surrogate routed to. The updateop-
eration is trigged when a node receives an acknowledged
multicast for a new inserting node, or when it receives an
object movement request during node deletion [5].

6 Discussion and future work
Settling on a particular key-based routing API were com-
plicated by the tight coupling between applications and
the lookup systems on which they were developed. Cur-
rent block replication schemes, especially the neighbor set
replication used by Chord and Pastry, are closely tied to
the manner in keys are mapped to nodes. Supporting ef-
ficient data replication independent of the lookup system
necessitates the rangeand replicaSetcalls which allow a
node to determine where to replicate keys. The common
practice of caching blocks along probable lookup paths
also requires additional flexibility in the API, namely the
upcall mechanism which allows application procedures to
execute during the lookup.

The KBR API described here is intended to be language
neutral to allow the greatest possible flexibility for imple-
mentors of lookup systems. Without specifying a precise

binding of the API in a language, application developers
will not be able to trivially change which system they use.
Instead, the API directs developers to structure their ap-
plications in such a way that they can be translated from
one system to another with a minimum of effort. One pos-
sibility for true portability among structured P2P systems
would be to implement the API as an RPC program.

In the future, we will better articulate APIs for tier 1
services such as DHT, DOLR and CAST, including clear
definitions of functional and performance expectations.
We made a stab at this in Section 3, but more work must
be done. In particular, the similarities between DOLR
and CAST are striking and demand further exploration.
It is at level of tier 1 abstractions that structured peer-to-
peer overlays take on their greatest power and utility. We
hope that the effort detailed in this paper is the beginning
of convergence of functionality toward common services
available for all peer-to-peer applications writers.

References
[1] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A.,

AND WALLACH, D. S. Secure routing for structured peer-to-peer
overlay networks. In Proceedings of OSDI(December 2002).

[2] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A.,
ROWSTRON, A., AND SINGH, A. SplitStream: High-bandwidth
content distribution in a cooperative environment. In Proceedings
of (IPTPS’03)(February 2003).

[3] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., AND ROW-
STRON, A. SCRIBE: A large-scale and decentralized application-
level multicast infrastructure. IEEE JSAC 20, 8 (Oct. 2002).

[4] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proceed-
ings of SOSP(Oct. 2001).

[5] HILDRUM, K., KUBIATOWICZ, J. D., RAO, S., AND ZHAO,
B. Y. Distributed object location in a dynamic network. In Pro-
ceedings of SPAA(Winnipeg, Canada, August 2002), ACM.

[6] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-
peer information system based on the xor metric. In Proceedings
of (IPTPS)(2002).

[7] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SHENKER, S. A scalable content-addressable network. In Proc.
ACM SIGCOMM(San Diego, 2001).

[8] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceedings of IFIP/ACM Middleware(Nov. 2001).

[9] STOICA, I., ADKINS, D., ZHUANG, S., SHENKER, S., AND

SURANA, S. Internet indirection infrastructure. In Proceedings
of SIGCOMM(August 2002), ACM.

[10] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In Proc. ACM SIGCOMM(San
Diego, 2001).

[11] ZHAO, B., KUBIATOWICZ, J., AND JOSEPH, A. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing.
Tech. Rep. UCB/CSD-01-1141, Computer Science Division, U. C.
Berkeley, Apr. 2001.

[12] ZHUANG, S. Q., ZHAO, B. Y., JOSEPH, A. D., KATZ, R. H.,
AND KUBIATOWICZ, J. D. Bayeux: An architecture for scalable
and fault-tolerant wide-area data dissemination. In Proceedings of
NOSSDAV(June 2001).

6

